
Building Intelligent Apps with Cognitive APIs

Building Intelligent
Apps with
Cognitive APIs
Develop Your First Intelligent
Application Using Azure
Cognitive Services

Anand Raman & Chris Hoder

REPORT

The future,
faster Make your vision real. Experiment in

the cloud with 12 AI services—free for
12 months with your account. Start free >

Get help with your project. Talk to a sales specialist >

https://aka.ms/AA67rou
https://aka.ms/AA669s8

An

Building Intelligent Apps
with Cognitive APIs

Develop Your First
Intelligent Application Using

Azure Cognitive Services

and Raman and Chris Hoder

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05860-1

[LSI]

Building Intelligent Apps with Cognitive APIs
by Anand Raman and Chris Hoder

Copyright © 2020 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Jonathan Hassell
Development Editor: Nicole Taché
Production Editor: Deborah Baker
Copyeditor: Rachel Head

Proofreader: Gary Gorski
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

November 2019: First Edition

Revision History for the First Edition
2019-11-04: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Building Intelli‐
gent Apps with Cognitive APIs, the cover image, and related trade dress are trade‐
marks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Microsoft. See our state‐
ment of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

1. What You’ll Learn in This Report. 1

2. The Microsoft AI Platform. 5
Machine Learning Services in Azure 6

3. Understanding Azure Cognitive Services. 9
How to Call a Cognitive Services API 10
New Breakthroughs as a Service 13

4. Vision. 15
Computer Vision 15
Custom Vision 30
Face 36
Form Recognizer 38
Ink Recognizer 39
Video Indexer 39

5. Speech. 43
Speech to Text 44
Text to Speech 46
Translation and Unified Speech 49
Speaker Verification and Identification 49

6. Language. 53
Text Analytics 53
Language Understanding with LUIS 59
QnA Maker 62

iii

Spell Check 63
Translator Text 65
Immersive Reader 66

7. Decision. 69
Anomaly Detector 69
Personalizer 70
Content Moderator 71

8. Web Search. 75
Bing Web Search 75
Bing Custom Search 76
Bing Visual Search 77
Bing Autosuggest 78
Bing Video and News Search 78
Bing Entity Search 79
Bing Local Business Search 80
Azure Search and Cognitive Search 81

9. Paving the Road Ahead. 83
Schneider Electric 83
Seeing AI 84
AI Ethics and Microsoft’s Principles 85

10. Where to Go Next. 89

iv | Table of Contents

CHAPTER 1

What You’ll Learn in This Report

Infusing AI into an application can be difficult and time-consuming.
Until recently, you needed both a deep understanding of machine
learning and months of development to acquire data, train models,
and deploy them at scale. Even then, success was not guaranteed.
The path was filled with blockers, gotchas, and pitfalls causing teams
to fail to realize value from their AI investments.

Microsoft Azure Cognitive Services remove these challenges. They
allow you to infuse your apps, websites, and bots with intelligence
using just a few simple lines of code and without a large data science
team. With these services you can quickly create applications that
hear, speak, understand, and even begin to reason. These capabilities
will unlock new experiences and applications for your business.
Imagine an app that allows users to take a photograph of a menu
and then automatically translate it into another language and
retrieve reviews, pictures, and relevant recipes. Or a chatbot that can
talk with your users in a customized voice that matches your brand.
Imagine infusing this chatbot with even more intelligence, such as
being able to recognize pictures of your products, identify any
defects, and streamline the return process. These are just a few of
the AI-powered features companies are building using the Cognitive
Services.

Even companies with deep expertise in AI turn to these services
rather than creating their own. When Uber looked at ways to verify
a driver’s identity—even if they’d recently cut their hair or changed
their glasses—they chose to use the Microsoft Azure Cognitive Serv‐

1

1 The authors would like to thank Winona Azure for creating most of the code snippets
for this report.

ices Face API rather than build their own solution, despite their
deep knowledge and use of machine learning across the company.

There are several intelligent APIs to choose from: Apple, Amazon,
Google, and Microsoft all have offerings. In this report, however,
we’ll show you how to work with the Microsoft Azure Cognitive
Services to quickly add intelligence to your applications. We will
look at a wide range of scenarios, from kiosks that can greet visitors
and recommend products to ways to gather real-time insights about
crowd behavior or monitor driver safety on the road. Along the way,
we will provide C# code snippets showing you how to call a few of
the APIs.1 We assume you have a basic understanding of the Azure
platform. If you are completely new to Azure, you can find training
materials on the website. We are constantly updating and improving
our services, so be sure to check the documentation to learn more
about the latest features and functionality for each service.

Here’s a breakdown of what we cover in this report:

Chapter 2, The Microsoft AI Platform
Cognitive Services is just one part of Microsoft’s AI platform,
which also includes frameworks, tools, infrastructure, and serv‐
ices for developing AI applications and bringing them to famil‐
iar systems like SQL Server and Power BI.

Chapter 3, Understanding Azure Cognitive Services
Today, there are more than 20 Cognitive Services within Micro‐
soft Azure, each with multiple features and options. These serv‐
ices allow you to quickly and simply bring the latest
breakthroughs from research into your apps. They’re divided
into five categories: Vision, Speech, Language, Decision, and
Web Search. We’ll show you what you can achieve with each one
and how to build them into your apps.

Chapter 4, Vision
Want to analyze an image or a video? The various Vision serv‐
ices provide a powerful tool for extracting data from images.
Recognizing and describing faces, objects, and text are just
some of the many features they offer. You get the power of a

2 | Chapter 1: What You’ll Learn in This Report

https://docs.microsoft.com/learn/azure/

fully trained deep learning image recognition model and can
even customize it to recognize your specific objects.

Chapter 5, Speech
The Speech services cover speech-to-text, text-to-speech, and
real-time translation across several languages. You can custom‐
ize speech models for specific acoustic environments, like a fac‐
tory floor, or train the service to recognize and pronounce your
business’s unique jargon.

Chapter 6, Language
The Language services enable you to analyze, understand, and
translate text. You can turn your FAQ into an interactive chatbot
with the QnA Maker, extract sentiment and key phrases using
Text Analytics, or understand the meaning of a user’s comment
using the Language Understanding service.

Chapter 7, Decision
With the Decision services, you can build apps that surface rec‐
ommendations for informed and efficient decision making. You
can use the Personalizer service to provide relevant, engaging,
and unique experiences to every user, improving app satisfac‐
tion, usability, and engagement, and you can quickly identify
problems in time series data using the Anomaly Detector ser‐
vice.

Chapter 8, Web Search
Whether you want to search for an image or use an image to do
a search, you can use the Bing Search APIs to bring the power of
Microsoft’s Bing search engine to your app.

Chapter 9, Paving the Road Ahead
In this chapter we will provide some examples of customers lev‐
eraging the Cognitive Services to add intelligence to their offer‐
ings and transform the way they do business.

Chapter 10, Where to Go Next
Finally, we provide some pointers to resources you can turn to if
you’d like to broaden your understanding.

What You’ll Learn in This Report | 3

CHAPTER 2

The Microsoft AI Platform

Microsoft uses AI broadly in its own products and services, and
makes its learnings, techniques, and products available to developers
through a variety of services, infrastructure, and tools. It all starts
with Microsoft Research, which has been navigating the cutting
edge of AI for over 25 years. Every day, thousands of researchers
explore new ideas, tackle unsolved challenges, and develop innova‐
tive techniques that repeatedly set new records. These records range
from designing ResNet (the algorithm that now underpins many
image recognition systems) to matching human abilities in transla‐
tion and in understanding images, speech, text, and questions.

The techniques developed by Microsoft Research already drive fea‐
tures in Microsoft tools like Windows and Office. These AI-
powered features range from protecting your account from attack to
suggesting the best layout for your PowerPoint slides. The techni‐
ques and services are also made available as tools for all types of
users, ranging from data scientists looking to boost their productiv‐
ity or take advantage of Azure’s cloud scale to developers who want
to quickly infuse intelligent capabilities into their solutions.

Microsoft has also added AI into familiar products. For example,
SQL Server Machine Learning Services offers an analytics engine
that supports R and Python libraries inside SQL Server so develop‐
ers can use machine learning like any other database functions
they’re writing. Running machine learning models where the data
resides delivers the lowest latency and highest performance because
the data doesn’t have to move around.

5

Figure 2-1 summarizes the machine learning tools available to
developers and data scientists in Azure. Microsoft provides a com‐
prehensive set of capabilities, from the hardware to SaaS offerings.

Figure 2-1. A high-level overview of Microsoft’s cloud AI offerings

The aim of the Microsoft AI Platform is to bring AI to every devel‐
oper, empowering developers to innovate and accelerate with a vari‐
ety of services, infrastructure, and tools. From Azure Cognitive
Services to Azure Machine Learning (AML) for building custom AI
models, the Microsoft AI Platform meets developers where they are
and lets them use the tool and language of their choice. To help you
get started, you can leverage the resources that are available on the
Azure AI website. In the next section, we explore how you can
develop your next intelligent application using the Microsoft AI
Platform.

Machine Learning Services in Azure
Microsoft offers several machine learning cloud services. Each prod‐
uct targets a different level of expertise and desired way of working.
The first choice you have to make is whether you are interested in
building your own model or prefer to leverage prebuilt ones pro‐
vided by Microsoft. In this report, we assume you want to use pre‐
built models.

For highly custom use cases, you may need more control over the
models. For these scenarios, developers should look at the Azure
Machine Learning services. AML is a managed cloud service that
allows you to train, deploy, and manage models in the cloud or on

6 | Chapter 2: The Microsoft AI Platform

https://oreil.ly/hVRZc

edge devices, using Python and tools like Jupyter notebooks. You
can even deploy some TensorFlow image classification and recogni‐
tion models (using a variety of deep neural networks) to Microsoft’s
Project Brainwave FPGA hardware in Azure for inference and train‐
ing, which offers high-scale throughput and low latency. Using 800
FPGAs on Azure, Microsoft was able to process 20 TB of images in
just over 10 minutes, generating over 400,000 inferences a second
with just 1.8 milliseconds latency—enough images to analyze the
entire continental United States with a 1-meter-per-pixel resolution.

The flowchart in Figure 2-2 is a useful tool for deciding which prod‐
ucts to use within Azure Cognitive Services.

Figure 2-2. A flowchart for deciding which Azure services to use for
your use case

Cloud services can also be a great way for organizations to take
advantage of the latest breakthroughs, using products that require
little or no coding. For example, a few years ago, Microsoft Research
created an AI support agent that handles support requests for

Machine Learning Services in Azure | 7

Microsoft. This agent resolves up to 40% of these interactions
without needing to involve a human. The same agent is now avail‐
able as a service in Dynamics 365 and is used by companies like HP
and Macy’s.

For organizations that do not have a team of developers but are
looking to apply intelligence to their business processes, the Micro‐
soft Power Platform provides a set of low-code tools such as Power
BI, PowerApps, and Microsoft Flow that let you quickly and easily
analyze data and act on it through custom applications and automa‐
ted business processes. Many of these tools contain integrations with
the Cognitive Services and other machine learning tools.

Power BI, for example, includes a data preparation workflow and
can now use automated machine learning from the Azure Machine
Learning service to allow business analysts to train, validate, and call
binary prediction, classification, and regression models to analyze
their data. Power BI automatically finds the most relevant features to
include in the model, selects the right algorithm, tunes the model,
and generates a report explaining the performance and contributing
factors.

One of Microsoft’s newest products, AI Builder, provides a low-code
way for users to train, build, and deploy their own models within a
business process without writing a single line of code. Using a sim‐
ple wizard-like experience, users can perform binary classification,
text classification, object detection, and data extraction from forms.

8 | Chapter 2: The Microsoft AI Platform

CHAPTER 3

Understanding Azure
Cognitive Services

Azure Cognitive Services are designed to be productive, enterprise-
ready, and trusted. They make it possible for you to build on the lat‐
est breakthroughs in AI without building and deploying your own
models.

The Cognitive Services portfolio is growing fast, and services are
currently grouped into five categories: Vision, Speech, Language,
Decision, and Web Search. We have organized this report around
these groupings, but when you are building your own app, you are
likely to use several services together across multiple categories.
There are no restrictions on calling different services together.

You can use Cognitive Services whether you’re building traditional
apps or taking the low-code approach. If you’re writing serverless
code, you can call services to process events. For example, you can
use Microsoft Flow and the Language Understanding service to cre‐
ate automation that will schedule a meeting whenever you receive a
text that says something like “set up a meeting.” You can also build
the insights from these services into your Power BI dashboards for
more informative and predictive reports.

To get started, each Cognitive Service offers a free seven-day trial, or
you can create an Azure account to get higher quotas and a longer
trial (you get $200 in credits if you’re new to Azure).

9

If you’re building your own machine learning systems, operational‐
izing them for use in production can take as long as—or longer than
—developing the model in the first place. The data used to train and
run machine learning models can be very personal, or critical to
your business, so you need to deploy those systems with strong
security. Machine learning models also require ongoing mainte‐
nance. The way users interact with your systems will evolve over
time, and to maintain model performance you will need to keep
them up to date and retrain them regularly. All this effort can be
costly and complex to manage.

The Cognitive Services manage many of these requirements for you.
The services are globally available in 25 regions and backed by over
70 industry certifications. Microsoft also regularly updates the mod‐
els behind each service to ensure that they stay relevant and can
work with as wide a range of source materials as possible.

You can also customize the data model in many of the services. For
example, if your app needs to understand common technical terms
in your industry or recognize your internal product names, you can
do the following:

• Create a Custom Vision model to recognize specific people,
objects, or places—for example, to identify products you make
or different plants in your garden.

• Teach the Language Understanding service your unique slang
and regional colloquialisms that often confuse automated sys‐
tems.

• Make your speech recognition system more accurate by model‐
ing the acoustics in the environment where your app is used.

• Create custom voices so generated speech both sounds natural
and matches the voice of your brand and organization.

How to Call a Cognitive Services API
There are several different ways to use the Azure Cognitive Services.
The documentation provides QuickStart tutorials for getting up and
running and reference material for both the SDKs and REST APIs.

There are SDKs to help you get started in many popular languages,
such as C#, Python, Java, JavaScript, and Go. The SDKs enable you

10 | Chapter 3: Understanding Azure Cognitive Services

https://oreil.ly/ScSBM

to call the APIs directly from your code using standard methods
within the library. They also handle working with response data and
formatting it in the appropriate object types. The available SDKs
vary from service to service, though in most cases you’ll find a C#
SDK from NuGet. A complete list of Azure C# SDKs can be found
on GitHub.

You can also access the Cognitive Services directly by calling their
REST API URLs. REST APIs make it easy to call the services in
whatever language or environment you choose.

If you prefer to work with tools like Postman to build and test API
queries, Microsoft provides OpenAPI Swagger definitions for the
REST APIs within the documentation.

