
Kub
ernetes B

est Pra
ctices

Kub
ernetes B

est Pra
ctices

Kubernetes
 Best Practices
Blueprints for Building Successful Applications
on Kubernetes

Second

Edition2E

Compliments of

Brendan Burns, Eddie Villalba,
Dave Strebel & Lachlan Evenson

Kubernetes Best Practices
In this practical guide, four Kubernetes professionals with
deep experience in distributed systems, open source, and
enterprise application development will guide you through
the process of building applications with this container
orchestration system. Together, they distill decades of
experience from companies that successfully run Kubernetes
in production and provide concrete code examples to back
the methods presented in this book.

Revised to cover all the latest Kubernetes features, new
tooling, and deprecations, this book is ideal for those who
are familiar with basic Kubernetes concepts but want to get
up to speed on the latest best practices. You’ll learn exactly
what you need to know to build your best app with Kubernetes
the first time.

• Set up and develop applications in Kubernetes

• Learn patterns for monitoring, securing your systems,
and managing upgrades, rollouts, and rollbacks

• Integrate services and legacy applications and develop
higher-level platforms on top of Kubernetes

• Run machine learning workloads in Kubernetes

• Ensure pod and container security

• Build higher-level application patterns on top
of Kubernetes and implement an operator

• Understand issues increasingly critical to the
successful implementation of Kubernetes: chaos
engineering/testing, GitOps, service mesh,
observability, and managing multiple clusters

“Written by luminaries
in the cloud native
space, Kubernetes
Best Practices is
a masterclass in
managing container
orchestration at scale.”

—Joseph Sandoval
Principal Product Manager, Adobe Inc.

US $65.99 CAN $82.99
ISBN: 978-1-098-14216-2

Brendan Burns is a distinguished
engineer at Microsoft Azure and
cofounder of the Kubernetes open
source project.

Eddie Villalba is the engineering
manager and application platform
practice lead for North America at
Google Cloud, focused on the cloud
native ecosystem and Kubernetes.

Dave Strebel is a principal cloud
native architect focused on open
source cloud and Kubernetes.

Lachlan Evenson is a principal
program manager on the Microsoft
Azure cloud native ecosystem.

CLOUD COMPUTING Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

2E

https://twitter.com/OReillyMedia
https://www.linkedin.com/company/oreilly-media
https://www.youtube.com/oreillymedia

11 Microsoft Azure 0 kubernetes

• ■ ■ • ■ • • • • • • • • ■ • • ■ ■ • • • • ■ • • • • ■ • • • • • ■

■ ■ • ■ • ■

■

•
•
■

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

■■■■■■■■■■■■■■■■■■■■■■■■••········ •••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••• ••••••• •••••••••••••••••••• ••••••• •••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••• •••••••••••••• • ••••••••••••• •••••••••••••• • ••••••••••••• •••••••••••••• • ••••••••••••• •••••••••••••• • ••••••••••••• •••••••••••••• • ••••••••••••• •••••••••••••• • ••••••••••••• •••••••••••••• • ••••••••••••• •••••••••••••• • ••••••••••••• •••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••

Free tutorial

Kubernetes
on Azure

Try Kubernetes and modern app development services
on Azure and decide for yourself if they help you
automate routine tasks, iterate faster, and make your
apps more resilient and scalable.

To get started:
1. Sign up for your Azure free account.

aka.ms/aksfreeaccou nt
2. Fol low this free tutorial to deploy a Kubernetes cluster:

aka.ms/kubernetestutorial
3. Within 30 days, use your $200 free account credit and

free services to experiment with creating and
connecting apps to your Saas, data, and systems:
aka.ms/appdevelopment

There are no automatic charges and no upfront charges
or fees.

http://www.aka.ms/aksfreeaccount
http://www.aka.ms/kubernetestutorial
http://www.aka.ms/appdevelopment

Praise for Kubernetes Best Practices, Second Edition

Written by luminaries in the cloud native space, Kubernetes Best Practices is a masterclass
in managing container orchestration at scale. From setup to security, this book is a

comprehensive resource that not only teaches but empowers. Cut your learning curve in
half and build better applications faster with the proven strategies in this essential read.

—Joseph Sandoval, Principal Product Manager, Adobe Inc.

Just because we can do something, doesn’t mean we should. Cloud native is a large
topic so there are ample opportunities to go awry. These expert authors focus their deep

knowledge on the key recipes to help keep your Kubernetes deliveries on the rails.
—Jonathan Johnson, Cloud Native Architect, Presenter, Trainer

Your roadmap to building successful applications with Kubernetes;
laden with expert insights and real-world best practices.

—Dr. Roland Huß,
Senior Principal Software Developer, Red Hat

A trove of wisdom about container management from true mavens. Quote this
book in meetings! It’s not stealing ideas—they want you to read this book.

—Jess Males, Devops Engineer, TriumphPay

The Kubernetes ecosystem has expanded significantly over time. The specific,
actionable recommendations detailed in this excellent guide make the

current complexity approachable for the growing community.
—Bridget Kromhout, Principal Product Manager, Microsoft

Having written a book on Kubernetes and reviewed numerous others, I can attest to
the uniqueness and depth of Kubernetes Best Practices. This book is a masterclass
for those familiar with Kubernetes, designed specifically for teams operating and

managing Kubernetes. It offers a systematic approach to understanding best
practices, covering essential areas crucial for large-scale application deployment,
from developer workflows to global application distribution, policy, governance,

and the seamless integration of external services. Every page is infused with
technical insights, presenting a comprehensive perspective that I haven’t

encountered in other Kubernetes literature. It not only serves as a
blueprint for designing clusters but also provides a flexible guide,

pinpointing the what and why, while allowing readers to adapt
the intricate how to their specific organizational contexts.

—Bilgin Ibryam, Coauthor of Kubernetes Patterns,
Principal Product Manager, Diagrid

SECOND EDITION

Kubernetes Best Practices
Blueprints for Building Successful

Applications on Kubernetes

Brendan Burns, Eddie Villalba,
Dave Strebel, and Lachlan Evenson

Beijing BostonBoston FarnhamFarnham SebastopolSebastopol TokyoTokyoBeijing

Kubernetes Best Practices
by Brendan Burns, Eddie Villalba, Dave Strebel, and Lachlan Evenson

Copyright © 2024 Brendan Burns, Eddie Villalba, Dave Strebel, and Lachlan Evenson. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Jill Leonard
Production Editor: Beth Kelly
Copyeditor: Piper Editorial Consulting, LLC
Proofreader: Piper Editorial Consulting, LLC

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

November 2019: First Edition
October 2023: Second Edition

Revision History for the First Edition
2023-10-04: First Release

See https://www.oreilly.com/catalog/errata.csp?isbn=0636920805021 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Kubernetes Best Practices, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Microsoft. See our statement of editorial
independence.

978-1-098-14501-9

[LSI]

http://oreilly.com
https://www.oreilly.com/catalog/errata.csp?isbn=0636920805021
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence
mailto:corporate@oreilly.com

Table of Contents

Preface xvii

. .

1. Setting Up a Basic Service 1

vii

Application Overview 1
Managing Configuration Files 2
Creating a Replicated Service Using Deployments 3

Best Practices for Image Management 4
Creating a Replicated Application 4

Setting Up an External Ingress for HTTP Traffic 6
Configuring an Application with ConfigMaps 8
Managing Authentication with Secrets 9
Deploying a Simple Stateful Database 12
Creating a TCP Load Balancer by Using Services 16
Using Ingress to Route Traffic to a Static File Server

17

Parameterizing Your Application by Using Helm 19
Deploying Services Best Practices 21
Summary 21

2. Developer Workflows 23
Goals 23
Building a Development Cluster 24
Setting Up a Shared Cluster for Multiple Developers 25

Onboarding Users 26
Creating and Securing a Namespace 29
Managing Namespaces 30
Cluster-Level Services 31

Enabling Developer Workflows 31
Initial Setup 32

. .

. .

.

.

.

viii | Table of Contents

Enabling Active Development 33
Enabling Testing and Debugging 34

Setting Up a Development Environment Best Practices 34
Summary 35

3. Monitoring and Logging in Kubernetes 37
Metrics Versus Logs 37
Monitoring Techniques 37
Monitoring Patterns 38
Kubernetes Metrics Overview 39

cAdvisor 39
Metrics Server 40
kube-state-metrics 40

What Metrics Do I Monitor? 41
Monitoring Tools 42
Monitoring Kubernetes Using Prometheus 44
Logging Overview 48
Tools for Logging 49
Logging by Using a Loki-Stack 50
Alerting 53
Best Practices for Monitoring, Logging, and Alerting 54

Monitoring 54
Logging 55
Alerting 55

Summary 55

4. Configuration, Secrets, and RBAC 57
Configuration Through ConfigMaps and Secrets 57

ConfigMaps 58
Secrets 58

Common Best Practices for the ConfigMap and Secrets APIs 59
Best Practices Specific to Secrets 64
RBAC 65

RBAC Primer 66
RBAC Best Practices 68

Summary 69

5. Continuous Integration, Testing, and Deployment 71
Version Control 72
Continuous Integration 72
Testing 73
Container Builds 73

Container Image Tagging 74
Continuous Deployment 75
Deployment Strategies 75
Testing in Production 80
Setting Up a Pipeline and Performing a Chaos Experiment 81

Setting Up CI 81
Setting Up CD 84
Performing a Rolling Upgrade 84
A Simple Chaos Experiment 85

Best Practices for CI/CD 85
Summary 86

6. Versioning, Releases, and Rollouts 87

Versioning 88
Releases 88
Rollouts 89
Putting It All Together 90
Best Practices for Versioning, Releases, and Rollouts 93
Summary 94

7. Worldwide Application Distribution and Staging 95
Distributing Your Image 96
Parameterizing Your Deployment 97
Load-Balancing Traffic Around the World 98
Reliably Rolling Out Software Around the World 98

Pre-Rollout Validation 99
Canary Region 102
Identifying Region Types 103
Constructing a Global Rollout 103

When Something Goes Wrong 104
Worldwide Rollout Best Practices 105
Summary 106

8. Resource Management 107
Kubernetes Scheduler 107

Predicates 107
Priorities 108

Advanced Scheduling Techniques 109
Pod Affinity and Anti-Affinity 109
nodeSelector 110
Taints and Tolerations 110

Pod Resource Management 112

Table of Contents | ix

. .

. .

. .

Resource Request 112
Resource Limits and Pod Quality of Service 113
PodDisruptionBudgets 115
Managing Resources by Using Namespaces 116
ResourceQuota 117
LimitRange 119
Cluster Scaling 120
Application Scaling 121
Scaling with HPA 122
HPA with Custom Metrics 123
Vertical Pod Autoscaler 123

Resource Management Best Practices 124
Summary 124

9. Networking, Network Security, and Service Mesh 125.
Kubernetes Network Principles 125
Network Plug-ins 128

Kubenet 129
Kubenet Best Practices 129
The CNI Plug-in 129
CNI Best Practices 130

Services in Kubernetes 130
Service Type ClusterIP 131
Service Type NodePort 132
Service Type ExternalName 134
Service Type LoadBalancer 134
Ingress and Ingress Controllers 136
Gateway API 137
Services and Ingress Controllers Best Practices 139

Network Security Policy 140
Network Policy Best Practices 142
Service Meshes 143
Service Mesh Best Practices 145
Summary 145

10. Pod and Container Security 147.
Pod Security Admission Controller 147

Enabling Pod Security Admission 148
Pod Security levels 148
Activating Pod Security Using Namespace Labels 149

Workload Isolation and RuntimeClass 150
Using RuntimeClass 151

x | Table of Contents

Runtime Implementations 151
Workload Isolation and RuntimeClass Best Practices 152

Other Pod and Container Security Considerations 153
Admission Controllers 153
Intrusion and Anomaly Detection Tooling 153

Summary 153

11. Policy and Governance for Your Cluster 155.
Why Policy and Governance Are Important 155
How Is This Policy Different? 155
Cloud Native Policy Engine 156
Introducing Gatekeeper 156

Example Policies 157
Gatekeeper Terminology 157
Defining Constraint Templates 158
Defining Constraints 159
Data Replication 160
UX 161

Using Enforcement Action and Audit 161
Mutation 163
Testing Policies 163
Becoming Familiar with Gatekeeper 163

Policy and Governance Best Practices 164
Summary 165

12. Managing Multiple Clusters 167.
Why Multiple Clusters? 167
Multicluster Design Concerns 169
Managing Multiple Cluster Deployments 171
Deployment and Management Patterns 171
The GitOps Approach to Managing Clusters 173
Multicluster Management Tools 175
Kubernetes Federation 176
Managing Multiple Clusters Best Practices 176
Summary 177

13. Integrating External Services with Kubernetes 179.
Importing Services into Kubernetes 179

Selector-Less Services for Stable IP Addresses 180
CNAME-Based Services for Stable DNS Names 181
Active Controller-Based Approaches 182

Exporting Services from Kubernetes 183

Table of Contents | xi

Exporting Services by Using Internal Load Balancers 184
Exporting Services on NodePorts 184
Integrating External Machines and Kubernetes 185

Sharing Services Between Kubernetes 186
Third-Party Tools 187
Connecting Cluster and External Services Best Practices 188
Summary 188

14. Running Machine Learning in Kubernetes 189.

.

.

Why Is Kubernetes Great for Machine Learning? 189
Machine Learning Workflow 190
Machine Learning for Kubernetes Cluster Admins 191

Model Training on Kubernetes 192
Distributed Training on Kubernetes 195
Resource Constraints 195
Specialized Hardware 196
Libraries, Drivers, and Kernel Modules 197
Storage 197
Networking 198
Specialized Protocols 198

Data Scientist Concerns 199
Machine Learning on Kubernetes Best Practices 199
Summary 201

15. Building Higher-Level Application Patterns on Top of Kubernetes 203
Approaches to Developing Higher-Level Abstractions 203
Extending Kubernetes 204

Extending Kubernetes Clusters 205
Extending the Kubernetes User Experience 206
Making Containerized Development Easier 207
Developing a “Push-to-Deploy” Experience 207

Design Considerations When Building Platforms 208
Support Exporting to a Container Image 208
Support Existing Mechanisms for Service and Service Discovery 209

Building Application Platforms Best Practices 209
Summary 210

16. Managing State and Stateful Applications 211
Volumes and Volume Mounts 212
Volume Best Practices 213
Kubernetes Storage 213

PersistentVolume 213

xii | Table of Contents

.

PersistentVolumeClaims 214
StorageClasses 215
Kubernetes Storage Best Practices 216

Stateful Applications 217
StatefulSets 218
Operators 220
StatefulSet and Operator Best Practices 221

Summary 222

 .

17. Admission Control and Authorization 223. . . .

Admission Control 224

What Are They? 224
Why Are They Important? 224
Admission Controller Types 225
Configuring Admission Webhooks 226
Admission Control Best Practices 228

Authorization 231
Authorization Modules 231
Authorization Best Practices 234

Summary 234

18. GitOps and Deployment 235.
What Is GitOps? 236
Why GitOps? 237
GitOps Repo Structure 238
Managing Secrets 240
Setting Up Flux 241
GitOps Tooling 243
GitOps Best Practices 244
Summary 244

19. Security 245.
Cluster Security 246

 etcd Access 246
Authentication 246
Authorization 246
TLS 247
Kubelet and Cloud Metadata Access 247
Secrets 247
Logging and Auditing 247
Cluster Security Posture Tooling 248

Cluster Security Best Practices 248

Table of Contents | xiii

Workload Container Security 248
Pod Security Admission 249
Seccomp, AppArmor, and SELinux 249
Admission Controllers 249
Operators 249
Network Policy 250
Runtime Security 250
Workload Container Security Best Practices 250

Code Security 251
Non-Root and Distroless Containers 251
Container Vulnerability Scanning 252
Code Repository Security 252

Code Security Best Practices 252
Summary 253

20. Chaos Testing, Load Testing, and Experiments 255.
Chaos Testing 255

Goals for Chaos Testing 256
Prerequisites for Chaos Testing 256
Chaos Testing Your Application’s Communication 257
Chaos Testing Your Application’s Operation 258
Fuzz Testing Your Application for Security and Resiliency 259
Summary 259

Load Testing 259
Goals for Load Testing 259
Prerequisites for Load Testing 260
Generating Realistic Traffic 261
Load Testing Your Application 262
Tuning Your Application Using Load Tests 262
Summary 263

Experiments 263
Goals for Experiments 263
Prerequisites for an Experiment 264

Setting Up an Experiment 264
Summary 265

Chaos Testing, Load Testing, and Experiments Summary 266

21. Implementing an Operator 267
Operator Key Components 268
Custom Resource Definitions 268

.

| Table of Contents

Creating Our API 270
Controller Reconciliation 277

xiv

Resource Validation 278
Controller Implementation 279
Operator Life Cycle 284

Version Upgrades 284
Operator Best Practices 285

Summary 286

22. Conclusion 289.

Index 291.

Table of Contents | xv

Preface

Who Should Read This Book
Kubernetes is the de facto standard for cloud native development. It is a powerful
tool that can make your next application easier to develop, faster to deploy, and more
reliable to operate. However, unlocking the power of Kubernetes requires using it
correctly. This book is intended for anyone who is deploying real-world applications
to Kubernetes and is interested in learning patterns and practices they can apply to
the applications that they build on top of Kubernetes.

Importantly, this book is not an introduction to Kubernetes. We assume that you have
a basic familiarity with the Kubernetes API and tools, and that you know how to
create and interact with a Kubernetes cluster. If you are looking to learn Kubernetes,
there are numerous great resources out there, such as Kubernetes: Up and Running
(O’Reilly), that can give you an introduction.

Instead, this book is a resource for anyone who wants to dive deep on how to
deploy specific applications and workloads on Kubernetes. It should be useful to you
whether you are about to deploy your first application onto Kubernetes or you’ve
been using Kubernetes for years.

Why We Wrote This Book
Between the four of us, we have significant experience helping a wide variety of users
deploy their applications onto Kubernetes. Through this experience, we have seen
where people struggle, and we have helped them find their way to success. When
sitting down to write this book, we attempted to capture these experiences so that
many more people could learn by reading the lessons that we learned from these
real-world experiences. It’s our hope that by committing our experiences to writing,
we can scale our knowledge and allow you to be successful deploying and managing
your application on Kubernetes on your own.

xvii

https://oreil.ly/ziNRK

Navigating This Book
Although you might read this book from cover to cover in a single sitting, that is not
really how we intended you to use it. Instead, we designed this book to be a collection
of standalone chapters. Each chapter gives a complete overview of a particular task
that you might need to accomplish with Kubernetes. We expect people to dive into
the book to learn about a specific topic or interest, and then leave the book alone,
only to return when a new topic comes up.

Despite this standalone approach, some themes span the book. There are several
chapters on developing applications on Kubernetes. Chapter 2 covers developer
workflows. Chapter 5 discusses continuous integration and testing. Chapter 15 covers
building higher-level platforms on top of Kubernetes, and Chapter 16 discusses
managing state and stateful applications. In addition to developing applications,
there are several chapters on operating services in Kubernetes. Chapter 1 covers the
setup of a basic service, and Chapter 3 covers monitoring and metrics. Chapter 4
covers configuration management, while Chapter 6 covers versioning and releases.
Chapter 7 covers deploying your application around the world.

There are also several chapters on cluster management, including Chapter 8 on
resource management, Chapter 9 on networking, Chapter 10 on pod security, Chap‐
ter 11 on policy and governance, Chapter 12 on managing multiple clusters, and
Chapter 17 on admission control and authorization. Finally, some chapters are truly
independent; these cover machine learning (Chapter 14) and integrating with exter‐
nal services (Chapter 13).

Though it can be useful to read all the chapters before you actually attempt the topic
in the real world, our primary hope is that you will treat this book as a reference. It is
intended as a guide as you put these topics to practice in the real world.

New to This Edition
We wanted to complement the 1st edition with four new chapters that cover emerg‐
ing tools and patterns as Kubernetes continues to mature and provide best practices.
These new chapters are Chapter 18 on GitOps, Chapter 19 on security, Chapter 20 on
chaos testing, and Chapter 21 on implementing an operator.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

xviii | Preface

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter
mined by context.

‐

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://oreil.ly/KBPsample.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant

Preface | xix

https://oreil.ly/KBPsample
mailto:bookquestions@oreilly.com

amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Kubernetes Best Practi‐
ces by Brendan Burns, Eddie Villalba, Dave Strebel, and Lachlan Evenson (O’Reilly).
Copyright 2024 Brendan Burns, Eddie Villalba, Dave Strebel, and Lachlan Evenson,
978-1-098-14216-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-829-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/kubernetes-best-practices2.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

xx | Preface

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/kubernetes-best-practices2
https://oreilly.com
https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments
Brendan would like to thank his wonderful family, Robin, Julia, and Ethan, for the
love and support of everything he does; the Kubernetes community, without whom
none of this would be possible; and his fabulous coauthors, without whom this book
would not exist.

Dave would like to thank his beautiful wife, Jen, and their three children, Max,
Maddie, and Mason, for all their support. He would also like to thank the Kubernetes
community for all the advice and help they have provided over the years. Finally, he
would like to thank his coauthors in making this adventure a reality.

Lachlan would like to thank his wife and three children for their love and support.
He would also like to thank everyone in the Kubernetes community, including the
wonderful individuals who have taken the time to teach him over the years. He also
would like to send a special thanks to Joseph Sandoval for his mentorship. And,
finally, he would like to thank his fantastic coauthors for making this book possible.

Eddie would like to thank his wife, Sandra, for her undying support, love, and
encouragement through the writing process. He would also like to thank his daugh‐
ter, Giavanna, for giving him the motivation to leave a legacy so she can be proud
of her daddy. Finally, he would like to thank the Kubernetes community and his
coauthors who have always been guideposts in his journey to be cloud native.

We all would like to thank Virginia Wilson for her work in developing the manu‐
script and helping us bring all our ideas together, and Jill Leonard for her guidance on
the 2nd edition. Finally, we’d like to thank Bridget Kromhout, Bilgin Ibryam, Roland
Huß, Justin Domingus, Jess Males, and Jonathan Johnson for their attention to the
finishing touches.

Preface | xxi

https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

•
•

•
•

CHAPTER 1

Setting Up a Basic Service

This chapter describes the procedure for setting up a simple multitier application in
Kubernetes. The example we’ll walk through consists of two tiers: a simple web appli‐
cation and a database. Though this might not be the most complicated application, it
is a good place to start when learning to manage an application in Kubernetes.

Application Overview
The application that we will use for our example is fairly straightforward. It’s a simple
journal service with the following details:

• It has a separate static file server using NGINX.
• It has a RESTful application programming interface (API) https://some-host-

name.io/api on the /api path.
• It has a file server on the main URL, https://some-host-name.io.
• It uses the Let’s Encrypt service for managing Secure Sockets Layer (SSL).

Figure 1-1 presents a diagram of this application. Don’t be worried if you don’t under‐
stand all the pieces right away; they will be explained in greater detail throughout the
chapter. We’ll walk through building this application step by step, first using YAML
configuration files and then Helm charts.

1

https://oreil.ly/7XN3G

Figure 1-1. A diagram of our journal service as it is deployed in Kubernetes

Managing Configuration Files
Before we get into the details of how to construct this application in Kubernetes, it
is worth discussing how we manage the configurations themselves. With Kubernetes,
everything is represented declaratively. This means that you write down the desired
state of the application in the cluster (generally in YAML or JSON files), and these
declared desired states define all the pieces of your application. This declarative
approach is far preferable to an imperative approach in which the state of your cluster
is the sum of a series of changes to the cluster. If a cluster is configured imperatively,
it is difficult to understand and replicate how the cluster came to be in that state,
making it challenging to understand or recover from problems with your application.

When declaring the state of your application, people typically prefer YAML to JSON,
though Kubernetes supports them both. This is because YAML is somewhat less
verbose and more human editable than JSON. However, it’s worth noting that YAML
is indentation sensitive; often errors in Kubernetes configurations can be traced
to incorrect indentation in YAML. If things aren’t behaving as expected, checking
your indentation is a good place to start troubleshooting. Most editors have syntax
highlighting support for both JSON and YAML. When working with these files it is a
good idea to install such tools to make it easier to find both author and file errors in
your configurations. There is also an excellent extension for Visual Studio Code that
supports richer error checking for Kubernetes files.

2 | Chapter 1: Setting Up a Basic Service

Because the declarative state contained in these YAML files serves as the source of
truth for your application, correct management of this state is critical to the success
of your application. When modifying your application’s desired state, you will want to
be able to manage changes, validate that they are correct, audit who made changes,
and possibly roll things back if they fail. Fortunately, in the context of software
engineering, we have already developed the tools necessary to manage both changes
to the declarative state as well as audit and rollback. Namely, the best practices around
both version control and code review directly apply to the task of managing the
declarative state of your application.

These days most people store their Kubernetes configurations in Git. Though the
specific details of the version control system are unimportant, many tools in the
Kubernetes ecosystem expect files in a Git repository. For code review there is much
more heterogeneity; though clearly GitHub is quite popular, others use on-premises
code review tools or services. Regardless of how you implement code review for your
application configuration, you should treat it with the same diligence and focus that
you apply to source control.

When it comes to laying out the filesystem for your application, it’s worthwhile
to use the directory organization that comes with the filesystem to organize your
components. Typically, a single directory is used to encompass an Application Service.
The definition of what constitutes an Application Service can vary in size from team
to team, but generally, it is a service developed by a team of 8–12 people. Within that
directory, subdirectories are used for subcomponents of the application.

For our application, we lay out the files as follows:

journal/

frontend/
redis/
fileserver/

Within each directory are the concrete YAML files needed to define the service. As
you’ll see later on, as we begin to deploy our application to multiple different regions
or clusters, this file layout will become more complicated.

Creating a Replicated Service Using Deployments
To describe our application, we’ll begin at the frontend and work downward. The
frontend application for the journal is a Node.js application implemented in Type‐
Script. The complete application is too large to include in the book, so we’ve hosted it
on our GitHub. You’ll be able to find code for future examples there, too, so it’s worth
bookmarking. The application exposes an HTTP service on port 8080 that serves
requests to the /api/* path and uses the Redis backend to add, delete, or return the
current journal entries. If you plan to work through the YAML examples that follow
on your local machine, you’ll want to build this application into a container image

Creating a Replicated Service Using Deployments | 3

https://oreil.ly/70kFT

using the Dockerfile and push it to your own image repository. Then, rather than
using our example file name, you’ll want to include your container image name in
your code.

Best Practices for Image Management
Though in general, building and maintaining container images is beyond the scope
of this book, it’s worthwhile to identify some general best practices for building
and naming images. In general, the image build process can be vulnerable to “supply-
chain attacks.” In such attacks, a malicious user injects code or binaries into some
dependency from a trusted source that is then built into your application. Because of
the risk of such attacks, it is critical that when you build your images you base them
on only well-known and trusted image providers. Alternatively, you can build all
your images from scratch. Building from scratch is easy for some languages (e.g., Go)
that can build static binaries, but it is significantly more complicated for interpreted
languages like Python, JavaScript, or Ruby.

The other best practices for images relate to naming. Though the version of a
container image in an image registry is theoretically mutable, you should treat the
version tag as immutable. In particular, some combination of the semantic version
and the SHA hash of the commit where the image was built is a good practice for
naming images (e.g., v1.0.1-bfeda01f). If you don’t specify an image version, latest is
used by default. Although this can be convenient in development, it is a bad idea for
production usage because latest is clearly being mutated every time a new image is
built.

Creating a Replicated Application
Our frontend application is stateless; it relies entirely on the Redis backend for its
state. As a result, we can replicate it arbitrarily without affecting traffic. Though our
application is unlikely to sustain large-scale usage, it’s still a good idea to run with
at least two replicas so that you can handle an unexpected crash or roll out a new
version of the application without downtime.

In Kubernetes, the ReplicaSet resource is the one that directly manages replicating a
specific version of your containerized application. Since the version of all applications
changes over time as you modify the code, it is not a best practice to use a ReplicaSet
directly. Instead, you use the Deployment resource. A Deployment combines the
replication capabilities of ReplicaSet with versioning and the ability to perform a
staged rollout. By using a Deployment you can use Kubernetes’ built-in tooling to
move from one version of the application to the next.

The Kubernetes Deployment resource for our application looks as follows:

4 | Chapter 1: Setting Up a Basic Service

apiVersion: apps/v1
kind: Deployment
metadata:
labels:
All pods in the Deployment will have this label
app: frontend

name: frontend
namespace: default

spec:
We should always have at least two replicas for reliability
replicas: 2
selector:
matchLabels:
app: frontend

template:
metadata:
labels:
app: frontend

spec:
containers:
- image: my-repo/journal-server:v1-abcde
imagePullPolicy: IfNotPresent
name: frontend
TODO: Figure out what the actual resource needs are
resources:
request:
cpu: "1.0"
memory: "1G"

limits:
cpu: "1.0"
memory: "1G"

There are several things to note in this Deployment. First is that we are using
Labels to identify the Deployment as well as the ReplicaSets and the pods that the
Deployment creates. We’ve added the app: frontend label to all these resources so
that we can examine all resources for a particular layer in a single request. You’ll see
that as we add other resources, we’ll follow the same practice.

Additionally, we’ve added comments in a number of places in the YAML. Although
these comments don’t make it into the Kubernetes resource stored on the server,
just like comments in code, they serve to guide people who are looking at this
configuration for the first time.

You should also note that for the containers in the Deployment we have specified
both Request and Limit resource requests, and we’ve set Request equal to Limit.
When running an application, the Request is the reservation that is guaranteed on
the host machine where it runs. The Limit is the maximum resource usage that the
container will be allowed. When you are starting out, setting Request equal to Limit
will lead to the most predictable behavior of your application. This predictability
comes at the expense of resource utilization. Because setting Request equal to Limit

Creating a Replicated Service Using Deployments | 5

prevents your applications from overscheduling or consuming excess idle resources,
you will not be able to drive maximal utilization unless you tune Request and Limit
very, very carefully. As you become more advanced in your understanding of the
Kubernetes resource model, you might consider modifying Request and Limit for
your application independently, but in general most users find that the stability from
predictability is worth the reduced utilization.

Often times, as our comment suggests, it is difficult to know the right values for these
resource limits. Starting by overestimating the estimates and then using monitoring
to tune to the right values is a pretty good approach. However, if you are launching
a new service, remember that the first time you see large-scale traffic, your resource
needs will likely increase significantly. Additionally, there are some languages, espe‐
cially garbage-collected languages, that will happily consume all available memory,
which can make it difficult to determine the correct minimum for memory. In this
case, some form of binary search may be necessary, but remember to do this in a test
environment so that it doesn’t affect your production!

Now that we have the Deployment resource defined, we’ll check it into version
control, and deploy it to Kubernetes:

git add frontend/deployment.yaml
git commit -m "Added deployment" frontend/deployment.yaml
kubectl apply -f frontend/deployment.yaml

It is also a best practice to ensure that the contents of your cluster exactly match the
contents of your source control. The best pattern to ensure this is to adopt a GitOps
approach and deploy to production only from a specific branch of your source
control, using continuous integration/continuous delivery (CI/CD) automation. In
this way you’re guaranteed that source control and production match. Though a full
CI/CD pipeline might seem excessive for a simple application, the automation by
itself, independent of the reliability it provides, is usually worth the time taken to
set it up. And CI/CD is extremely difficult to retrofit into an existing, imperatively
deployed application.

We’ll come back to this application description YAML in later sections to examine
additional elements such as the ConfigMap and secret volumes as well as pod Quality
of Service.

Setting Up an External Ingress for HTTP Traffic
The containers for our application are now deployed, but it’s not currently possible
for anyone to access the application. By default, cluster resources are available only
within the cluster itself. To expose our application to the world, we need to create a
service and load balancer to provide an external IP address and to bring traffic to our
containers. For the external exposure we are going to use two Kubernetes resources.

6 | Chapter 1: Setting Up a Basic Service

The first is a service that load-balances Transmission Control Protocol (TCP) or
User Datagram Protocol (UDP) traffic. In our case, we’re using the TCP protocol.
And the second is an Ingress resource, which provides HTTP(S) load balancing
with intelligent routing of requests based on HTTP paths and hosts. With a simple
application like this, you might wonder why we choose to use the more complex
Ingress, but as you’ll see in later sections, even this simple application will be serving
HTTP requests from two different services. Furthermore, having an Ingress at the
edge enables flexibility for future expansion of our service.

The Ingress resource is one of the older resources in Kubernetes,
and over the years numerous issues have been raised with the way
that it models HTTP access to microservices. This has led to the
development of the Gateway API for Kubernetes. The Gateway API
has been designed as an extension to Kubernetes and requires addi‐
tional components to be installed in your cluster. If you find that
Ingress doesn’t meet your needs, consider moving to the Gateway
API.

Before the Ingress resource can be defined, there needs to be a Kubernetes Service
for the Ingress to point to. We’ll use Labels to direct the Service to the pods that we
created in the previous section. The Service is significantly simpler to define than the
Deployment and looks as follows:

apiVersion: v1
kind: Service
metadata:

labels:
app: frontend

name: frontend
namespace: default

spec:
ports:
- port: 8080

protocol: TCP
targetPort: 8080

selector:
app: frontend

type: ClusterIP

After you’ve defined the Service, you can define an Ingress resource. Unlike Service
resources, Ingress requires an Ingress controller container to be running in the
cluster. There are a number of different implementations you can choose from, either
offered by your cloud provider, or implemented using open source servers. If you
choose to install an open source Ingress provider, it’s a good idea to use the Helm
package manager to install and maintain it. The nginx or haproxy Ingress providers
are popular choices:

Setting Up an External Ingress for HTTP Traffic | 7

https://helm.sh
https://helm.sh

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: frontend-ingress

spec:
rules:
- http:

paths:
- path: /testpath
pathType: Prefix
backend:
service:
name: test
port:
number: 8080

With our Ingress resource created, our application is ready to serve traffic from web
browsers around the world. Next, we’ll look at how you can set up your application
for easy configuration and customization.

Configuring an Application with ConfigMaps
Every application needs a degree of configuration. This could be the number of
journal entries to display per page, the color of a particular background, a special
holiday display, or many other types of configuration. Typically, separating such
configuration information from the application itself is a best practice to follow.

There are several reasons for this separation. The first is that you might want to
configure the same application binary with different configurations depending on
the setting. In Europe you might want to light up an Easter special, whereas in
China you might want to display a special for Chinese New Year. In addition to this
environmental specialization, there are agility reasons for the separation. Usually a
binary release contains multiple different new features; if you turn on these features
via code, the only way to modify the active features is to build and release a new
binary, which can be an expensive and slow process.

The use of configuration to activate a set of features means that you can quickly
(and even dynamically) activate and deactivate features in response to user needs or
application code failures. Features can be rolled out and rolled back on a per-feature
basis. This flexibility ensures that you are continually making forward progress with
most features even if some need to be rolled back to address performance or correct‐
ness problems.

In Kubernetes this sort of configuration is represented by a resource called a Con‐
figMap. A ConfigMap contains multiple key/value pairs representing configuration
information or a file. This configuration information can be presented to a container
in a pod via either files or environment variables. Imagine that you want to configure

8 | Chapter 1: Setting Up a Basic Service

your online journal application to display a configurable number of journal entries
per page. To achieve this, you can define a ConfigMap as follows:

kubectl create configmap frontend-config --from-literal=journalEntries=10

To configure your application, you expose the configuration information as an envi‐
ronment variable in the application itself. To do that, you can add the following to the
container resource in the Deployment that you defined earlier:

...
The containers array in the PodTemplate inside the Deployment
containers:
- name: frontend
...
env:
- name: JOURNAL_ENTRIES
valueFrom:
configMapKeyRef:
name: frontend-config
key: journalEntries

...

Although this demonstrates how you can use a ConfigMap to configure your applica‐
tion, in the real world of Deployments, you’ll want to roll out regular changes to this
configuration at least weekly. It might be tempting to roll this out by simply changing
the ConfigMap itself, but this isn’t really a best practice, for reasons: the first is that
changing the configuration doesn’t actually trigger an update to existing pods. The
configuration is applied only when the pod is restarted. As a result, the rollout isn’t
health based and can be ad hoc or random. Another reason is that the only versioning
for the ConfigMap is in your version control, and it can be very difficult to perform a
rollback.

A better approach is to put a version number in the name of the ConfigMap itself.
Instead of calling it frontend-config, call it frontend-config-v1. When you want
to make a change, instead of updating the ConfigMap in place, you create a new
v2 ConfigMap, and then update the Deployment resource to use that configuration.
When you do this, a Deployment rollout is automatically triggered, using the appro‐
priate health checking and pauses between changes. Furthermore, if you ever need
to roll back, the v1 configuration is sitting in the cluster and rollback is as simple as
updating the Deployment again.

Managing Authentication with Secrets
So far, we haven’t really discussed the Redis service to which our frontend is con‐
necting. But in any real application we need to secure connections between our
services. In part, this is to ensure the security of users and their data, and in addition,

Managing Authentication with Secrets | 9

it is essential to prevent mistakes like connecting a development frontend with a
production database.

The Redis database is authenticated using a simple password. It might be convenient
to think that you would store this password in the source code of your application,
or in a file in your image, but these are both bad ideas for a variety of reasons.
The first is that you have leaked your secret (the password) into an environment
where you aren’t necessarily thinking about access control. If you put a password
into your source control, you are aligning access to your source with access to all
secrets. This isn’t the best course of action because you will probably have a broader
set of users who can access your source code than should really have access to your
Redis instance. Likewise, someone who has access to your container image shouldn’t
necessarily have access to your production database.

In addition to concerns about access control, another reason to avoid binding secrets
to source control and/or images is parameterization. You want to be able to use the
same source code and images in a variety of environments (e.g., development, canary,
and production). If the secrets are tightly bound in source code or an image, you
need a different image (or different code) for each environment.

Having seen ConfigMaps in the previous section, you might immediately think that
the password could be stored as a configuration and then populated into the appli‐
cation as an application-specific configuration. You’re absolutely correct to believe
that the separation of configuration from application is the same as the separation
of secrets from application. But the truth is that a secret is an important concept
by itself. You likely want to handle access control, handling, and updates of secrets
in a different way than a configuration. More important, you want your developers
thinking differently when they are accessing secrets than when they are accessing con‐
figuration. For these reasons, Kubernetes has a built-in Secret resource for managing
secret data.

You can create a secret password for your Redis database as follows:

kubectl create secret generic redis-passwd --from-literal=passwd=${RANDOM}

Obviously, you might want to use something other than a random number for your
password. Additionally, you likely want to use a secret/key management service,
either via your cloud provider, like Microsoft Azure Key Vault, or an open source
project, like HashiCorp’s Vault. When you are using a key management service, they
generally have tighter integration with Kubernetes secrets.

After you have stored the Redis password as a secret in Kubernetes, you then need
to bind that secret to the running application when deployed to Kubernetes. To do
this, you can use a Kubernetes Volume. A Volume is effectively a file or directory that
can be mounted into a running container at a user-specified location. In the case of
secrets, the Volume is created as a tmpfs RAM-backed filesystem and then mounted

10 | Chapter 1: Setting Up a Basic Service

into the container. This ensures that even if the machine is physically compromised
(quite unlikely in the cloud, but possible in the datacenter), the secrets are much
more difficult for an attacker to obtain.

Secrets in Kubernetes are stored unencrypted by default. If you
want to store secrets encrypted, you can integrate with a key pro‐
vider to give you a key that Kubernetes will use to encrypt all
the secrets in the cluster. Note that although this secures the keys
against direct attacks to the etcd database, you still need to ensure
that access via the Kubernetes API server is properly secured.

To add a secret Volume to a Deployment, you need to specify two new entries in
the YAML for the Deployment. The first is a volume entry for the pod that adds the
Volume to the pod:

...
volumes:
- name: passwd-volume

secret:
secretName: redis-passwd

Container Storage Interface (CSI) drivers enable you to use key management systems
(KMS) that are located outside of your Kubernetes cluster. This is often a requirement
for compliance and security within large or regulated organizations. If you use one of
these CSI drivers your Volume would instead look like:

...
volumes:
- name: passwd-volume

csi:
driver: secrets-store.csi.k8s.io
readOnly: true
volumeAttributes:

secretProviderClass: "azure-sync"
...