Throughout this report, we will provide example code snippets
using the C# SDKs. Each service has a different library, and you will
need to include the ones you need with using statements at the top
of your file. For example, to use the face detection feature in the Face
API, you would include these statements to load the libraries:

using Microsoft.Azure.CognitiveServices.Vision.Face;
using Microsoft.Azure.CognitiveServices.Vision.Face.Models;

Or, for the Text Analytics API, you would include these statements:

using Microsoft.Azure.CognitiveServices.Language.TextAnalytics;
using Microsoft.Azure.CognitiveServices.Language
 .TextAnalytics.Models;

To save space in the book, we will not be including the
using statements that load the various C# libraries and
SDKs used in the code. We have also omitted some
code surrounding the actual SDK method calls.
You can see the full versions of the code samples
included in this book on GitHub or in the QuickStarts
included in the Cognitive Services documentation.

You will also need to authenticate all the requests you make to Cog‐
nitive Services by providing a subscription key or an authentication
token or by using Azure Active Directory. For production applica‐
tions you will need to properly secure these keys, for example by
using Azure Key Vault. You can find more details on authentication
for the Cognitive Services on the Microsoft Azure website.

How to Call a Cognitive Services API | 11

https://oreil.ly/-IEoD
https://oreil.ly/w_gtM
https://oreil.ly/R7RTo

To illustrate the structure of a typical Cognitive Services REST API
call, let’s look at the URL for the Analyze operation within the Com‐
puter Vision service:

{endpoint}/vision/v2.0/analyze[?visualFeatures]

In July 2019, the Cognitive Services switched to using a custom sub‐
domain name as part of the endpoint for each Cognitive Services
instance you create. With this new feature, the endpoint name is
unique and based on the name you choose when you deploy a Cog‐
nitive Services resource or instance. URLs using the custom subdo‐
main will have the following structure: https://{Resource
Name}.cognitiveservices.azure.com. Some services, however, still rely
on the older region-based endpoint names, which have the follow‐
ing structure: https://{region}.api.cognitive.microsoft.com. The region
is the same one you chose when you created your resource. You can
determine which endpoint to use by finding the Endpoint field
when viewing the resource in the Azure Portal. Be sure to check the
service’s documentation to make sure you are using the correct end‐
point to call the service.

The next part of the URL specifies the service you want to call, the
API version, and the specific operation. In the preceding example,
you would be calling version 2.0 of the Analyze operation within the
Computer Vision service. APIs are versioned, and you should keep
aware of Microsoft’s deprecation and update policies to ensure there
is no downtime in your application. The specific operation being
called is followed by optional configuration details.

Not all Cognitive Services APIs have the same hierarchy, so ensure
that you’ve read the documentation for the specific API or SDK you
are using. Depending on the requirements, additional content is sent
either in the request body or as request parameters.

The APIs return data as JSON; you’ll need to make
sure that your code can parse the responses and deal
with any errors.

Some APIs have a namespace that contains multiple operations for
each different feature. For example, the Computer Vision API has
operations like /detect, /tag, and /describe. Each operation pro‐
vides a different set of features. However, since you will often want

12 | Chapter 3: Understanding Azure Cognitive Services

to call multiple features at once, many services provide an operation
to group them together. For example, the Computer Vision API pro‐
vides the /analyze feature, where you can use request parameters to
choose the features you want to use.

Running in a hyperscale cloud data center means the Cognitive
Services can handle a very large call volume. They run with strict
service-level agreements (SLAs) and are guaranteed to be available
at least 99.9% of the time. However, some use cases and regulations
make it difficult or impractical to use a cloud service. Fortunately,
many of the Cognitive Services can be exported as containers and
run locally. Containers are ideal for remote environments where
connectivity is slow and expensive but Internet of Things (IoT)
devices are the most useful. Running models locally also addresses
questions of data governance, since you do not have to worry about
taking data outside your environment or data center.

New Breakthroughs as a Service
Cognitive Services covers areas where the state of the art in research
is advancing rapidly, and their capabilities are updated frequently to
bring that innovation to you. In some cases, developers get access to
new models as quickly as the internal teams at Microsoft.

The new neural text-to-speech capabilities can generate speech that
sounds almost exactly like a person speaking; that’s important
because research shows it’s much less tiring to listen to results, direc‐
tions, or something longer like an audiobook with the natural into‐
nations of a human voice and with all the words articulated clearly.

Using deep neural networks to do voice synthesis and prosody
(matching the patterns of stress and intonation in speech) together,
rather than as separate steps, produces more natural and fluid
speech. This is a relatively new development that was in research
labs just a couple of years ago, and new research papers are still
coming out with refinements. But several months before the Bing
team added neural voice synthesis to their mobile app, the Cognitive
Services Speech Services APIs already included a preview of two
neural text-to-speech voices in English, followed by Chinese, Ger‐
man, and Italian voices.

Microsoft also offers an early preview of some of the more experi‐
mental capabilities through cognitive research technologies. These

New Breakthroughs as a Service | 13

aren’t production-grade Azure services, but instead an early look at
some of the ongoing research and development at the company. At
the time of writing they include the following services:

• Controlling apps using custom hand gestures
• Giving chatbots more personality by adding small talk or teach‐

ing them new behaviors by providing examples of conversations
• Creating interactive search experiences for structured data

There’s no guarantee that any of the cognitive research technologies
will develop into a production service, but several of them have
already moved into public preview, including Ink Recognizer (for
working with digital ink), Personalizer (which uses reinforcement
learning to personalize the experience for each one of your users),
and Anomaly Detector (which detects anomalies in time series
data). You can learn more about the cognitive research technologies
on the Microsoft website.

14 | Chapter 3: Understanding Azure Cognitive Services

https://oreil.ly/LvMDo

CHAPTER 4

Vision

We live in a world of objects, but identifying them in pictures today
can be challenging. Digital images are represented as arrays of pixels
and color values with no data describing the objects that those pixels
represent. However, advancements in machine learning on images
are removing this barrier by providing powerful tools for extracting
meaning and information from these pixels.

The Cognitive Services Vision APIs provide operations that take
image data as input and return labeled content you can use in your
app, whether it’s text from a menu, the expression on someone’s face,
or a description of what’s going on in a video. These same services
are used to power Bing’s image search, extract optical character rec‐
ognition (OCR) text from images in OneNote, and index video in
Azure Streams, making them tried and tested at scale.

The Vision category includes six services: Computer Vision, Custom
Vision, Face, Form Recognizer, Ink Recognizer, and Video Indexer.
We will provide a brief introduction to each.

Computer Vision
Computer Vision provides tools for analyzing images enabling a
long list of insights including detection of objects, faces, color com‐
position, tags, and landmarks. Behind the APIs are a set of deep
neural networks trained to perform functions like image classifica‐
tion, scene and activity recognition, celebrity and landmark recogni‐
tion, OCR, and handwriting recognition.

15

Many of the computer vision tasks are provided by the Analyze
Image API, which supports the most common image recognition
scenarios. When you make a call to the different endpoints in the
API namespace, the appropriate neural network is used to classify
your image. In some cases, this may mean the image passes through
more than one model, first to recognize an object and then to
extract additional information.

Bundling all these features into one operation means you can make
one call and accomplish many tasks. For example, using a picture of
a shelf in a supermarket you can identify the packaging types on dis‐
play, the brands being sold, and even whether the specific products
are laid out in the right order (something that is often both time-
consuming and expensive to audit manually).

The Analyze Image API attempts to detect and tag various visual
features, marking detected objects with a bounding box. The tasks it
performs include:

• Tagging visual features
• Detecting objects
• Detecting brands
• Categorizing images
• Describing images
• Detecting faces
• Detecting image types
• Detecting domain-specific content
• Detecting color schemes
• Generating thumbnails
• Detecting areas of interest

The process of working with an API through an SDK is much the
same for every API. Using version 5 of the C# SDK, do the follow‐
ing:

1. Create a client, specifying your subscription key and endpoint:
ComputerVisionClient computerVision =
 new ComputerVisionClient(
 new ApiKeyServiceClientCredentials(
 "<Your Subscription Key>")

16 | Chapter 4: Vision

)
 {Endpoint = "<Your Service Endpoint>"};

2. Choose the features you want to analyze in the image:
private static readonly List<VisualFeatureTypes>
features = new List<VisualFeatureTypes>()
{
 VisualFeatureTypes.Categories,
 VisualFeatureTypes.Description,
 VisualFeatureTypes.Faces,
 VisualFeatureTypes.ImageType,
 VisualFeatureTypes.Tags
};

3. Call the API:
ImageAnalysis analysis =
 await computerVision.AnalyzeImageAsync(
 "http://example.com/image.jpg", features
);

4. Extract the response information. Here we extract the caption,
but many other features are also returned:

Console.WriteLine(
 analysis.Description.Captions[0].Text + "\n"
);

Tagging Visual Features
Tagging an image is one of the most obvious uses of the Computer
Vision service. This functionality provides an easy way to extract
descriptors of the image that can be used later by your application.
By providing many different tags for each image, you can create
complex indexes for your image sets that can then be used, for
example, to describe the scene depicted or find images of specific
people, objects, or logos in an archive.

To use this feature, you need to upload a still image or provide a link
to an image. The API returns a JSON document that contains a list
of recognized objects, along with a confidence score for each. For
example, an excerpt of the tags from the response for a picture of a
home with a lawn (Figure 4-1) will look something like this:

"tags": [
 {
 "name": "tree",
 "confidence": 0.9999969005584717

Computer Vision | 17

 },
 {
 "name": "grass",
 "confidence": 0.9999740123748779
 }
]

Figure 4-1. Image of a house with a lawn

The names of the objects are easy enough to extract, and you can
use the confidence score as a cutoff to define when to apply a tag (or
when to show the tag to your users). The threshold choice is up to
you and your specific use case. We suggest using a high threshold to
avoid false positives and poor matches cluttering up the tags and
search results.

When you call the /tag endpoint, tags that could have multiple
meanings may include a hint to scope the tag to a usage. When a
picture of a cyclist is tagged “riding,” the hint will note that the
domain is sport (rather than geography, to avoid confusion with the
Ridings, which are areas of Yorkshire), for example.

You may want to add code to convert the image tags into different
terms that are more specific to your application before showing
them to users, or at least go beyond a basic list structure.

Object Detection
Like the tagging API, the object detection API takes an image or an
image URL and returns a JSON document with a list of detected
objects, which in this case are accompanied by bounding box coor‐
dinates. The coordinates let you understand how objects are related.
For example, you can determine if a cup is to the right or the left of a

18 | Chapter 4: Vision

vase. You can also see how many instances of an object there are in a
picture: unlike with the tagging API, which just returns “truck” even
if there are multiple trucks in a picture, with the object detection
API you get the location of each one. There are some limitations to
be aware of, however; for example, it’s not possible to detect small
objects or objects that are close together.

You call the object detection API via the Analyze Image API by set‐
ting the query type to "objects" in the visualFeatures requests
parameter, or via the standalone endpoint /detect. Here’s an
excerpt of the JSON response for one of the objects in Figure 4-2:

"objects": [
 {
 "rectangle": {
 "x": 1678,
 "y": 806,
 "w": 246,
 "h": 468
 },
 "object": "vase",
 "confidence": 0.757,
 "parent": {
 "object": "Container",
 "confidence": 0.759
 }
 },
]

Figure 4-2. An image of a coffee cup and vase

Computer Vision | 19

As with the tagging API, the service returns hints to put classifica‐
tions in context, in this case showing that a “vase” is a “container.”

Detecting Brands
The brand detection API is a specialized version of the object detec‐
tion API that has been trained on thousands of different product
logos from around the world and can be used to detect brands in
both still images and video.

Like the object detection API, it returns details of the brand detected
and the bounding box coordinates indicating where in the image it
can be found. For example, you could run both object and brand
detection on an image to identify a computer on a table as a Micro‐
soft Surface laptop.

You call the object detection API with the Analyze Image API, set‐
ting the query type to "brands" in the visualFeatures request
parameter. Objects are returned in the the JSON document’s
“brands” block. The response for Figure 4-3 can be seen below the
image.

Figure 4-3. Example of a brand you may want to detect in photos

"brands": [
 {
 "name": "Microsoft",
 "confidence": 0.659,
 "rectangle": {
 "x": 177,

20 | Chapter 4: Vision

 "y": 707,
 "w": 223,
 "h": 235
 }
 }
]

Categorizing an Image
The Computer Vision API can also categorize an image. This is a
high-level approach, useful for filtering a large image set to quickly
determine if an image is relevant and whether you should be using
more complex algorithms.

There are 86 different categories, organized in a parent/child hierar‐
chy. For example, you can get an image category of “food_pizza” in
the “food_” hierarchy. If you’re building a tool to determine pizza
quality to assess whether restaurant franchises are following specifi‐
cations, any image that doesn’t fit the category because it’s not a
pizza can be rejected without spending more time on it.

It’s a quick and easy API to use, and one that is ideal for quickly
parsing a large catalog of images, as well as for an initial filter. If you
need more powerful categorization tools for images, PDFs, and
other documents, consider the Cognitive Search tools covered in
Chapter 7. An excerpt from the JSON response returned for the
photograph of a crowd of people shown in Figure 4-4 follows the
image.

Figure 4-4. A crowd photograph you might categorize using Computer
Vision

Computer Vision | 21

"categories": [
 {
 "name": "people_crowd",
 "score": 0.9453125
 }
]

Describing an Image
Most of the Computer Vision tools return machine-readable infor‐
mation, using JSON documents to deliver results that can then be
processed by your code to deliver the results you need. However,
you may at times need a more human-oriented response, like text
that can be used as a caption. This is ideal for assistive technologies,
or for providing the human-readable elements of an image catalog.

You can access the image description feature via either the /analyze
endpoint or the standalone /describe endpoint. Descriptions are
returned in a JSON document as a list ordered by confidence, with
associated tags that can give additional context. Following is an
excerpt of the response for a photograph of the New York City sky‐
line (see Figure 4-5):

"description": {
 "tags": [
 "outdoor", "photo", "large", "white", "city", "building",
 "black", "sitting", "water", "big", "tall", "skyscraper",
 "old", "boat", "bird", "street", "parked", "river"
],
 "captions": [
 {
 "text": "a black and white photo of a large city",
 "confidence": 0.9244712774886765
 }
]
}

22 | Chapter 4: Vision

Figure 4-5. Image of the New York skyline

You can use the confidence level to have the tool automatically
choose the highest-ranked description if you always want to get a
single result, or you may prefer to show users multiple possible
descriptions when the confidence levels are lower so that they can
pick the most appropriate one manually.

Computer Vision | 23

Detecting Faces
While the Face API offers a suite of more powerful face recognition
services, you can get quick access to basic facial analysis capabilities
through the Analyze Image API. This detects the faces in an image,
along with an indication of age and gender and bounding box coor‐
dinates.

Data is returned using the familiar JSON document format, with
different responses for single and multiple faces. Your code will need
to be able to work with responses with one or more face blocks,
because images may contain multiple faces (as in Figure 4-6).

Figure 4-6. Image of a man and a woman with faces detected by
bounding boxes

Here is an example of the “faces” block of the JSON response for the
picture of two people in Figure 4-6:

"faces": [
 {
 "age": 30,
 "gender": "Male",
 "faceRectangle": {
 "left": 1074,
 "top": 292,
 "width": 328,
 "height": 328
 }
 },
 {
 "age": 28,
 "gender": "Female",
 "faceRectangle": {

24 | Chapter 4: Vision

 "left": 947,
 "top": 619,
 "width": 308,
 "height": 308
 }
 }
]

You may find this familiar—this API was the basis of the popular
“How Old” service.

Detecting Image Types
Sometimes it’s useful to be able to categorize the type of image that’s
being analyzed. The Analyze Image API can detect whether an
image is clip art or a line drawing, returning the responses (on a
simple 0 to 3 scale) in the imageType field. A value of 0 indicates that
it’s not, while a value of 3 indicates high likelihood that it is clip art
or a line drawing (as in Figure 4-7).

Figure 4-7. Image of a sketch of a rose

A sketch of a rose like the one in Figure 4-7 might return the follow‐
ing image type information in the JSON response:

Computer Vision | 25

https://www.how-old.net/

"imageType": {
 "clipArtType": 3,
 "lineDrawingType": 1
}

To detect photographs, use the same API: a 0 return value for both
image types is an indication it’s neither clip art nor a line drawing.

Detecting Domain-Specific Content
While most of the Computer Vision tools are designed for general-
purpose image classification, a small set of APIs are trained to work
against specific image sets. Currently there are two domain-specific
models available: for celebrities and for landmarks. You can use
them as standalone categorization tools, or as an extension to the
existing toolset.

Like the other APIs, these domain-specific models can be called by
REST APIs, using the models/<model>/analyze URI with the Com‐
puter Vision namespace. Results are in the standard JSON docu‐
ment format and include a bounding box for the recognized object,
the name, and a confidence level.

Detecting the Color Scheme
Image analysis isn’t only useful for detecting people or objects; much
of the information in an image can be used in your applications. For
example, if you’re looking for anomalies using computer vision, a
change in color can be a useful indicator. The color scheme analysis
feature in the Analyze Image API extracts the dominant foreground
and background colors, as well as a set of dominant colors for an
image. It also details the most vibrant color in the image as an accent
color. Dominant colors are chosen from a set of 12 possibilities,
while the accent is shown as an HTML color code.

The JSON response also contains a Boolean value, isBwImg, that is is
used to indicate whether an image is in color or black and white.
Here is an example excerpt of the JSON response for the sunset
image in Figure 4-8:

"color": {
 "dominantColorForeground": "Brown",
 "dominantColorBackground": "Black",
 "dominantColors": [
 "Brown",
 "Black"

26 | Chapter 4: Vision

],
 "accentColor": "C69405",
 "isBWImg": false
}

Figure 4-8. Image of a sunset on a lake

Generating a Thumbnail
Naively cropping an image or reducing the resolution to create
thumbnails can lead to the loss of valuable information. The thumb‐
nail API allows you to first identify the area of interest in the image
for cropping. The result is a more useful thumbnail for your users.
For example, if you start with a photograph of a hummingbird feed‐
ing at a flower, the API will generate a thumbnail showing the bird.
The response from the service is the binary data of a cropped and
resized image you can download and use in your applications.

Getting the Area of Interest
If you want to highlight an area of the image for further processing
rather than cropping it, the area of interest API uses the same
underlying algorithm as generating a thumbnail but returns the
bounding box coordinates for you to work with.

Extracting Text from Images
The Computer Vision API has three different tools for handling text
in images. The first, OCR, is an older model that uses synchronous
recognition to extract small amounts of text from images. Using a

Computer Vision | 27

standard uploaded image, it will recognize text that’s rotated up to
40 degrees from any vertical. It can return coordinates of the bound‐
ing boxes around words, so you can reconstruct sentences. However,
there are issues with partial recognition and busy images. It’s best
used when there’s a small amount of text in an image.

A second API, Recognize Text, is in preview and being deprecated in
favor of the newer, more modern Read API; however, it’s still avail‐
able if you need it. The Read API offers the best performance, but
currently only supports English. Designed for text-heavy docu‐
ments, it can recognize a range of text styles in both printed (PDF)
and handwritten documents. The API follows a standard asynchro‐
nous process, which can take some time. The initial call returns the
operationLocation that is used to construct a URL to check the
retrieve recognized text.

If a process is running it will return a “running” status code. Once
you get “succeeded” you will also receive a JSON object that contains
the recognized text as a string along with document analytics. Each
separate word has a bounding box, a rotation, and an indicator of
whether the recognition has a low confidence score.

To make a call to the Read API using the C# SDK, you first need to
instantiate the client:

ComputerVisionClient computerVision =
 new ComputerVisionClient(
 new ApiKeyServiceClientCredentials("<Your Subscription Key>"),
 new System.Net.Http.DelegatingHandler[] { }
);
{Endpoint = "<Your Service Endpoint>"};

Then you can start the async process to extract the text. Here we
show how to do this with an image URL, but you could also upload
an image from a file:

const string imageUrl = "https://example.com/image.jpg";
BatchReadFileHeaders textHeaders = await
 computerVision.BatchReadFileAsync(imageUrl,
 TextRecognitionMode.Handwritten
);

Since this process happens asynchronously, the service will respond
with an OperationId that can be used to check the status of your
request:

const int numberOfCharsInOperationId = 36;
string operationId = operationLocation.Substring(

28 | Chapter 4: Vision

 operationLocation.Length – numberOfCharsInOperationId
);
int i = 0;
int maxRetries = 10;
while ((result.Status == TextOperationStatusCodes.Running ||
 result.Status == TextOperationStatusCodes.NotStarted)
 && i++ < maxRetries
)
{
 result = await
 computerVision.GetReadOperationResultAsync(operationId);
}

Once the service is done, you can display the results. Here we just
print the extracted text, but other information such as the bounding
box for each word may be included in the response:

var recResults = result.RecognitionResults;
foreach (TextRecognitionResult recResult in recResults)
{
 foreach (Line line in recResult.Lines)
 {
 Console.WriteLine(line.Text);
 }
}

Here is an excerpt from the JSON response for the words recognized
in the image of a shopping list in Figure 4-9:

{
 "boundingBox": [
 2260,
 841,
 2796,
 850,
 2796,
 994,
 2259,
 998
],
 "text": "Grocery"
},

Computer Vision | 29

Figure 4-9. Image of a handwritten shopping list

Custom Vision
For many business-specific use cases, you may find that the general
image tagging and object detection services provided by the Com‐
puter Vision API are not accurate enough. The Custom Vision API
solves this problem by letting you build your own custom classifier
based on a relatively small set of labeled images that show the
objects, conditions, and concepts you need to recognize. For exam‐
ple, you can use this service for very specific use cases like identify‐
ing a circuit board that wasn’t soldered correctly or distinguishing
between an infected leaf and a healthy one. You can even export
these models to a smartphone and give employees an app that pro‐
vides real-time feedback.

Custom Vision uses a machine learning technique called transfer
learning to fine-tune the generalized models based on the sample
images you provide. This process lets you get great performance
using only a small number of images (versus the millions used to
train the general classifier). For the best results, your training set
needs at least 30 to 50 images, ideally with a good range of camera
angles, lighting, and backgrounds. These images should match how
they will be captured in your production application. If the camera
angle or background will be fixed, label common objects that will
always be in the shot.

30 | Chapter 4: Vision

To get started building a Custom Vision model, you first need to
choose whether you want a model for detecting objects or classify‐
ing the entire image. If your use case is particularly complex, you
can create multiple models and layer them to improve discrimina‐
tion in classes that are easy to confuse (like tomatoes and bell pep‐
pers or sandwiches and layer cakes). Where possible, it’s important
to have a similar number of images for each tag. You can also add
images that you tag as “negative samples,” to tell the classifier that it
shouldn’t match any of your tags to these types of images.

After you choose which models you are going to create, you need to
provide training data or examples of the objects or classes to the ser‐
vice. You can create the model and upload images through the serv‐
ice’s website, or in code via API calls.

After training (which takes only a few minutes), you can see the pre‐
cision and recall performance of your model on the website. Preci‐
sion shows what percentage of classifications are correct. To
illustrate this concept, imagine if the model identified 1,000 images
as bananas, but only 974 were actually pictures of bananas—that’s
97.4% precision. Recall measures the percentage of all examples of a
class that were correctly identified. For example, if you had 1,000
images of bananas but the model only identified 933, the recall
would be 93.3%; if the model correctly identified 992 of the 1,000
images of bananas, then the recall would be 99.2%. Figure 4-10
shows the easy-to-read graphic in the Custom Vision portal. Here
you can see a breakdown of the overall precision and recall of the
model, as well as the performance per tag.

Custom Vision | 31

https://www.customvision.ai/
https://www.customvision.ai/

Figure 4-10. Screenshot of a model’s performance from https://
www.customvision.ai/

Classifications are determined by a threshold you set on the
returned probability for each class. For each image the model ana‐
lyzes, it will return the predicted classifications (or objects) and a
corresponding probability between 0 and 1. The probability is a
measure of the model’s confidence that the classification is correct.
A probability of 1 means the model is very confident. The service
will consider any predictions with a probability greater than the
threshold you set as a predicted class. Setting the threshold high
favors precision over recall—classifications will be more accurate,
but fewer of them will be found. Setting it low will favor recall—
most of the classifications will be found, but there will be more false
positives. Experiment with this and use the threshold value that best

32 | Chapter 4: Vision

https://www.customvision.ai/
https://www.customvision.ai/

suits your project. Before launching your application, you’ll want to
test your model with new images and verify performance.

For challenging data sets or where you need very fine-grained classi‐
fication, the Advanced Training option in the portal lets you specify
how long you want the Custom Vision service to spend training the
model. In general, the longer the model trains, the better the perfor‐
mance is. Once you’re happy with the performance of a model, you
can publish it as a prediction API from the Performance tab in the
portal (or via an API) and get the prediction URL and prediction
key to call in your code.

How to Train and Call a Custom Vision Model
The following code snippet shows how to train and call a Custom
Vision model using version 1 of the C# SDK. First-time users may
also want to walk through the steps on the website.

First, instantiate the client:

CustomVisionTrainingClient trainingApi =
 new CustomVisionTrainingClient()
 {
 ApiKey = "<Your Training Key>",
 Endpoint = "<Your Service Endpoint>"
 };

Next, create a new project:

var project = trainingApi.CreateProject("My New Project");

Create the image tags to apply to recognized images:

var japaneseCherryTag =
 trainingApi.CreateTag(project.Id, "Japanese Cherry");

And load the training images from disk. It is often helpful to put
images with different classes in separate folders:

japaneseCherryImages =
 Directory.GetFiles(Path.Combine("Images", "Japanese Cherry"))
 .ToList();

We’re uploading the images in a single batch:

var imageFiles = japaneseCherryImages.Select(img => new
 ImageFileCreateEntry(Path.GetFileName(img),
 File.ReadAllBytes(img))).ToList();
trainingApi.CreateImagesFromFiles(project.Id, new
 ImageFileCreateBatch(imageFiles,
 new List<Guid>() { japaneseCherryTag.Id }));

Custom Vision | 33

https://www.customvision.ai/

Now we can start training the Custom Vision model:

var iteration = trainingApi.TrainProject(project.Id);

Training happens asynchronously, and we will keep querying to find
out when the training is complete:

while (iteration.Status == "Training")
{
 Thread.Sleep(1000);
 iteration =
 trainingApi.GetIteration(project.Id, iteration.Id);
}

Once the iteration is trained, we publish it to the prediction end‐
point (you can find the prediction resource ID in the Custom Vision
portal under Settings):

var publishedModelName = "<Published Model Name>";
var predictionResourceId = "<Prediction Resource ID>";
trainingApi.PublishIteration(
 project.Id,
 iteration.Id,
 publishedModelName,
 predictionResourceId
);

Now we can start making predictions that classify images. First, we
need to create a new prediction client:

CustomVisionPredictionClient endpoint =
 new CustomVisionPredictionClient()
 {
 ApiKey = "<Your Prediction Key>",
 Endpoint = "<Your Service Endpoint>"
 };

Then we can make a prediction:

var result =
 endpoint.ClassifyImage(
 project.Id, publishedModelName, testImage
);

And we can loop over each prediction and write out the results:

foreach (var c in result.Predictions)
{
 Console.WriteLine($"\t{c.TagName}: {c.Probability:P1}");
}

34 | Chapter 4: Vision

Edge Deployment Options for Vision (and Other
Cognitive Services APIs)

If you want to embed your Custom Vision classifier in an app to
run it locally on a device, you can export it as TensorFlow for
Android, CoreML for iOS 11, ONNX for Windows ML, or as a
Windows or Linux container. Only models generated by the “com‐
pact” domain types can be exported. You choose this option when
first creating your project. These models are smaller, which makes
exporting easier but also means they are slightly less accurate than
the standard model types. If you didn’t choose a compact domain to
start with, you can convert but the models will need to be retrained.

Beyond exporting Custom Vision models, an increasing number of
the Cognitive Services can be hosted in containers. Containers
enable you to deploy these models at the edge, whether that’s on a
local computer, in your company’s data center, or on an IoT device.
If you can’t send your data to the cloud because of bandwidth and
latency issues or regulations, containers let you process the data
locally. Running in the cloud has the advantage that you don’t need
to rebuild your app when you update a model, but local deploy‐
ment may be a better choice for image and video recognition,
where high latency can cause problems. Your data is not sent to the
cloud, but the containers do need to connect to Azure to verify
your account and send billing data.

There’s no transactions-per-second cap on Cognitive Services run‐
ning in containers, so you can scale up or out as necessary to man‐
age demand. Using containers also gives you more flexibility for
versioning and updating the models you deploy. You can create a
portable application architecture that you can deploy in Azure or
on premises in a Kubernetes cluster.

New container offerings are constantly being added. Currently,
seven services offer some of their capabilities in containers: Anom‐
aly Detector, Computer Vision, Face, Form Recognizer, Language
Understanding, Speech Services, and Text Analytics. A single con‐
tainer often does not contain a full service. For example, Text Ana‐
lytics has a separate container for each of its three endpoints: Key
Phrase Extraction, Language Detection, and Sentiment Analysis.
You can find the most up-to-date list in the Microsoft documenta‐
tion. This architecture means you can scale up specific operations
to the scale you need in your application.

Custom Vision | 35

https://oreil.ly/Zv3xy
https://oreil.ly/Zv3xy

The container images for Cognitive Services can be pulled from the
Microsoft Container Registry or Docker Hub, but you currently
need to request access to the Face and Recognize Text containers
through a questionnaire (using a Microsoft or Azure AD account),
then use the credentials provided to pull the images from a private
Azure Container Registry.