Regardless of which method you use, with the Volume defined in the pod, you need
to mount it into a specific container. You do this via the volumeMounts field in the
container description:

...
volumeMounts:
- name: passwd-volume

readOnly: true
mountPath: "/etc/redis-passwd"

...

This mounts the secret Volume into the redis-passwd directory for access from the
client code. Putting this all together, you have the complete Deployment as follows:

Managing Authentication with Secrets | 11

apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: frontend

name: frontend
namespace: default

spec:
replicas: 2
selector:
matchLabels:
app: frontend

template:
metadata:
labels:
app: frontend

spec:
containers:
- image: my-repo/journal-server:v1-abcde
imagePullPolicy: IfNotPresent
name: frontend
volumeMounts:
- name: passwd-volume
readOnly: true
mountPath: "/etc/redis-passwd"

resources:
requests:
cpu: "1.0"
memory: "1G"

limits:
cpu: "1.0"
memory: "1G"

volumes:
- name: passwd-volume
secret:
secretName: redis-passwd

At this point we have configured the client application to have a secret available to
authenticate to the Redis service. Configuring Redis to use this password is similar;
we mount it into the Redis pod and load the password from the file.

Deploying a Simple Stateful Database
Although conceptually deploying a stateful application is similar to deploying a
client like our frontend, state brings with it more complications. The first is that in
Kubernetes a pod can be rescheduled for a number of reasons, such as node health,
an upgrade, or rebalancing. When this happens, the pod might move to a different
machine. If the data associated with the Redis instance is located on any particular
machine or within the container itself, that data will be lost when the container
migrates or restarts. To prevent this, when running stateful workloads in Kubernetes

12 | Chapter 1: Setting Up a Basic Service

it’s important to use remote PersistentVolumes to manage the state associated with the
application.

There are a wide variety of implementations of PersistentVolumes in Kubernetes, but
they all share common characteristics. Like secret Volumes described earlier, they are
associated with a pod and mounted into a container at a particular location. Unlike
secrets, PersistentVolumes are generally remote storage mounted through some sort
of network protocol, either file based, such as Network File System (NFS) or Server
Message Block (SMB), or block based (iSCSI, cloud-based disks, etc.). Generally, for
applications such as databases, block-based disks are preferable because they offer
better performance, but if performance is less of a consideration, file-based disks
sometimes offer greater flexibility.

Managing state in general is complicated, and Kubernetes is no
exception. If you are running in an environment that supports
stateful services (e.g., MySQL as a service, Redis as a service),
it is generally a good idea to use those stateful services. Initially, the
cost premium of a stateful software as a service (SaaS) might seem
expensive, but when you factor in all the operational requirements
of state (backup, data locality, redundancy, etc.), and the fact that
the presence of state in a Kubernetes cluster makes it difficult to
move applications between clusters, it becomes clear that, in most
cases, storage SaaS is worth the price premium. In on-premises
environments where storage SaaS isn’t available, having a dedicated
team provide storage as a service to the entire organization is
definitely a better practice than allowing each team to build it
themselves.

To deploy our Redis service, we use a StatefulSet resource. Added after the initial
Kubernetes release as a complement to ReplicaSet resources, a StatefulSet gives
slightly stronger guarantees such as consistent names (no random hashes!) and a
defined order for scale-up and scale-down. When you are deploying a singleton,
this is somewhat less important, but when you want to deploy replicated state, these
attributes are very convenient.

To obtain a PersistentVolume for our Redis, we use a PersistentVolumeClaim. You
can think of a claim as a “request for resources.” Our Redis declares abstractly that
it wants 50 GB of storage, and the Kubernetes cluster determines how to provision
an appropriate PersistentVolume. There are two reasons for this. The first is so we
can write a StatefulSet that is portable between different clouds and on premises,
where the details of disks might be different. The other reason is that although many
PersistentVolume types can be mounted to only a single pod, we can use Volume
claims to write a template that can be replicated and still have each pod assigned its
own specific PersistentVolume.

Deploying a Simple Stateful Database | 13

The following example shows a Redis StatefulSet with PersistentVolumes:

apiVersion: apps/v1
kind: StatefulSet
metadata:
name: redis

spec:
serviceName: "redis"
replicas: 1
selector:
matchLabels:
app: redis

template:
metadata:
labels:
app: redis

spec:
containers:
- name: redis

image: redis:5-alpine
ports:
- containerPort: 6379

name: redis
volumeMounts:
- name: data
mountPath: /data

volumeClaimTemplates:
- metadata:

name: data
spec:
accessModes: ["ReadWriteOnce"]
resources:
requests:
storage: 10Gi

This deploys a single instance of your Redis service, but suppose you want to replicate
the Redis cluster for scale-out of reads and resiliency to failures. To do this you
obviously need to increase the number of replicas to three, but you also need to
ensure that the two new replicas connect to the write master for Redis. We’ll see how
to make this connection in the following section.

When you create the headless Service for the Redis StatefulSet, it creates a DNS entry
redis-0.redis; this is the IP address of the first replica. You can use this to create a
simple script that can launch in all the containers:

#!/bin/sh

PASSWORD=$(cat /etc/redis-passwd/passwd)

if [["${HOSTNAME}" == "redis-0"]]; then
redis-server --requirepass ${PASSWORD}

else

14 | Chapter 1: Setting Up a Basic Service

redis-server --slaveof redis-0.redis 6379 --masterauth ${PASSWORD}
--requirepass ${PASSWORD}

fi

You can create this script as a ConfigMap:

kubectl create configmap redis-config --from-file=./launch.sh

You then add this ConfigMap to your StatefulSet and use it as the command for the
container. Let’s also add in the password for authentication that we created earlier in
the chapter.

The complete three-replica Redis looks as follows:

apiVersion: apps/v1
kind: StatefulSet
metadata:
name: redis

spec:
serviceName: "redis"
replicas: 3
selector:
matchLabels:
app: redis

template:
metadata:
labels:
app: redis

spec:
containers:
- name: redis
image: redis:5-alpine
ports:
- containerPort: 6379
name: redis

volumeMounts:
- name: data
mountPath: /data

- name: script
mountPath: /script/launch.sh
subPath: launch.sh

- name: passwd-volume
mountPath: /etc/redis-passwd

command:
- sh
- -c
- /script/launch.sh

volumes:
- name: script
configMap:
name: redis-config
defaultMode: 0777

- name: passwd-volume

Deploying a Simple Stateful Database | 15

secret:
secretName: redis-passwd

volumeClaimTemplates:
- metadata:

name: data
spec:
accessModes: ["ReadWriteOnce"]
resources:
requests:
storage: 10Gi

Now your Redis is clustered for fault tolerance. If any one of the three Redis replicas
fails for any reason, your application can keep running with the two remaining
replicas until the third replica is restored.

Creating a TCP Load Balancer by Using Services
Now that we’ve deployed the stateful Redis service, we need to make it available
to our frontend. To do this, we create two different Kubernetes Services. The first
is the Service for reading data from Redis. Because Redis is replicating the data to
all three members of the StatefulSet, we don’t care which read our request goes to.
Consequently, we use a basic Service for the reads:

apiVersion: v1
kind: Service
metadata:
labels:
app: redis

name: redis
namespace: default

spec:
ports:
- port: 6379
protocol: TCP
targetPort: 6379

selector:
app: redis

sessionAffinity: None
type: ClusterIP

To enable writes, you need to target the Redis master (replica #0). To do this, create
a headless Service. A headless Service doesn’t have a cluster IP address; instead, it
programs a DNS entry for every pod in the StatefulSet. This means that we can access
our master via the redis-0.redis DNS name:

apiVersion: v1
kind: Service
metadata:
labels:
app: redis-write

16 | Chapter 1: Setting Up a Basic Service

name: redis-write
spec:
clusterIP: None
ports:
- port: 6379
selector:
app: redis

Thus, when we want to connect to Redis for writes or transactional read/write pairs,
we can build a separate write client connected to the redis-0.redis-write server.

Using Ingress to Route Traffic to a Static File Server
The final component in our application is a static file server. The static file server
is responsible for serving HTML, CSS, JavaScript, and image files. It’s both more
efficient and more focused for us to separate static file serving from our API serving
frontend described earlier. We can easily use a high-performance static off-the-shelf
file server like NGINX to serve files while we allow our development teams to focus
on the code needed to implement our API.

Fortunately, the Ingress resource makes this sort of mini-microservice architecture
very easy. Just like the frontend, we can use a Deployment resource to describe a
replicated NGINX server. Let’s build the static images into the NGINX container and
deploy them to each replica. The Deployment resource looks as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: fileserver

name: fileserver
namespace: default

spec:
replicas: 2
selector:
matchLabels:
app: fileserver

template:
metadata:
labels:
app: fileserver

spec:
containers:
This image is intended as an example, replace it with your own
static files image.
- image: my-repo/static-files:v1-abcde
imagePullPolicy: Always
name: fileserver
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File

Using Ingress to Route Traffic to a Static File Server | 17

resources:
requests:
cpu: "1.0"
memory: "1G"

limits:
cpu: "1.0"
memory: "1G"

dnsPolicy: ClusterFirst
restartPolicy: Always

Now that there is a replicated static web server up and running, you will likewise
create a Service resource to act as a load balancer:

apiVersion: v1
kind: Service
metadata:
labels:
app: fileserver

name: fileserver
namespace: default

spec:
ports:
- port: 80
protocol: TCP
targetPort: 80

selector:
app: fileserver

sessionAffinity: None
type: ClusterIP

Now that you have a Service for your static file server, extend the Ingress resource
to contain the new path. It’s important to note that you must place the / path after
the /api path, or else it would subsume /api and direct API requests to the static file
server. The new Ingress looks like this:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: frontend-ingress

spec:
rules:
- http:

paths:
- path: /api
pathType: Prefix
backend:

service:
name: fileserver
port:
number: 8080

NOTE: this should come after /api or else it will hijack requests
- path: /

18 | Chapter 1: Setting Up a Basic Service

pathType: Prefix
backend:
service:
name: fileserver
port:
number: 80

Now that you have set up an Ingress resource for your file server, in addition to
the Ingress for the API you set up earlier, the application’s user interface is ready to
use. Most modern applications combine static files, typically HTML and JavaScript,
with a dynamic API server implemented in a server-side programming language like
Java, .NET, or Go.

Parameterizing Your Application by Using Helm
Everything that we have discussed so far focuses on deploying a single instance of
our service to a single cluster. However, in reality, nearly every service and every
service team is going to need to deploy to multiple environments (even if they share
a cluster). Even if you are a single developer working on a single application, you
likely want to have at least a development version and a production version of your
application so that you can iterate and develop without breaking production users.
After you factor in integration testing and CI/CD, it’s likely that even with a single
service and a handful of developers, you’ll want to deploy to at least three different
environments, and possibly more if you consider handling datacenter-level failures.
Let’s explore a few options for deployment.

An initial failure mode for many teams is to simply copy the files from one cluster to
another. Instead of having a single frontend/ directory, have a frontend-production/
and frontend-development/ pair of directories. While this is a viable option, it’s
also dangerous because you are now in charge of ensuring that these files remain
synchronized with one another. If they were intended to be entirely identical, this
might be easy, but some skew between development and production is expected
because you will be developing new features. It’s critical that the skew is both inten‐
tional and easily managed.

Another option to achieve this would be to use branches and version control, with
the production and development branches leading off from a central repository and
the differences between the branches clearly visible. This can be a viable option for
some teams, but the mechanics of moving between branches are challenging when
you want to simultaneously deploy software to different environments (e.g., a CI/CD
system that deploys to a number of different cloud regions).

Consequently, most people end up with a templating system. A templating system
combines templates, which form the centralized backbone of the application configu‐
ration, with parameters that specialize the template to a specific environment configu‐
ration. In this way, you can have a generally shared configuration, with intentional

Parameterizing Your Application by Using Helm | 19

(and easily understood) customization as needed. There are a variety of template
systems for Kubernetes, but the most popular by far is Helm.

In Helm, an application is packaged in a collection of files called a chart (nautical
jokes abound in the world of containers and Kubernetes).

A chart begins with a chart.yaml file, which defines the metadata for the chart itself:

apiVersion: v1
appVersion: "1.0"
description: A Helm chart for our frontend journal server.
name: frontend
version: 0.1.0

This file is placed in the root of the chart directory (e.g., frontend/). Within this
directory, there is a templates directory, which is where the templates are placed. A
template is basically a YAML file from the previous examples, with some of the values
in the file replaced with parameter references. For example, imagine that you want
to parameterize the number of replicas in your frontend. Previously, here’s what the
Deployment had:

...
spec:
replicas: 2

...

In the template file (frontend-deployment.tmpl), it instead looks like the following:

...
spec:
replicas: {{ .replicaCount }}

...

This means that when you deploy the chart, you’ll substitute the value for replicas
with the appropriate parameter. The parameters themselves are defined in a val‐
ues.yaml file. There will be one values file per environment where the application
should be deployed. The values file for this simple chart would look like this:

replicaCount: 2

Putting this all together, you can deploy this chart using the helm tool, as follows:

helm install path/to/chart --values path/to/environment/values.yaml

This parameterizes your application and deploys it to Kubernetes. Over time these
parameterizations will grow to encompass the variety of environments for your
application.

20 | Chapter 1: Setting Up a Basic Service

https://helm.sh

•

•

•

Deploying Services Best Practices
Kubernetes is a powerful system that can seem complex. But setting up a basic
application for success can be straightforward if you use the following best practices:

• Most services should be deployed as Deployment resources. Deployments create
identical replicas for redundancy and scale.

• Deployments can be exposed using a Service, which is effectively a load balancer.
A Service can be exposed either within a cluster (the default) or externally. If you
want to expose an HTTP application, you can use an Ingress controller to add
things like request routing and SSL.

• Eventually you will want to parameterize your application to make its configura‐
tion more reusable in different environments. Packaging tools like Helm are the
best choice for this kind of parameterization.

Summary
The application built in this chapter is a simple one, but it contains nearly all the
concepts you’ll need to build larger, more complicated applications. Understanding
how the pieces fit together and how to use foundational Kubernetes components is
key to successfully working with Kubernetes.

Laying the correct foundation via version control, code review, and continuous deliv‐
ery of your service ensures that no matter what you build, it is built solidly. As we
go through the more advanced topics in subsequent chapters, keep this foundational
information in mind.

Summary | 21

https://helm.sh

CHAPTER 2

Developer Workflows

Kubernetes was built for reliably operating software. It simplifies deploying and
managing applications with an application-oriented API, self-healing properties, and
useful tools like Deployments for zero downtime rollout of software. Although all
these tools are useful, they don’t do much to make it easier to develop applications for
Kubernetes. This is where developer workflows come into play. Even though many
clusters are designed to run production applications and thus are rarely accessed
by developer workflows, it is critical to enable development workflows to target
Kubernetes, and this typically means having a cluster or at least part of a cluster that
is intended for development. Setting up such a cluster to facilitate easy development
of applications for Kubernetes is critical to ensuring success with Kubernetes. If there
is no code being built for your cluster, the cluster itself isn’t accomplishing much.

Goals
Before we describe the best practices for building out development clusters, it is
worth stating our goals for such clusters. Obviously, the ultimate goal is to enable
developers to rapidly and easily build applications on Kubernetes, but what does
that really mean in practice, and how is that reflected in practical features of the
development cluster?

To answer this, let’s start by identifying phases of developer interaction with the
cluster.

The first phase is onboarding. This is when a new developer joins the team. This
phase includes giving the user a login to the cluster as well as getting them oriented
to their first deployment. The goal for this phase is to get a developer’s feet wet in a
minimal amount of time. You should set a key performance indicator (KPI) goal for
this process. A reasonable goal would be that a user could go from nothing to the

23

current application at HEAD running in less than half an hour. Every time someone
is new to the team, test how you are doing against this goal.

The second phase is developing. This is the day-to-day activity of the developer. The
goal for this phase is to ensure rapid iteration and debugging. Developers need to
quickly and repeatedly push code to the cluster. They also need to be able to easily
test their code and debug it when it isn’t operating properly. The KPI for this phase
is more challenging to measure, but you can estimate it by measuring the time to
get a pull request (PR) or change up and running in the cluster, or with surveys of
the user’s perceived productivity, or both. You will also be able to measure this in the
overall productivity of your teams.

The third phase is testing. This phase is interweaved with developing and is used
to validate the code before submission and merging. The goals for this phase are
two-fold. First, the developer should be able to run all tests for their environment
before a PR is submitted. Second, all tests should automatically run before code is
merged into the repository. In addition to these goals you should also set a KPI for
the length of time the tests take to run. As your project becomes more complex,
it’s natural for more and more tests to take a longer time. As this happens, it might
become valuable to identify a smaller set of smoke tests that a developer can use
for initial validation before submitting a PR. You should also have a very strict KPI
around test flakiness. A flaky test is one that occasionally (or not so occasionally) fails.
In any reasonably active project, a flakiness rate of more than one failure per one
thousand runs will lead to developer friction. You need to ensure that your cluster
environment does not lead to flaky tests. Whereas sometimes flaky tests occur due to
problems in the code, they can also occur because of interference in the development
environment (e.g., running out of resources and noisy neighbors). You should ensure
that your development environment is free of such issues by measuring test flakiness
and acting quickly to fix it.

Building a Development Cluster
When people begin to think about developing on Kubernetes, one of the first choices
that occurs is whether to build a single large development cluster or to have one
cluster per developer. Note that this choice only makes sense in an environment
in which dynamic cluster creation is easy, such as the public cloud. In physical
environments, it’s possible that one large cluster is the only choice.

If you do have a choice, you should consider the pros and cons of each option. If
you choose to have a development cluster per user, the significant downside of this
approach is that it will be more expensive and less efficient, and you will have a
large number of different development clusters to manage. The extra costs come from
the fact that each cluster is likely to be heavily underutilized. Also, with developers
creating different clusters, it becomes more difficult to track and garbage-collect

24 | Chapter 2: Developer Workflows

resources that are no longer in use. The advantage of the cluster-per-user approach
is simplicity: each developer can self-service manage their own cluster, and from
isolation, it’s much more difficult for different developers to step on one another’s
toes.

On the other hand, a single development cluster will be significantly more efficient;
you can likely sustain the same number of developers on a shared cluster for one-
third the price (or less). Plus, it’s much easier for you to install shared cluster services,
for example, monitoring and logging, which makes it significantly easier to produce
a developer-friendly cluster. The downside of a shared development cluster is the
process of user management and potential interference between developers. Because
the process of adding new users and namespaces to the Kubernetes cluster isn’t
currently streamlined, you will need to activate a process to onboard new developers.
Although Kubernetes resource management and Role-Based Access Control (RBAC)
can reduce the probability that two developers conflict, it is always possible that a
user will brick the development cluster by consuming too many resources so that
other applications and developers won’t schedule. Additionally, you will still need to
ensure that developers don’t leak and forget about resources they’ve created. This is
somewhat easier, though, than the approach in which developers each create their
own clusters.

Even though both approaches are feasible, generally, our recommendation is to have
a single large cluster for all developers. Although there are challenges in interference
between developers, they can be managed, and ultimately the cost efficiency and
ability to easily add organization-wide capabilities to the cluster outweigh the risks
of interference. But you will need to invest in a process for onboarding developers,
resource management, and garbage collection. Our recommendation would be to try
a single large cluster as a first option. As your organization grows (or if it is already
large), you might consider having a cluster per team or group (10 to 20 people)
rather than a giant cluster for hundreds of users. This can make both billing and
management easier. Moving to multiple clusters can make it more complicated to
ensure consistency, but tools like fleet management can make it easier to manage
groups of clusters.

Setting Up a Shared Cluster for Multiple Developers
When setting up a large cluster, the primary goal is to ensure that multiple users
can simultaneously use the cluster without stepping on one another’s toes. The
obvious way to separate your different developers is with Kubernetes namespaces.
Namespaces can serve as scopes for the deployment of services so that one user’s
frontend service doesn’t interfere with another user’s frontend service. Namespaces
are also scopes for RBAC, ensuring that one developer cannot accidentally delete
another developer’s work. Thus, in a shared cluster it makes sense to use a namespace

Setting Up a Shared Cluster for Multiple Developers | 25

as a developer’s workspace. The processes for onboarding users and creating and
securing a namespace are described in the following sections.

Onboarding Users
Before you can assign a user to a namespace, you have to onboard that user to
the Kubernetes cluster itself. To achieve this, there are two options. You can use
certificate-based authentication to create a new certificate for the user and give them
a kubeconfig file that they can use to log in, or you can configure your cluster to use
an external identity system (for example, Microsoft Entra ID or AWS Identity and
Access Management [IAM]) for cluster access.

In general, using an external identity system is a best practice because it doesn’t
require that you maintain two different sources of identity. Additionally, most exter‐
nal systems use short-lived tokens rather than long-lived certificates so the accidental
disclosure of a token has a time-bound security impact. If at all possible you should
restrict your developers to proving their identity via an external identity provider.

Unfortunately, in some cases this isn’t possible and you need to use certificates.
Fortunately, you can use the Kubernetes certificate API for creating and managing
such certificates. Here’s the process for adding a new user to an existing cluster.

First, you need to generate a certificate-signing request to generate a new certificate.
Here is a simple Go program to do this:

package main

import (
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"crypto/x509/pkix"
"encoding/asn1"
"encoding/pem"
"os"

)

func main() {
name := os.Args[1]
user := os.Args[2]

key, err := rsa.GenerateKey(rand.Reader, 1024)
if err != nil {

panic(err)
}
keyDer := x509.MarshalPKCS1PrivateKey(key)
keyBlock := pem.Block{

Type: "RSA PRIVATE KEY",
Bytes: keyDer,

}

26 | Chapter 2: Developer Workflows

keyFile, err := os.Create(name + "-key.pem")
if err != nil {

panic(err)
}
pem.Encode(keyFile, &keyBlock)
keyFile.Close()

commonName := user
// You may want to update these too
emailAddress := "someone@myco.com"

org := "My Co, Inc."
orgUnit := "Widget Farmers"
city := "Seattle"
state := "WA"
country := "US"

subject := pkix.Name{
CommonName: commonName,
Country: []string{country},
Locality: []string{city},
Organization: []string{org},
OrganizationalUnit: []string{orgUnit},
Province: []string{state},

}

asn1, err := asn1.Marshal(subject.ToRDNSequence())
if err != nil {

panic(err)
}
csr := x509.CertificateRequest{

RawSubject: asn1,
EmailAddresses: []string{emailAddress},
SignatureAlgorithm: x509.SHA256WithRSA,

}

bytes, err := x509.CreateCertificateRequest(rand.Reader, &csr, key)
if err != nil {

panic(err)
}
csrFile, err := os.Create(name + ".csr")
if err != nil {

panic(err)
}

pem.Encode(csrFile, &pem.Block{Type: "CERTIFICATE REQUEST", Bytes:
bytes})
csrFile.Close()

}

You can run this as follows:

go run csr-gen.go client <user-name>;

Setting Up a Shared Cluster for Multiple Developers | 27

This creates files called client-key.pem and client.csr. You can then run the following
script to create and download a new certificate:

#!/bin/bash

csr_name="my-client-csr"
name="${1:-my-user}"

csr="${2}"

cat <<EOF | kubectl create -f -
apiVersion: certificates.k8s.io/v1
kind: CertificateSigningRequest
metadata:
 name: ${csr_name}
spec:
 groups:
 - system:authenticated

request: $(cat ${csr} | base64 | tr -d '\n')
usages:
- key encipherment
- client auth

EOF

echo
echo "Approving signing request."
kubectl certificate approve ${csr_name}

echo
echo "Downloading certificate."
kubectl get csr ${csr_name} -o jsonpath='{.status.certificate}' \

| base64 --decode > $(basename ${csr} .csr).crt

echo
echo "Cleaning up"
kubectl delete csr ${csr_name}

echo
echo "Add the following to the 'users' list in your kubeconfig file:"
echo "- name: ${name}"
echo " user:"
echo " client-certificate: ${PWD}/$(basename ${csr} .csr).crt"
echo " client-key: ${PWD}/$(basename ${csr} .csr)-key.pem"
echo
echo "Next you may want to add a role-binding for this user."

This script prints out the final information that you can add to a kubeconfig file to
enable that user. Of course, the user has no access privileges, so you will need to apply
Kubernetes RBAC for the user to grant them privileges to a namespace.

28 | Chapter 2: Developer Workflows

Creating and Securing a Namespace
The first step in provisioning a namespace is actually just creating it. You can do this
using kubectl create namespace my-namespace.

But the truth is that when you create a namespace, you want to attach a bunch of
metadata to that namespace, for example, the contact information for the team that
builds the component deployed into the namespace. Generally, this is in the form of
annotations; you can either generate the YAML file using some templating, such as
Jinja or others, or you can create and then annotate the namespace. A simple script to
do this looks like:

ns='my-namespace'
team='some team'
kubectl create namespace ${ns}
kubectl annotate namespace ${ns} team=${team}

When the namespace is created, you want to secure it by ensuring that you can grant
access to the namespace to a specific user. To do this, you can bind a role to a user in
the context of that namespace. You do this by creating a RoleBinding object within
the namespace itself. The RoleBinding might look like this:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: example
namespace: my-namespace

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: edit

subjects:
- apiGroup: rbac.authorization.k8s.io
kind: User
name: myuser

To create it, you simply run kubectl create -f role-binding.yaml. Note that you
can reuse this binding as much as you want as long as you update the namespace
in the binding to point to the correct namespace. If you ensure that the user doesn’t
have any other role bindings, you can be assured that this namespace is the only
part of the cluster to which the user has access. A reasonable practice is to also grant
reader access to the entire cluster; in this way developers can see what others are
doing in case it is interfering with their work. Be careful in granting such read access,
however, because it will include access to secret resources in the cluster. Generally, in
a development cluster this is OK because everyone is in the same organization and
the secrets are used only for development; however, if this is a concern, then you can
create a more fine-grained role that eliminates the ability to read secrets.

Setting Up a Shared Cluster for Multiple Developers | 29

https://oreil.ly/vvtTF

If you want to limit the resources consumed by a particular namespace to put a
cap on costs or ensure that resources are fairly distributed among developers, you
can use the ResourceQuota resource to set a limit to the total number of resources
that any particular namespace consumes. For example, the following quota limits the
namespace to 10 cores and 100 GB of memory for both Request and Limit for the
pods in the namespace:

apiVersion: v1
kind: ResourceQuota
metadata:
name: limit-compute
namespace: my-namespace

spec:
hard:
These look a little odd because they're not nested

but they refer to the requests and limit fields in
a Pod

requests.cpu: "10"
requests.memory: 100Gi
limits.cpu: 10
limits.memory: 100Gi

Managing Namespaces
Now that you have seen how to onboard a new user and how to create a namespace
to use as a workspace, the question remains how to assign a developer to the
namespace. As with many things, there is no single perfect answer; rather, there
are two approaches. The first is to give each user their own namespace as part of
the onboarding process. This is useful because after a user is onboarded, they always
have a dedicated workspace in which they can develop and manage their applications.
However, making the developer’s namespace too persistent encourages the developer
to leave things lying around in the namespace after they are done with them, and
garbage-collecting and accounting individual resources is more complicated. An
alternate approach is to temporarily create and assign a namespace with a bounded
time to live (TTL). This ensures that the developer thinks of the resources in the
cluster as transient and that it is easy to build automation around the deletion of
entire namespaces when their TTL has expired.

In the bounded TTL model, when the developer wants to begin a new project, they
use a tool to allocate a new namespace for the project. When they create the name‐
space, it has a selection of metadata associated with the namespace for management
and accounting. Obviously, this metadata includes the TTL for the namespace, but
it also includes the developer to which it is assigned, the resources that should be
allocated to the namespace (e.g., CPU and memory), and the team and purpose of the
namespace. This metadata ensures that you can both track resource usage and delete
the namespace at the right time.

30 | Chapter 2: Developer Workflows

Developing the tooling to allocate namespaces on demand can seem like a challenge,
but simple tooling is relatively easy to develop. For example, you can achieve the
allocation of a new namespace with a simple script that creates the namespace and
prompts for the relevant metadata to attach to the namespace.

If you want to get more integrated with Kubernetes, you can use custom resource def‐
initions (CRDs) to enable users to dynamically create and allocate new namespaces
using the kubectl tool. If you have the time and inclination, this is definitely a good
practice because it makes namespace management declarative and also enables the
use of Kubernetes RBAC.

After you have tooling to enable the allocation of namespaces, you also need to add
tooling to reap namespaces when their TTL has expired. Again, you can accomplish
this with a simple script that examines the namespaces and deletes those that have an
expired TTL.

You can build this script into a container and use a ScheduledJob to run it at an
interval like once per hour. These combined tools can ensure that developers can
easily allocate independent resources for their project as needed, but those resources
will also be reaped at the proper interval to ensure that you don’t have wasted
resources and that old resources don’t get in the way of new development.

Cluster-Level Services
In addition to using tooling to allocate and manage namespaces, there are also useful
cluster-level services, and it’s a good idea to enable them in your development cluster.
The first is log aggregation to a central Logging as a Service (LaaS) system. One
of the easiest things for a developer to do to understand the operation of their
application is to write something to STDOUT. Although you can access these logs
via kubectl logs, that log is limited in length and is not particularly searchable. If
you instead automatically ship those logs to a LaaS system such as a cloud service
or an Elasticsearch cluster, developers can easily search through logs for relevant
information as well as aggregate logging information across multiple containers in
their service.

Enabling Developer Workflows
Now that we have successfully set up a shared cluster and we can onboard new
application developers to the cluster itself, we need to actually get them developing
their application. Remember that one of the KPIs we are measuring is the time from
onboarding to an initial application running in the cluster. It’s clear that via the
just-described onboarding scripts we can quickly authenticate a user to a cluster and
allocate a namespace, but what about getting started with the application? Unfortu‐
nately, even though a few techniques can help with this process, it generally requires

Enabling Developer Workflows | 31

more convention than automation to get the initial application up and running. In
the following sections, we describe one approach to achieving this; it is by no means
the only approach or the only solution. You can optionally apply the approach as is or
be inspired by the ideas to arrive at your own solution.

Initial Setup
One of the main challenges to deploying an application is the installation of all the
dependencies. In many cases, especially in modern microservice architectures, to
even get started developing on one of the microservices requires the deployment of
multiple dependencies, either databases or other microservices. Although the deploy‐
ment of the application itself is relatively straightforward, the task of identifying and
deploying all the dependencies to build the complete application is often a frustrating
case of trial and error married with incomplete or out-of-date instructions.

To address this issue, it is often valuable to introduce a convention for describing
and installing dependencies. This can be seen as the equivalent of something like npm
install, which installs all the required JavaScript dependencies. Eventually, there
is likely to be a tool similar to npm that provides this service for Kubernetes-based
applications, but until then, the best practice is to rely on convention within your
team.

One such option for a convention is the creation of a setup.sh script within the
root directory of all project repositories. The responsibility of this script is to create
all dependencies within a particular namespace to ensure that all the application’s
dependencies are correctly created. For example, a setup script might look like the
following:

kubectl create my-service/database-stateful-set-yaml
kubectl create my-service/middle-tier.yaml
kubectl create my-service/configs.yaml

You could then integrate this script with npm by adding the following to your
package.json:

{
...
"scripts": {

"setup": "./setup.sh",
...

}
}

With this setup, a new developer can simply run npm run setup, and the cluster
dependencies will be installed. Obviously, this particular integration is Node.js/npm
specific. In other programming languages, it will make more sense to integrate with
the language-specific tooling. For example, in Java you might integrate with a Maven
pom.xml file instead.

32 | Chapter 2: Developer Workflows

For more generic workflows, both GitHub and Visual Studio Code have recently
standardized on “devcontainers,” which are containers that are described by a Dock‐
erfile stored in the .devcontainer/ folder in the repository. When built, they con‐
struct a complete environment for starting development on that repository.

Enabling Active Development
Having set up the developer workspace with the required dependencies, the next task
is to enable developers to iterate on their application quickly. The first prerequisite
for this is the ability to build and push a container image. Let’s assume that you have
this already set up; if not, you can read how to do this in a number of other online
resources and books.

After you have built and pushed a container image, the task is to roll it out to the
cluster. Unlike traditional rollouts, in the case of developer iteration, maintaining
availability is really not a concern. Thus, the easiest way to deploy new code is to
simply delete the Deployment object associated with the previous Deployment and
then create a new Deployment pointing to the newly built image. It is also possible to
update an existing Deployment in place, but this will trigger the rollout logic in the
Deployment resource. Although it is possible to configure a Deployment to roll out
code quickly, doing so introduces a difference between the development environment
and the production environment that can be dangerous or destabilizing. Imagine,
for example, that you accidentally push the development configuration of the Deploy‐
ment into production; you will suddenly deploy new versions to production without
appropriate testing and delays between phases of the rollout. Because of this risk
and because there is an alternative, the best practice is to delete and recreate the
Deployment.

Just like installing dependencies, it is also a good practice to make a script for per‐
forming this Deployment. An example deploy.sh script might look like the following:

kubectl delete -f ./my-service/deployment.yaml
perl -pi -e 's/${old_version}/${new_version}/' ./my-service/deployment.yaml
kubectl create -f ./my-service/deployment.yaml

As before, you can integrate this with existing programming language tooling so that
(for example) a developer can simply run npm run deploy to deploy their new code
into the cluster.

As you build this automation it is often useful to integrate it into a continuous
integration and delivery (CI/CD) tool such as GitHub Actions, Azure DevOps, or
Jenkins. Integration with a CI/CD tool makes it much easier to enable further auto‐
mation like automatic deployment on merging a developer’s PR.

Enabling Developer Workflows | 33

•

Enabling Testing and Debugging
After a user has successfully deployed the development version of their application,
they need to test it and, if there are problems, debug any issues with the application.
This can also be a hurdle when developing in Kubernetes because it is not always
clear how to interact with your cluster. The kubectl command line is a veritable
Swiss Army knife of tools to achieve this, from kubectl logs to kubectl exec
and kubectl port-forward, but learning how to use all the different options and
achieving familiarity with the tool can take a considerable amount of experience. Fur‐
thermore, because the tool runs in the terminal, it often requires the composition of
multiple windows to simultaneously examine both the source code for the application
and the running application itself.

To streamline the testing and debugging experience, Kubernetes tooling is increas‐
ingly being integrated into development environments, for example, the open source
extension for Visual Studio (VS) Code for Kubernetes. The extension is easily
installed for free from the VS Code marketplace. When installed, it automatically
discovers any clusters that you already have in your kubeconfig file and provides a
tree-view navigation pane for you to see the contents of your cluster at a glance.

In addition to being able to see your cluster state at a glance, the integration allows
a developer to use the tools available via kubectl in an intuitive, discoverable way.
From the tree view, if you right-click a Kubernetes pod, you can immediately use
port forwarding to bring a network connection from the pod directly to the local
machine. Likewise, you can access the logs for the pod or even get a terminal within
the running container.

The integration of these commands with prototypical user interface expectations
(e.g., right-click shows a context menu), as well as the integration of these experiences
alongside the code for the application itself, enables developers with minimal Kuber‐
netes experience to rapidly become productive in the development cluster.

Of course this VS Code extension isn’t the only integration between Kubernetes and a
development environment; there are several others that you can install depending on
your choice of programming environment and style (vi, emacs, etc.).

Setting Up a Development Environment Best Practices
Setting up development workflows on Kubernetes is key to productivity and is pivotal
for productive and happy development teams. Following these best practices will help
to ensure that developers are up and running quickly:

• Think about developer experience in three phases: onboarding, developing, and
testing. Make sure that the development environment you build supports all
three of these phases.

34 | Chapter 2: Developer Workflows

•

•

•

•

• When building a development cluster, you can choose between one large cluster
and a cluster per developer. There are pros and cons to each, but generally a
single large cluster is a better approach.

• When you add users to a cluster, add them with their own identity and access to
their own namespace. Use resource limits to restrict how much of the cluster they
can use.

• When managing namespaces, think about how you can reap old, unused
resources. Developers will have bad hygiene about deleting unused things. Use
automation to clean it up for them.

• Think about cluster-level services like logs and monitoring that you can set up
for all users. Sometimes, cluster-level dependencies like databases are also useful
to set up on behalf of all users using templates like Helm charts.

Summary
We’ve reached a place where creating a Kubernetes cluster, especially in the cloud,
is a relatively straightforward exercise, but enabling developers to productively use
such a cluster is significantly less obvious and easy. When thinking about enabling
developers to successfully build applications on Kubernetes, it’s important to think
about the key goals around onboarding, iterating, testing, and debugging applica‐
tions. Likewise, it pays to invest in some basic tooling specific to user onboarding,
namespace provisioning, and cluster services like basic log aggregation. Viewing a
development cluster and your code repositories as an opportunity to standardize
and apply best practices will ensure that you have happy and productive developers
successfully building code to deploy to your production Kubernetes clusters.

Summary | 35

CHAPTER 3

Monitoring and Logging in Kubernetes

In this chapter, we discuss best practices for monitoring and logging in Kubernetes.
We’ll dive into the details of different monitoring patterns, important metrics to
collect, and building dashboards from these raw metrics. We then wrap up with
examples of implementing monitoring for your Kubernetes cluster.

Metrics Versus Logs
You first need to understand the difference between log collection and metrics collec‐
tion. They are complementary but serve different purposes:

Metrics
A series of numbers measured over a period of time.

Logs
Logs keep track of what happens while a program is running, including any
errors, warnings, or notable events that occur.

A example of where you would need to use both metrics and logging is when an
application is performing poorly. Our first indication of the issue might be an alert
of high latency on the pods hosting the application, but the metrics might not give a
good indication of the issue. We then can look into our logs to investigate errors that
are being emitted from the application.

Monitoring Techniques
Closed-box monitoring focuses on monitoring from the outside of an application and
is what’s been used traditionally when monitoring systems for components like CPU,
memory, storage, and so on. Closed-box monitoring can still be useful for monitoring
at the infrastructure level, but it lacks insights and context into how the application is

37

•
•
•

•
•
•

operating. For example, to test whether a cluster is healthy, we might schedule a pod,
and if it’s successful, we know that the scheduler and service discovery are healthy
within our cluster, so we can assume the cluster components are healthy.

Open-box monitoring focuses on the details in the context of the application state,
such as total HTTP requests, number of 500 errors, latency of requests, and so on.
With open-box monitoring, we can begin to understand the why of our system state.
It allows us to ask, “Why did the disk fill up?” and not just state, “The disk filled up.”

Monitoring Patterns
You might look at monitoring and say, “How difficult can this be? We’ve always
monitored our systems.” The concept of monitoring isn’t new, and we have many
tools at our disposal to help us understand how our systems are performing. But
platforms like Kubernetes are much more dynamic and transient, so you’ll need to
change your thinking about how to monitor these environments. For example, when
monitoring a virtual machine (VM) you expect that VM to be up 24/7 and all its state
preserved. In Kubernetes, pods can be very dynamic and short-lived, so you need to
have monitoring in place that can handle this dynamic and transient nature.

There are two monitoring patterns to focus on when monitoring distributed systems.
The USE method, popularized by Brendan Gregg, focuses on the following:

• U—Utilization
• S—Saturation
• E—Errors

This method is focused on infrastructure monitoring because there are limitations
on using it for application-level monitoring. The USE method is described as “For
every resource, check utilization, saturation, and error rates.” This method lets you
quickly identify resource constraints and error rates of your systems. For example,
to check the health of the network for your nodes in the cluster, you will want to
monitor the utilization, saturation, and error rate to be able to easily identify any
network bottlenecks or errors in the network stack. The USE method is a tool in a
larger toolbox and is not the only method you will utilize to monitor your systems.

Another monitoring approach, called the RED method, was popularized by Tom
Wilkie. The RED method approach is focused on the following:

• R—Rate
• E—Errors
• D—Duration

38 | Chapter 3: Monitoring and Logging in Kubernetes

•
•
•

The philosophy was taken from Google’s Four Golden Signals:

Latency
How long it takes to serve a request

Traffic
How much demand is placed on your system

Errors
The rate of requests that are failing

Saturation
How utilized your service is

As an example, you could use this method to monitor a frontend service running in
Kubernetes to calculate the following:

• How many requests is my frontend service processing?
• How many 500 errors are users of the service receiving?
• Is the service overutilized by requests?