Face
The Face API delivers much more detailed information than the
simple face recognition feature included in the Computer Vision
API. You can also use it to compare two faces or to search by face for
images of the same person.

At the heart of the Face API is a set of detection tools to extract the
human faces from an image and provide a bounding box to indicate
where each face is in the image. It’ll also give you additional infor‐
mation, including details on the pose position, gender, approximate
age, emotion, smile intensity, facial hair, and whether or not the per‐
son is wearing glasses (and what type). You can even extract a 27-
point array of face landmarks, which can be used to give further
information about a face.

The API is powerful: up to 64 different faces can be returned per
image. The more faces you’re detecting, though, the more time
detection takes—especially if you are extracting additional
attributes. For large groups it’s better to get the minimum informa‐
tion your app needs, and then run deeper analysis on a face-by-face
basis.

The face verification endpoint lets you verify whether two faces
belong to the same person or whether a face image belongs to a spe‐
cific person. This is a useful tool for identifying a user and providing
a personalized experience. For offline scenarios, this endpoint is
available as a container.

The tools for finding similar faces might seem like those used for
face verification, but they don’t operate at the same level. Here a
verified target face is compared to an array of candidate faces, help‐
ing you track down other instances of that person. Faces returned
may or may not be the same person. You can switch between a more
accurate matchPerson mode and a less accurate matchFace, which
only looks for similarities.

36 | Chapter 4: Vision

In both cases, the API also returns a confidence score that you can
use to set the cutoff point for verification or similar faces. You will
need to think about what level of confidence is acceptable in your
scenario. For example, do you need to err on the side of protecting
sensitive information and resources?

The person identification capability is a more generalized case of
face verification. For this scenario, a large database of tagged data is
used to identify individuals—for example, identifying people in a
photo library where a known group of friends can be used to auto‐
matically apply tags as the images are uploaded. This can be a large-
scale database, with up to a million people in a group and with up to
248 different faces per person. You will need to train the API with
your source data, and once trained it can be used to identify individ‐
uals in an uploaded image.

If you’ve got a group of faces and no verified images to test against,
you have the option of using the face grouping tools to extract simi‐
lar faces from a set of faces. The results are returned in several
groups, though the same person may appear in multiple groups as
they are being sorted by a specific trait (for example, a group where
all the members are smiling, or one where they all have blond hair).

How to Use the Face API
The following sample code shows how to use the Face API. Don’t
forget to substitute in your subscription key and image URL, as well
as choosing an Azure Cognitive Services endpoint.

First, we initialize a Face client:

FaceClient faceClient = new FaceClient(
 new ApiKeyServiceClientCredentials("<Your Subscription Key>"),
 new System.Net.Http.DelegatingHandler[] { });
faceClient.Endpoint = "<Your Service Endpoint>";

Now we can detect faces and extract attributes:

IList<DetectedFace> faceList =
 faceClient.Face.DetectWithUrlAsync(
 "<Remote Image URL>", true, false,
 { FaceAttributeType.Age, FaceAttributeType.Gender }
);

Here we extract the age and gender attributes returned by the
model:

Face | 37

string attributes = string.Empty;
foreach (DetectedFace face in faceList)
{
 double? age = face.FaceAttributes.Age;
 string gender = face.FaceAttributes.Gender.ToString();
 attributes += gender + " " + age + " ";
}

We can display the face attributes like so:

Console.WriteLine(<Remote Image URL>);
Console.WriteLine(attributes + "\n");

Form Recognizer
Many businesses have mountains of unstructured data sitting in
PDFs, images, and paper documents. While these resources may
contain the data and insights needed to drive the business forward,
they often sit unutilized due to the immense cost and complexity of
converting them into structured data. Form Recognizer lowers this
barrier and can accelerate your business processes by automating
the information extraction steps. Using this service you can turn
PDFs or images of forms into usable data at a fraction of the usual
time and cost, so you can focus on acting on the information rather
than compiling it.

The service uses advanced machine learning techniques to accu‐
rately extract text, key/value pairs, and tables from documents. It
includes a prebuilt model for reading sales receipts that pulls out key
information such as the time and date of the transaction, merchant
information, amount of tax, and total cost—and with just a few sam‐
ples, you can customize the model to understand your own docu‐
ments. When you submit your input data, the algorithm clusters the
forms by type, discovers what keys and tables are present, and asso‐
ciates values to keys and entries to tables. The service then outputs
the results as structured data that includes the relationships in the
original file. After you train the model, you can test and retrain it
and eventually use it to reliably extract data from more forms
according to your needs.

As with all the Cognitive Services, you can use the trained model by
calling the simple REST APIs or using the client libraries.

38 | Chapter 4: Vision

Ink Recognizer
Natural user interfaces are the next evolution in the way we interact
with computers. A natural interface is one that mimics or aligns
with our own natural behavior, relying for example on speech, hand
gestures, or handwriting detection. One of the barriers to providing
a seamless natural interface for users is understanding and digitizing
a person’s writings and drawings. The Ink Recognizer service pro‐
vides a powerful ready-to-use tool for recognizing and understand‐
ing digital ink content. Unlike other services that analyze an image
of the drawing, it uses digital ink stroke data as input. Digital ink
strokes are time-ordered sets of 2D points (x,y coordinates) that
represent the motion of input tools such as digital pens or fingers.
The service analyzes this data, recognizes the shapes and handwrit‐
ten content, and returns a JSON response containing all the recog‐
nized entities (as shown in Figure 4-11).

Figure 4-11. Overview of the Ink Recognizer Cognitive Service

This powerful tool lets you easily create applications with capabili‐
ties like converting handwriting to text and making inked content
searchable.

Video Indexer
Not every image you’ll want to analyze is a still image. The Video
Indexer service provides both APIs and an interactive website to
extract information from videos. Once you upload a video, the ser‐
vice will run it through a large number of models to extract useful
data such as faces, emotions, and detected objects. This metadata
can then be used to index or control playback. Put it all together and

Ink Recognizer | 39

https://vi.microsoft.com/

you can take a one-hour video, extract the people and topics, add
captions, and put in links that start the video playing in the right
place.

Video Indexer is a cloud application built on top of the Media Ana‐
lytics service, Azure Search, and Cognitive Services. You can explore
all the features the service has to offer through the website, and you
can also automate video processing using the REST APIs.

Some features, like face identification, let you create custom models,
but most work in much the same way as the still image analysis tools
available through the Cognitive Services.

As the Video Indexer is a mix of services, you’ll need to register and
obtain tokens before you can use it. You will need to generate a new
access token every hour. Videos are best uploaded to public cloud
services like OneDrive or an Azure Blob. Once uploaded, you must
provide the location URL to the Video Indexer APIs.

Once you’ve logged in, you can start to process your videos and gain
new insights. The insights cover both video and audio. Video
insights include detecting faces and individuals, extracting thumb‐
nail images, identifying objects, and extracting text. There are also
insights specific to produced videos, such as identifying the opening
or closing credits of a show, key frames, and blank frames (see
Figure 4-12).

Figure 4-12. Example of the interfaces and intelligence you can extract
using video indexer

Audio insights include detecting language, transcribing audio (with
the option of using custom language models), creating captions

40 | Chapter 4: Vision

(with translation), detecting sounds like clapping (or silence),
detecting emotions, and even identifying who speaks which words
and generating statistics for how often each person speaks. You can
also clean up noisy audio using Skype filters.

The Video Indexer is one of the more complex offerings in the Cog‐
nitive Services. It can require a considerable amount of program‐
ming to navigate the index object and extract usable data. You can
simplify the process by working in the portal or using Microsoft’s
own widgets in your applications.

Video Indexer | 41

CHAPTER 5

Speech

Speech recognition has long been one of the more complex com‐
puter science problems—but years of research and recent break‐
throughs with deep learning neural networks have turned this from
a research problem into a set of easy-to-use services. The very first
successful implementation of deep learning instead of the traditional
speech recognition algorithms was funded by Microsoft Research.
In 2017, a system built by Microsoft researchers outperformed not
just individuals but a more accurate multitranscriber process at
transcribing recorded phone conversations.

The Cognitive Services Speech Services are built upon these innova‐
tions: they provide a set of pretrained speech APIs that work across
multiple speakers and many different languages. Add them to your
code and you’re using the same engines that power Microsoft’s own
services, from Skype’s real-time translation tools to PowerPoint’s live
captioning.

The Speech Services include speech-to-text, text-to-speech, voice
identification, and real-time translation capabilities. Combined,
these features make it easy to add natural interaction to your apps
and let your users communicate in whatever way they find
convenient.

The services are available through the Speech SDK, the Speech
Devices SDK, or REST APIs. These cloud APIs enable speech-to-
text translation in just a few lines of code, making it economical to
add these capabilities in applications where client-side translation
services would have been considered too expensive.

43

https://oreil.ly/glxD-

Speech to Text
It used to require hours of time and specialized equipment for a
trained human to translate speech into text. Often transcribers used
a system that was more like drawing gestures than normal typing. It
was expensive, and even commercial services didn’t always reach
high enough accuracy.

The Speech to Text tool works with real-time streamed audio data or
prerecorded audio files. It’s the same underlying technology as that
used in Cortana, so it’s been proven in a wide range of conditions,
with many accents and in multiple languages. The list of supported
languages is long and continues to grow, covering most European
languages, Arabic, Thai, Chinese, and Japanese. Not all languages
offer the same level of customization, however.

Speech to Text is available through a set of SDKs and REST APIs. As
the service is primarily intended to be used with streamed data, it’s
easiest to use the SDKs. These libraries give you direct access to
audio streams, including device microphones and local audio
recording files. The REST APIs are useful for quick speech com‐
mands (say, for adding speech controls to mobile apps or websites).
If you’ve built custom language understanding models in LUIS, you
can use these in conjunction with the Speech Services to extract the
speaker’s intent, making it easier to deliver what your user is asking
for.

.NET uses the Microsoft.Cognitive.Services.Speech namespace
to expose all interactions with the service. The key base class is the
Recognizer that controls the connection to the service, sending
speech data and detecting start and end events. Calls to the Speech
Recognizer are asynchronous, and the SDK handles the connection
to your microphone and recognizing data until a preset length of
silence is found. Calls to the service can either include short speech
snippets or long utterances for recognition. There is also a continu‐
ous recognition model. The SDK returns recognized speech as a
string, with error handling for failed recognitions.

Here’s a snippet of what this looks like using version 1 of the C#
SDK. First, configure your Speech credentials by filling in your own
subscription key and service region (e.g., "westus"):

44 | Chapter 5: Speech

var config = SpeechConfig.FromSubscription(
 "<Your Subscription Key>", "<Your Service Region>"
);

Next, create a SpeechRecognizer:

var recognizer = new SpeechRecognizer(config);

This calls the API to capture short utterances and convert them to
text—for long-running multiutterance recognition, use StartConti
nuousRecognitionAsync instead:

var result = await recognizer.RecognizeOnceAsync();

Now, check to see if the speech was recognized (other options are
NoMatch, Cancelled, and Error):

if (result.Reason == ResultReason.RecognizedSpeech)
{
 Console.WriteLine($"We recognized: {result.Text}");
}

One of the difficulties with speech recognition is the many ways
people speak. Speech styles, prosody, accents, and vocabulary vary
considerably. Your business also likely has unique names and jargon
that are not found in general dictionaries. To address these chal‐
lenges, you can customize the speech models to understand accents
or work with specific vocabularies. Like the Custom Vision service,
these customizations build on top of the existing trained models and
allow you to create use case-specific models without the burden‐
some data requirements of creating your own from scratch.

The places in which speech is being recorded can pose challenges
too. For example, the background noise at a drive-through or the
acoustics of a mall are both very different from someone speaking
into their phone in a quiet room. You can add acoustic models to
account for the complexities of varied environments where accurate
recognition is essential: in vehicles, on the factory floor, or out in the
field. Adding a custom acoustic model will be necessary if you’re
building code for use in a predictably noisy environment.

To get started building your own custom models, you will need sam‐
ples recorded in the same conditions in which your application will
be recognizing speech. That means people talking in the environ‐
ment or into the device you plan to use. You can also use this
method to tune speech recognition to a single voice. This technique
is useful for transcribing podcasts or other audio sources.

Speech to Text | 45

Data needs to be in 8 KHz or 16 KHz WAV files, using mono
recordings. Split them up into 10- to 12-second chunks for the best
results, starting and finishing with silence. Each file needs a unique
name, and should contain a single utterance: a query, a name, or a
short sentence. Package the files in a single zipped folder that’s less
than 2 GB, and upload that to the Custom Speech website. Each file
needs to be accompanied by the transcription in the correct format:
a single line of text in a file that starts with the audio file’s name,
then a tab, then the text. You will then need to walk through the pro‐
cess of training the model on the website.

Building custom language models, either for a specific technical
vocabulary or to improve recognition of accented speech, also
requires labeled data. However, this data consists of a list of senten‐
ces and phrases as text rather than voice recordings. For best results,
include text that uses your specific vocabulary in different sentences
and contexts that cover the ways you expect the terms to be used.
You can provide up to 1.5 GB of raw text data. The service’s website
provides a walkthrough on how to create these custom acoustic
models.

Text to Speech
We can’t always be looking at screens. In many cases this can be a
dangerous distraction, diverting attention away from hazardous
environments or expensive equipment. When people need to inter‐
act with devices in such environments, one option is to use speech
synthesis, perhaps paired with speech recognition for input. Speech
synthesis can also provide accessibility tooling for the visually
impaired or be used to deliver information in an augmented reality
tool.

The following code snippet will take text from the console input and
play the resulting speech through your default audio device.

First you will need to configure your Speech credentials (fill in your
own subscription key and service region (e.g., "westus"):

var config = SpeechConfig.FromSubscription(
 "<Your Subscription Key>", "<Your Service Region>"
);

Then, create a SpeechSynthesizer that uses your device speaker:

var synthesizer = new SpeechSynthesizer(config);

46 | Chapter 5: Speech

https://aka.ms/custom-speech

Here we’re going to take the text to be spoken from console input:

string text = Console.ReadLine();

Call the API and synthesize the text to audio:

var result = await synthesizer.SpeakTextAsync(text);

Then check to see if the speech was synthesized (the other options
are Cancelled and Error):

if (result.Reason == ResultReason.SynthesizingAudioCompleted)
{
 Console.WriteLine(
 $"Speech synthesized to speaker for text [{text}]"
);
}

Neural and Custom Voices
The Text to Speech service converts text into synthesized speech
that’s natural and sounds near human. You can pick from a set of
standard and higher-quality “neural” voices, or if you want to
express your brand’s personality you can create your own voices.

Currently five neural voices are available in English, German, Ital‐
ian, and Chinese. You can also choose from more than 75 standard
voices in over 45 languages and locales. The standard voices are cre‐
ated using statistical parametric synthesis and/or concatenation syn‐
thesis techniques.

Neural text to speech is a powerful new improvement over standard
speech synthesis, offering human-sounding inflection and articula‐
tion. The result is computer-generated speech that is less tiring to
listen to. It’s ideal if you’re using speech to deliver long-form con‐
tent, for example when narrating scenes for the visually impaired or
generating audiobooks from web content. It’s also a useful tool when
you’re expecting a lot of human interaction, such as for high-end
chatbots or virtual assistants.

Standard speech synthesis supports many more languages, but it’s
clearly artificial. You can experiment to find the right set of parame‐
ters to give it the feel you want, tuning speed, pitch, and other set‐
tings—including adding pauses.

To generate your own custom voices, known as voice fonts, you need
studio recordings, preferably made by a professional voice actor,
and a set of scripts to create the training data. It is possible to use

Text to Speech | 47

public recordings, but they will require significant editing to remove
filler sounds and ambient noise. The best results come when you use
an expressive voice at a consistent volume, speaking rate, and pitch.
Voice fonts can only be single language: either English (US), Chi‐
nese (Mainland), French, German, or Italian.

Custom voices can be configured using the service’s website. Audio
files for creating a voice need to be WAV files sampled with a sample
rate of at least 16 KHz, in 16-bit PCM, bundled into a ZIP file less
than 200 MB in size. Files need to be single utterances: either a sin‐
gle sentence or a section of any dialog you wish to construct, with a
maximum length of 15 seconds. As with custom recognition, you
also need a script file that ties the voice to text. You can upload mul‐
tiple speech files, with free users limited to 2 GB and subscription
users to 5 GB.

To turn your uploaded voice data set into a voice font, you need to
set the locale and gender for the voice to match the data set. Train‐
ing can take a significant amount of time, depending on the volume
of data (from 30 minutes to 40 hours). Once the voice font has been
trained, you can try it out from the portal.

Text sent via the REST API must use the Speech Synthesis Markup
Language (SSML), which controls how voices operate. Start by set‐
ting the voice you’re using, then add text in an XML format. You can
add breaks, using time in milliseconds, and change the speaking rate
(defined as prosody, and increased and decreased using percen‐
tages). You can also change how a voice pronounces a word, altering
the phonemes used. Other options let you control volume and pitch,
and even switch between voices. Constructing speech as SSML can
take time, but it gives you a wide range of options and helps deliver
a more natural experience.

Here’s the SSML for an enthusiastic rather than neutral response:

<speak version='1.0'
 xmlns="https://www.w3.org/2001/10/synthesis"
 xmlns:mstts="https://www.w3.org/2001/mstts"
 xml:lang="en-US">
 <voice name='en-US-JessaNeural'>
 <mstts:express-as type="cheerful">
 That'd be just amazing!
 </mstts:express-as>
 </voice>
</speak>

48 | Chapter 5: Speech

https://aka.ms/custom-voice

Translation and Unified Speech
Real-time speech translation was one of the first deep learning
speech services Microsoft showcased, with a 2012 demonstration
showing an English speaker communicating with a Chinese speaker.
In just a few years, those translation services have gone from
research to product to service. Using neural machine translation
techniques, rather than the traditional statistical approach, allows
them to deliver higher-quality translations. (Not all language pairs
in Azure Speech use neural translation; some still depend on the
statistical operations.)

The Speech Translation tool uses a four-step process, starting with
speech recognition to convert spoken words into text. The transcri‐
bed text is then passed through a TrueText engine to normalize the
speech and make it more suitable for translation. Next, the text is
passed through the machine translation tools and converted to the
target language. Finally, the translated text is sent through the Text
to Speech service to produce the final audio.

Speech Translation works in a similar fashion to the standard speech
recognition tools, using a TranslationRecognizer object to work
with audio data. By default it uses the local microphone, though you
can configure it to use alternative audio sources. To make a transla‐
tion, you set both the source and target languages, using the stan‐
dard Windows language types (even if your app doesn’t run on
Windows).

Translations are delivered as events, so your code needs to subscribe
to the response stream. The streamed data can be displayed as text
in real time, or you can use it to produce a synthesized translation,
using neural speech if available. Custom Translator lets you extend
the default translation models to cover industry-specific terms or
language that’s essential to your business. We go into more depth on
Custom Translator in the next chapter.

Speaker Verification and Identification
In the 1992 movie Sneakers, the villain Cosmo protects his computer
systems with a speech-controlled door lock using the passphrase
“My voice is my passport. Verify me.” The Speaker Recognition API
promises to turn that fiction into fact. While still in preview, the ser‐
vice makes it easy to identify and even verify the person speaking.

Translation and Unified Speech | 49

Speaker verification uses the unique characteristics of a person’s
voice to identify them, just like a fingerprint. Speaker identification
uses enrolled voices to identify a specific voice based on speech pat‐
terns. By playing back selected audio, it can determine who in the
speech database is speaking.

Speaker Verification
We all speak differently; our voices have unique characteristics that
make them suitable for use as biometric identifiers. Like face recog‐
nition, voice recognition is a quick and easy alternative to the tradi‐
tional password, simplifying login and access. You enroll users with
a spoken passphrase that they will use when they want to be verified.
Once they’re enrolled with at least three samples, the passphrase can
be processed to build a voice signature.

When a user speaks their passphrase for verification, it’s processed
to create a voice signature, which is then compared with the stored
phrase. If the phrase and voice match, the user is verified.

You need to create a profile for each user, including their language;
currently only US English is supported. When the profile is created
through the REST API, it returns a GUID that you use to enroll the
user. While the service is in preview, you can only register a thou‐
sand profiles per subscription.

There’s a preset list of supported passphrases (which is quite short
for the preview), and each user will need to choose one—they don’t
need to be unique to each user, though. You can retrieve the list
through the API and either present one randomly or let the users
pick from a list. Each user can then provide three samples of them
saying the selected phrase, which must be recorded in mono WAV
format at 16 KHz and in 16-bit PCM. Each sample is uploaded sepa‐
rately, along with a count and the phrase being used. Once all three
have been loaded, the profile is then trained, and when training is
complete, it’s ready for use.

A single REST API call handles verifying a user, but you still need to
handle usernames and give users a way to enter these in your appli‐
cation so you can retrieve the appropriate GUID from a local store.
They then speak their passphrase, which is sent to the speaker verifi‐
cation service. Three fields are returned: the result of the verification
(accept or reject), the confidence level of the verification (low, nor‐
mal, or high), and the recognized passphrase.

50 | Chapter 5: Speech

If a user is recognized with high confidence, you can let them into
your application. If confidence is low, you may want to ask them to
use an alternative authentication method. You may also want to use
a similar fallback approach if they are rejected with low confidence
rather than locking them out.

Speaker Identification
Speaker identification lets you automatically identify the person
speaking in an audio file from a given group of potential speakers.
This functionality is useful in dictation applications and other sce‐
narios where you need to differentiate between speakers. You can
use the speaker identification service in parallel with the other
Speech Services to build an annotated transcript of a conversation,
something that’s hard to do using conventional speech recognition
products.

Because you’re not converting speech to text, all you need are speech
samples to train the identification service. Think of this as the voice
equivalent of music recognition services like Shazam. The service
identifies the “voice fingerprint” of an individual and then compares
this fingerprint with new recordings to determine if the same person
is speaking. Multiple recordings can be compared with the same
voice fingerprint, or different voices extracted from the same file.

Speaker identification uses the same underlying approach as speaker
verification. You first create a speaker identification profile that can
then be enrolled in the service. Enrollment for identification is dif‐
ferent from verification because you’re uploading a single file, which
can be up to five minutes long. The minimum recommended length
is 30 seconds, though you have the option of uploading a shorter
file. Again, you need to use mono WAV files, recorded at 16 KHz in
16-bit PCM.

To identify a voice, you send a request to the Speaker Identification
API with the speech you wish to identify along with a list of the 10
profiles you wish to compare it against. The service runs asynchro‐
nously and will return a URI that can be queried to get the status. A
separate API returns an identified voice GUID, along with a confi‐
dence level. If no one is identified, a dummy zero GUID is then
returned.

Speaker Verification and Identification | 51

Both services are still in preview and currently suitable for trial
applications rather than production use. You can test and adopt
them in production when the service moves to general availability.

52 | Chapter 5: Speech

CHAPTER 6

Language

Much of what we do online involves text, and Cognitive Services
offers tools to work with text across all your applications: from pro‐
viding analytics on text content to understanding what a user really
wants to do. Instead of forcing users to check boxes, click radio but‐
tons, or choose from a drop-down list, you can use these services to
make your app understand the meaning of unstructured text or rec‐
ognize the intent of what your users are saying no matter how they
express it. The Language services also integrate well with the Speech
Services we covered in the previous chapter.

Text Analytics
The Text Analytics service takes raw text and extracts four kinds of
structured information: the sentiment, the key phrases, the lan‐
guage, and the entities the text refers to. You can use all four end‐
points independently, but combining them can enable a higher level
of analysis. The four APIs are all very straightforward, and there is
no option to tune or customize the service with your own data. All
the Text Analytics endpoints are available as containers, meaning
you can take advantage of these capabilities in your own data center
or edge devices.

The following code snippet creates a Text Analytics client with ver‐
sion 3 of their SDK, ready for use with your content. It can be used
with the standard endpoints to extract, for example, sentiment:

class ApiKeyServiceClientCredentials : ServiceClientCredentials
{

53

 public override Task ProcessHttpRequestAsync(
 HttpRequestMessage request,
 CancellationToken cancellationToken)
 {
 request.Headers.Add(
 "Ocp-Apim-Subscription-Key",
 "Your Subscription Key"
);
 return base.ProcessHttpRequestAsync(
 request, cancellationToken
);
 }
}

You can create a Text Analytics client as follows—make sure to use
the correct service endpoint for your Text Analytics subscription:

TextAnalyticsClient client = new
 TextAnalyticsClient(new ApiKeyServiceClientCredentials())
 {Endpoint = "<Your Service Endpoint>"};

Sentiment Analysis
A common use for analyzing sentiment is to parse a social media
feed like Twitter, looking for references to a product and examining
how customers are talking about it. You can use the Sentiment Anal‐
ysis API to filter live tweets that you show at events, or you can take
the results and feed them into an analytical tool like Power BI to
generate actionable insights. If a tweet says that a user had problems,
you can see not only their low sentiment rating, but also phrases like
“didn’t work” or “caught fire,” allowing you to respond appropriately
to a possible customer emergency.

The Sentiment Analysis API takes a text input and gives you a senti‐
ment score of between 0 and 1, where 0 is negative and 1 is positive.
The service works with English, German, Spanish, and French, and
other languages are being added.

Detecting irony and sarcasm can be tricky: a comment
that someone is “really delighted” that something hap‐
pened doesn’t always represent genuine enthusiasm, so
be careful when filtering on sentiment score.

The model used in the service works with small chunks of data. If
you are working with large text collections, you will need to break
them up into smaller chunks. The service can process up to 1,000

54 | Chapter 6: Language

blocks at a time, and each block can be up to 5,120 characters long.
Real-time data is rate-limited to under 100 requests a minute.

Building on the previous code snippet, the following code shows
how to call the Sentiment Analysis API to extract the sentiment in
multiple languages.

First, create the input example:

MultiLanguageBatchInput multiLanguageBatchInput =
 new MultiLanguageBatchInput(
 new List<MultiLanguageInput>()
 {
 new MultiLanguageInput("ja","1", "猫は幸せ"),
 new MultiLanguageInput("de", "2",
 "Fahrt nach Stuttgart und dann zum Hotel zu Fu."),
 new MultiLanguageInput("en", "3",
 "My cat is stiff as a rock."),
 new MultiLanguageInput("es", "4",
 "A mi me encanta el fútbol!")
 }
);

Now perform the sentiment analysis:

SentimentBatchResult sentimentBatchResult = await
 client.SentimentAsync(null, multiLanguageBatchInput);

You can then display the sentiment for each document analyzed:

foreach (var document in sentimentBatchResult.Documents)
 {
 Console.WriteLine(
 $"Document ID: {document.Id}," +
 $", Sentiment: {document.Score}"
);
 };

Key Phrase Extraction
The Key Phrase Extraction API can be used to find relevant phrases
in unstructured text, providing a great way to quickly identify the
main points. The service works on text in English, Japanese, Ger‐
man, and Spanish. Analyzing this paragraph would return phrases
like “relevant phrases” and “English,” “German,” “Japanese,” and
“Spanish.”

Unlike the Sentiment Analysis API, the Key Phrase Extraction API
requires large documents, and if you are running the two on the
same content you will need to break up the text differently for each

Text Analytics | 55

service. Results are returned as JSON. Nonessential phrases are
dropped and single terms that are the subject or object are retained,
so if you are using this as a tool for summarizing content, you will
need to add your own code to integrate the returned values into
your application.

The following snippet uses the Text Analytics client we defined ear‐
lier to extract key phrases from a multilanguage input.

First, we’ll create the input. We can use the same example as earlier:

MultiLanguageBatchInput multiLanguageBatchInput =
 new MultiLanguageBatchInput(
 new List<MultiLanguageInput>()
 {
 new MultiLanguageInput("ja","1", "猫は幸せ"),
 new MultiLanguageInput("de", "2",
 "Fahrt nach Stuttgart und dann zum Hotel zu Fu."),
 new MultiLanguageInput("en", "3",
 "My cat is stiff as a rock."),
 new MultiLanguageInput("es", "4",
 "A mi me encanta el fútbol!")
 }
);

Now we’ll extract the key phrases:

KeyPhraseBatchResult keyPhraseBatchResult =
 await client.KeyPhrasesAsync(null, multiLanguageBatchInput);

We can then display the key phrases for each document to be ana‐
lyzed as follows:

foreach (var document in keyPhraseBatchResult.Documents)
{
 Console.WriteLine(
 $"Document ID: {document.Id}," +
 $" Key Phrases: " +
 $"{ string.Join(", ", document.KeyPhrases)}"
);
}

Combining the Sentiment Analysis and Key Phrase Extraction APIs
can help reveal root causes; if negative comments talking about fires
have common key phrases like “plug” and “power supply,” you can
narrow down the problems behind the complaints.

56 | Chapter 6: Language

Language Detection
The Language Detection API can simplify using other parts of the
Cognitive Services suite of APIs. Many services attempt to autode‐
tect language, but if you need to use a language-specific service to
ensure accuracy, you can pass a snippet of the text through the Lan‐
guage Detection API. The service currently supports more than 120
languages.

All you need to do is send a JSON-formatted document via a POST
request to the API endpoint. The content in the document will be
scanned, and the response will contain a list of the detected lan‐
guages and their associated ISO codes, as well as a confidence score
for each.

The following code snippet uses our Text Analytics client to detect
the language used in three different text snippets.