As you can see from the previous example, this method is more focused on the users’
experience with the service.

The USE and RED methods are complementary given that the USE method focuses
on the infrastructure components and the RED method focuses on monitoring the
end-user experience for the application.

Kubernetes Metrics Overview
Now that we know the different monitoring techniques and patterns, let’s look at
what components you should be monitoring in your Kubernetes cluster. A Kuber‐
netes cluster consists of control-plane components and node components. The
control-plane components consist of the API server, etcd, scheduler, and controller
manager. The nodes consist of the kubelet, container runtime, kube-proxy, kube-dns,
and pods. You need to monitor all these components to ensure a healthy cluster and
application.

Kubernetes exposes these metrics in a variety of ways, so let’s look at different
components that you can use to collect metrics within your cluster.

cAdvisor
Container Advisor, or cAdvisor, is an open source project that collects resources
and metrics for containers running on a node. cAdvisor is built into the Kubernetes
kubelet, which runs on every node in the cluster. It collects memory and CPU metrics

Kubernetes Metrics Overview | 39

through the Linux control group (cgroup) tree. If you are not familiar with cgroups,
it’s a Linux kernel feature that allows isolation of resources for CPU, disk I/O, or
network I/O. cAdvisor will also collect disk metrics through statfs, which is built into
the Linux kernel. These are implementation details you don’t really need to worry
about, but you should understand how these metrics are exposed and the type of
information you can collect. You should consider cAdvisor as the source of truth for
all container metrics.

Metrics Server
The Kubernetes metrics server and Metrics Server API replace the deprecated Heap‐
ster. Heapster had some architectural disadvantages with how it implemented the
data sink, which caused a lot of vendored solutions in the core Heapster code base.
This issue was solved by implementing a resource and Custom Metrics API as
an aggregated API in Kubernetes. This allows implementations to be switched out
without changing the API.

There are two aspects to understand in the Metrics Server API and metrics server.

First, the canonical implementation of the Resource Metrics API is the metrics server.
The metrics server gathers resource metrics such as CPU and memory. It gathers
these metrics from the kubelet’s API and then stores them in memory. Kubernetes
uses these resource metrics in the scheduler, Horizontal Pod Autoscaler (HPA), and
Vertical Pod Autoscaler (VPA).

Second, the Custom Metrics API allows monitoring systems to collect arbitrary
metrics. This allows monitoring solutions to build custom adapters that will allow
for extending outside the core resource metrics. For example, Prometheus built one
of the first custom metrics adapters, which allows you to use the HPA based on a
custom metric. This opens up better scaling based on your use case because now you
can bring in metrics like queue size and scale based on a metric that might be external
to Kubernetes.

Now that there is a standardized Metrics API, this opens up many possibilities to
scale outside the plain old CPU and memory metrics.

kube-state-metrics
kube-state-metrics is a Kubernetes add-on that monitors the object stored in Kuber‐
netes. Where cAdvisor and Metrics Server are used to provide detailed metrics on
resource usage, kube-state-metrics is focused on identifying conditions on Kuber‐
netes objects deployed to your cluster.

40 | Chapter 3: Monitoring and Logging in Kubernetes

•
—
—
—

•
—
—
—

•
—
—
—

•
—
—
—

•
•
•
•

Following are some questions that kube-state-metrics can answer for you:

• Pods
— How many pods are deployed to the cluster?
— How many pods are in a pending state?
— Are there enough resources to serve a pods request?

• Deployments
— How many pods are in a running state versus a desired state?
— How many replicas are available?
— What deployments have been updated?

• Nodes
— What’s the status of my nodes?
— What are the allottable CPU cores in my cluster?
— Are there any nodes that are unschedulable?

• Jobs
— When did a job start?
— When did a job complete?
— How many jobs failed?

As of this writing, kube-state-metrics tracks many object types. These are always
expanding, and you can find the documentation in the GitHub repository.

What Metrics Do I Monitor?
The easy answer is “everything,” but if you try to monitor too much, you can create
noise that filters out the real signals into which you need to have insight. When we
think about monitoring in Kubernetes, we want a layered approach that takes into
account the following:

• Physical or virtual nodes
• Cluster components
• Cluster add-ons
• End-user applications

What Metrics Do I Monitor? | 41

https://oreil.ly/bdTp2

•
—
—
—
—

•
—

•
—
—

•
—
—
—
—

Using this layered approach to monitoring allows you to more easily identify the
correct signals in your monitoring system. It allows you to approach issues in a more
targeted way. For example, if you have pods going into a pending state, you can start
with resource utilization of the nodes, and if all is OK, you can target cluster-level
components.

Following are metrics you would want to target in your system:

• Nodes
— CPU utilization
— Memory utilization
— Network utilization
— Disk utilization

• Cluster components
— etcd latency

• Cluster add-ons
— Cluster Autoscaler
— Ingress controller

• Application
— Container memory utilization and saturation
— Container CPU utilization
— Container network utilization and error rate
— Application framework–specific metrics

Monitoring Tools
Many monitoring tools can integrate with Kubernetes, and more arrive every day,
building on their feature set to better integrate with Kubernetes. Following are a few
popular tools that integrate with Kubernetes:

Prometheus
Prometheus is an open source systems monitoring and alerting toolkit originally
built at SoundCloud. Since its inception in 2012, many companies and organiza‐
tions have adopted Prometheus, and the project has a very active developer and
user community. It is now a standalone open source project and maintained
independent of any company. To emphasize this, and to clarify the project’s gov‐
ernance structure, Prometheus joined the Cloud Native Computing Foundation
(CNCF) in 2016 as the second hosted project, after Kubernetes.

42 | Chapter 3: Monitoring and Logging in Kubernetes

InfluxDB
InfluxDB is a time-series database designed to handle high write and query loads.
It is an integral component of the TICK (Telegraf, InfluxDB, Chronograf, and
Kapacitor) stack. InfluxDB is meant to be used as a backing store for any use case
involving large amounts of timestamped data, including DevOps monitoring,
application metrics, IoT sensor data, and real-time analytics.

Datadog
Datadog provides a monitoring service for cloud-scale applications, providing
monitoring of servers, databases, tools, and services through a SaaS-based data
analytics platform.

Sysdig
Sysdig Monitor is a commercial tool that provides Docker monitoring and
Kubernetes monitoring for container-native apps. Sysdig also allows you to col‐
lect, correlate, and query Prometheus metrics with direct Kubernetes integration.

Cloud provider tools
All major cloud providers provide monitoring tools for their different solutions.
These tools are typically integrated into the cloud provider’s ecosystem and
provide a good starting point for monitoring your Kubernetes cluster. Following
are some examples of cloud provider tools:

GCP Stackdriver
Stackdriver Kubernetes Engine Monitoring is designed to monitor Google
Kubernetes Engine (GKE) clusters. It manages monitoring and logging
services together and its interface provides a dashboard customized for GKE
clusters. Stackdriver Monitoring provides visibility into the performance,
uptime, and overall health of cloud-powered applications. It collects metrics,
events, and metadata from Google Cloud Platform (GCP), Amazon Web
Services (AWS), hosted uptime probes, and application instrumentation.

Microsoft Azure Monitor for containers
Azure Monitor for containers is a feature designed to monitor the perfor‐
mance of container workloads deployed to either Azure Container Instan‐
ces or managed Kubernetes clusters hosted on Azure Kubernetes Service.
Monitoring your containers is critical, especially when you’re running a
production cluster, at scale, with multiple applications. Azure Monitor for
containers gives you performance visibility by collecting memory and pro‐
cessor metrics from controllers, nodes, and containers that are available
in Kubernetes through the Metrics API. Container logs are also collected.
After you enable monitoring from Kubernetes clusters, metrics and logs are
automatically collected for you through a containerized version of the Log
Analytics agent for Linux.

Monitoring Tools | 43

AWS Container Insights
If you use Amazon Elastic Container Service (ECS), Amazon Elastic Kuber‐
netes Service, or other Kubernetes platforms on Amazon EC2, you can
use CloudWatch Container Insights to collect, aggregate, and summarize
metrics and logs from your containerized applications and microservices.
The metrics include utilization for resources such as CPU, memory, disk, and
network. Container Insights also provides diagnostic information, such as
container restart failures, to help you isolate issues and resolve them quickly.

One important aspect when looking at implementing a tool to monitor metrics is to
look at how the metrics are stored. Tools that provide a time-series database with
key/value pairs will give you a higher degree of attributes for the metric.

Always evaluate monitoring tools you already have, because taking
on a new monitoring tool has a learning curve and a cost due to the
operational implementation of the tool. Many of the monitoring
tools now have integration into Kubernetes, so evaluate which ones
you have today and whether they will meet your requirements.

Monitoring Kubernetes Using Prometheus
In this section we focus on monitoring metrics with Prometheus, which provides
good integrations with Kubernetes labeling, service discovery, and metadata. The
high-level concepts we implement throughout the chapter will also apply to other
monitoring systems.

Prometheus is an open source project hosted by the CNCF. It was originally devel‐
oped at SoundCloud, and a lot of its concepts are based on Google’s internal monitor‐
ing system, Borgmon. It implements a multidimensional data model with keypairs
that work much like how the Kubernetes labeling system works. Prometheus exposes
metrics in a human-readable format, as in the following example:

HELP node_cpu_seconds_total Seconds the CPU is spent in each mode.
TYPE node_cpu_seconds_total counter
node_cpu_seconds_total{cpu="0",mode="idle"} 5144.64
node_cpu_seconds_total{cpu="0",mode="iowait"} 117.98

To collect metrics, Prometheus uses a pull model in which it scrapes a metrics
endpoint to collect and ingest the metrics into the Prometheus server. Systems like
Kubernetes already expose their metrics in a Prometheus format, making it simple
to collect metrics. Many other Kubernetes ecosystem projects (NGINX, Traefik, Istio,
Linkerd, etc.) also expose their metrics in a Prometheus format. Prometheus also
can use exporters, which allow you to take emitted metrics from your service and
translate them to Prometheus-formatted metrics.

Prometheus has a very simplified architecture, as depicted in Figure 3-1.

44 | Chapter 3: Monitoring and Logging in Kubernetes

Figure 3-1. Prometheus architecture

You can install Prometheus within the cluster or outside the cluster.
It’s a good practice to monitor your cluster from a “utility cluster”
to avoid a production issue also affecting your monitoring system.
Tools like Thanos provide high availability for Prometheus and
allow you to export metrics into an external storage system.

A deep dive into the Prometheus architecture is beyond the scope of this book, and
you should refer to one of the dedicated books on this topic. Prometheus: Up &
Running (O’Reilly) is a good in-depth book to get you started.

So, let’s dive in and get Prometheus set up on our Kubernetes cluster. There are
many different ways to deploy Prometheus, and the deployment will depend on your
specific implementation. We will install the Prometheus Operator with Helm:

Prometheus server
Pulls and stores metrics being collected from systems.

Prometheus Operator
Makes the Prometheus configuration Kubernetes native, and manages and oper‐
ates Prometheus and Alertmanager clusters. Allows you to create, destroy, and
configure Prometheus resources through native Kubernetes resource definitions.

Node Exporter
Exports host metrics from Kubernetes nodes in the cluster.

kube-state-metrics
Collects Kubernetes-specific metrics.

Alertmanager
Allows you to configure and forward alerts to external systems.

Grafana
Provides visualization on dashboard capabilities for Prometheus.

Monitoring Kubernetes Using Prometheus | 45

https://oreil.ly/7e6Wf
https://oreil.ly/NewNE
https://oreil.ly/NewNE

First, we’ll start by getting minikube setup to deploy Prometheus to. We are using
Macs so we’ll use brew to install minikube. You can also install minikube from the
minikube website.

brew install minikube

Now we’ll install kube-prometheus-stack (formerly Prometheus Operator) and pre‐
pare our cluster to start monitoring the Kubernetes API server for changes.

Create a namespace for monitoring:

kubectl create ns monitoring

Add the prometheus-community Helm chart repository:

helm repo add prometheus-community
https://prometheus-community.github.io/helm-charts

Add the Helm Stable chart repository:

helm repo add stable https://charts.helm.sh/stable

Update the chart repository:

helm repo update

Install the kube-prometheus-stack chart:

helm install --namespace monitoring prometheus
prometheus-community/kube-prometheus-stack

Let’s check to ensure that all the pods are running:

kubectl get pods -n monitoring

If installed correctly you should see the following pods:

kubectl get pods -n monitoring

NAME READY STATUS RESTARTS AGE
alertmanager-prometheus-kube-prometheus-alertm... 2/2 Running 1 79s
prometheus-grafana-6f7cf9b968-xtnzj 3/3 Running 0 97s
prometheus-kube-prometheus-operator-7bdb94567b... 1/1 Running 0 97s
prometheus-kube-state-metrics-6bdd65d76-s5r5j 1/1 Running 0 97s
prometheus-prometheus-kube-prometheus-promethe... 2/2 Running 0 78s
prometheus-prometheus-node-exporter-dgrlf 1/1 Running 0 98s

Now we’ll create a tunnel to the Grafana instance that is included with kube-
prometheus-stack. This will allow us to connect to Grafana from our local machine.

This creates a tunnel to our localhost on port 3000. Now we can open a web browser
and connect to Grafana on http://127.0.0.1:3000.

46 | Chapter 3: Monitoring and Logging in Kubernetes

https://oreil.ly/BgFFL
http://127.0.0.1:3000

•
•

We talked earlier in the chapter about employing the USE method, so let’s gather
some node metrics on CPU utilization and saturation. Kube-prometheus-stack pro‐
vides visualizations for these common USE method metrics we want to track. The
great thing about the kube-prometheus-stack you installed is that it comes with
prebuilt Grafana dashboards you can use.

Now we’ll create a tunnel to the Grafana instance that is included with kube-
prometheus-stack. This will allow us to connect to Grafana from our local machine:

kubectl port-forward -n monitoring svc/prometheus-grafana 3000:80

Point your web browser at http://localhost:3000 and log in using the following
credentials:

• Username: admin
• Password: prom-operator

Under the Grafana dashboards you’ll find a dashboard called Kubernetes / USE
Method / Cluster. This dashboard gives you a good overview of the utilization and
saturation of the Kubernetes cluster, which is at the heart of the USE method. Fig
ure 3-2

‐
 presents an example of the dashboard.

Figure 3-2. A Grafana dashboard

Go ahead and take some time to explore the different dashboards and metrics that
you can visualize in Grafana.

Monitoring Kubernetes Using Prometheus | 47

http://localhost:3000

•
•

•
•

—
—
—

•
•

Avoid creating too many dashboards (aka “The Wall of Graphs”)
because this can be difficult for engineers to reason with in trouble‐
shooting situations. You might think having more information in a
dashboard means better monitoring, but the majority of the time it
causes more confusion for a user looking at the dashboard. Focus
your dashboard design on outcomes and time to resolution.

Logging Overview
Up to this point, we have discussed a lot about metrics and Kubernetes, but to get
the full picture of your environment, you also need to collect and centralize logs from
the Kubernetes cluster and the applications deployed to your cluster. With logging, it
might be easy to say, “Let’s just log everything,” but this can cause two issues:

• There is too much noise to find issues quickly.
• Logs can consume a lot of resources and come with a high cost.

There is no clear-cut answer to what exactly you should log because debug logs
become a necessary evil. Over time you’ll start to understand your environment bet‐
ter and learn what noise you can tune out from the logging system. Also, to address
the ever-increasing number of logs stored, you will need to implement a retention
and archival policy. From an end-user experience, having somewhere between 30 and
45 days’ worth of historical logs is a good fit. This allows for investigation of problems
that manifest over a longer period of time but also reduces the amount of resources
needed to store logs. If you require longer-term storage for compliance reasons, you’ll
want to archive the logs to more cost-effective resources.

In a Kubernetes cluster, there are multiple components to log. Following is a list of
components from which you should be collecting metrics:

• Node logs
• Kubernetes control-plane logs

— API server
— Controller manager
— Scheduler

• Kubernetes audit logs
• Application container logs

With node logs, you want to collect events that happen to essential node services.
For example, you will want to collect logs from the Docker daemon running on the
nodes. A healthy Docker daemon is essential for running containers on the node.
Collecting these logs will help you diagnose any issues that you might run into with

48 | Chapter 3: Monitoring and Logging in Kubernetes

the Docker daemon, and it will give you information into any underlying issues with
the daemon. There are also other essential services that you will want to log from the
underlying node.

The Kubernetes control plane consists of several components from which you’ll need
to collect logs to give you more insight into underlying issues within it. The Kuber‐
netes control plane is core to a healthy cluster, and you’ll want to aggregate the logs
that it stores on the host in /var/log/kube-APIserver.log, /var/log/kube-scheduler.log,
and /var/log/kube-controller-manager.log. The controller manager is responsible for
creating objects defined by the end user. As an example, as a user you create a
Kubernetes service with type LoadBalancer and it just sits in a pending state; the
Kubernetes events might not give all the details to diagnose the issue. If you collect
the logs in a centralized system, it will give you more detail into the underlying issue
and a quicker way to investigate it.

You can think of Kubernetes audit logs as security monitoring because they give you
insight into who did what within the system. These logs can be very noisy, so you’ll
want to tune them for your environment. In many instances these logs can cause a
huge spike in your logging system when first initialized, so make sure that you follow
the Kubernetes documentation guidance on audit log monitoring.

Application container logs give you insight into the actual logs your application is
emitting. You can forward these logs to a central repository in multiple ways. The
first and recommended way is to send all application logs to STDOUT because this
gives you a uniform way of application logging, and a monitoring daemon set can
gather the logs directly from the Docker daemon. The other way is to use a sidecar
pattern and run a log-forwarding container next to the application container in a
Kubernetes pod. You might need to use this pattern if your application logs to the
filesystem.

There are many options and configurations for managing Kuber‐
netes audit logs. These audit logs can be very noisy and it can be
expensive to log all actions. You should consider looking at the
audit logging documentation so that you can fine-tune these logs
for your environment.

Tools for Logging
As with collecting metrics, there are many tools to collect logs from Kubernetes and
applications running in the cluster. You might already have tooling for this, but be
aware of how the tool implements logging. The tool should have the capability to run
as a Kubernetes DaemonSet, and have a solution to run as a sidecar for applications
that don’t send logs to STDOUT. An advantage of using an existing tool is that you
will already have operational knowledge of the tool.

Tools for Logging | 49

https://oreil.ly/L84dM

•
•
•
•
•
•

•
•
•

Some of the more popular tools with Kubernetes integration are:

• Loki
• Elastic Stack
• Datadog
• Sumo Logic
• Sysdig
• Cloud provider services (GCP Stackdriver, Azure Monitor for containers, and

Amazon CloudWatch)

When looking for a tool to centralize logs, hosted solutions can provide a lot of value
because they offload a lot of the operational cost. Hosting your own logging solution
seems great on day N, but as the environment grows, it can be very time consuming
to maintain the solution.

Logging by Using a Loki-Stack
For the purposes of this book, we use a Loki-Stack with prom-tail for logging for
our cluster. Implementing a Loki-Stack can be a good way to get started, but at
some point you’ll probably ask yourself, “Is it really worth managing my own logging
platform?” Typically, it’s not worth the effort because self-hosted logging solutions
are great at first, but become overly complex with time. Self-hosted logging solutions
become more operationally complex as your environment scales. There is no one
correct answer, so evaluate whether your business requirements need you to host
your own solution. There is also a hosted Loki solution (provided by Grafana), so you
can always move pretty easily if you choose not to host it yourself.

We will use the following for the logging stack:

• Loki
• prom-tail
• Grafana

Deploy Loki-Stack with Helm to your Kubernetes cluster with the following steps.

Add Loki-Stack Helm repo:

helm repo add grafana https://grafana.github.io/helm-charts

Update Helm repo:

helm repo update

helm upgrade --install loki --namespace=monitoring grafana/loki-stack

50 | Chapter 3: Monitoring and Logging in Kubernetes

•
•

This deploys Loki with prom-tail, which will allow us to forward logs to Loki and
visualize the logs using Grafana.

You should see the following pods deployed to your cluster:

kubectl get pods -n monitoring

NAME READY STATUS RESTARTS AGE
loki-0 1/1 Running 0 93s
loki-promtail-x7nw8 1/1 Running 0 93s

After all pods are “Running,” go ahead and connect to Grafana through port forward‐
ing to our localhost:

kubectl port-forward -n monitoring svc/prometheus-grafana 3000:80

Now, point your web browser at http://localhost:3000 and log in using the following
credentials:

• Username: admin
• Password: prom-operator

Under the Grafana configuration you’ll find data sources, as shown in Figure 3-3.
We’ll then add Loki as a Data Source.

Figure 3-3. The Grafana data source

We will then add a new data source and add Loki as the data source (see Figure 3-4).

Figure 3-4. Loki datasource

In the Loki settings page (Figure 3-5), fill in the URL with http://loki:3100, then click
the Save & Test button.

Logging by Using a Loki-Stack | 51

http://localhost:3000
http://loki:3100

Figure 3-5. Loki configuration

In Grafana, you can perform ad hoc queries on the logs, and you can build out
dashboards to give you an overview of the environment.

To explore the logs that the Loki-Stack has collected we can use the Explore function
in Grafana, as shown in Figure 3-6. This will allow us to run a query against the logs
that have been collected.

Figure 3-6. Explore Loki logs

For the label filter you will need the following filter:

namespace = kube-system

Go ahead and take some time to explore the different logs that you can visualize from
Loki and Grafana.

52 | Chapter 3: Monitoring and Logging in Kubernetes

Alerting
Alerting is a double-edged sword, and you need to strike a balance between what
you alert on versus what should just be monitored. Alerting on too much causes
alert fatigue, and important events will be lost in all the noise. An example would
be generating an alert any time a pod fails. You might be asking, “Why wouldn’t
I want to monitor for a pod failure?” Well, the beauty of Kubernetes is that it
provides features to automatically check the health of a container and restart the
container automatically. You really want to focus alerting on events that affect your
Service-Level Objectives (SLOs). SLOs are specific measurable characteristics such
as availability, throughput, frequency, and response time that you agree upon with
the end user of your service. Setting SLOs sets expectations with your end users and
provides clarity on how the system should behave. Without an SLO, users can form
their opinion, which might be an unrealistic expectation of the service. Alerting in a
system like Kubernetes needs an entirely new approach from what we are typically
accustomed to and needs to focus on how the end user is experiencing the service.
For example, if your SLO for a frontend service is a 20-ms response time and you are
seeing higher latency than average, you want to be alerted on the problem.

You need to decide what alerts are good and require intervention. In typical monitor‐
ing, you might be accustomed to alerting on high CPU usage, memory usage, or
processes not responding. These might seem like good alerts, but they probably don’t
indicate an issue that someone needs to take immediate action on and that requires
notifying an on-call engineer. An alert to an on-call engineer should be an issue
that needs immediate human attention and is affecting the UX of the application. If
you have ever experienced a “that issue resolved itself ” scenario, then that is a good
indication that the alert did not need to contact an on-call engineer.

One way to handle alerts that don’t need immediate action is to focus on automating
the remediation of the cause. For example, when a disk fills up, you could automate
the deletion of logs to free up space on the disk. Also, utilizing Kubernetes liveness
probes in your app deployment can help auto-remediate issues with a process that is
not responding in the application.

When building alerts, you also need to consider alert thresholds; if you set thresholds
too short, then you can get a lot of false positives with your alerts. It’s generally
recommended to set a threshold of at least five minutes to help eliminate false
positives. Coming up with standard thresholds can help define a standard and avoid
micromanaging many different thresholds. For example, you might want to follow a
specific pattern of 5 minutes, 10 minutes, 30 minutes, 1 hour, and so on.

When building notifications for alerts, you want to ensure that you provide rele‐
vant information in the notification. For example, you might provide a link to a
“playbook” that gives troubleshooting or other helpful information on resolving the

Alerting | 53

•

•

•

•

•

•

issue. You should also include information on the datacenter, region, app owner, and
affected system in notifications. Providing all this information will allow engineers to
quickly formulate a theory around the issue.

You also need to build notification channels to route alerts that are fired. When
thinking about “Who do I notify when an alert is triggered?” you should ensure
that notifications are not just sent to a distribution list or team emails. What tends
to happen if alerts are sent to larger groups is that they end up getting filtered out
because users see these as noise. You should route notifications to the user who is
going to take responsibility for the issue.

With alerting, you’ll never get it perfect on day one, and we could argue it might
never be perfect. You just want to make sure that you incrementally improve on
alerting to preclude alert fatigue, which can cause many issues with staff burnout and
your systems.

For further insight on how to approach alerting on and managing
systems, read “My Philosophy on Alerting” by Rob Ewaschuk,
which is based on Rob’s observations as a site reliability engineer
(SRE) at Google.

Best Practices for Monitoring, Logging, and Alerting
Following are the best practices that you should adopt regarding monitoring, logging,
and alerting.

Monitoring
• Monitor nodes and all Kubernetes components for utilization, saturation, and

error rates, and monitor applications for rate, errors, and duration.
• Use closed-box monitoring to monitor for symptoms and not predictive health

of a system.
• Use open-box monitoring to inspect the system and its internals with

instrumentation.
• Implement time-series-based metrics to gain high-precision metrics that also

allow you to have insight into the behavior of your application.
• Utilize monitoring systems like Prometheus that provide key labeling for high

dimensionality; this will give a better signal to symptoms of an impacting issue.
• Use average metrics to visualize subtotals and metrics based on factual data.

Utilize sum metrics to visualize the distribution across a specific metric.

54 | Chapter 3: Monitoring and Logging in Kubernetes

https://oreil.ly/YPxju

•

•

•

•

•

•

Logging
• You should use logging in combination with metrics monitoring to get the full

picture of how your environment is operating.
• Be cautious of storing logs for more than 30 to 45 days; if needed, use cheaper

resources for long-term archiving.
• Limit usage of log forwarders in a sidecar pattern, as they will utilize a lot more

resources. Opt for using a DaemonSet for the log forwarder and sending logs to
STDOUT.

Alerting
• Be cautious of alert fatigue because it can lead to bad behaviors in people and

processes.
• Always look at incrementally improving on alerting and accept that it will not

always be perfect.
• Alert for symptoms that affect your SLOs and customers and not for transient

issues that don’t need immediate human attention.

Summary
In this chapter we discussed the patterns, techniques, and tools that can be used for
monitoring our systems with metrics and log collection. The most important piece to
take away from this chapter is that you need to rethink how you perform monitoring
and do it from the outset. Too many times we see this implemented after the fact, and
it can get you into a very bad place in understanding your system. Monitoring is all
about having better insight into a system and being able to provide better resiliency,
which in turn provides a better end-user experience for your application. Monitoring
distributed applications and distributed systems like Kubernetes requires a lot of
work, so you must be ready for it at the beginning of your journey.

Summary | 55

CHAPTER 4

Configuration, Secrets, and RBAC

The composable nature of containers allows us as operators to introduce configura‐
tion data into a container at runtime. This makes it possible for us to decouple an
application’s function from the environment it runs in. By means of the conventions
allowed in the container runtime to pass through either environment variables or
mount external volumes into a container at runtime, you can effectively change the
configuration of the application upon its instantiation. As a developer, it is important
to consider the dynamic nature of this behavior and allow for the use of environment
variables or the reading of configuration data from a specific path available to the
application runtime user.

When moving sensitive data such as secrets into a native Kubernetes API object,
it is important to understand how Kubernetes secures access to the API. The most
commonly implemented security method in use in Kubernetes is Role-Based Access
Control (RBAC) to implement a fine-grained permission structure around actions
that can be taken against the API by specific users or groups. This chapter covers
some of the best practices regarding RBAC and also provides a small primer.

Configuration Through ConfigMaps and Secrets
Kubernetes allows you to natively provide configuration information to our applica‐
tions through ConfigMaps or secret resources. The main differentiator between the
two is the way a pod stores the receiving information and how the data is stored in
the etcd data store.

57

ConfigMaps
It is very common to have applications consume configuration information through
some type of mechanism such as command-line arguments, environment variables,
or files that are available to the system. Containers allow the developer to decouple
this configuration information from the application, which allows for true application
portability. The ConfigMap API allows for the injection of supplied configuration
information. ConfigMaps are very adaptable to the application’s requirements and
can provide key/value pairs or complex bulk data such as JSON, XML, or proprietary
configuration data.

The ConfigMaps not only provide configuration information for pods, but they can
also provide information to be consumed for more complex system services such as
controllers, CRDs, operators, and so on. As mentioned earlier, the ConfigMap API
is meant more for string data that is not really sensitive data. If your application
requires more sensitive data, the Secrets API is more appropriate.

For your application to use the ConfigMap data, it can be injected as either a volume
mounted into the pod or as environment variables.

Secrets
Many of the attributes and reasons for which you would want to use a ConfigMap
apply to secrets. The main differences lie in the fundamental nature of a secret.
Secret data should be stored and handled in a way that can be easily hidden and
possibly encrypted at rest if the environment is configured as such. The secret data is
represented as base64-encoded information, and it is critical to understand that this
is not encrypted. As soon as the secret is injected into the pod, the pod itself can see
the secret data in plain text.

Secret data is meant to be small amounts of data, limited by default in Kubernetes
to 1 MB in size for the base64-encoded data, so ensure that the actual data is
approximately 750 KB because of the overhead of the encoding. There are three types
of secrets in Kubernetes:

generic

This is typically just regular key/value pairs that are created from a file, a direc‐
tory, or from string literals using the --from-literal= parameter, as follows:

kubectl create secret generic mysecret --from-literal=key1=$3cr3t1
--from-literal=key2=@3cr3t2

docker-registry

This is used by the kubelet when passed in a pod template if there is an image
Pullsecret to provide the credentials needed to authenticate to a private Docker
registry:

58 | Chapter 4: Configuration, Secrets, and RBAC

•

kubectl create secret docker-registry registryKey --docker-server
myreg.azurecr.io --docker-username myreg --docker-password
$up3r$3cr3tP@ssw0rd --docker-email ignore@dummy.com

tls

This creates a Transport Layer Security (TLS) secret from a valid public/private
key pair. As long as the cert is in a valid PEM format, the key pair will be encoded
as a secret and can be passed to the pod to use for SSL/TLS needs:

kubectl create secret tls www-tls --key=./path_to_key/wwwtls.key
--cert=./path_to_crt/wwwtls.crt

Secrets are also mounted into tmpfs only on the nodes that have a pod that requires
the secret and are deleted when the pod that needs the secret is gone. This prevents
any secrets from being left behind on the disk of the node. Although this might seem
secure, it is important to know that, by default, secrets are stored in the etcd data
store of Kubernetes in plain text, and it is important that the system administrators
or cloud service provider take efforts to ensure the security of the etcd environment,
including mTLS between the etcd nodes and enabling encryption at rest for the etcd
data. More recent versions of Kubernetes use etcd3 and have the ability to enable
etcd native encryption; however, this is a manual process that must be configured in
the API server configuration by specifying a provider and the appropriate key media
to properly encrypt secret data held in etcd. As of Kubernetes v1.10 (it has been
promoted to beta in v1.12), we have the KMS provider, which promises to provide a
more secure key process by using third-party KMS systems to hold the proper keys.

Common Best Practices for the ConfigMap
and Secrets APIs
The majority of issues that arise from the use of a ConfigMap or secret are incorrect
assumptions about how changes are handled when the data held by the object is
updated. By understanding the rules of the road and adding a few tricks to make it
easier to abide by those rules, you can steer away from trouble:

• To support dynamic changes to your application without having to redeploy
new versions of the pods, mount your ConfigMaps/Secrets as a volume and
configure your application with a file watcher to detect the changed file data
and reconfigure itself as needed. The following code shows a Deployment that
mounts a ConfigMap and a Secret file as a volume:

apiVersion: v1
kind: ConfigMap
metadata:

name: nginx-http-config
namespace: myapp-prod

data:

Common Best Practices for the ConfigMap and Secrets APIs | 59

config: |
http {
server {
location / {
root /data/html;
}

location /images/ {
root /data;

}
}

}

apiVersion: v1
kind: Secret
metadata:
name: myapp-api-key

type: Opaque
data:
myapikey: YWRtd5thSaW4=

apiVersion: apps/v1
kind: Deployment
metadata:
name: mywebapp
namespace: myapp-prod

spec:
containers:
- name: nginx
image: nginx
ports:
- containerPort: 8080
volumeMounts:
- mountPath: /etc/nginx
name: nginx-config

- mountPath: /usr/var/nginx/html/keys
name: api-key

volumes:
- name: nginx-config
configMap:
name: nginx-http-config
items:
- key: config
path: nginx.conf

- name: api-key
secret:
name: myapp-api-key
secretname: myapikey

60 | Chapter 4: Configuration, Secrets, and RBAC

•

•

•

•

•

There are a couple of things to consider when using volumeMounts.
First, as soon as the ConfigMap/Secret is created, add it as a
volume in your pod’s specification. Then mount that volume
into the container’s filesystem. Each property name in the Con‐
figMap/Secret will become a new file in the mounted directory,
and the contents of each file will be the value specified in the
ConfigMap/Secret. Second, avoid mounting ConfigMaps/Secrets
using the volumeMounts.subPath property. This will prevent the
data from being dynamically updated in the volume if you update a
ConfigMap/Secret with new data.

• ConfigMaps/Secrets must exist in the namespace for the pods that will consume
them prior to the pod being deployed. The optional flag can be used to prevent
the pods from not starting if the ConfigMap/Secret is not present.

• Use an admission controller to ensure specific configuration data or to prevent
deployments that do not have specific configuration values set. An example
would be if you require all production Java workloads to have certain JVM
properties set in production environments.

• If you’re using Helm to release applications into your environment, you can use
a life cycle hook to ensure the ConfigMap/Secret template is deployed before the
Deployment is applied.

• Some applications require their configuration to be applied as a single file such
as a JSON or YAML file. ConfigMap/Secret allows an entire block of raw data by
using the | symbol, as demonstrated here:

apiVersion: v1
kind: ConfigMap
metadata:

name: config-file
data:

config: |
{

"iotDevice": {
"name": "remoteValve",
"username": "CC:22:3D:E3:CE:30",
"port": 51826,
"pin": "031-45-154"

}
}

• If the application uses system environment variables to determine its configura‐
tion, you can use the injection of the ConfigMap data to create an environment
variable mapping into the pod. There are two main ways to do this: mounting
every key/value pair in the ConfigMap as a series of environment variables
into the pod using envFrom and then using configMapRef or secretRef, or

Common Best Practices for the ConfigMap and Secrets APIs | 61

•

•

assigning individual keys with their respective values using the configMapKeyRef
or secretKeyRef.

• If you’re using the configMapKeyRef or secretKeyRef method, be aware that if
the actual key does not exist, this will prevent the pod from starting.

• If you’re loading all the key/value pairs from the ConfigMap/Secret into the pod
using envFrom, any keys that are considered invalid environment values will be
skipped; however, the pod will be allowed to start. The event for the pod will have
an event with reason InvalidVariableNames and the appropriate message about
which key was skipped. The following code is an example of a Deployment with a
ConfigMap and Secret reference as an environment variable:

apiVersion: v1
kind: ConfigMap
metadata:
name: mysql-config

data:
mysqldb: myappdb1
user: mysqluser1

apiVersion: v1
kind: Secret
metadata:
name: mysql-secret

type: Opaque
data:
rootpassword: YWRtJasdhaW4=
userpassword: MWYyZDigKJGUyfgKJBmU2N2Rm

apiVersion: apps/v1
kind: Deployment
metadata:
name: myapp-db-deploy

spec:
selector:
matchLabels:
app: myapp-db

template:
metadata:
labels:
app: myapp-db

spec:
containers:
- name: myapp-db-instance
image: mysql
resources:
limits:
memory: "128Mi"
cpu: "500m"

ports:
- containerPort: 3306

62 | Chapter 4: Configuration, Secrets, and RBAC

•

•

env:
- name: MYSQL_ROOT_PASSWORD
valueFrom:
secretKeyRef:
name: mysql-secret
key: rootpassword

- name: MYSQL_PASSWORD
valueFrom:
secretKeyRef:
name: mysql-secret
key: userpassword

- name: MYSQL_USER
valueFrom:
configMapKeyRef:
name: mysql-config
key: user

- name: MYSQL_DB
valueFrom:
configMapKeyRef:
name: mysql-config
key: mysqldb

• If there is a need to pass command-line arguments to your containers, environ‐
ment variable data can be sourced using $(ENV_KEY) interpolation syntax:

[...]
spec:
containers:
- name: load-gen
image: busybox
command: ["/bin/sh"]

args: ["-c", "while true; do curl $(WEB_UI_URL); sleep 10;done"]
ports:
- containerPort: 8080
env:
- name: WEB_UI_URL
valueFrom:
configMapKeyRef:

name: load-gen-config
key: url

• When consuming ConfigMap/Secret data as environment variables, it is very
important to understand that updates to the data in the ConfigMap/Secret will
not update in the pod and will require a pod restart. This can be done either by
deleting the pods and letting the ReplicaSet controller create a new pod, or by
triggering a Deployment update, which will follow the proper application update
strategy as declared in the Deployment specification.

Common Best Practices for the ConfigMap and Secrets APIs | 63

•

•

• It is easier to assume that all changes to a ConfigMap/Secret require an update
to the entire Deployment; this ensures that even if you’re using environment
variables or volumes, the code will take the new configuration data. To make
this easier, you can use a CI/CD pipeline to update the name property of the
ConfigMap/Secret and also update the reference in the Deployment, which will
then trigger a Deployment update through normal Kubernetes update strategies.
We will explore this in the following example code. If you’re using Helm to
release your application code into Kubernetes, you can take advantage of an
annotation in the Deployment template to check the sha256 checksum of the
ConfigMap/Secret. This triggers Helm to update the Deployment using the helm
upgrade command when the data within a ConfigMap/Secret is changed:

apiVersion: apps/v1
kind: Deployment
[...]
spec:
template:
metadata:
annotations:
checksum/config: {{ include (print $.Template.BasePath "/configmap.yaml")

. | sha256sum }}
[...]

Best Practices Specific to Secrets
Because of the nature of sensitive data of the Secrets API, there are naturally more
specific best practices, which are mainly around the security of the data itself:

• If your workload does not need to access the Kubernetes API directly it is good
practice to block the automounting of the API Credential for the Service Account
(Default or operator created). This will reduce the API calls to the API server as
a watch is used to update the API credential data upon the credential expiring. In
very large clusters or clusters with a lot of pods, this will reduce the calls to the
Control Plane thus reducing a possible cause of performance degradation. This
can be defined on the ServiceAccount or the Pod Spec itself:

apiVersion: v1
kind: ServiceAccount
metadata:
name: app1-svcacct

automountServiceAccountToken: false
[...]

apiVersion: v1
kind: Pod
metadata:
name: app1-pod

64 | Chapter 4: Configuration, Secrets, and RBAC

•

•

•

spec:
serviceAccountName: app1-svcacct
automountServiceAccountToken: false

[...]

• The original specification for the Secrets API outlined a pluggable architecture
to allow the actual storage of the secret to be configurable based on require‐
ments. Solutions such as HashiCorp Vault, Aqua Security, Twistlock, AWS Secrets
Manager, Google Cloud KMS, or Azure Key Vault allow the use of external
storage systems for secret data using a higher level of encryption and auditabil‐
ity than what is offered natively in Kubernetes. The Linux Foundation project
ExternalSecrets Operator provides a native way to provide this functionality.

• Assign an imagePullSecrets to a serviceaccount that the pod will use to
automatically mount the secret without having to declare it in the pod.spec. You
can patch the default service account for the namespace of your application and
add the imagePullSecrets to it directly. This automatically adds it to all pods in
the namespace:

Create the docker-registry secret first
kubectl create secret docker-registry registryKey --docker-server
myreg.azurecr.io --docker-username myreg --docker-password $up3r$3cr3tP@ssw0rd
--docker-email ignore@dummy.com

patch the default serviceaccount for the namespace you wish to configure
kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name":
"registryKey"}]}'

• Use CI/CD capabilities to get secrets from a secure vault or encrypted store with
a Hardware Security Module (HSM) during the release pipeline. This allows for
separation of duties. Security management teams can create and encrypt the
secrets, and developers just need to reference the names of the secret expected.
This is also the preferred DevOps process to ensure a more dynamic application
delivery process.