First, we create the input:

LanguageBatchInput languageBatchInput =
 new LanguageBatchInput(
 new List<LanguageInput>()
 {
 new LanguageInput(null, "1",
 "This is a documentwritten in English."),
 new LanguageInput(null, "2",
 "Este es un document escrito en Español."),
 new LanguageInput(null, "3",
 "这是一个用中文写的文件")
 }
);

Now we’ll detect the language in each snippet:

LanguageBatchResult languageBatchResult = await
 client.DetectLanguageAsync(null, languageBatchInput);

Finally, we can display the language detected for each document:

foreach (var document in languageBatchResult.Documents)
 {
 Console.WriteLine($"Document ID: {document.Id}," +
 $"Language:" +
 $"{ document.DetectedLanguages[0].Name}");
 }

Text Analytics | 57

Entity Recognition
The Entity Recognition API (/entities endpoint) takes unstruc‐
tured text and returns a list of disambiguated entities with links to
more information on the web. For example, “Mars” could be a refer‐
ence to the planet or the British candy bar. Using entity linking with
Wikipedia as a knowledge base, Text Analytics can differentiate
between the two based on the surrounding text. It can also find time
zones, temperatures, numbers, and percentages. The Named Entity
Recognition feature allows you to identify places, people, quantities,
businesses, dates and times, URLs, and email addresses. All these
features help you turn a stream of text into more structured data
points.

The service works in the same way as the other Text Analytics serv‐
ices. The following code snippet shows how to extract entities from
a multilanguage document, again using the Text Analytics client we
created earlier.

First we create the input. We’ll use the same text examples we used
for the other operations:

MultiLanguageBatchInput multiLanguageBatchInput =
 new MultiLanguageBatchInput(
 new List<MultiLanguageInput>()
 {
 new MultiLanguageInput("ja", "1", "猫は幸せ"),
 new MultiLanguageInput("de", "2",
 "Fahrt nach Stuttgart und dann zum Hotel zu Fu."),
 new MultiLanguageInput("en", "3",
 "My cat is stiff asa rock."),
 new MultiLanguageInput("es", "4",
 "A mi me encanta el fútbol!")
 }
);

Now we’ll extract the entities from the documents:

EntitiesBatchResult entitiesBatchResult = await
 client.EntitiesAsync(null, multiLanguageBatchInput);

Finally, we can display the extracted entities for each document:

foreach (var document in entitiesBatchResult.Documents)
 {
 Console.WriteLine($"Document ID: {document.Id}");
 foreach(var entity in document.Entities)
 {
 Console.WriteLine(

58 | Chapter 6: Language

 $"Name: {entity.Name}, Type: {entity.Type}"
);
 }
 }

Language Understanding with LUIS
Perhaps the biggest problem facing anyone trying to implement a
natural language interface like a chatbot is trying to understand
what a user means. We all have different ways of talking, typing, and
speaking. We use different words to mean the same thing, and
sometimes the same word to mean different things. When someone
ordering a pizza through a chat interface asks for it to be delivered
to their digs, what do they mean? Could they really want their pizza
in a hole?

The Language Understanding service, or LUIS, is designed to
resolve these situations by determining the user’s intentions and
turning the conversation into a list of ways an application can
respond. Building on an understanding of the context of a conversa‐
tion, LUIS can examine an utterance or input from the user, and
find appropriate keywords. LUIS then maps these keywords to a list
of intents and entities that can be consumed by the application.

An intent represents a task or action the user wants to perform. The
intent is the purpose or goal expressed in a user’s utterance. The
entities are the words or phrases in the utterance that you want
extracted. They often represent the important context needed for
acting on the user’s intent. For example, consider the utterance “buy
3 tickets to New York.” The intent of the user could be “to buy” and
the entities could be “3” and “New York.”

Your code can then take the returned intents and entities and apply
appropriate rules, handing them off to specific actions. It’s important
to note that it’s your code that makes the decisions; LUIS just returns
the information you need in the format you require.

Let’s look at another example. Imagine adding LUIS to a travel
agency chatbot. LUIS can help you identify the information needed
to help a customer from their input. A statement like “I need a flight
to Heathrow” will be parsed with the intent “BookTravel” and enti‐
ties “flight” and “London.” Prefilling those entities into a booking
engine starts the booking process, while the chatbot prompts the

Language Understanding with LUIS | 59

user for additional information, like dates, class of travel, and the
departure airport.

LUIS is not a general-purpose ML model; to get the most out of it,
you must train it with domain-specific data for your industry, loca‐
tion, and scenario. A set of prebuilt models for specific domains can
help you get started, but for the best results, they’ll need additional
training.

You can access LUIS through its website or APIs. After creating an
account on the service website, create an app and walk through the
initial steps of adding data to train your own model. When you cre‐
ate an app, you will be prompted to choose a “culture.” The culture is
the language that your app understands and speaks. This is perhaps
the most important choice you make, as it defines the language used
for understanding context, which sets up the basic model used by
LUIS (and cannot be changed later).

A library of preconfigured domains for common LUIS scenarios
helps you get started quickly. Add any of these to your LUIS instance
from the portal and you can explore the available intents included in
the library, with the associated sample utterances.

Once you’ve selected the domains that fit your scenarios, you can
train LUIS directly from the website. This can take some time, espe‐
cially if you’re using more than one domain. Once training is com‐
plete, you can also try out your model right from the site. An
interactive testing pane displays the highest-scoring intent for each
test utterance.

When you’re happy with the model you have created, you can pub‐
lish it and create REST API endpoints that can be called directly
from your code. The URIs are of the following form:

https://<region>.api.cognitive.microsoft.com/luis/v2.0
 /apps/<appID>?verbose=true&subscription-key=<YOUR_KEY>&
 <optional-name-value-pairs>&q=<user-utterance-text>

The resulting data can be parsed and used in your apps, handling
queries or driving the next step in a bot conversation. The following
code snippet shows how you might use LUIS to add voice control to
a home IoT system.

First, configure your credentials:

var credentials =
 new ApiKeyServiceClientCredentials("<Your Subscription Key>");

60 | Chapter 6: Language

https://luis.ai

and create a LUIS client:

var luisClient = new LUISRuntimeClient(
 credentials,
 new System.Net.Http.DelegatingHandler[] { }
);

Then set the endpoint, using your correct service region:

luisClient.Endpoint = "<Your LUIS Endpoint>";

Next, create a Prediction client:

var prediction = new Prediction(luisClient);

Now return a prediction (this query is for a home automation app):

var luisPrediction = await prediction.ResolveAsync(
 appId = "<Your App ID>",
 query = "turn on the bedroom light",
 timezoneOffset = null,
 verbose = true,
 staging = false,
 spellCheck = false,
 bingSpellCheckKey = null,
 log = false,
 CancellationToken.None
);

and get the result:

var luisResult = luisPrediction.Result;

You can display the results as follows:

Console.WriteLine(
 luisResult.Query,
 luisResult.TopScoringIntent.Intent, // top intent
 luisResult.TopScoringIntent.Score,
);

And you can display all the entities detected in the query like this:

foreach (var entity in luisResult.Entities)
{
 Console.WriteLine(
 "{0}:'{1}' begins at position {2}" +
 "and ends at position {3}",
 entity.Type, entity.Entity, entity.StartIndex,
 entity.EndIndex
);
}

Production LUIS models can be retrained automatically, using active
learning to work with user utterances that LUIS marks as needing

Language Understanding with LUIS | 61

validation (because the intent detected has a low score, or two
intents have such close scores that neither is definitive). You can
map utterances to the right intent one at a time or in batches. You
can also manually add any new entities that appear in the utterances.
Make this validation part of your regular app lifecycle management
to keep your LUIS model current for what users are asking.

You can also provide a list of words or phrases that are significant to
your app. This phrase list might include synonyms for important
terms, to help the model handle different ways of asking the same
question. For example, a car might be referred to as a sedan, coupe,
automobile, or motor.

Generating your own data for LUIS requires you to
map example utterances to your planned intents and
entities. If you collect all the examples in a JSON file,
you can create the LUIS app programmatically, adding
intents and entities via the API. A batch API lets you
add 100 utterances at a time, and once the input has
been processed, you can start to test your domain
model from the LUIS portal before writing an app to
work with the endpoints.

QnA Maker
Customer support is expensive. Discussing problems with custom‐
ers and looking up the right information to help each user requires a
lot of manual effort and time. The QnA Maker service lets you
deliver faster answers to customers and reduce your support costs
by transforming semi-structured data such as frequently asked ques‐
tion (FAQ) pages into a conversational interface. The service can be
integrated with Microsoft’s Bot Framework to create a chatbot that
can respond through a wide selection of channels, from text mes‐
sages to Slack.

QnA Maker has two main services: the first extracts question-and-
answer pairs and the second matches answers to a user’s question.
Extraction discovers questions and answers in the various docu‐
ments you upload. Matching delivers an endpoint that accepts user
questions and responds with the most appropriate answer. The ser‐
vice also provides a confidence score that tells you how confident
the service is in the match.

62 | Chapter 6: Language

Unlike the other Cognitive Services, QnA Maker relies on other
Azure services that are deployed when you create a resource. The
first service is the QnA Maker Management service that orchestrates
the service and controls the training and publishing experiences.
The second is an Azure Search instance, which is used to store any
data uploaded to the service. Finally, the endpoints are deployed as
an Azure App Service. If you need additional logging, you can set up
an App Insights link to your QnA Maker service. All these services
will appear as separate resources in the Azure portal when you
deploy an instance of the QnA Maker service.

Once you have deployed the resources, you can get started via the
website. The portal provides an easy-to-use interface for creating,
managing, training, and publishing your own custom QnA Maker
model without any developer experience. Developers can also per‐
form any of these functions using the service’s REST APIs or client
libraries.

The QnA Maker service is ideal for integrating into a chatbot, and
the website even provides functionality for creating a bot. Bots can
be given different personalities using QnA Maker’s chit-chat option,
which lets you choose between Professional, Friend, and Comic per‐
sonas. The service now also supports bots for specific industry verti‐
cals, including healthcare.

Spell Check
Most spelling checkers use large dictionaries and rule sets. As a
result, they tend to be hard to update and quickly become static. The
Bing Spell Check API takes advantage of the Bing search index,
which quickly picks up new terms, company names, and jargon that
get published to the web and uses a combination of advanced
machine learning and statistical techniques to deliver more accurate
and relevant corrections.

The Spell Check API brings the power of Bing’s spell checking capa‐
bilities to your application. The service offers multiple modes for
checking spelling and grammar. It can also easily handle slang and
other informal terms. It offers features including multiple spell
check modes, slang recognition, homophone detection, and brand
and proper noun recognition.

Spell Check | 63

https://qnamaker.ai/
https://qnamaker.ai/

The two modes you can select from are Spell and Proof. Proof not
only corrects spelling but also adds basic punctuation, capitalization,
and other grammar checks. However, it’s only available for the US
English, Spanish, and Portuguese markets and truncates the query
text at 4,096 characters. For a quicker response or use in other
regions, use Spell. Spell only offers word-level spelling checks (for
queries of 65 or 130 characters depending on the language) and
won’t find some of the grammar mistakes Proof does. You can
choose the language of the spell check, which is especially useful if
you’re building a site or service using multiple languages.

The following code snippet shows how to call the Spell Check API
with version 4 of the SDK. First, create a client:

var client = new SpellCheckClient(
 new ApiKeyServiceClientCredentials("<Your Subscription Key>")
);

Then perform the spell check, displaying the errors found and the
suggestions for replacing them, showing the confidence score for
each one:

string testSentence = "tset sentense";
SpellCheckModel spellCheckModel =
 await client.SpellCheckerAsync(testSentence);
// for each error detected
foreach (var token in spellCheckModel.FlaggedTokens)
{
 Console.WriteLine($"Error: {token.Token}");
 // print the suggestions & confidence score
 foreach (var suggestion in token.Suggestions)
 {
 Console.WriteLine(
 $"Suggestion: {suggestion.Suggestion},
 Score: {suggestion.Score}"
);
 }
}

As with all the services, there are numerous configuration options
that can be passed along with the input text. One of the more inter‐
esting ones is preContextText, which allows you to provide a string
that gives context to the words being checked. For example, if you
didn’t set a context, “petal” would be marked a perfectly correct
spelling, but if you set preContextText to “bike,” then the spell‐
checker would suggest changing it to “pedal.”

64 | Chapter 6: Language

Translator Text
Microsoft Translator is a cloud-based machine translation service
with multilanguage support for translation, transliteration, language
detection, and dictionaries. The core service is the Translator Text
API, which powers a number of Microsoft products and services
(including the speech translation feature in the Azure Speech Serv‐
ices, which we looked at in the previous chapter).

At the heart of the Translator Text API is a deep learning–powered
neural machine translation algorithm. This technique has revolu‐
tionized machine translation over the last decade. By translating
words as part of a full sentence rather than considering them indi‐
vidually, the service provides more accurate, natural, and fluent
results. The result is a more human-sounding translation, particu‐
larly with non-Western languages. Translator Text also provides
transliteration services that let you display text in different alpha‐
bets, making it easier to read. For example, transliterating can be
useful for converting Japanese or Chinese pictographs to a Western
alphabet.

Building an application with translation capabilities is simple. The
latest version 3 release consolidates most of the functions into a sin‐
gle REST API, making it easier to access the models. The APIs are
hosted in the Americas, in Asia Pacific, and in Europe. There is also
a Global option that routes calls dynamically to any data center, usu‐
ally the one closest to the request location.

You can have more than one target language in your translation
request, with each translation in the same JSON return. The
response contents indicate the detected source language and include
a translation block with text and a language identifier for each
selected target language.

An alternative use of the service is to simply identify the language
being used. That’s useful if you have some content to translate but
don’t want to waste API calls on the wrong language pairing or con‐
tent that can’t be translated. With a basic app, you can make a simple
detect call to the REST API, sending your sample text in the JSON
body of the request. The API will return the identified language and
an indicator of whether the service can translate it for you, so you
can use the language identifier to make an appropriate translation or
transliteration request.

Translator Text | 65

You can also combine the different capabilities to create your own
translation service: for example, detecting Japanese text, transliterat‐
ing it to Western script at the same time as translating it, while also
displaying any alternate translations that might be available.

Customizable Translation
The Custom Translator feature allows you to build a neural transla‐
tion system that understands the terminology used in your own
business and industry. The service works by providing a labeled data
set that reflects your domain-specific terminology and style. The
data must contain the content translated into all your targeted lan‐
guages, and it is a best practice to include at least 10,000 parallel sen‐
tences. You can upload these data sets and create your own model
using the service’s website. Once trained, you can see various met‐
rics to understand the accuracy of your model.

Immersive Reader
The newest Cognitive Service, Immersive Reader, seeks to empower
users of all ages and abilities. Based on extensive research on inclu‐
sivity and accessibility, the service offers a suite of features focused
on enhancing text reading and comprehension including reading
the text aloud, translation, and focused attention views. Immersive
Reader is a standalone web app that can be integrated within your
existing app via an iframe through the JavaScript SDK. Figure 6-1 is
a screenshot of the experience highlighting nouns, verbs, adjectives,
and adverbs for the user.

Figure 6-1. Screenshot of the Immersive Reader service

Immersive Reader helps users unlock knowledge from text to ach‐
ieve gains in the classroom and office. Over 15 million users rely on
Microsoft’s immersive reading technologies across 18 apps and plat‐

66 | Chapter 6: Language

https://portal.customtranslator.azure.ai/

forms including Microsoft Learning Tools, Word, Outlook, and
Teams. Now, developers can deliver this literacy-enhancing experi‐
ence to their users too.

Andrzej, a child with dyslexia, learned to read with the
Immersive Reader experience embedded into apps like
Microsoft Learning Tools. You can listen to his mother,
Mitra, sharing their story.

Immersive Reader | 67

https://oreil.ly/oLg7-

CHAPTER 7

Decision

The end goal of most machine learning applications is not just to
extract information and insights, but to make decisions and take
actions based on the new knowledge. The services within the Deci‐
sion category, which we’ll explore in this chapter, aim to enable these
goals by providing higher-level capabilities such as detecting
anomalies, personalizing recommendations, and identifying inap‐
propriate content. These services are intended to help the user more
quickly move from raw data to impactful action.

Anomaly Detector
Many applications need to detect anomalous behavior and know
when to take corrective action. Anomaly Detector simplifies the
process of detecting anomalies in time series data. The service
examines either real-time or historical data to determine whether a
data point is an anomaly, automatically selecting the best algorithm
for your data to ensure high accuracy for your scenario. Over 200
product teams within Microsoft rely on this service to deliver accu‐
rate anomaly detection, and the service is a powerful tool in many
use cases such as spotting fraud, alerting when an IoT device is fail‐
ing, or identifying suspicious user activity. Here’s an example show‐
ing how you can integrate the service in just a few lines of code.

First, create a client:

var client = new AnomalyDetectorClient(
 new ApiKeyServiceClientCredentials("Your Subscription Key"))
 {Endpoint = "<Your Service Endpoint>"};

69

Now create the list of points to analyze. You will need at least 12
points:

Request request = new Request(
 new List<Point>()
 {
 new Point(
 DateTime.Parse("2018-03-01T00:00:00Z"),32858923
),
 },
 Granularity.Daily
);

You can then add code to detect if there is an anomaly on the last
point in the time series:

LastDetectResponse lastDetect =
 await client.LastDetectAsync(request);

and display the results:

Console.WriteLine($"Expected Value:" +
 $"{lastDetect.ExpectedValue}, +
 $", Is Anomaly? {lastDetect.IsAnomaly}");

Personalizer
Reaching and engaging customers is all about providing a personal‐
ized, unique experience to your users. Providing pertinent news
articles, optimized ad placements, or relevant recommended items
on a retail page or suggesting useful features in your application can
delight your users and increase their engagement.

Personalizer enables you to create personalized experiences like
these with no machine learning expertise required. The service uses
state-of-the-art reinforcement learning techniques to learn in real
time from your users’ interactions and optimizes toward a direct
business goal you provide.

It works by providing a set of recommendations based on informa‐
tion you supply about your user’s context. Depending on the user’s
action, you then provide a reward back to the model, which is used
to improve the model. Since this service trains in real time, you do
not need to provide clean, labeled data before using Personalizer.

70 | Chapter 7: Decision

Content Moderator
Content Moderator checks text, image, audio, and video content for
material that is potentially offensive, risky, or otherwise inappropri‐
ate. When the service finds such material, it applies labels or flags to
the content that your app can use to take action. The service is appli‐
cable in a wide variety of scenarios, from moderating product cata‐
logs in open online marketplaces to monitoring user-generated
content in games.

Whether you want to keep a chat room family friendly or make sure
your ecommerce site doesn’t offer products with unfortunate or
offensive phrases printed on them, this service can help—but it’s
best used in conjunction with human moderators. To help with that,
Content Moderator also includes a web-based review tool that ena‐
bles you to build human evaluations directly into your workflow.
The human input does not directly train the service, but the com‐
bined work of the service and human review teams allows develop‐
ers to strike the right balance between efficiency and accuracy.

To get started, you can either walk through the documentation or
access the service via its REST APIs and client libraries. The follow‐
ing code snippet shows how to use version 2 of the C# SDK to check
an image for adult content.

First, identify the URL of the image to check:

var url = new BodyModel("URL", "<URL of an Image>".Trim());

There are three steps you need to take when evaluating an image:

1. The Evaluate operation predicts whether the image contains
adult or racy content.

2. The OCR operation predicts the presence of text content in the
image that may be inappropriate.

3. The FindFacesUrlInput operation detects faces in an image to
help protect personal data.

The following code snippets walk through these steps using the C#
SDKs. First, you need to create a class to handle the results:

private static EvaluationData
{
 Evaluate ImageModerating;
 OCR TextDetection;

Content Moderator | 71

https://oreil.ly/6UAcg

 FoundFaces FaceDetection;
}

Then create an instance for the evaluation:

var imageData = new EvaluationData();

To evaluate the image using the Image Moderation APIs, first check
for adult and racy content:

imageData.ImageModerating =
 client.ImageModeration.
 EvaluateUrlInput("application/json", url, true);

Next, detect and extract any text:

imageData.TextDetection =
 client.ImageModeration.
 OCRUrlInput("eng", "application/json", url, true);

Finally, detect any faces:

imageData.FaceDetection =
 client.ImageModeration.
 FindFacesUrlInput("application/json", url, true);

You can then display the results:

Console.WriteLine(
 JsonConvert.SerializeObject(imageData, Formatting.Indented)
);

Content Moderator isn’t only for images; it can also work with text
content. The text moderation service identifies more than just adult
and racy content; it will also scan for offensive language and per‐
sonal information such as Social Security numbers. Here is a code
snippet showing how to run text moderation over a sample set of
text.

First create and initialize an instance of the Content Moderator API
wrapper, using your own subscription key and the correct endpoint:

ContentModeratorClient client =
 new ContentModeratorClient(
 new ApiKeyServiceClientCredentials("<Your Subscription Key>")
);
client.Endpoint = "<Your Service Endpoint>";

Now, send the text to evaluate:

string text = "Is this a garbage or crap email abcdef@abcd.com,
phone: 6657789887, IP: 255.255.255.255, 1 Microsoft Way,
Redmond, WA 98052. These are all UK phone numbers, the last
two being Microsoft UK support numbers: +44 870 608 4000 or

72 | Chapter 7: Decision

0344 800 2400 or 0800 820 3300. Also, 999-99-9999 looks like
a social security number (SSN).";

Before the content can be sent to the service, you need to prepare
the text and convert it to bytes:

text = text.Replace(System.Environment.NewLine, " ");
byte[] byteArray = System.Text.Encoding.UTF8.GetBytes(text);
MemoryStream stream = new MemoryStream(byteArray);

The API can evaluate the text for typos, matching terms, and per‐
sonally identifying information (PII), and classify it:

var screenResult = client.TextModeration.ScreenText(
 "text/plain", stream, "eng", true, true, null, true
);

You can then display the results:

Console.WriteLine(JsonConvert.SerializeObject(screenResult,
 Formatting.Indented));

A typical JSON response for checking for PII would look like this:

"PII": {
 "Email": [{
 "Detected": "abcdef@abcd.com",
 "SubType": "Regular",
 "Text": "abcdef@abcd.com",
 "Index": 32
 }],
 "IPA": [{
 "SubType": "IPV4",
 "Text": "255.255.255.255",
 "Index": 72
 }],
 "Phone": [{
 "CountryCode": "US",
 "Text": "6657789887",
 "Index": 56
 }, {
 "CountryCode": "US",
 "Text": "870 608 4000",
 "Index": 212
 }, {
 "CountryCode": "UK",
 "Text": "+44 870 608 4000",
 "Index": 208
 }, {
 "CountryCode": "UK",
 "Text": "0344 800 2400",
 "Index": 228
 }, {

Content Moderator | 73

 "CountryCode": "UK",
 "Text": "0800 820 3300",
 "Index": 245
 }],
 "Address": [{
 "Text": "1 Microsoft Way, Redmond, WA 98052",
 "Index": 89
 }],
 "SSN": [{
 "Text": "999999999",
 "Index": 56
 }, {
 "Text": "999-99-9999",
 "Index": 267
 }]
 }

74 | Chapter 7: Decision

CHAPTER 8

Web Search

The Cognitive Services Search APIs enable you to bring the power
of Bing’s search capabilities to your applications. Through these
APIs you can deliver instant answers to user queries. There are some
restrictions on the usage of the Bing Search APIs: you cannot copy
or store data from the service unless it’s as part of a limited search
history, nor can you use the results as training data for machine
learning services. Any API results must also be used for internet
searches, and any use of the data has to be initiated by a user.

If you want to search your own content, Azure Search provides a
comprehensive search-as-a-service cloud solution.

Bing Web Search
The Bing Web Search API is a simple way of adding ad-free search
to your websites or applications. The service is easily configurable,
giving you control over how your users search and what responses
are delivered. Bing Web Search uses the full Bing index, so it returns
text, images, news, and video. The service also provides type-specific
endpoints if you want to limit the responses to specific categories.

Other API options set search priorities familiar from any major
search engine: you can manage the safety level of responses, control
the number of results delivered, and set the time period you’re inter‐
ested in indexed documents from. If you want to get the most
appropriate results for your region, you can either set a country and

75

language individually or use the “market” option to set both auto‐
matically.

The following code snippet shows how to set up a web search end‐
point and then run a query with version 2 of the C# SDK.

First, initialize the client:

var client = new WebSearchClient(
 new ApiKeyServiceClientCredentials("<Your Subscription Key>"),
 new System.Net.Http.DelegatingHandler[] { }
);
client.Endpoint = "<Your Service Endpoint>";

And perform a web search:

private const string query = "Yosemite National Park";
SearchResponse webData = await client.Web.SearchAsync(webQuery);

Now you can extract data from the response. Here’s an example of
pulling out the first web page result:

var firstWebPagesResult =
 webData.WebPages.Value.FirstOrDefault();
Console.WriteLine("Webpage Results # {0}",
 webData.WebPages.Value.Count);
Console.WriteLine("First web page name: {0} ",
 firstWebPagesResult.Name);
Console.WriteLine("First web page URL: {0} ",
 firstWebPagesResult.Url);

If you have a paid subscription to the Bing APIs, you get access to
Bing Statistics, which shows you a dashboard on Azure with details
of your users’ searches. You can filter to see search patterns in differ‐
ent apps or different markets, over specific time periods. Use the
data in the reports to fine-tune filters in your code, or to understand
what your users are interested in.

Bing Custom Search
If you want a lot more control over search results for specific topics,
Bing Custom Search lets you create a tailored search experience for
your users. Using the Custom Search portal, you can choose the
domains, sites, and even pages that are searched or removed. The
portal lets you tune results, applying weighting to search rankings,
and generate a search UI that can be dropped straight into your code
or web content.

76 | Chapter 8: Web Search

https://customsearch.ai/

Once you’ve created a Custom Search instance, you can make REST
queries against its endpoints for general web search, custom image
or video search, and autosuggestions for partial queries.

Bing Visual Search
The Bing Visual Search API lets your users search based on images
they find online or take with their device’s camera. This service pro‐
vides an experience like that found on Bing.com/Images. Running a
visual search is much the same as running any other Bing search: the
process and flow are largely the same. The API can also identify a
variety of details about an image you upload, including visually sim‐
ilar images and web pages that include that image.

Here’s a short snippet showing you how to call the Visual Search
API. First you will need to create a client:

var client = new VisualSearchClient(
 new ApiKeyServiceClientCredentials("Your Subscription Key")
)
{Endpoint = "<Your Service Endpoint"};

Then provide the image you would like to use in the search. Here we
are going to load the image from a file:

System.IO.FileStream stream = new FileStream(
 Path.Combine("TestImages", "image.jpg")), FileMode.Open
);
var visualSearchResults =
 await client.Images.VisualSearchMethodAsync(
 image: stream, knowledgeRequest: (string)null
);

We can display the image insights token from the result:

Console.WriteLine($"Uploaded image insights token:" +
 $"{visualSearchResults.Image.ImageInsightsToken}");

Or we can display the tags from the first returned result:

var firstTagResult = visualSearchResults.Tags[0];
Console.WriteLine(
 $"Visual search tag count:" +
 $"{visualSearchResults.Tags.Count}");

Bing Visual Search | 77

Bing Autosuggest
All the Bing APIs support Autosuggest for autocompleting search
queries. The Autosuggest API lets you send a partial search query
term to Bing and get back a list of suggested queries that other users
have searched on. The API is easy to integrate into your workflow:
simply make a call whenever a user types a new character into your
application’s search box. As the user provides more information, the
API will return more relevant suggestions.

You can use Autosuggest in conjunction with other Cognitive Serv‐
ices APIs, for example recognizing objects or extracting text from a
photograph with the Computer Vision APIs and then using Auto‐
suggest to find relevant search terms to get more information.

Bing Video and News Search
The Bing Video and News Search APIs are specialized versions of
the standard Web Search API that return ad-free results for videos
or news items related to the provided search query. As well as gen‐
eral news results, the News Search API can deliver top headlines or
news stories, news in a specific category, or trending news (for the
US and China only).

The following code runs a news query for the term “quantum com‐
puting.” First, create a client:

var client = new NewsSearchClient(
 new ApiKeyServiceClientCredentials("Your Subscription Key")
)
{Endpoint = "Your Service Endpoint"};

Then call the News Search API and write out the name of the first
result returned:

var searchTerm = "Quantum Computing";
var newsResults = await client.News.SearchAsync(
 query: searchTerm, market: "en-us", count: 10
);

You can also display a link to the first image:

Console.WriteLine($"Name from first news result returned:" +
 $"{newsResults.Value[0].Name}");

78 | Chapter 8: Web Search

The Video Search API can return thumbnail URLs and the HTML
needed to display an embedded video player for quick access to
video content, as well as insights like related videos.

The following code implements a video search, looking for videos
about the SwiftKey mobile device keyboard software:

var client = new VideoSearchClient(
 new ApiKeyServiceClientCredentials("Your Subscription Key")
)
{Endpoint = "Your Service Endpoint"};
var videoResults =
 await client.Videos.SearchAsync(query: "SwiftKey");

And you can show the content from the first video returned:

var firstVideoResult = videoResults.Value[0];
Console.WriteLine(
 $"\r\nVideo result count: {videoResults.Value.Count}");
Console.WriteLine(
 $"First video id: {firstVideoResult.VideoId}");
Console.WriteLine(
 $"First video name: {firstVideoResult.Name}");
Console.WriteLine(
 $"First video url: {firstVideoResult.ContentUrl}");

Bing Entity Search
Text analytics is about extracting meaning—but much of what
humans say is subtext or shared knowledge. This makes it hard to
infer meaning programmatically. The Text Analytics service can rec‐
ognize entities in text, but if you want to tag places, businesses, and
other well-known things, you’ll want to look at the Bing Entity
Search service, which lets you identify well-known entities in a given
search query.