RBAC
When working in large, distributed environments, it is very common that some type
of security mechanism is needed to prevent unauthorized access to critical systems.
There are numerous strategies around how to limit access to resources in computer
systems, but the majority all go through the same phases. Using an analogy of a
common experience such as flying to a foreign country can help explain the processes
that happen in systems like Kubernetes. We can use the common traveler’s experience
with a passport, travel visa, and customs or border guards to show the process:

RBAC | 65

Passport (subject authentication)
Usually you need to have a passport issued by some government agency that
will offer some sort of verification as to who you are. This would be equivalent
to a user account in Kubernetes. Kubernetes relies on an external authority
to authenticate users; however, service accounts are a type of account that is
managed directly by Kubernetes.

Visa or travel policy (authorization)
Countries will have formal agreements to accept travelers holding passports from
other countries through formal short-term agreements such as visas. The visas
will also outline what the visitor may do and for how long they may stay in the
visiting country, depending on the specific type of visa. This would be equivalent
to authorization in Kubernetes. Kubernetes has different authorization methods,
but RBAC is the one used most. This allows very granular access to different API
capabilities.

Border patrol or customs (admission control)
When entering a foreign country, usually there is a body of authority that will
check the requisite documents, including the passport and visa, and, in many
cases, inspect what is being brought into the country to ensure it abides by
that country’s laws. In Kubernetes this is equivalent to admission controllers.
Admission controllers can allow, deny, or change the requests into the API based
upon rules and policies that are defined. Kubernetes has many built-in admission
controllers such as PodSecurity, ResourceQuota, and ServiceAccount controllers.
Kubernetes also allows for dynamic controllers through the use of validating or
mutating admission controllers.

The focus of this section is the least understood and the most avoided of these three
areas: RBAC. Before we outline some of the best practices, we first must present a
primer on Kubernetes RBAC.

RBAC Primer
The RBAC process in Kubernetes has three main components that need to be defined:
the subject, the rule, and the role binding.

Subjects
The first component is the subject, the item that is actually being checked for access.
The subject is usually a user, a service account, or a group. As mentioned earlier, users
as well as groups are handled outside of Kubernetes by the authorization module
used. We can categorize these as basic authentication, x.509 client certificates, or
bearer tokens. The most common implementations use either x.509 client certificates
or some type of bearer token using something like an OpenID Connect system such
as Azure Active Directory (Azure AD), Salesforce, or Google.

66 | Chapter 4: Configuration, Secrets, and RBAC

Service accounts in Kubernetes are different from user accounts
in that they are namespace bound and internally stored in Kuber‐
netes; they are meant to represent processes, not people, and are
managed by native Kubernetes controllers.

Rules
Simply stated, this is the actual list of actions that can be performed on a specific
object (resource) or a group of objects in the API. Verbs align to typical create,
read, update, and delete (CRUD) type operations but with some added capabilities
in Kubernetes such as watch, list, and exec. The objects align to the different API
components and are grouped together in categories. Pod objects, as an example, are
part of the core API and can be referenced with apiGroup: "", whereas deployments
are under the app API group. This is the real power of the RBAC process and
probably what intimidates and confuses people when creating proper RBAC controls.

Roles
Roles allow the definition of scope of the rules defined. Kubernetes has two types
of roles, role and clusterRole, the difference being that role is specific to a
namespace, and clusterRole is a cluster-wide role across all namespaces. An exam‐
ple role definition with namespace scope would be as follows:

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:

namespace: default
name: pod-viewer

rules:
- apiGroups: [""] # "" indicates the core API group

resources: ["pods"]
verbs: ["get", "watch", "list"]

RoleBindings
The RoleBinding allows a mapping of a subject like a user or group to a specific role.
Bindings also have two modes: roleBinding, which is specific to a namespace, and
clusterRoleBinding, which is across the entire cluster. Here’s an example RoleBind‐
ing with namespace scope:

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:

name: noc-helpdesk-view
namespace: default

subjects:
- kind: User

name: helpdeskuser@example.com

RBAC | 67

•

•

•

•

•

•

apiGroup: rbac.authorization.k8s.io
roleRef:
kind: Role #this must be Role or ClusterRole
name: pod-viewer # this must match the name of the Role or ClusterRole

to bind to
apiGroup: rbac.authorization.k8s.io

RBAC Best Practices
RBAC is a critical component of running a secure, dependable, and stable Kubernetes
environment. The concepts underlying RBAC can be complex; however, adhering to
a few best practices can ease some of the major stumbling blocks:

• Applications that are developed to run in Kubernetes rarely ever need an
RBAC role and RoleBinding associated to them. Only if the application code
interacts directly with the Kubernetes API does the application require RBAC
configuration.

• If the application does need to directly access the Kubernetes API to perhaps
change configuration depending on endpoints being added to a service, or if it
needs to list all the pods in a specific namespace, the best practice is to create a
new service account that is then specified in the pod specification. Then, create a
role that has the least amount of privileges needed to accomplish its goal.

• Use an OpenID Connect service that enables identity management and, if
needed, two-factor authentication. This will allow for a higher level of identity
authentication. Map user groups to roles that have the least amount of privileges
needed to accomplish the job.

• Along with the aforementioned practice, you should use Just in Time (JIT) access
systems to allow site reliability engineers (SREs), operators, and those who might
need to have escalated privileges for a short period of time to accomplish a very
specific task. Alternatively, these users should have different identities that are
more heavily audited for sign-on, and those accounts should have more elevated
privileges assigned by the user account or group bound to a role.

• Specific service accounts should be used for CI/CD tools that deploy into your
Kubernetes clusters. This ensures auditability within the cluster and an under‐
standing of who might have deployed or deleted any objects in a cluster.

• If you’re still using Helm v2 to deploy applications, the default service account is
Tiller, deployed to kube-system. It is better to deploy Tiller into each namespace
with a service account specifically for Tiller that is scoped for that namespace.
In the CI/CD tool that calls the Helm install/upgrade command, as a prestep,
initialize the Helm client with the service account and the specific namespace for
the Deployment. The service account name can be the same for each namespace,
but the namespace should be specific. It is advised to move to Helm v3 because

68 | Chapter 4: Configuration, Secrets, and RBAC

•

one of its core principles is that Tiller is no longer needed to run in a cluster. The
new architecture is completely client based and uses the RBAC access of the user
calling the Helm commands. This is in alignment with the preferred approach of
client-based tooling to the Kubernetes API.

• Limit any applications that require watch and list on the Secrets API. This
basically allows the application or the person who deployed the pod to view the
secrets in that namespace. If an application needs to access the Secrets API for
specific secrets, limit using get on any specific secrets that the application needs
to read outside of those that it is directly assigned.

Summary
Principles for developing applications for cloud native delivery is a topic for another
day, but it is universally accepted that strict separation of configuration from code is
a key principle for success. With native objects for nonsensitive data, the ConfigMap
API, and for sensitive data, the Secrets API, Kubernetes can now manage this process
in a declarative approach. As more and more critical data is represented and stored
natively in the Kubernetes API, it is critical to secure access to those APIs through
proper gated security processes such as RBAC and integrated authentication systems.

As you’ll see throughout the rest of this book, these principles permeate every aspect
of the proper deployment of services into a Kubernetes platform to build a stable,
reliable, secure, and robust system.

Summary | 69

•
•
•
•
•
•
•
•
•

CHAPTER 5

Continuous Integration, Testing,
and Deployment

In this chapter, we look at the key concepts of how to integrate a continuous
integration/continuous deployment (CI/CD) pipeline to deliver your applications to
Kubernetes. Building a well-integrated pipeline will enable you to deliver applications
to production with confidence, so here we look at the methods, tools, and processes
to enable CI/CD in your environment. The goal of CI/CD is to have a fully automated
process, from a developer checking in code to rolling out the new code to production.
You want to avoid manually rolling out updates to your apps deployed to Kubernetes
because it can be very error prone. Manually managing application updates in Kuber‐
netes leads to configuration drift and fragile deployment updates, and overall agility
delivering an application is lost.

We cover the following topics in this chapter:

• Version control
• Continuous integration
• Testing
• Container builds
• Container image tagging
• Continuous deployment
• Deployment strategies
• Testing in production
• Chaos testing

71

•
•
•
•
•
•
•
•

We also go through an example CI/CD pipeline, which consists of the following tasks:

• Pushing code changes to the Git repository
• Running a build of the application code
• Running test against the code
• Building a container image on a successful test
• Pushing the container image to a container registry
• Deploying the application to Kubernetes
• Running a test against a deployed application
• Performing rolling upgrades on Deployments

Version Control
Every CI/CD pipeline starts with version control, which maintains a running history
of application and configuration code changes. Git has become the industry standard
as a source-control management platform, and every Git repository will contain a
main branch. A main branch contains your production code. You will have other
branches for feature and development work that eventually will be merged to your
main branch. There are many ways to set up a branching strategy, and the setup will
be very dependent on the organization structure and separation of duties. We find
that including both application code and configuration code, such as a Kubernetes
manifest or Helm charts, helps promote good DevOps principles of communication
and collaboration. Having both application developers and operation engineers col‐
laborate in a single repository builds confidence in a team to deliver an application to
production.

Continuous Integration
CI is the process of integrating code changes continuously into a version-control
repository. Instead of committing large changes less often, you commit smaller
changes more often. Each time a code change is committed to the repository, a
build is kicked off. This allows you to have a quicker feedback loop into what might
have broken the application if problems indeed arise. Many solutions provide CI,
with Jenkins being one of the more popular tools. At this point you might be asking,
“Why do I need to know about how the application is built; isn’t that the application
developer’s role?” Traditionally, this might have been the case, but as companies
move toward embracing a DevOps culture, the operations team comes closer to the
application code and software development workflows.

72 | Chapter 5: Continuous Integration, Testing, and Deployment

Testing
The goal of running tests in the pipeline is to quickly provide a feedback loop for
code changes that break the build. The language that you’re using will determine
the testing framework you use. For example, Go applications can use go test for
running a suite of unit tests against your code base. Having an extensive test suite
helps to avoid delivering bad code into your production environment. You’ll want to
ensure that if tests fail in the pipeline, the build fails after the test suite runs. You don’t
want to build the container image and push it to a registry if you have failing tests
against your code base.

Again, you might be asking, “Isn’t creating tests a developer’s job?” As you begin
automating the delivery of infrastructure and applications to production, you need
to think about running automated tests against all of the pieces of the code base.
For example, in Chapter 2, we talked about using Helm to package applications
for Kubernetes. Helm includes a tool called helm lint, which runs a series of
tests against a chart to examine any potential issues with the chart provided. Many
different tests need to be run in an end-to-end pipeline. Some are the developer’s
responsibility, like unit testing for the application, but others, like smoke testing, will
be a joint effort. Testing the code base and its delivery to production is a team effort
and needs to be implemented end to end.

Container Builds
When building your images, you should optimize the size of the image. Having a
smaller image decreases the time it takes to pull and deploy the image, and also
increases the security of the image. There are multiple ways of optimizing the image
size, but some do have trade-offs. The following strategies will help you build the
smallest image possible for your application:

Multistage builds
These allow you to remove the dependencies not needed for your applications to
run. For example, with Golang, we don’t need all the build tools used to build
the static binary, so multistage builds allow you to run a build step in a single
Dockerfile with the final image containing only the static binary that’s needed to
run the application.

Distroless base images
These remove all the unneeded binaries and shells from the image. This reduces
the size of the image and increases the security. The trade-off with distroless
images is you don’t have a shell, so you can’t attach a debugger to the image. You
might think this is great, but it can be a pain to debug an application. Distroless
images contain no package manager, shell, or other typical OS packages, so you

Container Builds | 73

might not have access to the debugging tools you are accustomed to with a
typical OS.

Optimized base images
These are images that focus on removing the cruft out of the OS layer and
provide a slimmed-down image. For example, Alpine provides a base image that
starts at just 10 MB, and it allows you to attach a local debugger for local develop‐
ment. Other distros also typically offer an optimized base image, such as Debian’s
Slim image. This might be a good option for you because its optimized images
give you the capabilities you expect for development while also optimizing for
image size and lower security exposure.

Optimizing your images is extremely important and often overlooked by users. You
might have obstacles due to company standards for OSes that are approved for use
in the enterprise, but push back on these so that you can maximize the value of
containers.

We have found that companies starting out with Kubernetes tend to be successful
with initially using their current OS but then choose a more optimized image, like
Debian Slim. After you mature in operationalizing and developing against a container
environment, you’ll be comfortable with distroless images.

Container Image Tagging
Another step in the CI pipeline is to build a container image so that you have an
image artifact to deploy to an environment. It’s important to have an image-tagging
strategy so that you can easily identify the versioned images you have deployed to
your environments. We can’t preach enough about one of the most important things:
do not use “latest” as an image tag. Using that as an image tag is not a version and will
lead to not having the ability to identify what code change belongs to the rolled-out
image. Every image that is built in the CI pipeline should have a unique tag.

There are multiple strategies we’ve found to be effective when tagging images in the
CI pipeline. The following strategies allow you to easily identify the code changes and
the build with which they are associated:

BuildID
When a CI build kicks off, it has a buildID associated with it. Using this part of
the tag allows you to reference which build assembled the image.

Build System-buildID
This tag is the same as BuildID but adds the Build System for users who have
multiple build systems.

74 | Chapter 5: Continuous Integration, Testing, and Deployment

•
•
•

Git hash
On new code commits, a Git hash is generated, and using the hash for the tag
allows you to easily reference which commit generated the image.

githash-buildID
This allows you to reference both the code commit and the buildID that gener‐
ated the image. The only caution here is that the tag can be kind of long.

Continuous Deployment
CD is the process by which changes that have passed successfully through the CI
pipeline are deployed to production without human intervention. Containers provide
a great advantage for deploying changes into production. Container images become
an immutable object that can be promoted through dev and staging and into produc‐
tion. For example, a major issue we’ve always had has been maintaining consistent
environments. Almost everyone has experienced a Deployment that works fine in
staging, but when it gets promoted to production, it breaks. This is due to having
configuration drift, with libraries and versioning of components differing in each
environment. Kubernetes gives us a declarative way to describe our Deployment
objects that can be versioned and deployed consistently.

One thing to keep in mind is that you need a solid CI pipeline set up before focusing
on CD. If you don’t have a robust set of tests to catch issues early in the pipeline,
you’ll end up rolling bad code to all your environments.

Deployment Strategies
Now that we learned the principles of CD, let’s look at the different rollout strategies
you can use. Kubernetes provides multiple strategies to roll out new versions of your
application. And even though it has a built-in mechanism to provide rolling updates,
you can also utilize more advanced strategies. Here, we examine the following strate‐
gies to deliver updates to your application:

• Rolling updates
• Blue/green deployments
• Canary deployments

Rolling updates are built into Kubernetes and allow you to trigger an update to the
currently running application without downtime. For example, if you took your
frontend app that is currently running frontend:v1 and updated the Deployment to
frontend:v2, Kubernetes would update the replicas in a rolling fashion to frontend:v2.
Figure 5-1 depicts a rolling update.

Deployment Strategies | 75

Figure 5-1. A Kubernetes rolling update

A Deployment object also lets you configure the maximum amount of replicas to
be updated and the maximum unavailable pods during the rollout. The following
manifest is an example of how you specify the rolling update strategy:

kind: Deployment
apiVersion: apps/v1
metadata:

name: frontend
labels:

app: frontend
spec:

replicas: 3
selector:

matchLabels:
app: frontend

template:
metadata:

labels:
app: frontend

spec:
containers:
- name: frontend

image: brendanburns/frontend:v1
strategy:

type: RollingUpdate
rollingUpdate:

maxSurge: 1 # Maximum amount of replicas to update at one time
maxUnavailable: 1 # Maximum amount of replicas unavailable during rollout

You need to be cautious with rolling updates because using this strategy can cause
dropped connections. To deal with this issue, you can utilize readiness probes and

76 | Chapter 5: Continuous Integration, Testing, and Deployment

preStop life-cycle hooks. The readiness probe ensures that the new version deployed
is ready to accept traffic, whereas the preStop hook can ensure that connections are
drained on the current deployed application. The life-cycle hook is called before the
container exits and is synchronous, so it must complete before the final termination
signal is given. The following example implements a readiness probe and life-cycle
hook:

kind: Deployment
apiVersion: apps/v1
metadata:
name: frontend
labels:
app: frontend

spec:
replicas: 3
selector:
matchLabels:
app: frontend

template:
metadata:
labels:
app: frontend

spec:
containers:
- name: frontend
image: brendanburns/frontend:v1
livenessProbe:
...

readinessProbe:
httpGet:
path: /readiness # probe endpoint
port: 8888

lifecycle:
preStop:
exec:
command: ["/usr/sbin/nginx","-s","quit"]

strategy:
...

The preStop life-cycle hook in this example will gracefully exit NGINX, whereas a
SIGTERM conducts a nongraceful, quick exit.

Another concern with rolling updates is that you now have two versions of the
application running at the same time during the rollover. Your database schema needs
to support both versions of the application. You can also use a feature flag strategy in
which your schema indicates the new columns created by the new app version. After
the rolling update has completed, the old columns can be removed.

Deployment Strategies | 77

•

•
•
•

We have also defined a readiness and liveness probe in our Deployment manifest.
A readiness probe will ensure that your application is ready to serve traffic before
putting it behind the service as an endpoint. The liveness probe ensures that your
application is healthy and running, and it restarts the pod if it fails its liveness probe.
Kubernetes can automatically restart a failed pod only if the pod exits on error. For
example, the liveness probe can check its endpoint and restart it if we had a deadlock
from which the pod did not exit.

Blue/green deployments allow you to release your application predictably. With blue/
green deployments, you control when the traffic is shifted over to the new environ‐
ment, so it gives you a lot of control over the rollout of a new version of your
application. With blue/green deployments, you are required to have the capacity to
deploy both the existing and new environment at the same time. These types of
deployments have a lot of advantages, such as easily switching back to your previous
version of the application. There are some things that you need to consider with this
deployment strategy, however:

• Database migrations can become difficult with this deployment option because
you need to consider in-flight transactions and schema update compatibility.

• There is the risk of accidental deletion of both environments.
• You need extra capacity for both environments.
• There are coordination issues for hybrid deployments in which legacy apps can’t

handle the deployment.

Figure 5-2 depicts a blue/green deployment.

Figure 5-2. A blue/green deployment

78 | Chapter 5: Continuous Integration, Testing, and Deployment

•
•
•

Canary deployments are very similar to blue/green deployments, but they give you
much more control over shifting traffic to the new release. Most modern Ingress
implementations will give you the ability to release a percentage of traffic to a new
release, but you can also implement a service mesh technology, like Istio, Linkerd, or
HashiCorp Consul, which gives you a number of features that help implement this
deployment strategy.

Canary deployments allow you to test new features for only a subset of users. For
example, you might roll out a new version of an application and want to test the
deployment for only 10% of your user base. This allows you to reduce the risk of a
bad deployment or broken features to a much smaller subset of users. If there are no
errors with the deployment or new features, you can begin shifting a greater percent‐
age of traffic to the new version of the application. There are also more advanced
techniques that you can use with canary deployments in which you release to only
a specific region of users or only target users with a specific profile. These types of
releases are often referred to as A/B or dark releases because users are unaware they
are testing new feature deployments.

With canary deployments, you have some of the same considerations that you have
with blue/green deployments, but there are some additional considerations as well.
You must have:

• The ability to shift traffic to a percentage of users
• A firm knowledge of steady state to compare against a new release
• Metrics to understand whether the new release is in a “good” or “bad” state

Figure 5-3 provides an example of a canary deployment.

Figure 5-3. A canary deployment

Deployment Strategies | 79

•
•
•
•

1.
2.

Canary releases also suffer from having multiple versions of the
application running at the same time. Your database schema needs
to support both versions of the application. When using these
strategies, you’ll need to focus on how to handle dependent services
and having multiple versions running. This includes having strong
API contracts and ensuring that your data services support the
multiple versions you have deployed at the same time.

Testing in Production
Testing in production helps you to build confidence in the resiliency, scalability,
and UX of your application. This comes with the caveat that testing in production
doesn’t come without challenges and risk, but it’s worth the effort to ensure reliability
in your systems. There are important aspects you need to address up front when
embarking on the implementation. You need to ensure that you have an in-depth
observability strategy in place, in which you have the ability to identify the effects of
testing in production. Without being able to observe metrics that affect the end users’
experience of your applications, you won’t have a clear indication of what to focus on
when trying to improve the resiliency of your system. You also need a high degree of
automation in place to be able to automatically recover from failures that you inject
into your systems.

You’ll need to implement many tools to reduce risk and effectively test your systems
when they’re in production. We have discussed some tools in this chapter, but there
are some new ones, like distributed tracing, instrumentation, chaos engineering, and
traffic shadowing. To recap, here are the tools we have already mentioned:

• Canary deployments
• Blue/green deployments
• Traffic shifting
• Feature flags

Chaos engineering was developed by Netflix. It is the practice of deploying experi‐
ments into live production systems to discover weaknesses within those systems.
Chaos engineering allows you to learn about the behavior of your system by observ‐
ing it during a controlled experiment. Following are the steps that you want to
implement before doing a “game-day” experiment:

1. Build a hypothesis and learn about your steady state.
2. Have a varying degree of real-world events that can affect the system.

80 | Chapter 5: Continuous Integration, Testing, and Deployment

3.
4.

•
•
•
•
•
•

3. Build a control group and experiment to compare to steady state.
4. Perform experiments to test the hypothesis.

It’s extremely important that when you’re running experiments, you minimize the
“blast radius” to ensure that the issues that might arise are minimal. You’ll also want
to ensure that when you’re building experiments, you focus on automating them,
given that running experiments can be labor intensive.

By this point, you might be asking, “Why wouldn’t I just test in staging?” We find
there are some inherent problems when testing in staging, such as the following:

• Nonidentical deployment of resources.
• Configuration drift from production.
• Traffic and user behavior tend to be generated synthetically.
• The number of requests generated don’t mimic a real workload.
• Lack of monitoring implemented in staging.
• The data services deployed contain differing data and load than in production.

We can’t stress this enough: ensure that you have solid confidence in the monitoring
you have in place for production, because this practice tends to fail users who don’t
have adequate observability of their production systems. Also, starting with smaller
experiments to first learn about your experiments and their effects will help build
confidence.

Setting Up a Pipeline and Performing a Chaos Experiment
The first step in the process is to fork a GitHub repository so that you can have
your own repository to use throughout the chapter. You will need to use the GitHub
interface to fork the sample application repository.

Setting Up CI
Now that you have learned about CI, you will set up a build of the code that we
cloned previously.

For this example, we use the hosted drone.io. You’ll need to sign up for a free account.
Log in with your GitHub credentials (this registers your repositories in Drone and
allows you to synchronize the repositories). After you’re logged in to Drone, select
Activate on your forked repository. The first thing that you need to do is add some
secrets to your settings so that you can push the app to your Docker Hub registry and
also deploy the app to your Kubernetes cluster.

Setting Up a Pipeline and Performing a Chaos Experiment | 81

https://oreil.ly/TtJfd
https://cloud.drone.io
https://drone.io

•
•
•
•
•

Under your repository in Drone, click Settings and add the following secrets (see
Figure 5-4):

• docker_username
• docker_password
• kubernetes_server
• kubernetes_cert
• kubernetes_token

Figure 5-4. Drone secrets configuration

The Docker username and password will be whatever you used to register on Docker
Hub. The following steps show how to create a Kubernetes service account and
certificate and retrieve the token.

For the Kubernetes server, you will need a publicly available Kubernetes API
endpoint.

You will need cluster-admin privileges on your Kubernetes cluster
to perform the steps in this section.

82 | Chapter 5: Continuous Integration, Testing, and Deployment

You can retrieve your API endpoint by using the following command:

kubectl cluster-info

You should see something like the following: Kubernetes master is running at https://
kbp.centralus.azmk8s.io:443. You’ll store this in the kubernetes_server secret.

Now let’s create a service account that Drone will use to connect to the cluster. Use
the following command to create the serviceaccount:

kubectl create serviceaccount drone

Next, use the following command to create a clusterrolebinding for the service
account:

kubectl create clusterrolebinding drone-admin \
 --clusterrole=cluster-admin \
 --serviceaccount=default:drone

Now retrieve your serviceaccount token:

TOKENNAME=`kubectl -n default get serviceaccount/drone
 -o jsonpath='{.secrets[0].name}'`

TOKEN=`kubectl -n default get secret $TOKENNAME -o jsonpath='{.data.token}' |
 base64 -d`

echo $TOKEN

You’ll want to store the output of the token in the kubernetes_token secret.

You will also need the user certificate to authenticate to the cluster, so use the
following command and paste the ca.crt for the kubernetes_cert secret:

kubectl get secret $TOKENNAME -o yaml | grep 'ca.crt:'

Now, build your app in a Drone pipeline and then push it to Docker Hub.

The first step is the build step, which will build your Node.js frontend. Drone utilizes
container images to run its steps, which gives you a lot of flexibility in what you can
do with it. For the build step, use a Node.js image from Docker Hub:

pipeline:
build:
image: node
commands:
- cd frontend
- npm i redis --save

When the build completes, you’ll want to test it, so we include a test step, which will
run npm against the newly built app:

test:
image: node
commands:
- cd frontend

Setting Up a Pipeline and Performing a Chaos Experiment | 83

- npm i redis --save
- npm test

Now that you have successfully built and tested your app, you will move on to a
publish step to create a container image of the app and push it to Docker Hub.

In the .drone.yml file, make the following code change:

repo: <your-registry>/frontend

publish:
image: plugins/docker
dockerfile: ./frontend/Dockerfile
context: ./frontend
repo: dstrebel/frontend
tags: [latest, v2]
secrets: [docker_username, docker_password]

After the Docker build step finishes, it will push the image to your Docker registry.

Setting Up CD
For the deployment step in your pipeline, you will push your application to your
Kubernetes cluster. You will use the deployment manifest that is under the frontend
app folder in your repository:

kubectl:
image: dstrebel/drone-kubectl-helm
secrets: [kubernetes_server, kubernetes_cert, kubernetes_token]
kubectl: "apply -f ./frontend/deployment.yaml"

After the pipeline finishes its deployment, you will see the pods running in your
cluster. Run the following command to confirm that the pods are running:

kubectl get pods

You can also add a test step that will retrieve the status of the deployment by adding
the following step in your Drone pipeline:

 test-deployment:
 image: dstrebel/drone-kubectl-helm
 secrets: [kubernetes_server, kubernetes_cert, kubernetes_token]
 kubectl: "get deployment frontend"

Performing a Rolling Upgrade
Let’s demonstrate a rolling upgrade by changing a line in the frontend code. In the
server.js file, change the following line and then commit the change:

console.log('api server is running.');

84 | Chapter 5: Continuous Integration, Testing, and Deployment

•

•

You will see the deployment rolling out and rolling updates happening to the existing
pods. After the rolling update finishes, you’ll have the new version of the application
deployed.

A Simple Chaos Experiment
A variety of tools in the Kubernetes ecosystem can help with performing chaos
experiments in your environment. They range from sophisticated hosted Chaos as a
Service solutions to basic chaos experiment tools that kill pods in your environment.
Following are some of the successful tools:

Gremlin
Hosted chaos service that provides advanced features for running chaos
experiments

PowerfulSeal
Open source project that provides advanced chaos scenarios

Chaos Toolkit
Open source project with a mission to provide a free, open, and community-
driven toolkit and API to all the various forms of chaos engineering tools

KubeMonkey
Open source tool that provides basic resiliency testing for pods in your cluster

Let’s set up a quick chaos experiment to test the resiliency of your application by
automatically terminating pods. For this experiment, we’ll use Chaos Toolkit:

pip install -U chaostoolkit

pip install chaostoolkit-kubernetes

export FRONTEND_URL="http://$(kubectl get svc frontend
-o jsonpath="{.status.loadBalancer.ingress[*].ip}"):8080/api/"

chaos run experiment.json

Best Practices for CI/CD
Your CI/CD pipeline won’t be perfect on day one, but consider some of the following
best practices to iteratively improve on the pipeline:

• With CI, focus on automation and providing quick builds. Optimizing the build
speed will provide developers quick feedback if their changes have broken the
build.

• Focus on providing reliable tests in your pipeline. This will give developers rapid
feedback on issues with their code. The faster the feedback loop to developers,
the more productive they’ll become in their workflow.

Best Practices for CI/CD | 85

•

•

•

•

•

•

• When deciding on CI/CD tools, ensure that the tools allow you to define the
pipeline as code. This will allow you to version-control the pipeline with your
application code.

• Ensure that you optimize your images so that you can reduce the size of the
image and also reduce the attack surface when running the image in production.
Multistage Docker builds allow you to remove packages not needed for the
application to run. For example, you might need Maven to build the application,
but you don’t need it for the actual running image.

• Avoid using “latest” as an image tag, and utilize a tag that can be referenced back
to the buildID or Git commit.

• If you are new to CD, utilize Kubernetes rolling updates to start. They are easy
to use and will get you comfortable with deployment. As you become more
comfortable and confident with CD, look at utilizing blue/green and canary
deployment strategies.

• With CD, ensure that you test how client connections and database schema
upgrades are handled in your application.

• Testing in production will help you build reliability into your application and
ensure that you have good monitoring in place. With testing in production, also
start at a small scale and limit the blast radius of the experiment.

Summary
In this chapter, we discussed the stages of building a CI/CD pipeline for your applica‐
tions, which let you reliably deliver software with confidence. CI/CD pipelines help
reduce risk and increase throughput of delivering applications to Kubernetes. We
also discussed the different deployment strategies that can be utilized for delivering
applications.

86 | Chapter 5: Continuous Integration, Testing, and Deployment

CHAPTER 6

Versioning, Releases, and Rollouts

One of the main complaints of traditional monolithic applications is that over time
they begin to grow too large and unwieldy to properly upgrade, version, or modify
at the speed the business requires. Many can argue that this is one of the critical
factors that led to more Agile development practices and the advent of microservice
architectures. Being able to quickly iterate on new code, solve new problems, or
fix hidden problems before they become major issues, as well as the promise of
zero-downtime upgrades, are all goals that development teams strive for. Practically,
these issues can be solved with proper processes and procedures in place, no matter
the type of system, but this usually comes at a much higher cost of both technology
and human capital to maintain.

When designing systems, isolation and composability are important variables. The
adoption of containers as the runtime for application code allows for this but still
requires a high level of human automation or system management to maintain
at a dependable level for large systems. Over time, the system grew, more brittle‐
ness was introduced, and systems engineers began to build complex automation
processes to deliver on complex release, upgrade, and failure detection mechanisms.
Service orchestrators such as Apache Mesos, HashiCorp Nomad, and even speci‐
alized container-based orchestrators such as Kubernetes and Docker Swarm have
evolved these processes into more primitive components directly into their runtimes.
Now, systems engineers can solve more complex system problems as the table stakes
have been elevated to include the versioning, release, and deployment of applications
into the system.

87

Versioning
This section is not meant to be a primer on software versioning and the history
behind it; there are countless articles and computer science course books on the
subject. The main thing is to pick a pattern and stick with it. The majority of software
companies and developers have agreed that some form of semantic versioning is the
most useful, especially in a microservice architecture in which a team that writes a
certain microservice will depend on the API compatibility of other microservices that
make up the system.

For those new to semantic versioning, the basics are that it follows a three-part
version number in a pattern of major version, minor version, and patch, usually
expressed in a dot notation such as 1(major).2(minor).3(patch). The patch signifies
an incremental release that includes a bug fix or very minor change that has no API
changes. The minor version signifies updates that might have new API changes but
it is backward compatible with the previous version. This is a key attribute for devel‐
opers working with other microservices they might not be involved in developing.
Knowing that I have my service written to communicate with version 1.4.7 of another
microservice that has been recently upgraded to 1.5.7 should signify that I might not
need to change my code unless I want to take advantage of any new API features.
The major version is a breaking change increment to the code. In most cases, the API
is no longer compatible between major versions of the same code. There are many
slight modifications to this process, including a “4” version to indicate the stage of the
software in its development life cycle, such as 1.4.7.0 for alpha code and 1.4.7.3 for
release. The most important thing is that there is consistency across the system.

Releases
In truth, Kubernetes does not really have a release controller, so there is no native
concept of a release. This is usually added to a Deployment metadata.labels speci‐
fication and/or in the pod.spec.template.metadata.label specification. When to
include either is very important, and based on how CD is used to update changes to
deployments, it can have varied effects. When Helm for Kubernetes was introduced,
one of its main concepts was the notion of a release to differentiate the running
instance of the same Helm chart in a cluster. This concept is easily reproducible
without Helm; however, Helm natively keeps track of releases and their history, so
many CD tools integrate Helm into their pipelines to be the actual release service.
Again, the key here is consistency in how versioning is used and where it is surfaced
in the system state of the cluster.

Release names can be quite useful if there is institutional agreement as to the defini‐
tion of certain names. Often, labels such as stable or canary are used, which helps to
give some operational control when tools such as service meshes are added to make

88 | Chapter 6: Versioning, Releases, and Rollouts

fine-grained routing decisions. Large organizations that drive numerous changes for
different audiences will also adopt a ring architecture that can be denoted as ring-0,
ring-1, and so on.

This topic requires a little side trip into the specifics of labels in the Kubernetes
declarative model. Labels themselves are very much free form and can be any
key/value pair that follows the syntactical rules of the API. The key is not really the
content but how each controller handles labels, changes to labels, and selector match‐
ing of labels. Jobs, Deployments, ReplicaSets, and DaemonSets support selector-based
matching of pods via labels through direct mapping or set-based expressions. It is
important to understand that label selectors are immutable after they are created,
which means if you add a new selector and the pod’s labels have a corresponding
match, a new ReplicaSet is made, not an upgrade to an existing ReplicaSet. This
becomes very important to understand when dealing with rollouts, discussed next.

Rollouts
Prior to the Deployment controller being introduced in Kubernetes, the only mech‐
anism that existed to control how applications were rolled out by the Kubernetes
controller process was using the command-line interface (CLI) command kubectl
rolling-update on the specific replicaController that was to be updated. This was
very difficult for declarative CD models because this was not part of the state of the
original manifest. One had to carefully ensure that manifests were updated correctly,
versioned properly so as to not accidentally roll the system back, and archived when
no longer needed. The Deployment controller added the ability to automate this
update process using a specific strategy and then allowing the system to read the
declarative new state based on changes to the spec.template of the Deployment.
This last fact is often misunderstood by new users of Kubernetes and causes frustra‐
tion when they change a label in the Deployment metadata fields, reapply a manifest,
and no update has been triggered. The Deployment controller is able to determine
changes to the specification and will take action to update the Deployment based on
a strategy that is defined by the specification. Kubernetes Deployments support two
strategies, rollingUpdate and recreate, the former being the default.

If a rolling update is specified, the Deployment will create a new ReplicaSet to scale
to the number of required replicas, and the old ReplicaSet will scale down to zero
based on specific values for maxUnavailble and maxSurge. In essence, those two
values will prevent Kubernetes from removing older pods until a sufficient number of
newer pods have come online, and Kubernetes will not create new pods until a certain
number of old pods have been removed. The nice thing is that the Deployment
controller will keep a history of the updates, and through the CLI, you can roll back
Deployments to previous versions.

Rollouts | 89

The recreate strategy is a valid strategy for certain workloads that can handle a
complete outage of the pods in a ReplicaSet with little to no degradation of service.
In this strategy the Deployment controller will create a new ReplicaSet with the
new configuration and will delete the prior ReplicaSet before bringing the new pods
online. Services that sit behind queue-based systems are an example of a service that
could handle this type of disruption, because messages will queue while waiting for
the new pods to come online, and message processing will resume as soon as the new
pods come online.

Putting It All Together
Within a single service Deployment, a few key areas are affected by versioning,
release, and rollout management. Let’s examine an example Deployment and then
break down the specific areas of interest as they relate to best practices:

Web Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: gb-web-deploy
labels:
app: guest-book
appver: 1.6.9
environment: production
release: guest-book-stable
release number: 34e57f01

spec:
strategy:
type: rollingUpdate
rollingUpdate:
maxUnavailbale: 3
maxSurge: 2

selector:
matchLabels:
app: gb-web
ver: 1.5.8

matchExpressions:
- {key: environment, operator: In, values: [production]}

template:
metadata:
labels:
app: gb-web
ver: 1.5.8
environment: production

spec:
containers:
- name: gb-web-cont
image: evillgenius/gb-web:v1.5.5
env:

90 | Chapter 6: Versioning, Releases, and Rollouts

- name: GB_DB_HOST
value: gb-mysql

- name: GB_DB_PASSWORD
valueFrom:
secretKeyRef:
name: mysql-pass
key: password

resources:
limits:
memory: "128Mi"
cpu: "500m"

ports:
- containerPort: 80

DB Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: gb-mysql
labels:
app: guest-book
appver: 1.6.9
environment: production
release: guest-book-stable
release number: 34e57f01

spec:
selector:
matchLabels:
app: gb-db
tier: backend

strategy:
type: Recreate

template:
metadata:
labels:
app: gb-db
tier: backend
ver: 1.5.9
environment: production

spec:
containers:
- image: mysql:5.6
name: mysql
env:
- name: MYSQL_PASSWORD
valueFrom:
secretKeyRef:
name: mysql-pass
key: password

ports:
- containerPort: 3306
name: mysql

Putting It All Together | 91

volumeMounts:
- name: mysql-persistent-storage
mountPath: /var/lib/mysql

volumes:
- name: mysql-persistent-storage
persistentVolumeClaim:
claimName: mysql-pv-claim

DB Backup Job
apiVersion: batch/v1
kind: Job
metadata:
name: db-backup
labels:
app: guest-book
appver: 1.6.9
environment: production
release: guest-book-stable
release number: 34e57f01

annotations:
"helm.sh/hook": pre-upgrade
"helm.sh/hook": pre-delete
"helm.sh/hook": pre-rollback
"helm.sh/hook-delete-policy": hook-succeeded

spec:
template:
metadata:
labels:
app: gb-db-backup
tier: backend
ver: 1.6.1
environment: production

spec:
containers:
- name: mysqldump
image: evillgenius/mysqldump:v1
env:
- name: DB_NAME
value: gbdb1

- name: GB_DB_HOST
value: gb-mysql

- name: GB_DB_PASSWORD
valueFrom:
secretKeyRef:
name: mysql-pass
key: password

volumeMounts:
- mountPath: /mysqldump
name: mysqldump

volumes:
- name: mysqldump
hostPath:

92 | Chapter 6: Versioning, Releases, and Rollouts

•

•

•

path: /home/bck/mysqldump
restartPolicy: Never

backoffLimit: 3

Upon first inspection, things might look a little off. How can a Deployment have a
version tag and the container image the Deployment uses have a different version
tag? What will happen if one changes and the other does not? What does release
mean in this example, and what will be the effect on the system if it changes? If
a certain label is changed, when will it trigger an update to my Deployment? We
can find the answers to these questions by looking at some of the best practices for
versioning, releases, and rollouts.

Best Practices for Versioning, Releases, and Rollouts
Effective CI/CD and the ability to offer reduced- or zero-downtime deployments
depend on using consistent practices for versioning and release management. The
following best practices can help to define consistent parameters that can assist
DevOps teams in delivering smooth software deployments:

• Use semantic versioning for the application that differs from the version of the
containers and the version of the pods Deployment that make up the entire
application. This allows for independent life cycles of the containers that make
up the application and the application as a whole. This can be quite confusing
at first, but if a principled hierarchical approach is taken for when one changes
the other, you can easily track it. In the previous example, the container itself
is currently on v1.5.5; however, the pod specification is 1.5.8, which could
mean that changes were made to the pod specification, such as new ConfigMaps,
additional secrets, or updated replica values, but the specific container used has
not changed its version. The application itself, the entire guestbook application,
and all its services, is at 1.6.9, which could mean that operations made changes
along the way that were beyond just this specific service, such as other services
that make up the entire application.

• Use a release and release version/number label in your deployment metadata
to track releases from CI/CD pipelines. The release name and release number
should coordinate with the actual release in the CI/CD tool records. This allows
for both traceability through the CI/CD process into the cluster and easier roll‐
back identification. In the previous example, the release number comes directly
from the release ID of the CD pipeline that created the manifest.

• If Helm is being used to package services for deployment into Kubernetes, take
special care to bundle together those services that need to be rolled back or
upgraded together into the same Helm chart. Helm allows for easy rollback of
all components of the application to bring the state back to what it was before
the upgrade. Because Helm actually processes the templates and all the Helm

Best Practices for Versioning, Releases, and Rollouts | 93

•

directives before passing a flattened YAML configuration, the use of life-cycle
hooks allows for proper ordering of the application of specific templates. Opera‐
tors can use proper Helm life-cycle hooks to ensure that upgrades and rollback
will happen correctly. The previous example for the Job specification uses Helm
life-cycle hooks to ensure that the template runs a backup of the database before
a rollback, upgrade, or delete of the Helm release. It also ensures that the Job is
deleted after the job is run successfully, which, until the TTL Controller comes
out of alpha in Kubernetes, would require manual cleanup.

• Agree on a release nomenclature that makes sense for the operational tempo of
the organization. Simple stable, canary, and alpha states are quite adequate for
most situations.

Summary
Kubernetes has allowed for more complex Agile development processes to be adopted
within companies large and small. The ability to automate many of the complex
processes that would usually require large amounts of human and technical capital
has now been democratized so that even startups can take advantage of this cloud
pattern with relative ease. The true declarative nature of Kubernetes really shines
when planning the proper use of labels and using native Kubernetes controller
capabilities. By properly identifying operational and development states within the
declarative properties of the applications deployed into Kubernetes, organizations
can tie in tooling and automation to more easily manage the complex processes of
upgrades, rollouts, and rollbacks of capabilities.

94 | Chapter 6: Versioning, Releases, and Rollouts

CHAPTER 7

Worldwide Application
Distribution and Staging

To this point in the book, we have seen a number of different practices for building,
developing, and deploying applications, but a whole different set of concerns arises
when deploying and managing an application with a global footprint.

There are many different reasons why an application might need to scale to a global
deployment. The first and most obvious one is simply scale. It might be that your
application is so successful or mission critical that it simply needs to be deployed
around the world to provide the capacity necessary for its users. Examples of such
applications include a worldwide API gateway for a public cloud provider, a large-
scale IoT product with a worldwide footprint, a highly successful social network, and
more.

Although relatively few of us will build out systems that require worldwide scale,
many more applications require a worldwide footprint for latency. Even with con‐
tainers and Kubernetes there is no getting around the speed of light. To minimize
latency between clients and our applications, it is sometimes necessary to distribute
our applications around the world to minimize the physical distance between the
application and its users.

Finally, an even more common reason for global distribution is locality. Either
for reasons of bandwidth (e.g., a remote sensing platform) or data privacy (e.g.,
geographic restrictions), it is sometimes necessary to deploy an application in spe‐
cific locations for the application to be possible or successful. As more and more
countries and regions implement data privacy and sovereignty laws and regulations,
it is becoming a common business necessity to deploy your application in specific
locations to serve users who reside in that location.

95

In all these cases, your application is no longer simply present in a small handful
of production clusters. Instead it is distributed across tens to hundreds of different
geographic locations. The management of these locations, as well as the demands of
rolling out a globally reliable service, is a significant challenge. This chapter covers
approaches and practices for doing this successfully.

Distributing Your Image
Before you can even consider running your application around the world, you need
to have that image available to clusters located around the globe. The first thing
to consider is whether your image registry has automatic geo-replication. Many
image registries supplied by cloud providers will automatically distribute your image
around the world and resolve a request for that image to the storage location nearest
to the cluster from which you are pulling the image. Many clouds enable you to
decide where you want to replicate the image; for example, you might know of
locations where you are not going to be present. An example of such a registry is
the Microsoft Azure container registry, but others provide similar services. If you
use a cloud-provided registry that supports geo-replication, distributing your image
around the world is simple. You push the image into the registry, select the regions
for geo-distribution, and the registry takes care of the rest.

If you are not using a cloud registry, or your provider does not support automatic
geo-distribution of images, you will need to solve that problem yourself. One option
is to use a registry situated in a specific location. There are several concerns about
such an approach. Image pull latency often dictates the speed with which you can
launch a container in a cluster. This in turn can determine how quickly you can
respond to a machine failure, given that generally in the case of a machine failure,
you will need to pull the container image down to a new machine.

Another concern about a single registry is that it can be a single point of failure.
If the registry is located in a single region or a single datacenter, it’s possible that
the registry could go offline due to a large-scale incident in that datacenter. If your
registry goes offline, your CI/CD pipeline will stop working, and you’ll be unable to
deploy new code. This obviously has a significant impact on both developer produc‐
tivity and application operations. Additionally, a single registry can be much more
expensive because you will be using significant bandwidth each time you launch
a new container, and even though container images are generally fairly small, the
bandwidth can add up. Despite these negatives, a single registry solution can be the
appropriate answer for small-scale applications running in only a few global regions.
It certainly is simpler to set up than full-scale image replication.

If you cannot use cloud-provided geo-replication and you need to replicate your
image, you are on your own to craft a solution for image replication. To implement
such a service, you have two options. The first is to use geographic names for each

96 | Chapter 7: Worldwide Application Distribution and Staging

https://oreil.ly/4jWNh

image registry (e.g., us.my-registry.io, eu.my-registry.io, etc.). The advantage of
this approach is that it is simple to set up and manage. Each registry is entirely inde‐
pendent, and you can simply push to all registries at the end of your CI/CD pipeline.
The downside is that each cluster will require a slightly different configuration to pull
the image from the nearest geographic location. However, given that you likely will
have geographic differences in your application configurations anyway, this downside
is relatively easy to manage and likely already present in your environment.

The second option is to use a networking configuration to connect your image pulls
to a specific repository. In this approach you still push your image to multiple regis‐
tries, but instead of giving them each a unique name, you give them all a single DNS
endpoint (e.g., my-registry.io). You can use geography-aware DNS (GeoDNS),
which will respond to DNS requests from different geographic regions with different
IP addresses, or if you have the right networking infrastructure, you can use multicast
IP addresses. In multicast, all your registries share the same IP address, but it is
advertised to the internet in multiple physical locations, and shortest-path network
routing is relied on to take traffic to the server that provides the nearest image
registry. Both of these network configurations are tricky to implement correctly. The
best answer is definitely to use a cloud-based registry, even if you are pulling to
on-premises servers. If you really want to run your own registry (and take on the
operational burden that implies), we strongly suggest you use the regional server
approach discussed in the previous paragraph unless you have prior network experi‐
ence with replicated services. The next section describes how you can parameterize
your deployment to, for example, use different registries in different regions.

Parameterizing Your Deployment
When you have replicated your image everywhere, you need to parameterize your
deployments for different global locations. Whenever you are deploying to a variety
of different regions, there are bound to be differences in the configuration of your
application in those regions. For example, if you don’t have a geo-replicated registry,
you might need to tweak the image name for different regions. However, even if
you have a geo-replicated image, it’s likely that different geographic locations will
present different load on your application, and thus the size (e.g., the number of
replicas) as well as other configuration can be different between regions. Managing
this complexity in a manner that doesn’t incur undue toil is key to successfully
managing a worldwide application.

The first thing to consider is how to organize your different configurations on disk. A
common way to achieve this is by using a different directory for each global region.
Given these directories, it might be tempting to simply copy the same configurations
into each directory, but doing this is guaranteed to lead to drift and changes between
configurations in which some regions are modified and other regions are forgotten.

Parameterizing Your Deployment | 97

Instead, use a template-based approach so that most of the configuration is retained
in a single template that is shared by all regions, and then parameters are applied to
that template to produce the region-specific templates. Helm is a commonly used tool
for this sort of templating (for details, see Chapter 1).

Load-Balancing Traffic Around the World
Now that your application is running around the world, the next step is to determine
how to direct traffic to the application. In general, you want to take advantage of
geographic proximity to ensure low-latency access to your service. But you also want
to failover across geographic regions in case of an outage or any other source of
service failure. Correctly setting up the balancing of traffic to your various regional
deployments is key to establishing both a performant and reliable system.

Let’s begin with the assumption that you have a single hostname that you want to
use for your service, for example, myapp.myco.com. One initial decision that you
need to make is whether you want to use the Domain Name System (DNS) protocol
to implement load balancing across your regional endpoints. If you use DNS for
load balancing, the IP address that is returned when a user makes a DNS query to
myapp.myco.com is based on both the location of the user accessing your service as
well as the current availability of your service. The other alternative is multicast IP
addresses, where the same IP address is advertised from multiple locations on the
internet. When a user looks up myapp.myco.com, the DNS always returns this fixed IP
address, but the actual routing of packets varies depending on where the connection
is in the network.

Reliably Rolling Out Software Around the World
After you have templatized your application so that you have proper configurations
for each region, the next important problem is how to deploy these configurations
around the world. It might be tempting to simultaneously deploy your application
worldwide so that you can efficiently and quickly iterate your application, but this,
although Agile, is an approach that can easily leave you with a global outage. Any
errors that you accidentally roll out to the world are immediately present for all
users in all regions. Instead, for most production applications, a more carefully staged
approach to rolling out your software around the world is more appropriate. When
combined with things like global load balancing, these approaches can maintain high
availability even in the face of major application failures.

Overall, when approaching the problem of a global rollout, the goal
is to roll out software as quickly as possible, while simultaneously
detecting issues quickly—ideally before they affect many users.

98 | Chapter 7: Worldwide Application Distribution and Staging

https://helm.sh

Let’s assume that by the time you are performing a global rollout, your application
has already passed basic functional and load testing. Before a particular image (or
images) is certified for a global rollout, it should have gone through enough testing
that you believe the application is operating correctly. It is important to note that this
does not mean that your application is operating correctly. Though testing catches
many problems, in the real world, application problems are often first noticed when
they are rolled out to production traffic. This is because the true nature of production
traffic is often difficult to simulate with perfect fidelity. For example, you might test
with only English-language inputs, whereas in the real world, you see input from a
variety of languages. Or your set of test inputs may not be comprehensive for the
real-world data your application ingests. Of course, any time that you do see a failure
in production that wasn’t caught by testing, it is a strong indicator that you need to
extend and expand your testing. Nonetheless, it is still true that many problems are
caught during a production rollout.

With this in mind, each region that you roll out to is an opportunity to discover a
new problem. And because the region is a production region, it is also a potential
outage to which you will need to react. These factors combine to set the stage for how
you should approach regional rollouts.

Throughout this discussion we talk about rolling out software to a
geographic region, but this sort of progressive rollout is only one
form of progressive exposure control. An alternative way to roll out
a feature is to use feature flags to do progressive exposure. With
feature flags, a new feature is first rolled out via a release that fol‐
lows a geographic rollout as described next; however, the feature is
flagged “off ” by default. Once the release is in all regions, the flag is
gradually turned on by (for example) activating the feature for 10%
of all users, followed by 20%, and so on until the feature is fully
rolled out. There are numerous configuration systems for doing
flag-based experiments and progressive rollouts. And combining
flags with geographic releases is a very stable way to release new
features while being able to quickly respond to failures.

Pre-Rollout Validation
Before you even consider rolling out a particular version of your software around
the world, it’s critically important to validate that software in some sort of synthetic
testing environment. If you have your CD pipeline set up correctly, all code prior to
a particular release build will have undergone some form of unit testing, and possibly
limited integration testing. However, even with this testing in place, it’s important to
consider two other sorts of tests for a release before it begins its journey through
the release pipeline. The first is complete integration testing. This means that you
assemble the entirety of your stack into a full-scale deployment of your application

Reliably Rolling Out Software Around the World | 99

but without any real-world traffic. This complete stack generally will include either
a copy of your production data or simulated data on the same size and scale as your
true production data. If in the real world, the data in your application is 500 GB,
it’s critical that in preproduction testing your dataset is roughly the same size (and
possibly even literally the same dataset).

Generally speaking, setting up a complete integration testing environment is a signifi‐
cant challenge. Often, production data is present only in production, and generating a
synthetic dataset of the same size and scale is quite difficult. Because of this complex‐
ity, setting up a realistic integration testing dataset is a great example of a task that
it pays to do early on in the development of an application. If you set up a synthetic
copy of your dataset early, when the dataset itself is quite small, your integration
test data grows gradually at the same pace as your production data. This is generally
significantly more manageable than if you attempt to duplicate your production data
when you are already at scale.

Sadly, many people don’t realize that they need a copy of their data until they are
already at a large scale and the task is difficult. In such cases it might be possible to
deploy a read/write-deflecting layer in front of your production data store. Obviously,
you don’t want your integration tests writing to production data, but it is often
possible to set up a proxy in front of your production data store that reads from
production but stores writes in a side table that is also consulted on subsequent reads.

Of course, it is also extremely important that if you use your production data for test‐
ing and development you are very careful with the security of that data. Numerous
data leaks have been associated with developers accidentally placing their production
user data in insecure locations.

Regardless of how you manage to set up your integration testing environment, the
goal is the same: to validate that your application behaves as expected when given a
series of test inputs and interactions. There are a variety of ways to define and execute
these tests—from the most manual, a worksheet of tests and human effort (not rec‐
ommended because it is fairly error prone), through tests that simulate browsers and
user interactions, like clicks and so forth. In the middle are tests that probe RESTful
APIs but don’t necessarily test the web UI built on top of those APIs. Regardless of
how you define your integration tests, the goal should be the same: an automated test
suite that validates the correct behavior of your application in response to a complete
set of real-world inputs. For simple applications it may be possible to perform this
validation in premerge testing, but for most large-scale real-world applications, a
complete integration environment is required.

Integration testing will validate the correct operation of your application, but you
should also load-test the application. It is one thing to demonstrate that the appli‐
cation behaves correctly; it is quite another to demonstrate that it stands up to
real-world load. In any reasonably high-scale system, a significant regression in

100 | Chapter 7: Worldwide Application Distribution and Staging

performance—for example, a 20% increase in request latency—has a significant
impact on the UX of the application and, in addition to frustrating users, can cause
an application to completely fail. Thus, it is critical to ensure that such performance
regressions do not happen in production.

Like integration testing, identifying the correct way to load-test an application can
be a complex proposition; after all, it requires that you generate a load similar to
production traffic but in a synthetic and reproducible way. One of the easiest ways
to do this is to simply replay the logs of traffic from a real-world production system.
Doing this can be a great way to perform a load test whose characteristics match what
your application will experience when deployed. However, using replay isn’t always
foolproof. For example, if your logs are old, and your application or dataset has
changed, it’s possible that the performance on old, replayed logs will be different than
the performance on fresh traffic. Additionally, if you have real-world dependencies
that you haven’t mocked, it’s possible that the old traffic will be invalid when sent over
to the dependencies (e.g., the data might no longer exist).

As with production data it is critical to safeguard the security of any recorded
real-world requests. Just like the production databases, production requests often
contain private information or secure credentials (or both!), and it is critical that the
security of any recordings be treated the same as the actual user requests.

Because of the challenges associated with saving, securing, and managing this test
data, many systems, even critical systems, are developed for a long time without a
load test. Like modeling your production data, this is a clear example of something
that is easier to maintain if you start earlier. If you build a load test when your
application has only a handful of dependencies, and improve and iterate the load test
as you adapt your application, you will have a far easier time than if you attempt to
retrofit load testing onto an existing large-scale application.

Assuming that you have crafted a load test, the next question is the metrics to watch
when load-testing your application. The obvious ones are requests per second and
request latency because those are clearly the user-facing metrics.

When measuring latency, it’s important to realize that this is actually a distribution,
and you need to measure both the mean latency as well as the outlier percentiles
(like the 90th and 99th percentiles) since they represent the “worst” UX of your
application. Problems with very long latencies can be hidden if you just look at the
averages, but if 10% of your users are having a bad time, it can have a significant
impact on the success of your product.

In addition, it’s worth looking at the resource usage (CPU, memory, network, disk)
of the application under load test. Though these metrics do not directly contribute
to the UX, large changes in resource usage for your application should be identified
and understood in preproduction testing. If your application is suddenly consuming

Reliably Rolling Out Software Around the World | 101

twice as much memory, it’s something you will want to investigate, even if you pass
your load test, because eventually such significant resource growth will affect the
quality and availability of your application. Depending on the circumstances, you
might continue bringing a release to production, but at the same time, you need to
understand why the resource footprint of your application is changing.

Canary Region
When your application appears to be operating correctly, the first step should be a
canary region. A canary region is a deployment that receives real-world traffic from
people and teams who want to validate your release. These can be internal teams that
depend on your service, or they might be external customers who are using your
service. Canaries exist to give a team some early warning about changes that you
are about to roll out that might break them. No matter how good your integration
and load testing, it’s always possible that a bug will slip through that isn’t covered by
your tests but is critical to some user or customer. In such cases, it is much better to
catch these issues in a space where everyone using or deploying against the service
understands that there is a higher probability of failure. This is the canary region.

Canary is also a great place for your team or company to dogfood
or self-test the early release before it goes further in production. A
great best practice is to set up an HTTP redirector so that requests
from within your company are redirected to an instance of your
product that is running in canary. That way every person on your
team becomes an end-to-end tester before the release proceeds to
external users.

Canaries must be treated as a production region in terms of monitoring, scale,
features, and so on. However, because it is the first stop on the release process, it
is also the location most likely to see a broken release. This is OK; in fact it is
precisely the point. Your customers will knowingly use a canary for lower-risk use
cases (e.g., development or internal users) so that they can get an early indication of
any breaking changes that you might be rolling out as part of a release.

Because the goal of a canary is to get early feedback on a release, it is a good idea to
leave the release in the canary region for a few days. This enables a broad collection of
customers to access it before you move on to additional regions. This length of time
is needed because sometimes a bug is probabilistic (e.g., affects 1% of requests), or
it manifests only in an edge case that takes some time to present itself. It might not
even be severe enough to trigger automated alerts, but there might be a problem in
business logic that is visible only via customer interactions.

102 | Chapter 7: Worldwide Application Distribution and Staging

Identifying Region Types
When you begin thinking about rolling out your software across the world, it’s
important to think about the different characteristics of your different regions. After
you begin rolling out software to production regions, you need to run it through inte‐
gration testing as well as initial canary testing. This means that any subsequent issues
you find will be issues that did not manifest in either of these settings. Think about
your different regions. Do some get more traffic than others? Are some accessed
in a different way? An example of a difference might be that in the developing
world, traffic is more likely to come from mobile web browsers. Thus, a region that
is geographically close to more developing countries might have significantly more
mobile traffic than your test or canary regions.

Another example might be input language. Regions in non-English-speaking areas
of the world might send more Unicode characters that could manifest bugs in string
or character handling. If you are building an API-driven service, some APIs might
be more popular in some regions versus others. All these things are examples of
differences that might be present in your application and might be different than your
canary traffic. Each of these differences is a possible source of a production incident.
Build a table of different characteristics that you think are important. Identifying
these characteristics will help you plan your global rollout.

Constructing a Global Rollout
Having identified the characteristics of your regions, you want to identify a plan for
rolling out to all regions. Obviously, you want to minimize the impact of a production
outage, so a great first region to start with is a region that looks mostly like your
canary and has light user traffic. Such a region is very unlikely to have problems, but
if they do occur, the impact is also smaller because the region receives less traffic.

With a successful rollout to the first production region, you need to decide how
long to wait before moving on to the next region. The reason for waiting is not
to artificially delay your release; rather, it’s to wait long enough for a fire to send
up smoke. This time-to-smoke period is a measure of how long it generally takes
between a rollout completing and your monitoring seeing some sign of a problem.
Clearly if a rollout contains a problem, the minute the rollout completes, the problem
is present in your infrastructure. But even though it is present, it can take some time
to manifest. For example, a memory leak might take an hour or more before the
impact of the leaked memory is clearly discernible in monitoring or is affecting users.
The time-to-smoke is the probability distribution that indicates how long you should
wait to have a strong probability that your release is operating correctly. Generally
speaking, a decent rule of thumb is doubling the average time it took for a problem to
manifest in the past.

Reliably Rolling Out Software Around the World | 103

If, over the past six months, each outage took an average of an hour to show up,
waiting two hours between regional rollouts gives you a decent probability that your
release is successful. If you want to derive richer (and more meaningful) statistics
based on the history of your application, you can estimate this time-to-smoke even
more closely.

Having successfully rolled out to a canary-like, low-traffic region, it’s time to roll out
to a canary-like, high-traffic region. This is a region where the input data looks like
that in your canary, but it receives a large volume of traffic. Because you successfully
rolled out to a similar-looking region with lower traffic, at this point the only thing
you are testing is your application’s ability to scale. If you safely perform this rollout,
you can have strong confidence in the quality of your release.

After you have rolled out to a high-traffic region receiving canary-like data, you
should follow the same pattern for other potential differences in traffic. For example,
you might roll out to a low-traffic region in Asia or Europe next. At this point, it
might be tempting to accelerate your rollout, but it is critically important to roll out
only to a single region that represents any significant change in either input or load to
your release. After you are confident that you have tested all the potential variability
in the production input to your application, then you can start parallelizing the
release to speed it up with strong confidence that it is operating correctly and your
rollout can complete successfully.

When Something Goes Wrong
So far, we have seen the pieces that go into setting up a worldwide rollout for your
software system, and we have seen the ways that you can structure this rollout
to minimize the chances that something goes wrong. But what do you do when
something actually does go wrong? All emergency responders know that in the heat
and panic of a crisis, your brain is significantly stressed and it is much more difficult
to remember even the simplest processes. Add to this pressure the knowledge that
when an outage happens, everyone in the company from the CEO down is going
to be feverishly waiting for the “all clear” signal, and you can see how easy it is to
make a mistake. Additionally, in such circumstances, a simple mistake, like forgetting
a particular step in a recovery process, or rolling out a “fixed” build that actually has
more problems, can make a bad situation an order of magnitude worse.

For all these reasons, it is critical that you are capable of responding quickly, calmly,
and correctly when a problem happens with a rollout. To ensure that everything
necessary is done, and done in the correct order, it pays to have a clear checklist of
tasks organized in the order in which they are to be executed as well as the expected
output for each step. Write down every step, no matter how obvious it might seem. In
the heat of the moment, even the most obvious and easy steps can be the ones that are
forgotten and accidentally skipped.

104 | Chapter 7: Worldwide Application Distribution and Staging

•

The way that first responders ensure a correct response in a high-stress situation is to
practice that response without the stress of the emergency. The same practice applies
to all the activities that you might take in response to a problem with your rollout.
You begin by identifying all the steps needed to respond to an issue and perform a
rollback. Ideally, the first response is to “stop the bleeding,” to move user traffic away
from the impacted region(s) and into a region where the rollout hasn’t happened and
your system is operating correctly. This is the first thing you should practice. Can you
successfully direct traffic away from a region? How long does it take?

The first time you attempt to move traffic using a DNS-based traffic load balancer,
you will realize just how long and in how many ways our computers cache DNS
entries. It can take nearly a day to fully drain traffic away from a region using a
DNS-based traffic shaper. Regardless of how your first attempt to drain traffic goes,
take notes. What worked well? What went poorly? Given this data, set a goal for how
long a traffic drain should take in terms of time to drain a percentage of traffic, for
example, being able to drain 99% of traffic in less than 10 minutes. Keep practicing
until you can achieve that goal. You might need to make architectural changes to
make this possible. You might need to add automation so that humans aren’t cutting
and pasting commands. Regardless of necessary changes, practice will ensure that
you are more capable when responding to an incident and that you will learn where
your system design needs to be improved.

The same sort of practice applies to every action that you might take on your system.
Practice a full-scale data recovery. Practice a global rollback of your system to a previ‐
ous version. Set goals for the length of time it should take. Note any places where
you made mistakes, and add validation and automation to eliminate the possibility of
mistakes. Achieving your incident reaction goals in practice gives you confidence that
you will be able to respond correctly in a real incident. But just like every emergency
responder continues to train and learn, you too need to set up a regular cadence of
practice to ensure that everyone on a team stays well versed in the proper responses
and (perhaps more important) that your responses stay up to date as your system
changes.

Worldwide Rollout Best Practices
Rolling out your software around the world, especially if you have never done it
before, can be a significant challenge. Here are some best practices based on our
years of production experience for how to manage the global deployment of mission
critical software:

• Distribute each image around the world. A successful rollout depends on the
release bits (binaries, images, etc.) being nearby to where they will be used. This
also ensures reliability of the rollout in the presence of networking slowdowns or

Worldwide Rollout Best Practices | 105

•

•

•

•

irregularities. Geographic distribution should be a part of your automated release
pipeline for guaranteed consistency.

• Shift as much of your testing as possible to the left by having as much extensive
integration and replay testing of your application as possible. You want to start a
rollout only with a release that you strongly believe to be correct.

• Begin a release in a canary region, which is a preproduction environment in
which other teams or large customers can validate their use of your service before
you begin a larger-scale rollout.

• Identify different characteristics of the regions where you are rolling out. Each
difference can be one that causes a failure and a full or partial outage. Try to roll
out to low-risk regions first.

• Document and practice your response to any problem or process (e.g., a roll‐
back) that you might encounter. Trying to remember what to do in the heat of the
moment is a recipe for forgetting something and making a bad problem worse.

Summary
It might seem unlikely today, but most of us will end up running a worldwide scale
system sometime during our careers. This chapter described how you can gradually
build and iterate your system to be a truly global design. It also discussed how you
can set up your rollout to ensure minimal downtime of the system while it is being
updated. Finally, we covered setting up and practicing the processes and procedures
necessary to react when (note that we didn’t say “if ”) something goes wrong.

106 | Chapter 7: Worldwide Application Distribution and Staging

CHAPTER 8

Resource Management

In this chapter, we focus on the best practices for managing and optimizing Kuber‐
netes resources. We discuss workload scheduling, cluster management, pod resource
management, namespace management, and scaling applications. We also dive into
some of the advanced scheduling techniques that Kubernetes provides through affin‐
ity, anti-affinity, taints, tolerations, and nodeSelectors.

We show you how to implement resource limits, resource requests, pod Quality of
Service, PodDisruptionBudgets, LimitRangers, and anti-affinity policies.

Kubernetes Scheduler
The Kubernetes scheduler is one of the main components that is hosted in the
control plane. The scheduler allows Kubernetes to make placement decisions for pods
deployed to the cluster. It deals with optimization of resources based on constraints
of the cluster as well as user-specified constraints. It uses a scoring algorithm that is
based on predicates and priorities.

Predicates
The first function Kubernetes uses to make a scheduling decision is the predicate
function, which determines what nodes the pods can be scheduled on. It implies a
hard constraint, so it returns a value of true or false. An example would be when a
pod requests 4 GB of memory and a node cannot satisfy this requirement. The node
would return a false value and would be removed from viable nodes for the pod to be
scheduled to. Another example would be if the node is set to unschedulable; it would
then be removed from the scheduling decision.

The scheduler checks the predicates based on order of restrictiveness and complexity.
As of this writing, the following are the predicates that the scheduler checks for:

107

CheckNodeConditionPred,
CheckNodeUnschedulablePred,
GeneralPred,
HostNamePred,
PodFitsHostPortsPred,
MatchNodeSelectorPred,
PodFitsResourcesPred,
NoDiskConflictPred,
PodToleratesNodeTaintsPred,
PodToleratesNodeNoExecuteTaintsPred,
CheckNodeLabelPresencePred,
CheckServiceAffinityPred,
MaxEBSVolumeCountPred,
MaxGCEPDVolumeCountPred,
MaxCSIVolumeCountPred,
MaxAzureDiskVolumeCountPred,
MaxCinderVolumeCountPred,
CheckVolumeBindingPred,
NoVolumeZoneConflictPred,
CheckNodeMemoryPressurePred,
CheckNodePIDPressurePred,
CheckNodeDiskPressurePred,
MatchInterPodAffinityPred

Priorities
Whereas predicates indicate a true or false value and dismiss a node for scheduling,
the priority value ranks all the valid nodes based on a relative value. The following
priorities are scored for nodes:

EqualPriority
MostRequestedPriority
RequestedToCapacityRatioPriority
SelectorSpreadPriority
ServiceSpreadingPriority
InterPodAffinityPriority
LeastRequestedPriority
BalancedResourceAllocation
NodePreferAvoidPodsPriority
NodeAffinityPriority
TaintTolerationPriority
ImageLocalityPriority
ResourceLimitsPriority

The scores will be added, and then a node is given its final score to indicate its
priority. For example, if a pod requires 600 millicores and there are two nodes, one
with 900 millicores available and one with 1,800 millicores, the node with 1,800
millicores available will have a higher priority.

If nodes are returned with the same priority, the scheduler will use a selectHost()
function, which selects a node in a round-robin fashion.

108 | Chapter 8: Resource Management

Advanced Scheduling Techniques
For most cases, Kubernetes does a good job of optimally scheduling pods for you. It
takes into account pods that are placed only on nodes that have sufficient resources. It
also tries to spread pods from the same ReplicaSet across nodes to increase availabil‐
ity and will balance resource utilization. When this is not good enough, Kubernetes
gives you the flexibility to influence how resources are scheduled. For example, you
might want to schedule pods across availability zones to mitigate a zonal failure
causing downtime to your application. You might also want to colocate pods to a
specific host for performance benefits.

Pod Affinity and Anti-Affinity
Pod affinity and anti-affinity let you set rules to place pods relative to other pods.
These rules allow you to modify the scheduling behavior and override the scheduler’s
placement decisions.

For example, an anti-affinity rule would allow you to spread pods from a ReplicaSet
across multiple datacenter zones. It does this by utilizing keylabels set on the pods.
Setting the key/value pairs instructs the scheduler to schedule the pods on the same
node (affinity) or prevent the pods from scheduling on the same nodes (anti-affinity).

Following is an example of setting a pod anti-affinity rule:

apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx

spec:
selector:
matchLabels:
app: frontend

replicas: 4
template:
metadata:
labels:
app: frontend

spec:
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

matchExpressions:
- key: app
operator: In
values:
- frontend

topologyKey: "kubernetes.io/hostname"
containers:

Advanced Scheduling Techniques | 109

- name: nginx
image: nginx:alpine

This manifest of an NGINX deployment has four replicas and the selector label
app=frontend. The deployment has a PodAntiAffinity stanza configured that will
ensure that the scheduler does not colocate replicas on a single node. This ensures
that if a node fails, there are still enough replicas of NGINX to serve data from its
cache.

nodeSelector
A nodeSelector is the easiest way to schedule pods to a particular node. It uses label
selectors with key/value pairs to make the scheduling decision. For example, you
might want to schedule pods to a specific node that has specialized hardware, such
as a GPU. You might ask, “Can’t I do this with a node taint?” The answer is, yes,
you can. The difference is that you use a nodeSelector when you want to request a
GPU-enabled node, whereas a taint reserves a node for only GPU workloads. You can
use both node taints and nodeSelectors together to reserve the nodes for only GPU
workloads, and use the nodeSelector to automatically select a node with a GPU.

Following is an example of labeling a node and using a nodeSelector in the pod
specification:

kubectl label node <node_name> disktype=ssd

Now, let’s create a pod specification with a nodeSelector key/value of disktype: ssd:

apiVersion: v1
kind: Pod
metadata:
name: redis
labels:
env: prod

spec:
containers:
- name: frontend
image: nginx:alpine
imagePullPolicy: IfNotPresent

nodeSelector:
disktype: ssd

Using the nodeSelector schedules the pod to only nodes that have the label
disktype=ssd:

Taints and Tolerations
Taints are used on nodes to repel pods from being scheduled on them. But isn’t
that what anti-affinity is for? Yes, but taints take a different approach than pod
anti-affinity and serve a different use case. For example, you might have pods that

110 | Chapter 8: Resource Management

•
•
•

require a specific performance profile, and you do not want to schedule any other
pods to the specific node. Taints work in conjunction with tolerations, which allow
you to override tainted nodes. The combination of the two gives you fine-grained
control over anti-affinity rules.

In general, you will use taints and tolerations for the following use cases:

• Specialized node hardware
• Dedicated node resources
• Avoiding degraded nodes

Multiple taint types affect scheduling and running containers:

NoSchedule
A hard taint that prevents scheduling on the node

PreferNoSchedule
Schedules only if pods cannot be scheduled on other nodes

NoExecute
Evicts pods already running on the node

NodeCondition
Taints a node if it meets a specific condition

Figure 8-1 shows an example of a node that is tainted with gpu=true:NoSchedule.
Pod Spec 1 has a toleration key with gpu, so it will be scheduled to the tainted node.
Pod Spec 2 has a toleration key of no-gpu, so it will not be scheduled to the node.

Figure 8-1. Kubernetes taints and tolerations

Advanced Scheduling Techniques | 111

When a pod cannot be scheduled due to tainted nodes, you’ll see an error message
like the following:

Warning: FailedScheduling 10s (x10 over 2m) default-scheduler
0/2 nodes are available: 2 node(s) had taints that the pod did not tolerate.

Now that we’ve seen how we can manually add taints to affect scheduling, there
is also the powerful concept of taint-based eviction, which allows the eviction of
running pods. For example, if a node becomes unhealthy due to a bad disk drive, the
taint-based eviction can reschedule the pods on the host to another healthy node in
the cluster.

Pod Resource Management
One of the most important aspects of managing applications in Kubernetes is appro‐
priately managing pod resources. Managing pod resources consists of managing CPU
and memory to optimize the overall utilization of your Kubernetes cluster. You can
manage these resources at the container level and at the namespace level. There are
other resources, such as network and storage, but Kubernetes doesn’t yet have a way
to set requests and limits for those resources.

For the scheduler to optimize resources and make intelligent placement decisions, it
needs to understand the requirements of an application. As an example, if a container
(application) needs a minimum of 2 GB to perform, we need to define this in our pod
specification so the scheduler knows that the container requires 2 GB of memory on
the host to which it schedules the container.

Resource Request
A Kubernetes resource request defines that a container requires X amount of CPU
or memory to be scheduled. If you were to specify in the pod specification that a
container requires 8 GB for its resource request and all your nodes have 7.5 GB of
memory, the pod would not be scheduled. If the pod is not able to be scheduled, it
will go into a pending state until the required resources are available. So let’s look at
how this works in our cluster.

To determine the available free resources in your cluster, use kubectl top:

kubectl top nodes

The output should look like this (the memory size might be different for your
cluster):

NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
aks-nodepool1-14849087-0 524m 27% 7500Mi 33%
aks-nodepool1-14849087-1 468m 24% 3505Mi 27%
aks-nodepool1-14849087-2 406m 21% 3051Mi 24%
aks-nodepool1-14849087-3 441m 22% 2812Mi 22%

112 | Chapter 8: Resource Management

As this example shows, the largest amount of memory available to a host is 7,500 Mi,
so let’s schedule a pod that requests 8,000 Mi of memory:

apiVersion: v1
kind: Pod
metadata:
name: memory-request

spec:
containers:
- name: memory-request
image: polinux/stress
resources:
requests:
memory: "8000Mi"

Notice that the pod will stay pending, and if you look at the events on the pods, you’ll
see that no nodes are available to schedule the pods:

kubectl describe pods memory-request

The output of the event should look like this:

Events:
 Type Reason Age From Message
Warning FailedSch... 27s (x2 over 27s) default-sched... 0/3 nodes are

 available: 3
 Insufficient memory

Resource Limits and Pod Quality of Service
Kubernetes resource limits define the maximum CPU or memory that a pod is given.
When you specify limits for CPU and memory, each takes a different action when
it reaches the specified limit. With CPU limits, the container is throttled from using
more than its specified limit. With memory limits, the pod is restarted if it reaches
its limit. The pod might be restarted on the same host or a different host within the
cluster.

Specifying limits for containers is a best practice to ensure that applications are
allotted their fair share of resources within the cluster:

apiVersion: v1
kind: Pod
metadata:
name: cpu-demo
namespace: cpu-example

spec:
containers:
- name: frontend
image: nginx:alpine
resources:
limits:
cpu: "1"

Pod Resource Management | 113

•
•
•

requests:
cpu: "0.5"

apiVersion: v1
kind: Pod
metadata:
name: qos-demo
namespace: qos-example

spec:
containers:
- name: qos-demo-ctr
image: nginx:alpine
resources:
limits:
memory: "200Mi"
cpu: "700m"

requests:
memory: "200Mi"
cpu: "700m"

When a pod is created, it’s assigned one of the following Quality of Service (QoS)
classes:

• Guaranteed
• Burstable
• Best effort

The pod is assigned a QoS of guaranteed when CPU and memory both have request
and limits that match. A burstable QoS is when the limits are set higher than the
request, meaning that the container is guaranteed its request, but it can also burst to
the limit set for the container. A pod is assigned best effort when no request or limits
are set for the containers in the pod.

Figure 8-2 depicts how QoS is assigned to pods.

Figure 8-2. Kubernetes QoS

114 | Chapter 8: Resource Management

With guaranteed QoS, if you have multiple containers in your
pod, you’ll need to have memory request and limits set for each
container, and you’ll also need CPU request and limits set for each
container. If the request and limits are not set for all containers,
they will not be assigned guaranteed QoS.

PodDisruptionBudgets
At some point in time, Kubernetes might need to evict pods from a host. There are
two types of evictions: voluntary and involuntary disruptions. Involuntary disruptions
can be caused by hardware failure, network partitions, kernel panics, or a node being
out of resources. Voluntary evictions can be caused by performing maintenance on
the cluster, the Cluster Autoscaler deallocating nodes, or updating pod templates.
To minimize the impact to your application, you can set a PodDisruptionBudget
to ensure uptime of the application when pods need to be evicted. A PodDisruption
Budget allows you to set a policy on the minimum available and maximum unavail‐
able pods during voluntary eviction events. An example of a voluntary eviction would
be when draining a node to perform maintenance on the node.

For example, you might specify that no more than 20% of pods belonging to your
application can be down at a given time. You could also specify this policy in terms of
X number of replicas that must always be available.

Minimum available

In the following example, we set a PodDisruptionBudget to handle a minimum
available to 5 for app: frontend:

apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:

name: frontend-pdb
spec:

minAvailable: 5
selector:

matchLabels:
app: frontend

In this example, the PodDisruptionBudget specifies that for the frontend app there
must always be five replica pods available at any given time. In this scenario, an
eviction can evict as many pods as it wants, as long as five are available.

Maximum unavailable

In the next example, we set a PodDisruptionBudget to handle a maximum unavail‐
able to 20% for the frontend app:

Pod Resource Management | 115

apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:

name: frontend-pdb
spec:

maxUnavailable: 20%
selector:

matchLabels:
app: frontend

In this example, the PodDisruptionBudget specifies that no more than 20% of replica
pods can be unavailable at any given time. In this scenario, an eviction can evict a
maximum of 20% of pods during a voluntary disruption.

It’s essential that when designing your Kubernetes cluster you think about the sizing
of the cluster resources so that you can handle a number of failed nodes. For example,
if you have a four-node cluster and one node fails, you will be losing a quarter of your
cluster capacity.

When specifying a PodDisruptionBudget as a percentage, it might
not correlate to a specific number of pods. For example, if your
application has seven pods and you specify maxAvailable to 50%,
it’s not clear whether that is three or four pods. In this case, Kuber‐
netes rounds up to the closest integer, so the maxAvailable would
be four pods.

Managing Resources by Using Namespaces
Namespaces in Kubernetes give you a nice logical separation of resources deployed to
a cluster. This allows you to set resource quotas per namespace, Role-Based Access
Control (RBAC) per namespace, and also network policies per namespace. It gives
you soft multitenancy features so you can separate out workloads in a cluster without
dedicating specific infrastructure to a team or application. This allows you to get the
most out of your cluster resource while also maintaining a logical form of separation.

For example, you could create a namespace per team and give each team a quota on
the number of resources that it can utilize, such as CPU and memory.

When designing how you want to configure a namespace, you should think about
how you want to control access to a specific set of applications. If you have multiple
teams that will be using a single cluster, it is typically best to allocate a namespace to
each team. If the cluster is dedicated to only one team, it might make sense to allocate
a namespace for each service deployed to the cluster. There’s no single solution to
this; your team organization and responsibilities will drive the design.