The service has many features, including being able to identify the
most relevant entity based on the search term. For example, if a user
searches for “Mount Rainier,” you may want to differentiate between
the national park and the mountain. If you can extract key phrases
with the Text Analytics API to show what kind of entity a user is
referring to (e.g., a book, a movie, or a character), passing that with
the query can also help get the most relevant result.

Some responses are specific to certain types of query. For example,
searching for “coffee shop” might generate a list of nearby venues.
This adds additional information about entities, such as addresses or

Bing Entity Search | 79

contact numbers. You can then use that data with additional serv‐
ices, such as Azure Maps, to plot locations on a map and provide
routing details.

It’s important to note that the returned data may contain additional
contractual rules about the data. These rules may include image
attribution, or content licenses. Similarly, you many need to apply
provider information and other licensing information around text
content, as the Bing index contains third-party information as well
as public data.

The following code snippet shows you how to get started with entity
search using the C# SDK. First, you need to instantiate your client:

var client =
 new EntitySearchClient(
 new ApiKeyServiceClientCredentials("<Your Subscription Key>")
)
 {Endpoint = "<Your Resource Endpoint>"};

Then send your query using the Entities.Search() function. The
method will return an entityData object that can either be deliv‐
ered to the end user as part of an application output or parsed with
specific elements used in your code:

var entityData =
 await client.Entities.SearchAsync(query: "Satya Nadella");

Next, filter the sequence to find the main entity:

var mainEntity = entityData.Entities.Value.Where(
 thing => thing.EntityPresentationInfo.EntityScenario ==
 EntityScenario.DominantEntity).FirstOrDefault();

You can then display the description of the main entity:

Console.WriteLine(mainEntity.Description);

Bing Local Business Search
While Bing Entity Search lets you look up people, objects, and
places, sometimes you only want to give your customers informa‐
tion about relevant local businesses. Bing Local Business Search lets
you get these localized results, enabling useful searches like “find
restaurants near me” within your application. The responses include
information such as the name, address, phone number, and website
URL for each business.

80 | Chapter 8: Web Search

Azure Search and Cognitive Search
The Bing APIs are for when you want to search the web. If you want
to search your own content, you’ll want to look at Azure Search,
which provides a fully managed cloud service for building and man‐
aging your own search index.

The recently added Cognitive Search feature enables you to leverage
AI to extract information from images, documents, and other
unstructured data sources. By applying Cognitive Services features
like natural language support, entity recognition, and text analytics,
along with image processing, you can make your custom search
engine much more powerful.

Cognitive Search works by adding AI skills as part of the indexing
pipeline. The first step involves “cracking” the source data and
extracting text. In addition to searching text-based content like
PDFs and Word or PowerPoint documents, it uses AI to extract text
from images. The extracted text can then be passed through a pipe‐
line of skillsets, each made up of specific cognitive actions that add
new fields to the index that aren’t found in the source text.

Skillsets can be simple or complex. New fields are added to the
source documents, enriching them with, for example, entity rela‐
tionships. When all these skills are combined, you can turn a large
set of documents into a graph of information, linked by people,
products, and other entities.

Once your documents have been enriched and indexed, they can be
searched using the Azure Search APIs. You can also save the
enriched documents and metadata into a knowledge store. In a stan‐
dard AI-based pipeline, enriched documents are transitory, used
only during indexing and then discarded. With a knowledge store,
these enrichments are then saved for subsequent evaluation and
exploration.

Azure Search combined with the Cognitive Services allows you to
look more deeply inside your content. You can make sure that all the
useful information is extracted, indexed, and available to your users.

Azure Search and Cognitive Search | 81

CHAPTER 9

Paving the Road Ahead

Five decades ago, the early inventors in AI could only dream of what
most consumers take for granted today. From smartphones to voice-
powered assistants like Cortana, Siri, or Alexa and self-driving cars,
we seem to be living in the pages of a sci-fi book. What do the next
two decades hold for us? What about the next five? Microsoft has
made it its mission to advance AI innovation by democratizing AI
tools in the same way that it democratized the power of computing
in the mainframe era by envisioning a personal computer in every
home, school, and workplace.

Artificial intelligence is rapidly becoming a mainstream technology
that is helping transform and empower us in unexpected ways. Here
are just a few highlights.

Schneider Electric
Schneider Electric, a French multinational manufacturing company
in the energy sector, is now using new technologies like AI and the
IoT to transform the breadth of its offering, and the same versatility
that has long powered the company’s growth now defines its AI
strategy. Companies that survive for more than a century, as
Schneider Electric has, share a key trait: an ability to adapt. After all,
no enterprise can last that long without anticipating and planning
for the challenges that will shape its journey. In Schneider’s case, a
business that began as a steel manufacturing firm in France at the
height of the first Industrial Revolution has strategically trans‐
formed itself into a twenty-first-century global leader in digital

83

https://www.schneider-electric.com/
https://ai.se.com/
https://ai.se.com/

energy management and industrial automation. One of the most
striking things about Schneider’s business today is the variety of
industries it touches: healthcare, banking, education, commercial
buildings, the smart grid, construction, oil and gas, food and bever‐
ages, transportation, clean energy, and more.

Seeing AI
Microsoft aims to develop AI systems that will empower people
worldwide to more effectively address local and global challenges,
and to help drive progress and economic opportunity. One example
of how AI can make a difference is a recent Microsoft offering called
Seeing AI (see Figure 9-1), available in the iOS app store, that can
assist people with blindness and low vision as they navigate daily
life.

Figure 9-1. Seeing AI is a free app that narrates the world around you;
it is designed for the low-vision community and harnesses the power of
AI to describe people, text, and objects

Seeing AI was developed by a team that included a Microsoft engi‐
neer who lost his sight when he was seven years old. This powerful
application demonstrates the potential for AI to empower people
with disabilities by capturing images from the user’s surroundings
and instantly describing what is happening. For example, it can read
signs and menus, recognize products through barcodes, interpret
handwriting, count currency, describe scenes and objects in the
vicinity, or, during a meeting, tell the user that a man and a woman
are sitting across the table, smiling and paying close attention.

84 | Chapter 9: Paving the Road Ahead

AI Ethics and Microsoft’s Principles
Beyond paving the path by providing the tools and resources to
democratize AI, Microsoft is also engaging with the challenging
questions these powerful new technologies are forcing us to con‐
front. The philosopher Marshall McLuhan said, “We become what
we behold. We shape our tools and then our tools shape us.” How do
we ensure that AI is designed and used responsibly? How do we
establish ethical principles to protect people? How should we govern
its use? And how will AI affect employment and jobs? These ques‐
tions cannot be answered by technologists alone; it is a societal
responsibility that bears discussions across government, academia,
business, civil society, and other stakeholders. Microsoft recently
published a book, The Future Computed: Artificial Intelligence and Its
Role in Society, that addresses the larger issues governing AI and the
future. It also outlines the six guiding ethical principles Microsoft
has identified for the cross-disciplinary development and use of arti‐
ficial intelligence.

Fairness
The first principle underscores issues of social justice. How do we
design AI systems to treat everyone in a fair and balanced way, when
the training data we use might be marred with assumptions and bia‐
ses? Can an AI system that provides guidance on loan applications
or employment, for instance, be designed to make the same recom‐
mendations for everyone with similar financial circumstances or
professional qualifications? As a developer, you will need to be cog‐
nizant of how biases can be introduced into the system, work on
creating a representational data set, and, beyond that, educate end
users to understand that sound human judgment must complement
computer system recommendations to counter their inherent limita‐
tions.

Reliability and Safety
As we become more dependent on AI systems, how can we ensure
that our systems can operate safely, reliably, and consistently? Con‐
sider the failure of an AI-powered system in a hospital, which could
literally mean the difference between the lives and deaths of people.
We must design carefully and conduct rigorous testing under vari‐
ous conditions, incorporating security considerations on how to

AI Ethics and Microsoft’s Principles | 85

https://news.microsoft.com/futurecomputed/
https://news.microsoft.com/futurecomputed/

counter cyberattacks and other malicious intents. Sometimes sys‐
tems might react unexpectedly, depending on the data. Microsoft
had a painful example of unexpected behavior when it unveiled Tay,
a conversational chatbot on Twitter. Tay was an experiment in con‐
versational AI that quickly went wrong when users began feeding
the bot racist and sexist content that it quickly learned and reflected
back to users. Microsoft took Tay down within 24 hours. Developers
must teach end users what the expected behaviors within normal
conditions are so that when things go wrong humans can quickly
intervene to minimize the damage.

Privacy and Security
As our lives become more digitized, privacy and security take on
additional significance. This discussion goes beyond what technolo‐
gies are used to ensure the security of data; it must include regula‐
tions around how data is used and for what reasons.

Inclusivity
We want to ensure AI systems empower and engage people across
the spectrum of abilities and access levels. AI-enabled services are
already empowering people struggling with visual, hearing, and cog‐
nitive disabilities. Building systems that are context-aware with
increasing emotional intelligence will pave the path for more
empowerment.

Transparency
Designers and developers of AI systems need to create systems with
maximum transparency. People need to understand how important
decisions regarding their lives are made.

Accountability
The people who design and deploy AI systems must be accountable
for how their systems operate. Companies should establish account‐
ability norms for AI along with internal review boards to provide
the necessary guidance and oversight on the systems they oversee.

Microsoft is committed to empowering you with the tools, ethical
framework, and best practices to foster responsible development of
AI systems that will enrich human lives and power innovations,

86 | Chapter 9: Paving the Road Ahead

which will in turn solve our most pressing problems today and help
us anticipate the ones to come in the future. Finally, it’s important to
remember that while we often get bogged down in discussions about
the exciting algorithms and tools, the real power of AI resides in the
ideas and questions that precede it. It’s the conservationist ponder‐
ing how to create sustainable habitats, the doctor wondering how to
better serve a patient, the astronomer’s and citizen scientist’s curios‐
ity that expands our collective consciousness to the outer limits of
the universe. AI has the potential to empower the noblest of human
causes, and we are just at the very beginning of an exciting techno‐
logical transformation.

AI Ethics and Microsoft’s Principles | 87

CHAPTER 10

Where to Go Next

This report has introduced you to the key features and capabilities
of Cognitive Services, along with some ideas of what you could do
with them to make your apps smarter, more useful, easier to use, or
just more fun. Cognitive Search is just one example of a powerful
feature you can build by integrating the Cognitive Services with
other products.

You may find the following sites helpful in your journey:

• Microsoft documentation: https://docs.microsoft.com/en-us/
azure/cognitive-services/

• Complete code samples: https://github.com/Azure-Samples/
cognitive-services-dotnet-sdk-samples

• Intelligent Kiosk demo: https://github.com/Microsoft/Cognitive-
Samples-IntelligentKiosk

• Interactive demos: https://azure.microsoft.com/en-us/services/
cognitive-services/directory

The Microsoft AI School also has online, interactive modules with
QuickStarts, hands-on tutorials, and step-by-step guides for several
of the Cognitive Services at https://aischool.microsoft.com/en-us/serv
ices/learning-paths.

89

https://docs.microsoft.com/en-us/azure/cognitive-services/
https://docs.microsoft.com/en-us/azure/cognitive-services/
https://github.com/Azure-Samples/cognitive-services-dotnet-sdk-samples
https://github.com/Azure-Samples/cognitive-services-dotnet-sdk-samples
https://github.com/Microsoft/Cognitive-Samples-IntelligentKiosk
https://github.com/Microsoft/Cognitive-Samples-IntelligentKiosk
https://azure.microsoft.com/en-us/services/cognitive-services/directory
https://azure.microsoft.com/en-us/services/cognitive-services/directory
https://aischool.microsoft.com/en-us/services/learning-paths
https://aischool.microsoft.com/en-us/services/learning-paths

About the Authors
Anand Raman is a senior director of product management for AI
Platform at Microsoft. Previously he was the TA and chief of staff
for Microsoft AI, covering Azure Data Group and Machine Learn‐
ing. In the last decade, he ran the engineering and product manage‐
ment teams at Azure Data Services, Visual Studio, and Windows
Server User Experience at Microsoft. Anand holds a PhD in compu‐
tational fluid mechanics and worked several years as a researcher
before joining Microsoft.

Chris Hoder is a program manager on the Cognitive Services team
at Microsoft. Chris focuses on the end-to-end developer experience
across the entire suite of services—from our API and SDK designs
to the getting started documentation. In prior roles, Chris worked
directly with customers to envision, design, build, and deploy AI-
focused applications using Microsoft’s AI stack.

By developers,
for developers
Microsoft.Source newsletter

Get technical articles, sample
code, and information on
upcoming events in
Microsoft.Source, the
curated monthly developer
community newsletter.

● Keep up on the latest
technologies

● Connect with your peers
at community events

● Learn with
hands-on resources

Sign up

https://aka.ms/msftsource

	Copyright
	Table of Contents
	Chapter 1. What You’ll Learn in This Report
	Chapter 2. The Microsoft AI Platform
	Machine Learning Services in Azure

	Chapter 3. Understanding Azure Cognitive Services
	How to Call a Cognitive Services API
	New Breakthroughs as a Service

	Chapter 4. Vision
	Computer Vision
	Tagging Visual Features
	Object Detection
	Detecting Brands
	Categorizing an Image
	Describing an Image
	Detecting Faces
	Detecting Image Types
	Detecting Domain-Specific Content
	Detecting the Color Scheme
	Generating a Thumbnail
	Getting the Area of Interest
	Extracting Text from Images

	Custom Vision
	How to Train and Call a Custom Vision Model

	Face
	How to Use the Face API

	Form Recognizer
	Ink Recognizer
	Video Indexer

	Chapter 5. Speech
	Speech to Text
	Text to Speech
	Neural and Custom Voices

	Translation and Unified Speech
	Speaker Verification and Identification
	Speaker Verification
	Speaker Identification

	Chapter 6. Language
	Text Analytics
	Sentiment Analysis
	Key Phrase Extraction
	Language Detection
	Entity Recognition

	Language Understanding with LUIS
	QnA Maker
	Spell Check
	Translator Text
	Customizable Translation

	Immersive Reader

	Chapter 7. Decision
	Anomaly Detector
	Personalizer
	Content Moderator

	Chapter 8. Web Search
	Bing Web Search
	Bing Custom Search
	Bing Visual Search
	Bing Autosuggest
	Bing Video and News Search
	Bing Entity Search
	Bing Local Business Search
	Azure Search and Cognitive Search

	Chapter 9. Paving the Road Ahead
	Schneider Electric
	Seeing AI
	AI Ethics and Microsoft’s Principles
	Fairness
	Reliability and Safety
	Privacy and Security
	Inclusivity
	Transparency
	Accountability

	Chapter 10. Where to Go Next
	About the Authors

Accessibility Report

		Filename:

		9781492058601.pdf

		Report created by:

		Christopher Faucher

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 30

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