116 | Chapter 8: Resource Management

After deploying a Kubernetes cluster, you’ll see the following namespaces in your
cluster:

kube-system

Kubernetes internal components are deployed here, such as coredns, kube-
proxy, and metrics-server.

default

This is the default namespace that is used when you don’t specify a namespace in
the resource object.

kube-public

Used for anonymous and unauthenticated content, and reserved for system
usage.

You’ll want to avoid using the default namespace because users are not mandated to
deploy applications within specific resource constraints, and it can lead to resource
contention. You should also avoid using the kube-system namespace for your appli‐
cations because it is used for Kubernetes internal components.

When working with namespaces, you need to use the –namespace flag, or -n for
short, when working with kubectl:

kubectl create ns team-1

kubectl get pods --namespace team-1

You can also set your kubectl context to a specific namespace, which is useful so that
you don’t need to add the –namespace flag with every command. You can set your
namespace context by using the following command:

kubectl config set-context my-context --namespace=team-1

When dealing with multiple namespaces and clusters, it can be a
pain to set different namespaces and cluster context. We’ve found
that using kubens and kubectx can help make it easy to switch
between these different namespaces and contexts.

ResourceQuota
When multiple teams or applications share a single cluster, it’s important to set up
ResourceQuotas on your namespaces. ResourceQuotas allow you to divvy up the
cluster in logical units so that no single namespace can consume more than its share
of resources in the cluster. The following resources can have a quota set for them:

Pod Resource Management | 117

https://oreil.ly/ryavL
https://oreil.ly/kVBiL

•
—
—
—
—

•
—
—

—

—

•
—
—
—
—

• Compute resources:
— requests.cpu: Sum of CPU requests cannot exceed this amount
— limits.cpu: Sum of CPU limits cannot exceed this amount
— requests.memory: Sum of memory requests cannot exceed this amount
— limit.memory: Sum of memory limits cannot exceed this amount

• Storage resources:
— requests.storage: Sum of storage requests cannot exceed this value
— persistentvolumeclaims: The total number of PersistentVolume claims that

can exist in the namespace
— storageclass.request: Volume claims associated with the specified storage-

class cannot exceed this value
— storageclass.pvc: The total number of PersistentVolume claims that can

exist in the namespace
• Object count quotas (only an example set):

— count/pvc
— count/services
— count/deployments
— count/replicasets

As you can see from this list, Kubernetes gives you fine-grained control over how you
carve up resource quotas per namespace. This allows you to more efficiently operate
resource usage in a multitenant cluster.

Let’s see how these quotas actually work by setting up a quota on a namespace. Apply
the following YAML file to the team-1 namespace:

apiVersion: v1
kind: ResourceQuota
metadata:
name: mem-cpu-demo
namespace: team-1

spec:
hard:
requests.cpu: "1"
requests.memory: 1Gi
limits.cpu: "2"
limits.memory: 2Gi
persistentvolumeclaims: "5"
requests.storage: "10Gi

kubectl apply quota.yaml -n team-1

118 | Chapter 8: Resource Management

This example sets quotas for CPU, memory, and storage on the team-1 namespace.

Now let’s try to deploy an application to see how the resource quotas affect the
deployment:

kubectl run nginx-quotatest --image=nginx --restart=Never --replicas=1 --port=80
--requests='cpu=500m,memory=4Gi' --limits='cpu=500m,memory=4Gi' -n team-1

This deployment will fail with the following error due to the memory quota exceed‐
ing 2 Gi of memory:

Error from server (Forbidden): pods "nginx-quotatest" is forbidden:
exceeded quota: mem-cpu-demo

As this example demonstrates, setting resource quotas can let you deny deployment
of resources based on policies you set for the namespace.

LimitRange
We’ve discussed setting request and limits at the container level, but what happens
if the user forgets to set these in the pod specification? Kubernetes provides an admis‐
sion controller that allows you to automatically set these when none are indicated in
the specification.

First, create a namespace to work with quotas and LimitRanges:

kubectl create ns team-1

Apply a LimitRange to the namespace to apply defaultRequest in limits:

apiVersion: v1
kind: LimitRange
metadata:
name: team-1-limit-range

spec:
limits:
- default:

memory: 512Mi
defaultRequest:
memory: 256Mi

type: Container

Save this to limitranger.yaml and then run kubectl apply:

kubectl apply -f limitranger.yaml -n team-1

Verify that the LimitRange applies default limits and requests:

 kubectl run team-1-pod --image=nginx -n team-1

Next, let’s describe the pod to see what requests and limits were set on it:

kubectl describe pod team-1-pod -n team-1

Pod Resource Management | 119

You should see the following requests and limits set on the pod specification:

Limits:
 memory: 512Mi

 Requests:
 memory: 256Mi

It’s important to use LimitRange when using ResourceQuotas, because if no request
or limits are set in the specification, the deployment will be rejected.

Cluster Scaling
One of the first decisions you need to make when deploying a cluster is the instance
size you’ll want to use within your cluster. This becomes more of an art than science,
especially when you’re mixing workloads in a single cluster. You’ll first want to
identify a good starting point for the cluster; aiming for a good balance of CPU and
memory is one option. After you’ve decided on a sensible size for the cluster, you can
use a couple of Kubernetes core primitives to manage the scaling of your cluster.

Manual scaling
Kubernetes makes it easy to scale your cluster, especially if you’re using tools like
Kops or a managed Kubernetes offering. Scaling your cluster manually is typically
just choosing a new number of nodes, and the service will add the new nodes to your
cluster.

These tools also allow you to create node pools, which allows you to add new instance
types to an already running cluster. This becomes very useful when running mixed
workloads within a single cluster. For example, one workload might be more CPU
driven, whereas the other workloads might be memory-driven applications. Node
pools allow you to mix multiple instance types within a single cluster.

But perhaps you don’t want to manually do this and want it to autoscale. There are
things that you need to take into consideration with cluster autoscaling, and we have
found that most users are better off starting with just manually scaling their nodes
proactively when resources are needed. If your workloads are highly variable, cluster
autoscaling can be very useful.

Cluster autoscaling
Kubernetes provides a Cluster Autoscaler add-on that allows you to set the minimum
nodes available to a cluster and also the maximum number of nodes to which your
cluster can scale. The Cluster Autoscaler bases its scale decision on when a pod goes
pending. For example, if the Kubernetes scheduler tries to schedule a pod with a
memory request of 4,000 Mib and the cluster has only 2,000 Mib available, the pod
will go into a pending state. After the pod is pending, the Cluster Autoscaler will add
a node to the cluster. As soon as the new node is added to the cluster, the pending

120 | Chapter 8: Resource Management

pod is scheduled to the node. The downside of the Cluster Autoscaler is that a new
node is added only before a pod goes pending, so your workload may end up waiting
for a new node to come online when it is scheduled. As of Kubernetes v1.15, the
Cluster Autoscaler doesn’t support scaling based on custom metrics.

The Cluster Autoscaler can also reduce the size of the cluster after resources are no
longer needed. When the resources are no longer needed, it will drain the node and
reschedule the pods to new nodes in the cluster. You’ll want to use a PodDisruption
Budget to ensure that you don’t negatively affect your application when it performs its
drain operation to remove the node from the cluster.

Application Scaling
Kubernetes provides multiple ways to scale applications in your cluster. You can scale
an application by manually changing the number of replicas within a deployment.
You can also change the ReplicaSet or replication controller, but we don’t recom‐
mend managing your applications through those implementations. Manual scaling
is perfectly fine for workloads that are static or when you know the times that the
workload spikes, but for workloads that experience sudden spikes or workloads that
are not static, manual scaling is not ideal for the application. Happily, Kubernetes
also provides a Horizontal Pod Autoscaler (HPA) to automatically scale workloads for
you.

Let’s first look at how you can manually scale a deployment by applying the following
Deployment manifest:

apiVersion: apps/v1
kind: Deployment
metadata:
name: frontend

spec:
replicas: 3
selector:
matchlables:
app: frontend

template:
metadata:
name: frontend
labels:
app: frontend

spec:
containers:
- image: nginx:alpine
name: frontend
resources:
requests:
cpu: 100m

Pod Resource Management | 121

This example deploys three replicas of our frontend service. We then can scale this
deployment by using the kubectl scale command:

kubectl scale deployment frontend --replicas 5

This results in five replicas of our frontend service. This is great, but let’s look at
how we can add some intelligence and automatically scale the application based on
metrics.

Scaling with HPA
The Kubernetes HPA allows you to scale your deployments based on CPU, memory,
or custom metrics. It performs a watch on the deployment and pulls metrics from the
Kubernetes metrics-server. It also allows you to set the minimum and maximum
number of pods available. For example, you can define an HPA policy that sets the
minimum number of pods to 3 and the maximum number of pods to 10, and it scales
when the deployment reaches 80% CPU usage. Setting the minimum and maximum
is critical because you don’t want the HPA to scale the replicas to an infinite amount
due to an application bug or issue.

The HPA has the following default setting for sync metrics, upscaling, and downscal‐
ing replicas:

horizontal-pod-autoscaler-sync-period

Default of 30 seconds for syncing metrics

horizontal-pod-autoscaler-upscale-delay

Default of three minutes between two upscale operations

horizontal-pod-autoscaler-downscale-delay

Default of five minutes between two downscale operations

You can change the defaults by using their relative flags, but you need to be careful
when doing so. If your workload is extremely variable, it’s worth playing around with
the settings to optimize them for your specific use case.

Let’s go ahead and set up an HPA policy for the frontend application you deployed in
the previous exercise.

First, expose the deployment on port 80:

kubectl expose deployment frontend --port 80

Next, set the autoscale policy:

kubectl autoscale deployment frontend --cpu-percent=50 --min=1 --max=10

This sets the policy to scale your app from a minimum of 1 replica to a maximum of
10 replicas and will invoke the scale operation when the CPU load reaches 50%.

122 | Chapter 8: Resource Management

Let’s generate some load so that we can see the deployment autoscale:

kubectl run -i --tty load-generator --image=busybox /bin/sh

Hit enter for command prompt
while true; do wget -q -O- http://frontend.default.svc.cluster.local; done

kubectl get hpa

You might need to wait a few minutes to see the replicas scale up automatically.

HPA with Custom Metrics
In Chapter 4, we introduced the role that the metrics server plays in monitoring our
systems in Kubernetes. With the Metrics Server API, we can also support scaling our
applications with custom metrics. The Custom Metrics API and Metrics Aggregator
allow third-party providers to plug in and extend the metrics, and HPA can then
scale based on these external metrics. For example, instead of just basic CPU and
memory metrics, you could scale based on a metric you’re collecting on an external
storage queue. By utilizing custom metrics for autoscaling, you have the ability to
scale application-specific metrics or external service metrics.

Vertical Pod Autoscaler
The Vertical Pod Autoscaler (VPA) differs from the HPA in that it doesn’t scale
replicas; instead, it automatically scales requests. Earlier in the chapter, we talked
about setting requests on our pods and how that guarantees X amount of resources
for a given container. The VPA frees you from manually adjusting these requests and
automatically scales up and scales down pod requests for you. For workloads that
can’t scale out due to their architecture, this works well for automatically scaling the
resources. For example, a MySQL database doesn’t scale the same way as a stateless
web frontend. With MySQL, you might want to set the Master nodes to automatically
scale up based on workload.

The VPA is more complex than the HPA, and it consists of three components:

Recommender

Monitors the current and past resource consumption, and provides recom‐
mended values for the container’s CPU and memory requests

Updater

Checks which of the pods have the correct resources set, and if they don’t, kills
them so that they can be re-created by their controllers with the updated requests

Admission Plugin

Sets the correct resource requests on new pods

Pod Resource Management | 123

•

•

•

•

•
•

•

•

•
•

•

•

•

Vertical scaling has two objectives:

• Reducing the maintenance cost, by automating configuration of resource
requirements.

• Improving utilization of cluster resources, while minimizing the risk of contain‐
ers running out of memory or getting CPU starved.

Resource Management Best Practices
• Utilize pod anti-affinity to spread workloads across multiple availability zones to

ensure high availability for your application.
• If you’re using specialized hardware, such as GPU-enabled nodes, ensure that

only workloads that need GPUs are scheduled to those nodes by utilizing taints.
• Use NodeCondition taints to proactively avoid failing or degraded nodes.
• Apply nodeSelectors to your pod specifications to schedule pods to specialized

hardware that you have deployed in the cluster.
• Before going to production, experiment with different node sizes to find a good

mix of cost and performance for node types.
• If you’re deploying a mix of workloads with different performance characteris‐

tics, utilize node pools to have mixed node types in a single cluster.
• Ensure that you set memory and CPU limits for all pods deployed to your cluster.
• Utilize ResourceQuotas to ensure that multiple teams or applications are allotted

their fair share of resources in the cluster.
• Implement LimitRange to set default limits and requests for pod specifications

that don’t set limits or requests.
• Start with manual cluster scaling until you understand your workload profiles on

Kubernetes. You can use autoscaling, but it comes with additional considerations
around node spin-up time and cluster scale down.

• Use the HPA for workloads that are variable and that have unexpected spikes in
their usage.

Summary
In this chapter, we discussed how you can optimally manage Kubernetes and appli‐
cation resources. Kubernetes provides many built-in features to manage resources
that you can use to maintain a reliable, highly utilized, and efficient cluster. Cluster
and pod sizing can be difficult at first, but through monitoring your applications in
production you can discover ways to optimize your resources.

124 | Chapter 8: Resource Management

CHAPTER 9

Networking, Network Security,
and Service Mesh

Kubernetes is effectively a manager of distributed systems across a cluster of connec‐
ted systems. This immediately puts critical importance on how the connected systems
communicate with one another, and networking is the key to this. Understanding
how Kubernetes facilitates communication among the distributed services it manages
is important for the effective application of interservice communication.

This chapter focuses on the principles that Kubernetes places on the network and
best practices around applying these concepts in different situations. With any discus‐
sion of networking, security is usually brought along for the ride. The traditional
models of network security boundaries being controlled at the network layer are not
absent in this new world of distributed systems in Kubernetes, but how they are
implemented and the capabilities offered change slightly. Kubernetes brings along a
native API for network security policies that will sound eerily similar to firewall rules
of old.

The last section of this chapter delves into the new and scary world of service meshes.
The term “scary” is used in jest, but it is quite the Wild West when it comes to service
mesh technology in Kubernetes.

Kubernetes Network Principles
Understanding how Kubernetes uses the underlying network to facilitate communi‐
cation among services is critical to understanding how to effectively plan application
architectures. Usually, networking topics start to give most people major headaches.
We are going to keep this rather simple because this is more of a best practice
guidance than a lesson on container networking. Luckily for us, Kubernetes has laid

125

down some rules of the road for networking that give us a start. The rules outline
how communication is expected to behave between different components. Let’s take a
closer look at each of these rules:

Container-to-container communication in the same pod
All containers in the same pod share the same network space. This effectively
allows localhost communication between the containers. It also means that con‐
tainers in the same pod need to expose different ports. This is done using the
power of Linux namespaces and Docker networking to allow these containers to
be on the same local network through the use of a paused container in every pod
that does nothing but host the networking for the pod. Figure 9-1 shows how
Container A can communicate directly with Container B using localhost and the
port number that the container is listening on.

Figure 9-1. Intrapod communication between containers

Pod-to-pod communication
All pods need to communicate with one another without any network address
translation (NAT). This means that the pod’s IP address that is seen by the
receiving pod is the sender’s actual IP address. This is handled in different ways,
depending on the network plug-in used, which we discuss in more detail later in
the chapter. This rule is true between pods on the same node and pods that are
on different nodes in the same cluster. This also extends to the node being able to
communicate directly to the pod with no NAT involved. This allows host-based
agents or system daemons to communicate to the pods as needed. Figure 9-2 is
a representation of the communication processes between pods in the same node
and pods in different nodes of the cluster.

126 | Chapter 9: Networking, Network Security, and Service Mesh

Figure 9-2. Pod-to-pod communication intra- and internode

Service-to-pod communication
Services in Kubernetes represent a durable IP address and port that is found
on each node that will forward all traffic to the endpoints that are mapped to
the service. Over the different iterations of Kubernetes, the method in favor of
enabling this has changed, but the two main methods are via the use of iptables
or the newer IP Virtual Server (IPVS). Some cloud providers and more advanced
implementations allow for a new eBPF-based dataplane. Most implementations
today use the iptables implementation to enable a pseudo–Layer 4 load balancer
on each node. Figure 9-3 is a visual representation of how the service is tied to
the pods via label selectors.

Kubernetes Network Principles | 127

Figure 9-3. Service-to-pod communication

Network Plug-ins
Early on, the Special Interest Group (SIG) guided the networking standards to more
of a pluggable architecture, opening the door for numerous third-party networking
projects, which in many cases injected value-added capabilities into Kubernetes
workloads. These network plug-ins come in two flavors. The most basic is called
Kubenet and is the default plug-in provided by Kubernetes natively. The second type
of plug-in follows the Container Network Interface (CNI) specification, which is a
generic plug-in network solution for containers.

128 | Chapter 9: Networking, Network Security, and Service Mesh

•

•

•

Kubenet
Kubenet is the most basic network plug-in that comes out of the box in Kubernetes.
It is the simplest of the plug-ins and provides a Linux bridge, cbr0, that’s a virtual
Ethernet pair for the pods connected to it. The pod then gets an IP address from
a Classless Inter-Domain Routing (CIDR) range that is distributed across the nodes
of the cluster. There is also an IP masquerade flag that should be set to allow traffic
destined to IPs outside the pod CIDR range to be masqueraded. This obeys the rules
of pod-to-pod communication because only traffic destined outside the pod CIDR
undergoes network address translation (NAT). After the packet leaves a node to go to
another node, some kind of routing is put in place to facilitate the process to forward
the traffic to the correct node.

Kubenet Best Practices
• Kubenet allows for a simple network stack and does not consume precious IP

addresses on already crowded networks. This is especially true of cloud networks
that are extended to on-premises datacenters.

• Ensure that the pod CIDR range is large enough to handle the potential size of
the cluster and the pods in each cluster. The default pods per node set in kubelet
is 110, but you can adjust this.

• Understand and plan accordingly for the route rules to properly allow traffic
to find pods in the proper nodes. In cloud providers, this is usually automa‐
ted, but on-premises or edge cases will require automation and solid network
management.

The CNI Plug-in
The CNI plug-in has basic requirements set aside by the specification. These specifi‐
cations dictate the interfaces and minimal API actions that the CNI offers and how
it will interface with the container runtime that is used in the cluster. The network
management components are defined by the CNI, but they all must include some
type of IP address management and minimally allow for the addition and deletion of
a container to a network. The full original specification originally derived from the
rkt networking proposal is available on GitHub.

The Core CNI project provides libraries that you can use to write plug-ins that
provide the basic requirements and can call other plug-ins to perform various func‐
tions. This adaptability led to numerous CNI plug-ins that you can use in container
networking from cloud providers, like the Microsoft Azure native CNI and the
Amazon Web Services (AWS) VPC CNI plug-in, as well as plug-ins from traditional
network providers such as Nuage CNI, Juniper Networks Contrail/Tunsten Fabric,
and VMware NSX.

Network Plug-ins | 129

https://oreil.ly/wGvF7

1.

2.

3.

4.

CNI Best Practices
Networking is a critical component of a functioning Kubernetes environment. The
interaction between the virtual components within Kubernetes and the physical
network environment should be carefully designed to ensure dependable application
communication:

1. Evaluate the feature set needed to accomplish the overall networking goals of the
infrastructure. Some CNI plug-ins provide native high availability, multicloud
connectivity, Kubernetes network policy support, and various other features.

2. If you are running clusters via public cloud providers, verify that any CNI
plug-ins that are not native to the cloud provider’s Software-Defined Network
(SDN) are actually supported.

3. Verify that any network security tools, network observability, and management
tools are compatible with the CNI plug-in of choice. If not, research which tools
can replace the existing ones. It is important to not lose either observability or
security capabilities because the needs will be expanded when moving to a large-
scale distributed system such as Kubernetes. You can add tools like Weaveworks
Weave Scope, Dynatrace, and Sysdig to any Kubernetes environment, and each
offers its own benefits. If you’re running in a cloud provider’s managed service,
such as Azure AKS, Google GCE, or AWS EKS, look for native tools like Azure
Container Insights and Network Watcher, Google Logging and Monitoring, and
AWS CloudWatch. Whatever tool you use, it should provide insight into the net‐
work stack and the Four Golden signals, made popular by the amazing Google
SRE team and Rob Ewashuck: Latency, Traffic, Errors, and Saturation.

4. If you’re using CNIs that do not provide an overlay network separate from the
SDN space, ensure that you have proper network address space to handle node
IPs, pod IPs, internal load balancers, and overhead for cluster upgrade and scale
out processes.

Services in Kubernetes
When pods are deployed into a Kubernetes cluster, because of the basic rules of
Kubernetes networking and the network plug-in used to facilitate these rules, pods
can directly communicate only with other pods within the same cluster. Some CNI
plug-ins give the pods IPs on the same network space as the nodes, so technically,
after the IP of a pod is known, it can be accessed directly from outside the cluster.
This, however, is not an efficient way to access services being served by a pod,
because of the ephemeral nature of pods in Kubernetes. Imagine that you have a
function or system that needs to access an API that is running in a pod in Kubernetes.
For a while, that might work with no issue, but at some point there might be a volun‐
tary or involuntary disruption that will cause that pod to disappear. Kubernetes will

130 | Chapter 9: Networking, Network Security, and Service Mesh

potentially create a replacement pod with a new name and IP address, so naturally
there needs to be some mechanism to find the replacement pod. This is where the
service API comes to the rescue.

The service API allows for a durable IP and port to be assigned within the Kubernetes
cluster and automatically mapped to the proper pods as endpoints to the service. This
magic happens through the iptables or IPVS on Linux nodes to create a mapping of
the assigned service IP and port to the endpoint’s or pod’s actual IPs. The controller
that manages this is called the kube-proxy service, which actually runs on each node
in the cluster. It is responsible for manipulating the iptables rules on each node.

When a service object is defined, the type of service needs to be defined. The service
type will dictate whether the endpoints are exposed only within the cluster or outside
of the cluster. We will briefly discuss four basic service types in the following sections.

Service Type ClusterIP
ClusterIP is the default service type if one is not declared in the specification. Clus‐
terIP means that the service is assigned an IP from a designated service CIDR range.
This IP is as long-lasting as the service object, so it provides an IP and port and
protocol mapping to backend pods using the selector field; however, as we will see,
there are cases for which you can have no selector. The declaration of the service
also provides for a Domain Name System (DNS) name for the service. This facilitates
service discovery within the cluster and allows for workloads to easily communicate
with other services within the cluster by using DNS lookup based on the service
name. As an example, if you have the service definition shown in the following
example and need to access that service from another pod inside the cluster via
an HTTP call, the call can simply use http://web1-svc if the client is in the same
namespace as the service:

apiVersion: v1
kind: Service
metadata:
name: web1-svc

spec:
selector:
app: web1

ports:
- port: 80
targetPort: 8081

If it is required to find services in other namespaces, the DNS pattern would be
<service_name>.<namespace_name>.svc.cluster.local.

If no selector is given in a service definition, the endpoints can be explicitly defined
for the service by using an endpoint API definition. This will basically add an IP and
port as a specific endpoint to a service instead of relying on the selector attribute to

Services in Kubernetes | 131

automatically update the endpoints from the pods that are in scope by the selector
match. This can be useful in a few scenarios in which you have a specific database
that is not in a cluster that is to be used for testing, but you will change the service
later to a Kubernetes-deployed database. This is sometimes called a headless service
because it is not managed by kube-proxy as other services are, but you can directly
manage the endpoints, as shown in Figure 9-4.

Figure 9-4. ClusterIP-pod and service visualization

Service Type NodePort
The NodePort service type assigns a high-level port on each node of the cluster to
the service IP and port on each node. The high-level NodePorts fall within the 30,000
through 32,767 ranges and can either be statically assigned or explicitly defined
in the service specification. NodePorts are typically used for on-premises clusters
or bespoke solutions that do not offer automatic load-balancing configuration. To
directly access the service from outside the cluster, use NodeIP:NodePort, as depicted
in Figure 9-5.

132 | Chapter 9: Networking, Network Security, and Service Mesh

Figure 9-5. NodePort–pod, service and host network visualization

Services in Kubernetes | 133

Service Type ExternalName
The ExternalName service type is seldom used in practice, but it can be helpful for
passing cluster-durable DNS names to external DNS named services. A common
example is an external database service from a cloud provider that has a unique
DNS supplied by the cloud provider, such as mymongodb.documents.azure.com.
Technically, this can be added very easily to a pod specification using an Environment
variable, as discussed in Chapter 6. However, it might be more advantageous to use
a more generic name in the cluster, such as prod-mongodb, which enables the change
of the actual database it points to by just changing the service specification instead of
having to recycle the pods because the Environment variable has changed:

kind: Service
apiVersion: v1
metadata:
name: prod-mongodb
namespace: prod

spec:
type: ExternalName
externalName: mymongodb.documents.azure.com

Service Type LoadBalancer
LoadBalancer is a very special service type because it enables automation with cloud
providers and other programmable cloud infrastructure services. The LoadBalancer
type is a single method to ensure the deployment of the load-balancing mechanism
that the infrastructure provider of the Kubernetes cluster supplies. This means that
in most cases, LoadBalancer will work roughly the same way in AWS, Azure, GCE,
OpenStack, and others. This entry will usually create a public-facing load-balanced
service; however, each cloud provider has some specific annotations that enable other
features, such as internal-only load balancers, AWS ELB configuration parameters,
and so on. You can also define the actual load-balancer IP to use and the source
ranges to allow within the service specification, as seen in the code sample that
follows and the visual representation in Figure 9-6:

kind: Service
apiVersion: v1
metadata:
name: web-svc

spec:
type: LoadBalancer
selector:
app: web

ports:
- protocol: TCP
port: 80
targetPort: 8081

loadBalancerIP: 13.12.21.31

134 | Chapter 9: Networking, Network Security, and Service Mesh

loadBalancerSourceRanges:
- "142.43.0.0/16"

Figure 9-6. LoadBalancer–pod, service, node, and cloud provider network visualization

Services in Kubernetes | 135

Ingress and Ingress Controllers
Although not technically a service type in Kubernetes, the Ingress specification is an
important concept for ingress to workloads in Kubernetes. Services, as defined by the
Service API, allow for a basic level of Layer 3/4 load balancing. The reality is that
many of the stateless services that are deployed in Kubernetes require a high level of
traffic management and usually require application-level control: more specifically,
HTTP protocol management.

The Ingress API is basically an HTTP-level router that allows for host- and path-
based rules to direct to specific backend services. Imagine a website hosted on
www.evillgenius.com and two different paths that are hosted on that site, /registra‐
tion and /labaccess, that are served by two different services hosted in Kubernetes,
reg-svc and labaccess-svc. You can define an ingress rule to ensure that requests
to www.evillgenius.com/registration are forwarded to the reg-svc service and the
correct endpoint pods, and, similarly, that requests to www.evillgenius.com/labaccess
are forwarded to the correct endpoints of the labaccess-svc service. The Ingress
API also permits host-based routing to allow for different hosts on a single ingress.
An additional feature is the ability to declare a Kubernetes secret that holds the
certificate information for Transport Layer Security (TLS) termination on port 443.
When a path is not specified, there is usually a default backend that can be used to
give a better user experience than the standard 404 error.

The details around the specific TLS and default backend configuration are actually
handled by what is known as the Ingress controller. The Ingress controller is decou‐
pled from the Ingress API and allows for operators to deploy an Ingress controller
of choice, such as NGINX, Traefik, HAProxy, and others. An Ingress controller, as
the name suggests, is a controller just like any Kubernetes controller, but it’s not
part of the system and is instead a third-party controller that understands the Kuber‐
netes Ingress API for dynamic configuration. The most common implementation of
an Ingress controller is NGINX because it is partly maintained by the Kubernetes
project; however, there are numerous examples of both open source and commercial
Ingress controllers:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: labs-ingress
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /

spec:
tls:
- hosts:
- www.evillgenius.com
secretName: secret-tls

rules:
- host: www.evillgenius.com

136 | Chapter 9: Networking, Network Security, and Service Mesh

•

•

•

•

http:
paths:
- path: /registration
pathType: ImplementationSpecific
backend:
service:
name: reg-svc
port:
number: 8088

- path: /labaccess
pathType: ImplementationSpecific
backend:
service:
name: labaccess-svc
port:
number: 8089

Gateway API
The Ingress API had some challenges over the years that it was in beta and following
its v1 promotion. These challenges have led to other network services offering differ‐
ent abstractions through the use of Custom Resource Definitions and controllers to
create their own APIs that fill some of the gaps Ingress has had. Some of the most
common challenges with the Ingress API have been:

• The lack of expressiveness in the definition as it represents the lowest common
denominator for the capabilities of the particular Ingress implementation.

• A general lack of extensibility in the architecture. Vendors have used countless
annotations to expose specific implementation capabilities; however, this has
some limitations.

• The use of vendor-specific annotations has removed some of the portability
promised by the API. An annotation to expose a capability in an NGINX-based
Ingress controller may be different or expressed differently from a Kong-based
controller implementation.

• There is no formal way to do multi-tenancy with the current Ingress API,
and DevOps teams have to create very tight controls to prevent path conflicts
between Ingress definitions that could impact other tenants in the same cluster.

Introduced in 2019, the Gateway API is currently managed as a project by the SIG
Network team under the Kubernetes Project. The Gateway API does not intend to
replace the Ingress API as it primarily targets exposing HTTP applications with a
declarative syntax. This API exposes a more general API for proxying for many types
of protocols, and fits a more role-based management process because it models more
closely the infrastructure components in the environment.

Services in Kubernetes | 137

The role-based paradigm, as shown in Figure 9-7, is important in answering some
of the shortcomings of the existing Ingress API. The separate components allow
for infrastructure providers, such as cloud providers and proxy ISVs, to define the
infrastructure and platform operators to define through policy what infrastructure
can be used. Developers can then worry about how they want to expose their services
within the constraints they are given. Figure 9-8 shows a practical example of how
Gateway API structure abstracts the infrastructure services and capabilities away
from the developer and allows them to focus on their specific service needs.

Figure 9-7. Gateway API structure

Figure 9-8. Gateway API structure, continued

138 | Chapter 9: Networking, Network Security, and Service Mesh

•

•

•

•

•

•

The specification is very promising, and many of the leading providers of proxies and
services meshes, as well as cloud providers, have begun to implement the Gateway
API into their stack. Google’s GKE, Acnodeal EPIC, Contour, Apache APISIX, and
others have begun to offer limited preview or alpha support. As of this writing, the
API itself is in beta for the GatewayClass, Gateway, and HTTPRoute resources, and
others are in Alpha support. Unlike the Ingress API, this is a custom resource that
can be added to any cluster and therefore does not follow the Kubernetes alpha or
beta release process.

Services and Ingress Controllers Best Practices
Creating a complex virtual network environment with interconnected applications
requires careful planning. Effectively managing how the different services of the
application communicate with one another and the outside world requires constant
attention as the application changes. These best practices will help make management
easier:

• Limit the number of services that need to be accessed from outside the cluster.
Ideally, most services will be ClusterIP, and only external-facing services will be
exposed externally to the cluster.

• If the services that need to be exposed are primarily HTTP/HTTPS-based serv‐
ices, it is best to use an Ingress API and Ingress controller to route traffic to
backing services with TLS termination. Depending on the type of Ingress con‐
troller used, features such as rate limiting, header rewrites, OAuth authentication,
observability, and other services can be made available without having to build
them into the applications themselves.

• Choose an Ingress controller that has the needed functionality for secure ingress
of your web-based workloads. Standardize on one and use it across the enterprise
because many of the specific configuration annotations vary between implemen‐
tations and prevent the deployment code from being portable across enterprise
Kubernetes implementations.

• Evaluate cloud service provider–specific Ingress controller options to move the
infrastructure management and load of the ingress out of the cluster, but still
allow for Kubernetes API configuration.

• When serving mostly APIs externally, evaluate API-specific Ingress controllers,
such as Kong or Ambassador, that have more fine-tuning for API-based work‐
loads. Although NGINX, Traefik, and others might offer some API tuning, it will
not be as fine-grained as specific API proxy systems.

• When deploying Ingress controllers as pod-based workloads in Kubernetes,
ensure that the deployments are designed for high availability and aggregate
performance throughput. Use metrics observability to properly scale the ingress,

Services in Kubernetes | 139

but include enough cushion to prevent client disruptions while the workload
scales.

Network Security Policy
The NetworkPolicy API built into Kubernetes allows for network-level ingress and
egress access control defined with your workload. Network policies allow you to
control how groups of pods are allowed to communicate with one another and with
other endpoints. If you want to dig deeper into the NetworkPolicy specification, it
might sound confusing, especially given that it is defined as a Kubernetes API, but it
requires a network plug-in that supports the NetworkPolicy API.

Network policies have a simple YAML structure that can look complicated, but if
you think of it as a simple East-West traffic firewall, it might help you to understand
it a little better. Each policy specification has podSelector, ingress, egress, and
policyType fields. The only required field is podSelector, which follows the same
convention as any Kubernetes selector with a matchLabels. You can create multiple
NetworkPolicy definitions that can target the same pods, and the effect is additive.
Because NetworkPolicy objects are namespaced objects, if no selector is given for a
podSelector, all pods in the namespace fall into the scope of the policy. If any ingress
or egress rules are defined, this creates an allow list for what can ingress or egress
from the pod. There is an important distinction here: if a pod falls into the scope of
a policy because of a selector match, all traffic, unless explicitly defined in an ingress
or egress rule, is blocked. This little, nuanced detail means that if a pod does not fall
into any policy because of a selector match, all ingress and egress is allowed to the
pod. This was done on purpose to allow for ease of deploying new workloads into
Kubernetes without any blockers.

The ingress and egress fields are basically a list of rules based on source or destina‐
tion and can be specific CIDR ranges, podSelectors, or namespaceSelectors. If you
leave the ingress field empty, it is like a deny-all inbound. Similarly, if you leave the
egress empty, it is deny-all outbound. Port and protocol lists are also supported to
further tighten down the type of communications allowed.

The policyTypes field specifies to which network policy rule types the policy object
is associated. If the field is not present, it will just look at the ingress and egress lists
fields. The difference again is that you must explicitly call out egress in policyTypes
and also have an egress rule list for this policy to work. Ingress is assumed, and
defining it explicitly is not needed.

Let’s use a prototypical example of a three-tier application deployed to a single name
space where the tiers are labeled as tier: "web", tier: "db", and tier: "api". If
you want to ensure that traffic is properly limited to each tier, create a NetworkPolicy
manifest like the following.

‐

140 | Chapter 9: Networking, Network Security, and Service Mesh

Default deny rule:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: default-deny-all

spec:
podSelector: {}
policyTypes:
- Ingress

Web layer network policy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: webaccess

spec:
podSelector:
matchLabels:
tier: "web"

policyTypes:
- Ingress
ingress:
- {}

API layer network policy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-api-access

spec:
podSelector:
matchLabels:
tier: "api"

policyTypes:
- Ingress
ingress:
- from:
- podSelector:

matchLabels:
tier: "web"

Database layer network policy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-db-access

spec:
podSelector:
matchLabels:
tier: "db"

Network Security Policy | 141

•

•

•

•

policyTypes:
- Ingress
ingress:
- from:
- podSelector:

matchLabels:
tier: "api"

Network Policy Best Practices
Securing network traffic in an enterprise system was once the domain of physical
hardware devices with complex networking rule sets. Now, with Kubernetes network
policy, a more application-centric approach can be taken to segment and control the
traffic of the applications hosted in Kubernetes. Some common best practices apply
no matter which policy plug-in is used:

• Start off slow and focus on traffic ingress to pods. Complicating matters with
ingress and egress rules can make network tracing a nightmare. As soon as
traffic is flowing as expected, you can begin to look at egress rules to further
control flow to sensitive workloads. The specification also favors ingress because
it defaults many options even if nothing is entered into the ingress rules list.

• Ensure that the network plug-in used either has some of its own interface to
the NetworkPolicy API or supports other well-known plug-ins. Example plug-ins
include Calico, Cilium, Kube-router, Romana, and Weave Net.

• If the network team is used to having a “default-deny” policy in place, create a
network policy such as the following for each namespace in the cluster that will
contain workloads to be protected. This ensures that even if another network
policy is deleted, no pods are accidentally “exposed”:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: default-deny-all

spec:
podSelector: {}
policyTypes:
- Ingress

• If pods need to be accessed from the internet, use a label to explicitly apply a
network policy that allows ingress. Be aware of the entire flow in case the actual
IP that a packet is coming from is not the internet but rather the internal IP of
a load balancer, firewall, or other network device. For example, to allow traffic
from all (including external) sources for pods having the allow-internet=true
label, do this:

142 | Chapter 9: Networking, Network Security, and Service Mesh

•

•

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: internet-access

spec:
podSelector:
matchLabels:
allow-internet: "true"

policyTypes:
- Ingress
ingress:
- {}

• Try to align application workloads to single namespaces for ease of creating rules
because the rules themselves are namespace specific. If cross-namespace commu‐
nication is needed, try to be as explicit as possible and perhaps use specific labels
to identify the flow pattern:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: namespace-foo-2-namespace-bar
namespace: bar

spec:
podSelector:
matchLabels:
app: bar-app

policyTypes:
- Ingress
ingress:
- from:
- namespaceSelector:

matchLabels:
networking/namespace: foo

podSelector:
matchLabels:
app: foo-app

• Have a test bed namespace that has fewer restrictive policies, if any at all, to allow
time to investigate the correct traffic patterns needed.

Service Meshes
It is easy to imagine a single cluster hosting hundreds of services that load-balance
across thousands of endpoints that communicate with one another, access external
resources, and are potentially being accessed from external sources. This can be
quite daunting when trying to manage, secure, observe, and trace all the connections
among these services, especially with the dynamic nature of the endpoints coming
and going from the overall system. The concept of a service mesh, which is not unique

Service Meshes | 143

•

•

•

•

•

to Kubernetes, allows for control over how these services are connected and secured
with a dedicated date plane and control plane. Service meshes all have different
capabilities, but usually they all offer some of the following:

• Load balancing of traffic with potentially fine-grained traffic-shaping policies
that are distributed across the mesh.

• Service discovery of services that are members of the mesh, which might include
services within a cluster or in another cluster, or an outside system that is a
member of the mesh.

• Observability of the traffic and services, including tracing across the distributed
services using tracing systems like Jaeger or Zipkin that follow the OpenTracing
standards.

• Security of the traffic in the mesh using mutual authentication. In some cases, not
only pod-to-pod or East-West traffic is secured, but an Ingress controller is also
provided that offers North-South security and control.

• Resiliency, health, and failure-prevention capabilities that allow for patterns such
as circuit breaker, retries, deadlines, and so on.

The key here is that all these features are integrated into the applications that take
part in the mesh with little or no application changes. How can all these amazing
features come for free? Sidecar proxies are usually the way this is done. The majority
of service meshes available today inject a proxy that is part of the data plane into
each pod that is a member of the mesh. This allows for policies and security to
be synchronized across the mesh by the control-plane components. This hides the
network details from the container that holds the workload and leaves it to the proxy
to handle the complexity of the distributed network. In the application’s perspective,
it only communicates via localhost to its proxy. In many cases, the control plane and
data plane might be different technologies but complementary to each other.

In many cases, the first service mesh that comes to mind is Istio, a project by
Google, Lyft, and IBM that uses Envoy as its data-plane proxy and uses proprietary
control-plane components Mixer, Pilot, Galley, and Citadel. Other service meshes
offer varying levels of capabilities, such as Linkerd2, which uses its own data-plane
proxy built using Rust. HashiCorp has recently added more Kubernetes-centric ser‐
vice mesh capabilities to Consul, which allows you to choose between Consul’s own
proxy or Envoy, and offers commercial support for its service mesh.

The topic of service meshes in Kubernetes is a fluid one—if not overly emotional
in many social media tech circles—so a detailed explanation of each mesh has no
value here. We would be remiss if we did not mention the promising efforts led
by Microsoft, Linkerd, HashiCorp, Solo.io, Kinvolk, and Weaveworks around the
Service Mesh Interface (SMI). The SMI hopes to set a standard interface for basic

144 | Chapter 9: Networking, Network Security, and Service Mesh

•

•

•

feature sets that are expected of all service meshes. The specification as of this writing
covers traffic policy such as identity and transport-level encryption, traffic telemetry
that captures key metrics between services in the mesh, and traffic management
to allow for traffic shifting and weighting between different services. This project
hopes to take some of the variability out of the service meshes yet allow for service
mesh vendors to extend and build value-added capabilities into their products to
differentiate themselves.

Service Mesh Best Practices
The service mesh community continues to grow every day, and as more enterprises
help define their needs, the service mesh ecosystem will change dramatically. These
best practices are, as of this writing, based on common problems that service meshes
try to solve today:

• Rate the importance of the key features service meshes offer and determine
which current offerings provide the most important features with the least
amount of overhead. Overhead here means both human technical debt and
infrastructure resource debt. If all that is really required is mutual TLS between
certain pods, would it be easier to perhaps find a CNI that offers that capability
integrated into the plug-in?

• Is the need for a cross-system mesh, such as multicloud or hybrid scenarios, a
key requirement? Not all service meshes offer this capability, and if they do, it is a
complicated process that often introduces fragility into the environment.

• Many of the service mesh offerings are open source community-based projects,
and if the team that will be managing the environment is new to service meshes,
commercially supported offerings might be a better option. Some companies are
beginning to offer commercially supported and managed service meshes based
on Istio, which can be helpful because it is almost universally agreed upon that
Istio is a complicated system to manage.

Summary
In addition to application management, one of the most important things that
Kubernetes provides is the ability to link different pieces of your application. In
this chapter, we looked at the details of how Kubernetes works, including how pods
get their IP addresses through CNI plug-ins, how those IPs are grouped to form
services, and how more application or Layer 7 routing can be implemented via
Ingress resources (which in turn use services). You also saw how to limit traffic
and secure your network using networking policies, and, finally, how service mesh
technologies are transforming the ways in which people connect and monitor the
connections between their services. In addition to setting up your application to run

Summary | 145

and be deployed reliably, setting up the networking for your application is a crucial
piece of using Kubernetes successfully. Understanding how Kubernetes approaches
networking and how that intersects optimally with your application is critical to its
ultimate success.

146 | Chapter 9: Networking, Network Security, and Service Mesh

CHAPTER 10

Pod and Container Security

When it comes to pod security via the Kubernetes API, you have two main options at
your disposal: Pod Security Admission and RuntimeClass. In this chapter, we review
the purpose and use of each API and provide best practices for their use.

Pod Security Admission Controller
This cluster-wide resource creates a single place to define and manage all the
security-sensitive fields found in pod specifications. Prior to the creation of the
Pod Security Admission resource, cluster administrators and/or users used PodSecur‐
ityPolicy, which was complex and could be challenging to set up correctly. Before
PodSecurityPolicy, users would need to independently define individual SecurityCon
text settings for each pod or Deployment in their workloads or enable bespoke
admission controllers on the cluster to enforce some aspects of pod security.

The Pod Security Admission controller replaced the beta PodSecur‐
ityPolicy API starting with Kubernetes 1.22. PodSecurityPolicy was
removed in Kubernetes 1.25. Pod Security Admission provides a
simplified API for securing pods, but it does not provide complete
feature parity with PodSecurityPolicy. For that you will need to
install a more complete policy solution like the Gatekeeper project.

Pod Security Admission was developed to address this complexity and make it fairly
straightforward for a cluster administrator to secure pods on their cluster. While it
is markedly less complicated than other solutions, Pod Security Admission also has
significant limitations in that it has coarse-grained permissions that are applied at
the namespace level. Though you can exempt specific users or runtime classes from

147

https://oreil.ly/0lVJP

policy enforcement, you cannot enable different levels of security for different pods
or users within a namespace.

Because of these limitations, many enterprises or administrators running multitenant
clusters will likely need to implement a policy solution like the Gatekeeper project.
But especially for many smaller single-tenant clusters, Pod Security Admission con‐
trol may be appropriate.

Enabling Pod Security Admission
If your cluster is Kubernetes 1.22 or newer, Pod Security Admission is likely to
be enabled. You can check the version of your cluster using the kubectl version
command. If you are running on an older version of Kubernetes, we recommend
updating since such older versions are no longer actively supported by the Kuber‐
netes project, which puts you at risk for unpatched security vulnerabilities.

Proceed with caution when enabling Pod Security Admission con‐
trol on existing clusters because it’s potentially workload blocking
if adequate preparation isn’t done at the outset. Consider starting
with the warn and audit enforcement modes to ensure that your
policy works as expected.

Pod Security levels
The Pod Security Admission controller simplifies security configuration by imple‐
menting three different policy levels for administrators to choose from. Each security
level contains a collection of different rules for restricting pod configurations. The
details of the security levels can be found in the Kubernetes documentation.

The three Pod Security Standard levels are:

privileged

Effectively no restrictions. It matches the default behavior of a Kubernetes cluster
with no pod security enabled.

baseline

Protects against known privilege escalations and other security issues.

restricted

The current community best practice for pod security.

When starting out with policy, it may be tempting to immediately start enforcing the
restricted level for all namespaces, but it is important to note that preexisting con‐
figurations in the cluster may break, and community solutions or software provided
by other third parties may not work correctly.

148 | Chapter 10: Pod and Container Security

https://oreil.ly/0lVJP
https://oreil.ly/3bKXr

In addition to the security levels, the Pod Security Admission controller provides
three levels of activation for the policy. The enforce level actively blocks pods from
being created if they don’t match the security level. The warn level provides a warning
to a user that their pod violates policy but doesn’t block it from being created. The
audit level logs policy violations but doesn’t provide user feedback.

Finally, each security level is versioned to match a particular Kubernetes version
(e.g., v1.25). It’s important to note that while the security level is associated with
a Kubernetes version, it is available in other Kubernetes versions: you can use the
v1.25 security level in a Kubernetes 1.26 cluster. The versions follow the same
three-version deprecation policy as any other Kubernetes component. There is also a
latest version that tracks whatever is the most up-to-date policy. However, as with
using latest in container images, this is discouraged because your security policy
will change when the cluster is upgraded, which means that you could break your
cluster by adopting a new policy unexpectedly. Instead, incremental upgrading of
security policy after a cluster upgrade is a best practice.

It’s important to note that the warn level provides warnings only in
tools that support warnings, like kubectl. If you are using other
tools for deployment, especially CI/CD automation, the warnings
may not be surfaced to your users. In such situations, you may
want to combine some sort of linter that examines the configura‐
tions before they are checked in along with pod security audit.

Activating Pod Security Using Namespace Labels
The activation of Pod Security is done on a per-namespace basis by adding labels
to the namespaces. You can do this in your namespace YAML by adding labels as
shown in the following example. We will start with a configuration that simply audits
existing usage at the baseline security level:

...
 metadata:
 labels:

Start with enforce and warn unrestricted so as not to
interfere with existing users
pod-security.kubernetes.io/enforce: privileged
pod-security.kubernetes.io/enforce-version: v1.25
pod-security.kubernetes.io/warn: privileged
pod-security.kubernetes.io/warn-version: v1.25

Turn on baseline auditing
pod-security.kubernetes.io/audit: baseline
pod-security.kubernetes.io/audit-version: v1.25

Pod Security Admission Controller | 149

Once this configuration is applied to all namespaces, you will start seeing audit
information in the cluster audit logs. This will give you a sense of your cluster’s
level of compliance. If your cluster is very far out of compliance, you will likely
need to identify the owners of various workloads and work with them to bring
their workloads into compliance. Because the enforcement is per-namespace, you can
work with teams individually and move to enforcement as their workloads become
compliant.

Ultimately, your final security posture is a function of your teams and their work‐
loads, so it is difficult to identify a single best practice for pod security configuration.
However, for most users, setting audit and warn to restricted and enforce to
baseline is a pretty good place to start. It will give you visibility into potentially
vulnerable configurations while enabling enforcement to prevent the most egregious
violations.

Workload Isolation and RuntimeClass
Container runtimes are still largely considered an insecure workload isolation bound‐
ary. There is no clear path to whether the most common runtimes of today will ever
be recognized as secure. The momentum and interest among those in the industry
toward Kubernetes has led to the development of different container runtimes that
offer varying levels of isolation. Some are based on familiar and trusted technology
stacks, whereas others are a completely new attempt to tackle the problem. Open
source projects like Kata containers, gVisor, and Firecracker tout the promise of
stronger workload isolation. These specific projects are either based on nested virtu‐
alization (running a super lightweight virtual machine within a virtual machine) or
system call filtering and servicing. There has also been recent interest in the sandbox
provided by the WebAssembly virtual machine, which was originally built for run‐
ning in the browser but is seeing increased usage on the server side. The containerd
project, one of the most popular container runtimes, now supports WebAssembly
(WASM) based containers. Additionally RuntimeClass may be needed to choose a
container runtime based on specific hardware capabilities like interacting with a GPU
for artificial intelligence and machine learning workloads.

The introduction of these container runtimes that offer different workload isolation
allows users to choose different runtimes based on their isolation guarantees in the
same cluster. For example, you could have trusted and untrusted workloads running
in the same cluster in different container runtimes.

RuntimeClass was introduced into Kubernetes as an API to allow container runtime
selection. It is used to represent one of the supported container runtimes on the
cluster when it has been configured by the cluster administrator. As a Kubernetes
user, you can define specific runtime classes for your workloads by using the
RuntimeClassName in the pod specification. How this is implemented under the

150 | Chapter 10: Pod and Container Security

hood is that the RuntimeClass designates a RuntimeHandler that is passed to the
Container Runtime Interface (CRI) to implement. Node labeling or node taints
can then be used in conjunction with nodeSelectors or tolerations to ensure that
the workload lands on a node capable of supporting the desired RuntimeClass.
Figure 10-1 demonstrates how a kubelet uses RuntimeClass when launching pods.

Figure 10-1. RuntimeClass flow diagram

Using RuntimeClass
If a cluster administrator has set up different RuntimeClasses, you can use them by
specifying runtimeClassName in the pod specification; for example:

apiVersion: v1
kind: Pod
metadata:

name: nginx
spec:

runtimeClassName: firecracker

Runtime Implementations
Following are some open source container runtime implementations that offer differ‐
ent levels of security and isolation for your consideration. This list is intended as a
guide and is by no means exhaustive:

Workload Isolation and RuntimeClass | 151

•

•

•

CRI containerd
An API facade for container runtimes with an emphasis on simplicity, robust‐
ness, and portability.

cri-o
A purpose-built, lightweight Open Container Initiative (OCI)-based implemen‐
tation of a container runtime for Kubernetes.

Firecracker
Built on top of the Kernel-based Virtual Machine (KVM), this virtualization
technology allows you to launch microVMs in nonvirtualized environments very
quickly using the security and isolation of traditional VMs.

gVisor
An OCI-compatible sandbox runtime that runs containers with a new user-space
kernel, which provides a low overhead and secure, isolated container runtime.

Kata Containers
A secure container runtime that provides VM-like security and isolation by
running lightweight VMs that feel and operate like containers.

Workload Isolation and RuntimeClass Best Practices
The following best practices will help you to avoid common workload isolation and
RuntimeClass pitfalls:

• Implementing different workload isolation environments via RuntimeClass will
complicate your operational environment. This means that workloads might not
be portable across different container runtimes given the nature of the isolation
they provide. Understanding the matrix of supported features across different
runtimes can be complicated and will lead to poor user experience. We recom‐
mend having separate clusters, each with a single runtime, to avoid confusion, if
possible.

• Workload isolation doesn’t mean secure multitenancy. Even though you might
have implemented a secure container runtime, this doesn’t mean that the Kuber‐
netes cluster and APIs have been secured in the same fashion. You must consider
the total surface area of Kubernetes end to end. Just because you have an iso‐
lated workload doesn’t mean that it cannot be modified by a bad actor via the
Kubernetes API.

• Tooling across different runtimes is inconsistent. You might have users who
rely on container runtime tooling for debugging and introspection. Having
different runtimes means that you might no longer be able to run docker ps
to list running containers. This leads to confusion and complications when
troubleshooting.

152 | Chapter 10: Pod and Container Security

https://oreil.ly/1wxU1
https://oreil.ly/OiXpP
https://oreil.ly/on3Ge
https://oreil.ly/ZZt3n
https://oreil.ly/giOxk

Other Pod and Container Security Considerations
In addition to Pod Security Admission control and workload isolation, here are some
other tools you may consider when determining how to handle pod and container
security.

Admission Controllers
The previous discussion of pod security was powered by the Pod Security Admission
controller, but there are many other admission controllers that you can choose from
in the cloud native ecosystem. If you find the Pod Security Admission controller to be
too restrictive, many other options provide more sophisticated policy solutions. For
more information on admission control, refer to Chapter 17.

Intrusion and Anomaly Detection Tooling
We’ve covered security policies and container runtimes, but what happens when you
want to introspect and enforce policy within the container runtime? There are open
source tools that can do this and more. They operate by either listening and filtering
Linux system calls or by utilizing a Berkeley Packet Filter (BPF). One such tool
is Falco, a Cloud Native Computing Foundation (CNCF) project that installs as a
DaemonSet and allows you to configure and enforce policy during execution. Falco is
just one approach. We encourage you to explore the tooling in this space to see what
works for you.

Summary
In this chapter, we covered in depth both the Pod Security Admission control and the
RuntimeClass APIs with which you can configure a granular level of security for your
workloads. We have also taken a look at some open source ecosystem tooling that
you can use to monitor and enforce policy within the container runtime. We have
provided a thorough overview for you to make an informed decision about providing
the level of security best suited for your workload needs.

Summary | 153

https://oreil.ly/9KOeg

CHAPTER 11

Policy and Governance for Your Cluster

Have you ever wondered how you might ensure that all containers running on a
cluster come only from an approved container registry? Or maybe you’ve been asked
by the security team to enforce a policy that services are never exposed to the inter‐
net. These are precisely the challenges that policy and governance for your cluster
set out to address. As Kubernetes continues to mature and becomes adopted by
more enterprises, the question of how to apply policy and governance to Kubernetes
resources is increasing in frequency. In this chapter we share what you can do and the
tools to use to make sure that your cluster is in compliance with the defined policies,
whether you work at a startup or an enterprise.

Why Policy and Governance Are Important
Whether you operate in a highly regulated environment—for example, health care
or financial services—or you simply want to make sure that you maintain a level
of control over what’s running on your clusters, you’re going to need a way to
implement the company-specific policies. Once your policy is defined, you will need
to determine how to implement it and maintain clusters that are compliant to these
policies. These policies may be required to meet regulatory compliance or simply
to enforce best practices. Whatever the reason, you must be sure that you do not
sacrifice developer agility and self-service when implementing these policies.

How Is This Policy Different?
In Kubernetes, policy is everywhere. Whether it be network policy or pod security,
we’ve all come to understand what policy is and when to use it. We trust that
whatever is declared in Kubernetes resource specifications is implemented as per
the policy definition. Both network policy and pod security are implemented at

155

runtime. However, what policy restricts the field values in these Kubernetes resource
specifications? That’s the job of policy and governance. Rather than implementing
policy at runtime, when we talk about policy in the context of governance, what we
mean (or at least what we are trying to achieve) is the ability to limit the way fields are
configured in Kubernetes resources. Only Kubernetes resource specifications that are
compliant when evaluated by policies are allowed and committed to the cluster state.

Cloud Native Policy Engine
To be able to evaluate which resources are compliant, we need a policy engine
that is flexible enough to meet a variety of needs. The Open Policy Agent (OPA)
is an open source, flexible, lightweight policy engine that has become increasingly
popular in the cloud native ecosystem. Having OPA in the ecosystem has allowed
many implementations of different Kubernetes governance tools to appear. One such
Kubernetes policy and governance project the community is rallying around is called
Gatekeeper. For the rest of this chapter, we use Gatekeeper as the canonical example
to illustrate how you might achieve policy and governance for your cluster. Although
there are other implementations of policy and governance tools in the ecosystem,
they all seek to provide the same user experience (UX) by allowing only compliant
Kubernetes resource specifications to be committed to the cluster.

Introducing Gatekeeper
Gatekeeper is an open source, customizable Kubernetes admission webhook for
cluster policy and governance. Gatekeeper takes advantage of the OPA constraint
framework to enforce custom resource definition (CRD)-based policies. Using CRDs
allows for an integrated Kubernetes experience that decouples policy authoring from
implementation. Policy templates are referred to as constraint templates, which can be
shared and reused across clusters. Gatekeeper enables resource validation and audit
functionality. One of the great things about Gatekeeper is that it’s portable, which
means that you can implement it on any Kubernetes clusters, and if you are already
using OPA, you might be able to port that policy over to Gatekeeper.

Gatekeeper is a production-ready open source project. For the
latest stable version, please visit the official upstream repository.

156 | Chapter 11: Policy and Governance for Your Cluster

https://oreil.ly/xzN2p
https://oreil.ly/RvKUw
https://oreil.ly/Rk8dc

•
•
•
•
•

•
•
•

Example Policies
Before diving into how to configure Gatekeeper, it’s important to keep the problem
we are trying to solve in focus. While every organization/team will need to optimize
their policies for their needs, some fairly universal policies serve as best practices.
Let’s look at some policies that solve the most common compliance issues for context:

• Services must not be exposed publicly on the internet.
• Allow containers only from trusted container registries.
• All containers must have resource limits.
• Ingress hostnames must not overlap.
• Ingresses must use only HTTPS.

Gatekeeper Terminology
Gatekeeper has adopted much of the same terminology as OPA. It’s important that we
cover that terminology so you can understand how Gatekeeper operates. Gatekeeper
uses the OPA constraint framework, which introduces three new terms:

• Constraint
• Rego
• Constraint template

Constraint
The best way to think about constraints is as restrictions that you apply to specific
fields and values of Kubernetes resource specifications. This is really just a long way
of saying policy. When constraints are defined, you are effectively stating that you DO
NOT want to allow this. The implications of this approach mean that resources are
implicitly allowed without a constraint that issues a deny. This is an important nuance
because rather then allowing the Kubernetes resources specification fields and values
you want, you are denying only the ones you DO NOT want. This architectural deci‐
sion suits Kubernetes resource specifications nicely because they are ever changing.

Rego
Rego is an OPA-native query language. Rego queries are assertions on the data stored
in OPA. Gatekeeper stores rego in the constraint template.

Constraint template
Think of this as a policy template. It’s portable and reusable. Constraint templates
consist of typed parameters and the target rego that is parameterized for reuse.

Introducing Gatekeeper | 157

Defining Constraint Templates
Constraint templates are a custom resource definition (CRD) that provide a means of
templating policy so that it can be shared or reused. In addition, parameters for the
policy can be validated. Let’s look at a constraint template, from the upstream Gate
keeper policy library

‐
, in the context of the earlier examples. In the following example,

we share a constraint template that provides the policy “Only allow containers from
trusted container registries”:

apiVersion: templates.gatekeeper.sh/v1
kind: ConstraintTemplate
metadata:
name: k8sallowedrepos
annotations:
metadata.gatekeeper.sh/title: "Allowed Repositories"
metadata.gatekeeper.sh/version: 1.0.0
description: >-
Requires container images to begin with a string from the specified list.

spec:
crd:
spec:
names:
kind: K8sAllowedRepos

validation:
Schema for the `parameters` field
openAPIV3Schema:
type: object
properties:
repos:
description: The list of prefixes a container image is allowed to
have.

type: array
items:
type: string

targets:
- target: admission.k8s.gatekeeper.sh
rego: |
package k8sallowedrepos

violation[{"msg": msg}] {
container := input.review.object.spec.containers[_]
satisfied := [good | repo = input.parameters.repos[_] ;
good = startswith(container.image, repo)]

not any(satisfied)
msg := sprintf("container <%v> has an invalid image repo <%v>,
allowed repos are %v",
[container.name, container.image, input.parameters.repos])

}

violation[{"msg": msg}] {
container := input.review.object.spec.initContainers[_]

158 | Chapter 11: Policy and Governance for Your Cluster

https://oreil.ly/LQSAH
https://oreil.ly/HksnE
https://oreil.ly/HksnE

satisfied := [good | repo = input.parameters.repos[_] ;
good = startswith(container.image, repo)]

not any(satisfied)
msg := sprintf("initContainer <%v> has an invalid image repo <%v>,
allowed repos are %v",
[container.name, container.image, input.parameters.repos])

}

violation[{"msg": msg}] {
container := input.review.object.spec.ephemeralContainers[_]
satisfied := [good | repo = input.parameters.repos[_] ;
good = startswith(container.image, repo)]

not any(satisfied)
msg := sprintf("ephemeralContainer <%v> has an invalid image repo <%v>,
allowed repos are %v",
[container.name, container.image, input.parameters.repos])

}

The constraint template consists of three main components:

Kubernetes-required CRD metadata
The name is the most important part. It’s best practice to make it descriptive
enough to easily identify the purpose of the policy. We reference this later.

Schema for input parameters
Indicated by the validation field, this section defines the input parameters and
their associated types. In this example, we have a single parameter called repos
that is an array of strings.

Policy definition
Indicated by the target field, this section contains templated rego (the language
to define policy in OPA). Using a constraint template allows the templated rego
to be reused and means that generic policy can be shared. If the rule matches, the
constraint is violated.

Defining Constraints
To use the previous constraint template, we must create a constraint resource. The
purpose of the constraint resource is to provide the necessary parameters to the
constraint template that we created earlier. You can see that the kind of the resource
defined in the following example is K8sAllowedRepos, which maps to the constraint
template defined in the previous section:

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sAllowedRepos
metadata:
name: prod-repo-is-openpolicyagent

spec:
enforcementAction: deny

Introducing Gatekeeper | 159

•
—

•
•

—
—
—

match:
kinds:
- apiGroups: [""]
kinds: ["Pod"]

namespaces:
- "production"

parameters:
repos:
- "openpolicyagent/"

The constraint consists of two main sections:

Kubernetes metadata
Notice that this constraint is of kind K8sAllowedRepos, which matches the name
of the constraint template.

The spec
The match field defines the scope of intent for the policy. In this example, we are
matching pods only in the production namespace.

The parameters define the intent for the policy. Notice that they match the type
from the constraint template schema from the previous section. In this case, we
allow only container images that start with openpolicyagent/.

Constraints have the following operational characteristics:

• Logical AND
— When multiple policies validate the same field, if one violates then the whole

request is rejected
• Schema validation that allows early error detection
• Selection criteria

— Can use label selectors
— Constrain only certain kinds
— Constrain only in certain namespaces

Data Replication
In some cases, you might want to compare the current resource against other
resources that are in the cluster, for example, in the case of “Ingress hostnames must
not overlap.” OPA needs to have all the other Ingress resources in its cache in order to
evaluate the rule. Gatekeeper uses a config resource to manage which data is cached
in OPA in order to perform evaluations such as the one previously mentioned. In
addition, config resources are also used in the audit functionality, which we explore a
bit later on.

160 | Chapter 11: Policy and Governance for Your Cluster

The following example config resource caches v1 service, pods, and namespaces:

apiVersion: config.gatekeeper.sh/v1alpha1
kind: Config
metadata:
name: config
namespace: gatekeeper-system

spec:
sync:
syncOnly:
- kind: Service
version: v1

- kind: Pod
version: v1

- kind: Namespace
version: v1

UX
Gatekeeper enables real-time feedback to cluster users for resources that violate
defined policy. If we consider the example from the previous sections, we allow
containers only from repositories that start with openpolicyagent/.

Let’s try to create the following resource; it is not compliant given the current policy:

apiVersion: v1
kind: Pod
metadata:
name: opa
namespace: production

spec:
containers:
- name: opa
image: quay.io/opa:0.9.2

This gives you the violation message that’s defined in the constraint template:

$ kubectl create -f bad_resources/opa_wrong_repo.yaml
Error from server (Forbidden): error when creating "STDIN": admission webhook
"validation.gatekeeper.sh" denied the request: [repo-is-openpolicyagent]
container <opa> has an invalid image repo <quay.io/opa:0.9.2>, allowed
repos are ["openpolicyagent/"]

Using Enforcement Action and Audit
Thus far, we have discussed only how to define policy and have it enforced as part of
the request admission process. Constraints include the ability to configure an enfor
cementAction, which by default is set to deny. In addition to deny, enforcementAc
tion also allows accepted values of warn and dryrun. When we think about rolling
out policy, it’s not always the case that you are applying to a cluster or namespace

Using Enforcement Action and Audit | 161

without resources already deployed. It’s therefore important to understand how to
deploy policy to a cluster that already has resources deployed with the confidence
that you can identify and remediate policy violations without necessarily breaking
deployed workloads. The enforcementAction field allows you to define the behavior.
When set to deny, a resource that violates policy will not be created and an error
message will both be audit logged and sent back to the user. If set to warn, the
resource will be created; however, a warning message will be audit logged and sent
back to the user. Finally, if dryrun is set, the resource will be created and resources
that violate the policy will be available in the audit log.

Whatever enforcementAction you decide to use, Gatekeeper will periodically evalu‐
ate resources against any configured policy and provide an audit log. This helps
with the detection of misconfigured resources according to policy and allows for
remediation. The audit results are stored in the status field of the constraint, making
them easy to find by simply using kubectl. To use audit, the resources to be audited
must be replicated. For more details, refer to “Data Replication” on page 160.

Let’s look at the constraint called prod-repo-is-openpolicyagent that you defined
in the previous section. In this case, imagine we already had a pod called nginx
running in the production namespace and we would like to check its compliance to
the policy using audit:

$ kubectl get k8sallowedrepos
NAME ENFORCEMENT-ACTION TOTAL-VIOLATIONS
prod-repo-is-openpolicyagent deny 1

$ kubectl get k8sallowedrepos prod-repo-is-openpolicyagent -o yaml
apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sAllowedRepos
metadata:
annotations:
kubectl.kubernetes.io/last-applied-configuration: ...

creationTimestamp: "..."
generation: 1
name: prod-repo-is-openpolicyagent
resourceVersion: "..."
uid: ...

spec:
match:
kinds:
- apiGroups:
- ""
kinds:
- Pod

namespaces:
- production

parameters:
repos:
- openpolicyagent/

162 | Chapter 11: Policy and Governance for Your Cluster

status:
auditTimestamp: "2022-11-27T23:37:42Z"
totalViolations: 1
violations:
- enforcementAction: deny
group: ""
kind: Pod
message: container <nginx> has an invalid image repo <nginx>, allowed repos
are ["openpolicyagent/"]

name: nginx
namespace: production
version: v1

Upon inspection, you can see the last time the audit ran in the auditTimestamp field.
We also see all the resources that violate this constraint, only the nginx pod in this
case, under the violations along with the enforcementAction.

Mutation
In addition to resource validation, Gatekeeper also allows you to configure mutation
policies. Mutation policies allow you to modify Kubernetes resources at admission
time. Generally, mutating resources at admission time is not considered best practice.
Having resources “magically” modified by Gatekeeper is a cloud native antipattern as
this is counter to the declarative nature of Kubernetes. Mutation policies are simply
mentioned here to provide guidance to avoid them unless you feel your use case
absolutely requires them and that you have exhausted other best practices. Refer
to Chapter 18 for more details on how to implement declarative best practices for
Kubernetes resources.

Testing Policies
As the GitOps philosophy has become widely adopted, testing policy and evaluation
as part of local testing or CI/CD pipelines has become a must have. Gatekeeper ships
with a gator CLI that enables you to take the constraint templates and constraints
and run a local evaluation. This is a great tool for building new policies, testing them
against your resources, and remediating any issues prior to deploying them to your
production clusters. The Gatekeeper documentation provides a practical guide to
using the gator CLI to test policy.

Becoming Familiar with Gatekeeper
If you’d like to explore Gatekeeper further, the repository ships with fantastic demon‐
stration content that walks you through a detailed example of building policies to
meet compliance for a bank. We would strongly recommend walking through the
demonstration for a hands-on approach to how Gatekeeper operates. You can find
the demonstration in this Git repository. Gatekeeper also maintains a public library

Using Enforcement Action and Audit | 163

https://oreil.ly/Qj4p8
https://oreil.ly/GcR3i
https://oreil.ly/e8ESD

•

•

•

•

•

•

of policies that you can apply to your cluster with easy installation guidance via
ArtifactHub.

Policy and Governance Best Practices
You should consider the following best practices when implementing policy and
governance on your clusters:

• If you want to enforce a specific field in a pod, you need to determine which
Kubernetes resource specification you want to inspect and enforce. Let’s consider
the case of Deployments, for example. Deployments manage ReplicaSets, which
manage pods. We could enforce at all three levels, but the best choice is the one
that is the lowest handoff point before the runtime, which in this case is the
pod. This decision, however, has implications. The user-friendly error message
when we try to deploy a noncompliant pod, as seen in “UX” on page 161, is not
going to be displayed. This is because the user is not creating the noncompliant
resource, the ReplicaSet is. This experience means that the user would need to
determine that the resource is not compliant by running a kubectl describe
on the current ReplicaSet associated with the Deployment. Although this might
seem cumbersome, this is consistent behavior with other Kubernetes features,
such as pod security.

• Constraints can be applied to Kubernetes resources on the following criteria:
kinds, namespaces, and label selectors. We would strongly recommend scoping
the constraint to the resources to which you want it to be applied as tightly as
possible. This ensures consistent policy behavior as the resources on the cluster
grow, and means that resources that don’t need to be evaluated aren’t being
passed to OPA, which can result in other inefficiencies.

• On clusters with resources that are already deployed, utilize warn and dryrun
along with audit to remediate resources that violate policy before setting the
enforcementAction to deny.

• Don’t use mutation policies; instead consider other declarative approaches,
including GitOps.

• Synchronizing and enforcing on potentially sensitive data such as Kubernetes
secrets is not recommended. Given that OPA will hold this in its cache (if it is
configured to replicate that data) and resources will be passed to Gatekeeper, it
leaves surface area for a potential attack vector.

• If you have many constraints defined, a deny of constraint means that the entire
request is denied. There is no way to make this function as a logical OR.

164 | Chapter 11: Policy and Governance for Your Cluster

https://oreil.ly/uEcfn

Summary
In this chapter, we covered why policy and governance are important and walked
through a project that’s built upon OPA, a cloud native ecosystem policy engine, to
provide a Kubernetes-native approach to policy and governance. You should now be
prepared and confident the next time the security teams asks, “Are our clusters in
compliance with our defined policy?”

Summary | 165

•
•
•

CHAPTER 12

Managing Multiple Clusters

In this chapter, we discuss best practices for managing multiple Kubernetes clusters.
We dive into the details of the differences between multicluster management and
federation, tools to manage multiple clusters, and operational patterns for managing
multiple clusters.

You might wonder why you would need multiple Kubernetes clusters. Kubernetes was
built to consolidate many workloads to a single cluster, correct? This is true, but there
are scenarios that might require multiple clusters, such as workloads across regions,
concerns of blast radius, regulatory compliance, and specialized workloads.

We discuss these scenarios and explore the tools and techniques for managing multi‐
ple clusters in Kubernetes.

Why Multiple Clusters?
When adopting Kubernetes, you will likely have more than one cluster, and you
might even start with more than one cluster to break out production from staging,
user acceptance testing (UAT), or development. Kubernetes provides some multite‐
nancy features with namespaces, which are a logical way to break up a cluster into
smaller logical constructs. Namespaces allow you to define Role-Based Access Con‐
trol (RBAC), quotas, pod security policies, and network policies to allow separation of
workloads. This is a great way to separate multiple teams and projects, but there are
other concerns that might require you to build a multicluster architecture. Concerns
to think about when deciding to use multicluster versus a single-cluster architecture:

• Blast radius
• Compliance
• Security

167

•
•
•

• Hard multitenancy
• Regional-based workloads
• Specialized workloads

When thinking through your architecture, blast radius should come front and center.
This is one of the main concerns that we see with users designing for multicluster
architectures. With microservice architectures we employ circuit breakers, retries,
bulkheads, and rate limiting to constrain the extent of damage to our systems. You
should design the same into your infrastructure layer, and multiple clusters can help
with preventing the impact of cascading failures due to software issues. For example,
if you have one cluster that serves 500 applications and you have a platform issue,
it takes out 100% of the 500 applications. If you had a platform layer issue with five
clusters serving those 500 applications, you affect only 20% of the applications. The
downside to this is that now you need to manage five clusters, and your consolidation
ratios will not be as good as with a single cluster. Dan Woods wrote a great article
about an actual cascading failure in a production Kubernetes environment. It is a
great example of why you will want to consider multicluster architectures for larger
environments.

Compliance is another area of concern for multicluster design because there are
special considerations for Payment Card Industry (PCI), Health Insurance Portability
and Accountability (HIPAA), and other workloads. It’s not that Kubernetes doesn’t
provide some multitenant features, but these workloads might be easier to manage
if they are segregated from general purpose workloads. These compliant workloads
might have specific requirements with respect to security hardening, nonshared
components, or dedicated workload requirements. It’s just much easier to separate
these workloads than to have to treat the cluster in such a specialized fashion.

Security in large Kubernetes clusters can become difficult to manage. As you start
onboarding more and more teams to a Kubernetes cluster, each team may have
different security requirements, and it can become very difficult to meet those needs
in a large multitenant cluster. Even just managing RBAC, network policies, and pod
security policies can become difficult at scale in a single cluster. A small change to a
network policy can inadvertently open up security risk to other users of the cluster.
With multiple clusters you can limit the security impact with a misconfiguration. If
you decide that a larger Kubernetes cluster fits your requirements, then ensure that
you have a very good operational process for making security changes and that you
understand the blast radius of making a change to RBAC, network policy, and pod
security policies.

Kubernetes doesn’t provide hard multitenancy because it shares the same API bound‐
ary with all workloads running within the cluster. With namespacing this gives us
good soft multitenancy, but not enough to protect against hostile workloads within

168 | Chapter 12: Managing Multiple Clusters

https://oreil.ly/YnGUD

•
•
•
•
•

the cluster. Hard multitenancy is not a requirement for a lot of users; they trust the
workloads that will be running within the cluster. Hard multitenancy is typically a
requirement if you are a cloud provider, hosting software as a service (SaaS)-based
software, or hosting untrusted workloads with untrusted user control.

The Kubernetes project does address hard multitenancy concerns
with Virtual Clusters, outside the scope of the book. Find more
information on the project’s GitHub.

When running workloads that need to serve traffic from in-region endpoints, your
design will include multiple clusters that are based per region. When you have a glob‐
ally distributed application, it becomes a requirement at that point to run multiple
clusters. When you have workloads that need to be regionally distributed, it’s a great
use case for cluster federation of multiple clusters, which we dig into further later in
this chapter.

Specialized workloads, such as high-performance computing (HPC), machine learn‐
ing (ML), and grid computing, also need to be addressed in the multicluster architec‐
ture. These types of specialized workloads might require specific types of hardware,
have unique performance profiles, and have specialized users of the clusters. We’ve
seen this use case to be less prevalent in the design decision because having multiple
Kubernetes node pools can help address specialized hardware and performance pro‐
files. When you need a very large cluster for an HPC or machine learning workload,
you should consider just dedicating clusters for these workloads.

With multicluster, you get isolation for “free,” but it also has design concerns that you
need to address at the outset.

Multicluster Design Concerns
When choosing a multicluster design there are some challenges that you’ll run into.
Some of these challenges might deter you from attempting a multicluster design
given that the design might overcomplicate your architecture. Some of the common
challenges we find users running into are:

• Data replication
• Service discovery
• Network routing
• Operational management
• Continuous deployment

Multicluster Design Concerns | 169

https://oreil.ly/KlFlK

Data replication and consistency have always been the crux of deploying workloads
across geographical regions and multiple clusters. When running these services, you
need to decide what runs where and develop a replication strategy. Most databases
have built-in tools to perform the replication, but you need to design the application
to be able to handle the replication strategy. For NoSQL-type database services this
can be easier because they can handle scaling across multiple instances, but you
still need to ensure that your application can handle eventual consistency across
geographic regions or at least the latency across regions. Some cloud services, such as
Google Cloud Spanner and Microsoft Azure CosmosDB, have built database services
to help with the complications of handling data across multiple geographic regions.

Each Kubernetes cluster deploys its own service discovery registry, and registries
are not synchronized across multiple clusters. This complicates applications being
able to easily identify and discover one another. Tools such as HashiCorp’s Consul
can transparently synchronize services from multiple clusters and even services that
reside outside of Kubernetes. Other tools like Istio, Linkerd, and Cilium are building
on multiple cluster architectures to extend service discovery between clusters.

Kubernetes makes networking from within the cluster very easy, as it’s a flat network
and avoids using network address translation (NAT). If you need to route traffic in
and out of the cluster, this becomes more complicated. Ingress into the cluster is
implemented as a 1:1 mapping of ingress to the cluster because it doesn’t support
multicluster topologies with the Ingress resource. You’ll also need to consider the
egress traffic between clusters and how to route that traffic. When your applications
reside within a single cluster this is easy, but when introducing multicluster, you need
to think about the latency of extra hops for services that have application dependen‐
cies in another cluster. For applications that have tightly coupled dependencies, you
should consider running these services within the same cluster to remove latency and
extra complexity.

One of the biggest overheads to managing multiclusters is the operational manage‐
ment. Instead of one or a couple of clusters to manage and keep consistent, you might
now have many clusters to manage in your environment. One of the most important
aspects to managing multiclusters is ensuring that you have good automation practi‐
ces in place because this will help to reduce the operational burden. When automat‐
ing your clusters, you need to take into account the infrastructure deployment and
managing add-on features to your clusters. For managing the infrastructure, using a
tool like HashiCorp’s Terraform can help with deploying and managing a consistent
state across your fleet of clusters.

Using an Infrastructure as Code (IaC) tool like Terraform will give you the benefit of
providing a reproducible way to deploy your clusters. On the other hand, you also
need to be able to consistently manage add-ons to the cluster, such as monitoring,
logging, ingress, security, and other tools. Security is another important aspect of

170 | Chapter 12: Managing Multiple Clusters

operational management, and you must be able to maintain security policies, RBAC,
and network policies across clusters. Later in this chapter, we dive deeper into the
topic of maintaining consistent clusters with automation.

With multiple clusters and continuous delivery (CD), you now need to deal with
multiple Kubernetes API endpoints versus a single API endpoint. This can cause
challenges in the distribution of applications. You can easily manage multiple pipe‐
lines, but suppose that you have a hundred different pipelines to manage, which can
make application distribution very difficult. With this in mind, you need to look at
different approaches to managing this situation. We take a look at solutions to help
manage this later in the chapter.

Managing Multiple Cluster Deployments
One of the first steps you want to take when managing multicluster deployments is
to use an IaC tool like Terraform to set up deployments. Other deployment tools,
such as kubespray, kops, or other cloud provider–specific tools, are all valid choices,
but, most importantly, use a tool that allows you to source control your cluster
deployment for repeatability.

Automation is key to successfully managing multiple clusters in your environment.
You might not have everything automated on day one, but you should make it a
priority to automate all aspects of your cluster deployments and operations.

An interesting project is the Kubernetes Cluster API, a Kubernetes project to bring
declarative, Kubernetes-style APIs to cluster creation, configuration, and manage‐
ment. It provides optional additive functionality on top of core Kubernetes. The
Cluster API provides a cluster-level configuration declared through a common API,
which will give you the ability to easily automate and build tooling around cluster
automation. The Cluster API is still in its early stages, but it’s a project to keep an eye
on.

Deployment and Management Patterns
Kubernetes operators were introduced as an implementation of the Infrastructure as
Software concept. Using them allows you to abstract the deployment of applications
and services in a Kubernetes cluster. For example, suppose that you want to stand‐
ardize on Prometheus for monitoring your Kubernetes clusters. You would need
to create and manage various objects (deployment, service, ingress, etc.) for each
cluster and team. You would also need to maintain the fundamental configurations of
Prometheus, such as versions, persistence, retention policies, and replicas. As you can
imagine, the maintenance of such a solution could be difficult across a large number
of clusters and teams.

Deployment and Management Patterns | 171

https://oreil.ly/edzIa

•
•

Instead of dealing with so many objects and configurations, you could install the
prometheus-operator. This extends the Kubernetes API, exposing multiple new
object kinds called Prometheus, ServiceMonitor, PrometheusRule, and AlertMan
ager, which allow you to specify all the details of a Prometheus deployment using just
a few objects. You can use the kubectl tool to manage such objects, just as it manages
any other Kubernetes API object.

Figure 12-1 shows the architecture of the prometheus-operator.

Figure 12-1. prometheus-operator architecture

Utilizing the Operator pattern for automating key operational tasks can help improve
your overall cluster management capabilities. The Operator pattern was introduced
by the CoreOS team in 2016 with the etcd operator and prometheus-operator. The
Operator pattern builds on two concepts:

• Custom resource definitions
• Custom controllers

Custom resource definitions (CRDs) are objects that allow you to extend the Kuber‐
netes API, based on your own API that you define.

Custom controllers are built on the core Kubernetes concepts of resources and con‐
trollers. Custom controllers allow you to build your own logic by watching events
from Kubernetes API objects such as namespaces, Deployments, pods, or your own
CRD. With custom controllers, you can build your CRDs in a declarative way. If you
consider how the Kubernetes Deployment controller works in a reconciliation loop to
always maintain the state of the Deployment object to maintain its declarative state,
this brings the same advantages of controllers to your CRDs.

When utilizing the Operator pattern, you can build in automation to operational
tasks that need to be performed on operational tooling in multiclusters. Let’s take

172 | Chapter 12: Managing Multiple Clusters

•
•
•
•
•

the following Elasticsearch operator as an example. The Elasticsearch operator can
perform the following operations:

• Replicas for master, client, and data nodes
• Zones for highly available deployments
• Volume sizes for master and data nodes
• Resizing of cluster
• Snapshot for backups of the Elasticsearch cluster

As you can see, the operator provides automation for many tasks that you would need
to perform when managing Elasticsearch, such as automating snapshots for backup
and resizing the cluster. The beauty of this is that you manage everything through
familiar Kubernetes objects.

Think about how you can take advantage of different operators like the prometheus-
operator in your environment and also how you can build your own custom opera‐
tor to offload common operational tasks.

The GitOps Approach to Managing Clusters
GitOps was popularized by the folks at Weaveworks, and the idea and fundamentals
were based on their experience of running Kubernetes in production. GitOps takes
the concepts of the software development life cycle and applies them to operations.
With GitOps, your Git repository becomes your source of truth, and your cluster
is synchronized to the configured Git repository. For example, if you update a Kuber‐
netes Deployment manifest, those configuration changes are automatically reflected
in the cluster state.

By using this method, you can make it easier to maintain multiclusters that are
consistent and avoid configuration drift across the fleet. GitOps allows you to declar‐
atively describe your clusters for multiple environments and drives to maintain that
state for the cluster. The practice of GitOps can apply to both application delivery
and operations, but in this chapter, we focus on using it to manage clusters and
operational tooling.

Weaveworks Flux was one of the first tools to enable the GitOps approach, and it’s
the tool we will use throughout the rest of the chapter. There are many new tools
that have been released into the cloud native ecosystem that are worth a look, such as
Argo CD, from the folks at Intuit, which has also been widely adopted for the GitOps
approach.

We’ll get into a deeper dive of utilizing a GitOps model in Chapter 18, but the follow‐
ing provides a quick glance at the benefit of utilizing GitOps for cluster management.

The GitOps Approach to Managing Clusters | 173

https://oreil.ly/9WvJQ

Figure 12-2 presents a representation of a GitOps workflow.

Figure 12-2. GitOps workflow

So, let’s get Flux set up in your cluster and get a repository synchronized to the
cluster:

git clone https://github.com/weaveworks/flux
cd flux

You now need to change the Deployment manifest to configure it with your forked
repo from Chapter 5. Modify the following line in the Deployment file to match your
forked GitHub repository:

vim deploy/flux-deployment.yaml

Modify the following line with your Git repository:

--git-url=git@github.com:weaveworks/flux-get-started
 (ex. --git-url=git@github.com:your_repo/kbp)

Now, go ahead and deploy Flux to your cluster:

kubectl apply -f deploy

When Flux installs, it creates an SSH key so that it can authenticate with the Git
repository. Use the Flux command-line tool to retrieve the SSH key so that you can
configure access to your forked repository; first, you need to install fluxctl.

For macOS:

brew install fluxctl

For Linux Snap Packages:

snap install fluxctl

For all other packages, you can find the latest binaries here:

fluxctl identity

Open GitHub, navigate to your fork, go to Setting > “Deploy keys,” click “Add deploy
key,” give it a Title, select the “Allow write access” checkbox, paste the Flux public key,

174 | Chapter 12: Managing Multiple Clusters

https://oreil.ly/4TAx5

and then click “Add key.” See the GitHub documentation for more information on
how to manage deploy keys.

Now if you view the Flux logs, you should see that it is synchronizing with your
GitHub repository:

kubectl -n default logs deployment/flux -f

After you see that it’s synchronizing with your GitHub repository, you should see that
the Elasticsearch, Prometheus, Redis, and frontend pods are created:

kubectl get pods -w

With this example complete, you should be able to see how easy it is for you to
synchronize your GitHub repository state with your Kubernetes cluster. This makes
managing the multiple operational tools in your cluster much easier, because multiple
clusters can synchronize with a single repository and you avoid the situation of
having snowflake clusters.

Multicluster Management Tools
When working with multiple clusters, using kubectl can immediately become con‐
fusing because you need to set different contexts to manage the different clusters.
Two tools that you will want to install right away when dealing with multiple clusters
are kubectx and kubens, which allow you to easily change between multiple contexts
and namespaces.

When you need a full-fledged multicluster management tool, there are a few within
the Kubernetes ecosystem to look at for managing multiple clusters. Following is a
summary of some of the more popular tools:

Rancher
Rancher centrally manages multiple Kubernetes clusters in a centrally managed
UI. It monitors, manages, backs up, and restores Kubernetes clusters across on-
premises, cloud, and hosted Kubernetes setups. It also has tools for controlling
applications deployed across multiple clusters and provides operational tooling.

Open Cluster Management (OCM)
OCM is a community-driven project focused on multicluster and multicloud
scenarios for Kubernetes apps. It provides cluster registration, workload distribu‐
tion, and dynamic placement of policies and workloads.

Gardener
Gardener takes a different approach to multicluster management in that it uti‐
lizes Kubernetes primitives to provide Kubernetes as a Service to your end users.
It provides support for all major cloud vendors and was developed by the folks at

Multicluster Management Tools | 175

https://oreil.ly/Oet57
https://oreil.ly/8qGNh
https://oreil.ly/HUv5k
https://oreil.ly/fElD5

•

•

•

•

•

•

•

•

SAP. This solution is geared to users who are building a Kubernetes as a Service
offering.

Kubernetes Federation
Kubernetes first introduced Federation v1 in Kubernetes 1.3, and it has since been
deprecated in lieu of Federation v2. Federation v1 set out to help with the distribution
of applications to multiple clusters. Federation v1 was built utilizing the Kubernetes
API and heavily relied on Kubernetes annotations, which imposed some problems in
its design. The design was tightly coupled to the core Kubernetes API, which made
Federation v1 quite monolithic. At the time, the design decisions were probably not
bad choices, but they were built on the primitives that were available. The introduc‐
tion of Kubernetes CRDs allowed a different way of thinking about how Federation
could be designed.

Managing Multiple Clusters Best Practices
Consider the following best practices when managing multiple Kubernetes clusters:

• Limit the blast radius of your clusters to ensure cascading failures don’t have a
bigger impact on your applications.

• If you have regulatory concerns such as PCI, HIPPA, or HiTrust, think about
utilizing multiclusters to ease the complexity of mixing these workloads with
general workloads.

• If hard multitenancy is a business requirement, workloads should be deployed to
a dedicated cluster.

• If multiple regions are needed for your applications, utilize a Global Load Bal‐
ancer to manage traffic between clusters.

• You can break out specialized workloads such as HPC into their own individual
clusters to ensure that the specialized needs for the workloads are met.

• If you’re deploying workloads that will be spread across multiple regional data
centers, first ensure there is a data replication strategy for the workload. Multiple
clusters across regions can be easy, but replicating data across regions can be
complicated, so ensure there is a sound strategy to handle asynchronous and
synchronous workloads.

‐

• Utilize Kubernetes operators like the prometheus-operator or Elasticsearch
operator to handle automated operational tasks.

• When designing your multicluster strategy, also consider how you will imple‐
ment service discovery and networking between clusters. Service mesh tools like
HashiCorp’s Consul or Istio can help with networking across clusters.

176 | Chapter 12: Managing Multiple Clusters

•

•

• Be sure that your CD strategy can handle multiple rollouts between regions or
multiple clusters.

• Investigate utilizing a GitOps approach to managing multiple cluster operational
components to ensure consistency between all clusters in your fleet. The GitOps
approach doesn’t work for everyone’s environment, but you should at least inves‐
tigate it to ease the operational burden of multicluster environments.

Summary
In this chapter, we discussed different strategies for managing multiple Kubernetes
clusters. It’s important to think about your needs at the outset and whether those
needs match a multicluster topology. The first scenario to think about is whether you
truly need hard multitenancy because this will automatically require a multicluster
strategy. If you don’t, consider your compliance needs and whether you have the
operational capacity to consume the overhead of multicluster architectures. Finally, if
you’re going with more, smaller clusters, ensure that you automate their delivery and
management to reduce the operational burden.

Summary | 177

CHAPTER 13

Integrating External Services
with Kubernetes

In many of the chapters in this book, we’ve discussed how to build, deploy, and
manage services in Kubernetes. However, the truth is that systems don’t exist in a
vacuum, and most of the services that we build will need to interact with systems
and services that exist outside of the Kubernetes cluster in which they’re running.
This might be necessary because we are building new services being accessed by
legacy infrastructure running in virtual or physical machines. Additionally, it might
be because the services we are building need to access preexisting databases or other
services that are running on physical infrastructure in an on-premises datacenter.
Finally, you might have multiple Kubernetes clusters with services you need to
interconnect. For all these reasons, the ability to expose, share, and build services
that span the boundary of your Kubernetes cluster is an important part of building
real-world applications.

Importing Services into Kubernetes
The most common pattern for connecting Kubernetes with external services consists
of a Kubernetes Service that is consuming a service that exists outside of the Kuber‐
netes cluster. Often, this is because Kubernetes is being used for new application
development or is serving as an interface for a legacy resource like an on-premises
database. In many existing applications, parts of the application are easier to move
than others. For example, a database with mission-critical data may be required to
stay on premises for reasons of data governance, compliance, or business continuity.
At the same time, there are significant benefits to building new interfaces to these
legacy databases in Kubernetes. If every migration to Kubernetes required a lift and
shift of the entire application, then many applications would be required to stay

179

with their legacy implementations forever. Instead, this chapter shows how you can
integrate cloud native development of new applications with existing services such as
databases that may be running on traditional virtual machines, bare metal servers, or
even mainframes.

When we consider the task of making an external service accessible from Kubernetes,
the first challenge is simply to get the networking to work correctly. The details of
making networking operational are specific to both the location of the database and
the location of the Kubernetes cluster. As a result, they are beyond the scope of this
book, but generally, cloud-based Kubernetes providers enable the deployment of a
cluster into a user-provided virtual network (VNET), and those virtual networks can
then be peered up with an on-premises network.

After you’ve established network connectivity between pods in the Kubernetes cluster
and the on-premises resource, the next challenge is to make the external service
look and feel like a Kubernetes Service. In Kubernetes, service discovery occurs via
Domain Name System (DNS) lookups, so, to make our external database feel like it is
a native part of Kubernetes, we need to make the database discoverable in the same
DNS. We’ll get into the details of how to do this next.

Selector-Less Services for Stable IP Addresses
The first way to achieve this is with a selector-less Kubernetes Service. When you
create a Kubernetes Service without a selector, there are no pods whose labels match
the nonexistent service selector; thus, no load balancing is performed. Instead, you
can program this selector-less service to have endpoints that are the specific IP
address(es) of the external resource you want to add to the Kubernetes cluster. That
way, when a Kubernetes pod performs a lookup for your-database, the built-in
Kubernetes DNS server will translate that to a service IP address of your external
service. Here is an example of a selector-less service for an external database:

apiVersion: v1
kind: Service
metadata:
name: my-external-database

spec:
ports:
- protocol: TCP
port: 3306
targetPort: 3306

When the service exists, you need to update its endpoints to contain the database IP
address serving at 24.1.2.3:

apiVersion: v1
kind: Endpoints
metadata:
Important! This name has to match the Service.

180 | Chapter 13: Integrating External Services with Kubernetes

name: my-external-database
subsets:
- addresses:

- ip: 24.1.2.3
ports:
- port: 3306

Figure 13-1 depicts how this integrates a service within Kubernetes. As you can see,
the pod looks up the service in the cluster DNS server as it would for any other
Kubernetes Service. But instead of being given the IP address of another pod in the
Kubernetes cluster, it is instead given an IP address that corresponds to the resource
outside of the Kubernetes cluster. In this way, the developer may not even know the
service is implemented outside of the cluster.

Figure 13-1. Service integration

CNAME-Based Services for Stable DNS Names
The previous example assumed that the external resource you were trying to integrate
with your Kubernetes cluster had a stable IP address. Although this is often true of
physical on-premises resources, depending on the network topology, it might not
always be true. It is also significantly less likely to be true in a cloud environment
where virtual machine (VM) IP addresses are more dynamic. Alternatively, the ser‐
vice might have multiple replicas sitting behind a single DNS-based load balancer. In
these situations, the external service you are trying to bridge into your cluster doesn’t
have a stable IP address, but it does have a stable DNS name.

For these instances, you can define a CNAME-based Kubernetes Service. If you’re not
familiar with DNS records, a CNAME, or Canonical Name, record indicates that a
particular DNS address should be translated to a different Canonical DNS name. For
example, a CNAME record for foo.com that contains bar.com indicates that anyone

Importing Services into Kubernetes | 181

looking up foo.com should perform a recursive lookup for bar.com to obtain the
correct IP address. You can use Kubernetes Services to define CNAME records in
the Kubernetes DNS server. For example, if you have an external database with a
DNS name of database.myco.com, you might create a CNAME Service that is named
myco-database. Such a Service looks like this:

kind: Service
apiVersion: v1
metadata:
name: myco-database

spec:
type: ExternalName
externalName: database.myco.com

With a Service defined in this way, any pod that does a lookup for myco-database will
be recursively resolved to database.myco.com. Of course, to make this work, the DNS
name of your external resource also needs to be resolvable from the Kubernetes DNS
servers. If the DNS name is globally accessible (e.g., from a well-known DNS service
provider), this will automatically work. However, if the DNS of the external service is
located in a company-local DNS server (e.g., a DNS server that services only internal
traffic), the Kubernetes cluster might not know by default how to resolve queries to
this corporate DNS server.

To set up the cluster’s DNS server to communicate with an alternate DNS resolver,
you need to adjust its configuration. You do this by updating a Kubernetes Config‐
Map with a configuration file for the DNS server.

CNAME records are a useful way to map external services with stable DNS names
to names that are discoverable within your cluster. At first it might seem counter‐
intuitive to remap a well-known DNS address to a cluster-local DNS address, but
the consistency of having all services look and feel the same is usually worth the
small amount of added complexity. Additionally, because the CNAME Service, like
all Kubernetes Services, is defined per namespace, you can use namespaces to map
the same service name (e.g., database) to different external services (e.g., canary or
production), depending on the Kubernetes namespace.

Active Controller-Based Approaches
In a limited set of circumstances, neither of the previous methods for exposing
external services within Kubernetes is feasible. Generally, this is because there is
neither a stable DNS address nor a single stable IP address for the service that you
want to expose within the Kubernetes cluster. In such circumstances, exposing the
external service within the Kubernetes cluster is significantly more complicated, but it
isn’t impossible.

182 | Chapter 13: Integrating External Services with Kubernetes

To achieve this, you need some understanding of how Kubernetes Services work
under the hood. Kubernetes Services are made up of two different resources: the
Service resource, with which you are doubtless familiar, and the Endpoints resource
that represents the IP addresses that make up the service. In normal operation, the
Kubernetes controller manager populates the endpoints of a service based on the
selector in the service. However, if you create a selector-less service, as in the first
stable-IP approach, the Endpoints resource for the service will not be populated
because no pods are selected. In this situation, you need to supply the control loop
to create and populate the correct Endpoints resource. You need to dynamically
query your infrastructure to obtain the IP addresses for the service external to
Kubernetes that you want to integrate and then populate your service’s endpoints
with these IP addresses. After you do this, the mechanisms of Kubernetes take over
and program both the DNS server and the kube-proxy correctly to load-balance
traffic to your external service. Figure 13-2 presents a complete picture of how this
works in practice.

Figure 13-2. An external service

Exporting Services from Kubernetes
In the previous section, we explored how to import preexisting services to Kuber‐
netes, but you might also need to export services from Kubernetes to the preexisting
environments. This might occur because you have a legacy internal application for
customer management that needs access to a new API you are developing in a cloud
native infrastructure. Alternatively, you might be building new microservice-based
APIs but you need to interface with a preexisting traditional web application fire‐
wall (WAF) because of internal policy or regulatory requirements. Regardless of the
reason, being able to expose services from a Kubernetes cluster to other internal
applications is a critical design requirement for many applications.

This can be challenging because in many Kubernetes installations, the pod IP
addresses are not routable addresses from outside the cluster. Via tools like flannel,
or other networking providers, routing is established within a Kubernetes cluster to
facilitate communication between pods and also between nodes and pods, but the
same routing is not generally extended to arbitrary machines in the same network. In

Exporting Services from Kubernetes | 183

many cases the IP ranges given to pods are distinct from the IP space of a corporate
network and routing is not possible. Furthermore, in the case of cloud to on-premises
connectivity, the IP addresses of the pods are not always advertised back across a
VPN or network peering relationship into the on-premises network. Consequently,
setting up routing between a traditional application and Kubernetes pods is the key
task to enable the export of Kubernetes-based services.

Exporting Services by Using Internal Load Balancers
The easiest way to export from Kubernetes is by using the built-in Service object.
If you have any previous experience with Kubernetes, no doubt you have seen
how you can connect a cloud-based load balancer to bring external traffic to a
collection of pods in the cluster. However, you might not have realized that most
clouds also offer an internal load balancer. The internal load balancer provides
the same capabilities to map a virtual IP address to a collection of pods, but that
virtual IP address is drawn from an internal IP address space (e.g., 10.0.0.0/24),
so it is routable only from within that virtual network. You activate an internal
load balancer by adding a cloud-specific annotation to your Service load balancer.
For example, in Microsoft Azure, you add the service.beta.kubernetes.io/azure-
load-balancer-internal: "true" annotation. On Amazon Web Services (AWS),
the annotation is service.beta.kubernetes.io/aws-load-balancer-internal:

0.0.0.0/0. You place annotations in the metadata field in the Service resource as
follows:

apiVersion: v1
kind: Service
metadata:

name: my-service
annotations:
Replace this as needed in other environments
service.beta.kubernetes.io/azure-load-balancer-internal: "true"

...

When you export a Service via an internal load balancer, you receive a stable, routable
IP address that is visible on the virtual network outside of the cluster. Then, you
can either use that IP address directly or set up internal DNS resolution to provide
discovery for your exported service.

Exporting Services on NodePorts
Unfortunately, in on-premises installations, cloud-based internal load balancers are
unavailable. In this context using a NodePort-based service is often a good solution.
A Service of type NodePort exports a listener on every node in the cluster that
forwards traffic from the node’s IP address and selected port into the Service that you
defined, as shown in Figure 13-3.

184 | Chapter 13: Integrating External Services with Kubernetes

Figure 13-3. A NodePort-based service

Here’s an example YAML file for a NodePort service:

apiVersion: v1
kind: Service
metadata:
name: my-node-port-service

spec:
type: NodePort

...

Following the creation of a Service of type NodePort, Kubernetes automatically
selects a port for the Service; you can get that port from the Service by looking
at the spec.ports[*].nodePort field. If you want to choose the port yourself, you
can specify it when you create the Service, but the NodePort must be within the
configured range for the cluster. The default for this range are ports between 30000
and 30999.

Kubernetes’ work is done when the Service is exposed on this port. To export it to an
existing application outside of the cluster, you (or your network administrator) will
need to make it discoverable. Depending on the way your application is configured,
you might be able to give your application a list of ${node}:${port} pairs, and the
application will perform client-side load balancing. Alternatively, you might need to
configure a physical or virtual load balancer within your network to direct traffic
from a virtual IP address to this list of ${node}:${port} backends. The specific
details for this configuration will differ depending on your environment.

Integrating External Machines and Kubernetes
If neither of the previous solutions work well for you, perhaps because you want
tighter integration for dynamic service discovery, the final choice for exposing Kuber‐
netes Services to outside applications is to directly integrate the machine(s) running

Exporting Services from Kubernetes | 185

the application into the Kubernetes cluster’s service discovery and networking mech‐
anisms. This is significantly more invasive and complicated than either of the previ‐
ous approaches, and you should use it only when necessary for your application
(which should be infrequently). In some managed Kubernetes environments, it might
not even be possible.

When integrating an external machine into the cluster for networking, you need to
ensure that the pod network routing and DNS-based service discovery both work
correctly. The easiest way to do this is to run the kubelet on the machine that
you want to join to the cluster, but disable scheduling in the cluster. Joining a
kubelet node to a cluster is beyond the scope of this book, but there are numerous
other books or online resources that describe how to achieve this. When the node
is joined, you need to immediately mark it as unschedulable using the kubectl
cordon ... command to prevent any additional work being scheduled on it. This
cordoning will not prevent DaemonSets from landing pods onto the node, and thus
the pods for both the KubeProxy and network routing will land on the machine and
make Kubernetes-based services discoverable from any application running on that
machine.

The approach we just described is quite invasive to the node because it requires
installing Docker or some other container runtime. As a result, it might not be
feasible in many environments. A lighter weight but more complex approach is to
just run the kube-proxy as a process on the machine and adjust the machine’s DNS
server. Assuming that you can set up pod routing to work correctly, running the
kube-proxy will set up machine-level networking so that Kubernetes Service virtual
IP addresses will be remapped to the pods that make up that Service. If you also
change the machine’s DNS to point to the Kubernetes cluster DNS server, you will
have effectively enabled Kubernetes discovery on a machine that is not part of the
Kubernetes cluster.

Both of these approaches are complicated and advanced, and you should not take
them lightly. If you find yourself considering this level of service discovery integra‐
tion, ask yourself whether it may be easier to actually bring the service you are
connecting to the cluster into the cluster itself. We cover this in Chapter 16.

Sharing Services Between Kubernetes
The previous sections have described how to connect Kubernetes applications to
outside services and how to connect outside services to Kubernetes applications,
but another significant use case is connecting services between Kubernetes clusters.
This may be to achieve East-West failover between different regional Kubernetes
clusters, or it might be to link together services run by different teams. The process
of achieving this interaction is actually a combination of the designs described in the
previous sections.

186 | Chapter 13: Integrating External Services with Kubernetes

First, you need to expose the Service within the first Kubernetes cluster to enable
network traffic to flow. Let’s assume that you’re in a cloud environment that supports
internal load balancers, and that you receive a virtual IP address for that internal
load balancer of 10.1.10.1. Next, you need to integrate this virtual IP address into the
second Kubernetes cluster to enable service discovery. You achieve this in the same
manner as importing an external application into Kubernetes (we covered this in
“Importing Services into Kubernetes” on page 179). You create a selector-less service
and set its IP address to be 10.1.10.1. With these two steps you have integrated service
discovery and connectivity between services within your two Kubernetes clusters.

These steps are fairly manual, and although this might be acceptable for a small,
static set of services, if you want to enable tighter or automatic service integration
between clusters, it makes sense to write a cluster daemon that runs in both clusters
to perform the integration. This daemon would watch the first cluster for Services
with a particular annotation, say something like myco.com/exported-service; all
Services with this annotation would then be imported into the second cluster via
selector-less services. Likewise, the same daemon would garbage-collect and delete
any services that are exported into the second cluster but are no longer present in the
first. If you set up such daemons in each of your regional clusters, you can enable
dynamic, East-West connectivity between all clusters in your environment.

There has also been recent work within the Kubernetes project to define a Multi-
Cluster Service API. This work is experimental and can be found within the Multi-
Cluster Service project on GitHub. At the time of writing, the experimental nature
of this project means that it is probably not suitable for production use-cases, but
it shows the future direction of multi-cluster service management in the Kubernetes
ecosystem. As it moves from alpha to beta and eventually to general availability, this
implementation of Service sharing will make it much easier to build cross-cluster
microservice applications. Even today, tools such as the Fleet cluster manager in
Microsoft Azure are starting to implement these Multi-Cluster Service APIs in
response to user needs.

Third-Party Tools
So far, this chapter has described the various ways to import, export, and connect
services that span Kubernetes clusters and some outside resource. If you have pre‐
vious experience with service mesh technologies, these concepts might seem quite
familiar. Indeed, there are a variety of third-party tools and projects that you can
use to interconnect services both with Kubernetes and with arbitrary applications
and machines. Generally, these tools provide a lot of functionality, but they are also
significantly more complex operationally than the approaches described earlier. How‐
ever, if you find yourself building more and more networking interconnectivity, you
should explore the space of service meshes, which is rapidly iterating and evolving.

Third-Party Tools | 187

https://oreil.ly/ZXZi4
https://oreil.ly/ZXZi4

•

•

•

•

Nearly all these third-party tools have an open source component, but they also offer
commercial support that can reduce the operational overhead of running additional
infrastructure.

Connecting Cluster and External Services Best Practices
• Establish network connectivity between the cluster and on-premises. Networking

can be varied between different sites, clouds, and cluster configurations, but first
ensure that pods can talk to on-premises machines and vice versa.

• To access services outside of the cluster, you can use selector-less services and
directly program in the IP address of the machine (e.g., the database) with
which you want to communicate. If you don’t have fixed IP addresses, you can
instead use CNAME services to redirect to a DNS name. If you have neither a
DNS name nor fixed services, you might need to write a dynamic operator that
periodically synchronizes the external service IP addresses with the Kubernetes
Service endpoints.

• To export services from Kubernetes, use internal load balancers or NodePort
services. Internal load balancers are typically easier to use in public cloud envi‐
ronments where they can be bound to the Kubernetes Service itself. When such
load balancers are unavailable, NodePort services can expose the service on all
the machines in the cluster.

• You can achieve connections between Kubernetes clusters through a combination
of these two approaches, exposing a service externally that is then consumed as a
selector-less service in the other Kubernetes cluster.

Summary
In the real world, not every application is cloud native. Building production-ready
applications often involves connecting preexisting systems with newer applications.
This chapter described how you can integrate Kubernetes with legacy applications
and also how to integrate different services running across multiple distinct Kuber‐
netes clusters. Unless you have the luxury of building something brand new, cloud
native development will always require legacy integration. The techniques described
in this chapter will help you achieve that.

188 | Chapter 13: Integrating External Services with Kubernetes

CHAPTER 14

Running Machine Learning in Kubernetes

The age of microservices, distributed systems, and the cloud has provided the per‐
fect environmental conditions for the democratization of machine learning models
and tooling. Infrastructure at scale has now become commoditized, and the tool‐
ing around the machine learning ecosystem is maturing. Kubernetes is one of the
platforms that has become increasingly popular among developers, data scientists,
and the wider open source community as the perfect environment to enable the
machine learning workflow and life cycle. Large machine learning models like GPT-4
and DALL.E have brought machine learning into the spotlight and organizations like
OpenAI have been very public about their use of Kubernetes to support these models.
In this chapter, we will cover why Kubernetes is a great platform for machine learning
and provide best practices for both cluster administrators and data scientists alike on
how to get the most out of Kubernetes when running machine learning workloads.
Specifically, we focus on deep learning rather than traditional machine learning
because deep learning has quickly become the area of innovation on platforms like
Kubernetes.

Why Is Kubernetes Great for Machine Learning?
Kubernetes has quickly become the home for rapid innovation in deep learning. The
confluence of tooling and libraries such as TensorFlow makes this technology more
accessible to a large audience of data scientists. What makes Kubernetes such a great
place to run your deep learning workloads? Let’s cover what Kubernetes provides:

189

https://oreil.ly/sGzRc
https://oreil.ly/zTWNx
https://oreil.ly/bCXwF
https://oreil.ly/nzHaG

Ubiquitous
Kubernetes is everywhere. All the major public clouds support it, and there are
distributions for private clouds and infrastructure. Basing ecosystem tooling on
a platform like Kubernetes allows users to run their deep learning workloads
anywhere.

Scalable
Deep learning workflows typically need access to large amounts of computing
power to efficiently train machine learning models. Kubernetes ships with native
autoscaling capabilities that make it easy for data scientists to achieve and fine-
tune the level of scale they need to train their models.

Extensible
Efficiently training a machine learning model typically requires access to speci‐
alized hardware. Kubernetes allows cluster administrators to quickly and easily
expose new types of hardware to the scheduler without having to change the
Kubernetes source code. It also allows custom resources and controllers to be
seamlessly integrated into the Kubernetes API to support specialized workflows,
such as hyperparameter tuning.

Self-service
Data scientists can use Kubernetes to perform self-service machine learning
workflows on demand, without needing specialized knowledge of Kubernetes
itself.

Portable
Machine learning models can be run anywhere, provided that the tooling is based
on the Kubernetes API. This allows machine learning workloads to be portable
across Kubernetes providers.

Machine Learning Workflow
To effectively understand the needs of deep learning, you must understand the
complete machine learning workflow. Figure 14-1 represents a simplified workflow.

Figure 14-1. Machine learning development workflow

190 | Chapter 14: Running Machine Learning in Kubernetes

As you can see, the workflow has the following phases:

Dataset preparation
This phase includes the storage, indexing, cataloging, and metadata associated
with the dataset used to train the model. For the purposes of this book, we con‐
sider only the storage aspect. Datasets vary in size, from hundreds of megabytes
to hundreds of terabytes, and even petabytes, and need to be provided to the
model in order for the model to be trained. You must consider storage that
provides the appropriate properties to meet these needs. Typically, large-scale
block and object stores are required and must be accessible via Kubernetes-native
storage abstractions or directly accessible APIs.

Model development
In this phase, data scientists write, share, and collaborate on machine learning
algorithms. Open source tools like JupyterHub are easy to install on Kubernetes
because they typically function like any other workload.

Training
For a model to use the dataset to learn how to perform the tasks it’s designed
to perform, it must be trained. The resulting artifact of the training process
is usually a checkpoint of the trained model state. The training process is the
piece that takes advantage of all the capabilities of Kubernetes at the same time.
Scheduling, access to specialized hardware, dataset volume management, scaling,
and networking will all be exercised in unison to complete this task. We cover
more of the specifics of the training phase in the next section.

Serving
This is the process of making the trained model accessible to service requests
from clients so that it can make an inference based on the data supplied from the
client. For example, if you have an image-recognition model that’s been trained
to detect dogs and cats, a client might submit a picture of a dog, and the model
should be able to determine whether it is a dog, with a certain level of accuracy.

Machine Learning for Kubernetes Cluster Admins
There are a few topics to consider before running machine learning workloads on
your Kubernetes cluster. This section is specifically targeted to cluster administrators.
The largest challenge you will face as a cluster administrator responsible for a team
of data scientists is understanding the terminology. There are myriad new terms that
you must become familiar with over time, but rest assured, you can do it. Let’s look at
the main problem areas you’ll need to address when preparing a cluster for machine
learning workloads.

Machine Learning for Kubernetes Cluster Admins | 191

Model Training on Kubernetes
Training machine learning models on Kubernetes requires conventional CPUs and
graphics processing units (GPUs). Typically, the more resources you apply, the faster
the training will be completed. In most cases, model training can be achieved
on a single machine that has the required resources. Many cloud providers offer
multi-GPU virtual machine (VM) types, so we recommend scaling VMs vertically
to four to eight GPUs before looking into distributed training. Data scientists use a
technique known as hyperparameter tuning when training models. A hyperparameter
is simply a parameter that has a set value before the training process begins. Hyper‐
parameter tuning is the process of finding the optimal set of hyperparameters for
model training. The technique involves running many of the same training jobs with
a different set of hyperparameters.

Training your first model on Kubernetes
In this example, you are going to use the MNIST dataset to train an image-
classification model. The MNIST dataset is publicly available and commonly used
for image classification.

To train the model, you need GPUs. Let’s confirm that your Kubernetes cluster has
GPUs available. The following command shows how many GPUs are available in
a Kubernetes cluster. From the output we can see that this cluster has four GPUs
available:

$ kubectl get nodes -o yaml | grep -i nvidia.com/gpu
nvidia.com/gpu: "1"
nvidia.com/gpu: "1"
nvidia.com/gpu: "1"
nvidia.com/gpu: "1"

Given that training is a batch workload, to run your training you’re going to use the
Job kind in Kubernetes. You will run your training for 500 steps and use a single
GPU. Create a file called mnist-demo.yaml using the following manifest, and save it to
your filesystem:

apiVersion: batch/v1
kind: Job
metadata:
labels:
app: mnist-demo

name: mnist-demo
spec:
template:
metadata:
labels:
app: mnist-demo

spec:
containers:

192 | Chapter 14: Running Machine Learning in Kubernetes

- name: mnist-demo
image: lachlanevenson/tf-mnist:gpu
args: ["--max_steps", "500"]
imagePullPolicy: IfNotPresent
resources:
limits:
nvidia.com/gpu: 1

restartPolicy: OnFailure

Now, create this resource on your Kubernetes cluster:

$ kubectl create -f mnist-demo.yaml
job.batch/mnist-demo created

Check the status of the job you just created:

$ kubectl get jobs
NAME COMPLETIONS DURATION AGE
mnist-demo 1/1 31s 49s

If you look at the pods, you should see the training job running:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
mnist-demo-8lqrn 1/1 Running 0 63s

Looking at the pod logs, you can see the training happening:

$ $ kubectl logs mnist-demo-8lqrn
2023-02-10 23:14:42.007518: I
tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports
instructions that this TensorFlow binary was not compiled to
use: SSE4.1 SSE4.2 AVX AVX2 FMA

2023-02-10 23:14:42.205555: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1030] Found device 0 with

properties:
name: Tesla K80 major: 3 minor: 7 memoryClockRate(GHz): 0.8235
pciBusID: 0001:00:00.0
totalMemory: 11.17GiB freeMemory: 11.12GiB
2023-02-10 23:14:42.205596: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1120] Creating TensorFlow

device (/device:GPU:0) -> (device: 0, name: Tesla K80, pci bus
id: 0001:00:00.0, compute capability: 3.7)

2023-02-10 23:14:46.848342: I
tensorflow/stream_executor/dso_loader.cc:139] successfully opened CUDA library

libcupti.so.8.0 locally
Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Extracting /tmp/tensorflow/input_data/train-images-idx3-ubyte.gz
Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
Extracting /tmp/tensorflow/input_data/train-labels-idx1-ubyte.gz
Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Extracting /tmp/tensorflow/input_data/t10k-images-idx3-ubyte.gz
Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
Extracting /tmp/tensorflow/input_data/t10k-labels-idx1-ubyte.gz
Accuracy at step 0: 0.0886

Machine Learning for Kubernetes Cluster Admins | 193

Accuracy at step 10: 0.7094
Accuracy at step 20: 0.8354
Accuracy at step 30: 0.8667
Accuracy at step 40: 0.8833
Accuracy at step 50: 0.8902
Accuracy at step 60: 0.897
Accuracy at step 70: 0.9062
Accuracy at step 80: 0.9057
Accuracy at step 90: 0.906
Adding run metadata for 99
Accuracy at step 100: 0.9163
Accuracy at step 110: 0.9203
Accuracy at step 120: 0.9168
Accuracy at step 130: 0.9215
Accuracy at step 140: 0.9241
Accuracy at step 150: 0.9251
Accuracy at step 160: 0.9286
Accuracy at step 170: 0.9288
Accuracy at step 180: 0.9274
Accuracy at step 190: 0.9337
Adding run metadata for 199
Accuracy at step 200: 0.9361
Accuracy at step 210: 0.9369
Accuracy at step 220: 0.9365
Accuracy at step 230: 0.9328
Accuracy at step 240: 0.9409
Accuracy at step 250: 0.9428
Accuracy at step 260: 0.9408
Accuracy at step 270: 0.9432
Accuracy at step 280: 0.9438
Accuracy at step 290: 0.9433
Adding run metadata for 299
Accuracy at step 300: 0.9446
Accuracy at step 310: 0.9466
Accuracy at step 320: 0.9468
Accuracy at step 330: 0.9463
Accuracy at step 340: 0.9464
Accuracy at step 350: 0.9489
Accuracy at step 360: 0.9506
Accuracy at step 370: 0.9489
Accuracy at step 380: 0.9484
Accuracy at step 390: 0.9494
Adding run metadata for 399
Accuracy at step 400: 0.9513
Accuracy at step 410: 0.9474
Accuracy at step 420: 0.9499
Accuracy at step 430: 0.9462
Accuracy at step 440: 0.952
Accuracy at step 450: 0.952
Accuracy at step 460: 0.9487
Accuracy at step 470: 0.9569
Accuracy at step 480: 0.9547

194 | Chapter 14: Running Machine Learning in Kubernetes

Accuracy at step 490: 0.9516
Adding run metadata for 499

Finally, you can see that the training has completed by looking at the job status:

$ kubectl get jobs
NAME COMPLETIONS DURATION AGE
mnist-demo 1/1 31s 2m19s

To clean up the training job, simply run the following command:

$ kubectl delete -f mnist-demo.yaml
job.batch "mnist-demo" deleted

Congratulations! You just ran your first model training job on Kubernetes.

Distributed Training on Kubernetes
Distributed training is still in its infancy and is difficult to optimize. Running a
training job that requires eight GPUs will almost always be faster to train on a single
eight-GPU machine compared to two machines with four GPUs each. The only time
you should resort to using distributed training is when the model doesn’t fit on
the biggest machine available. If you are certain you must run distributed training,
it is important to understand the architecture. Figure 14-2 depicts the distributed
TensorFlow architecture, and you can see how the model and the parameters are
distributed.

Figure 14-2. Distributed TensorFlow architecture

Resource Constraints
Machine learning workloads demand very specific configurations across all aspects
of your cluster. The training phases are most certainly the most resource intensive.
It’s also important to note, as we mentioned a moment ago, that machine learning
algorithm training is almost always a batch-style workload. Specifically, it will have
a start time and a finish time. The finish time of a training run depends on how
quickly you can meet the resource requirements of the model training. This means

Machine Learning for Kubernetes Cluster Admins | 195

that scaling is almost certainly a quicker way to finish training jobs faster, but scaling
has its own set of bottlenecks.

Specialized Hardware
Training and serving a model is almost always more efficient on specialized hard‐
ware. A typical example of such specialized hardware would be commodity GPUs.
Kubernetes allows you to access GPUs via device plug-ins that make the GPU
resource known to the Kubernetes scheduler and therefore able to be scheduled. A
device plug-in framework facilitates this capability, which means that vendors do not
need to modify the core Kubernetes code to implement their specific device. These
device plug-ins typically run on each node as DaemonSets, which are processes that
are responsible for advertising these specific resources to the Kubernetes API. Let’s
look at the NVIDIA device plug-in for Kubernetes, which enables access to NVIDIA
GPUs. After they’re running, you can create a pod as follows, and Kubernetes will
ensure that it is scheduled to a node that has these resources available:

apiVersion: v1
kind: Pod
metadata:
name: gpu-pod

spec:
containers:
- name: digits-container
image: nvidia/digits:6.0
resources:
limits:
nvidia.com/gpu: 2 # requesting 2 GPUs

Device plug-ins are not limited to GPUs; you can use them wherever specialized
hardware is needed—for example, Field Programmable Gate Arrays (FPGAs) or
InfiniBand.

Scheduling idiosyncrasies
It’s important to note that Kubernetes cannot make decisions about resources that it
does not have knowledge about. One of the things you might notice is that the GPUs
are not running at capacity when you are training. You are therefore not achieving
the level of utilization you would like to see. Let’s consider the previous example; it
exposes only the number of GPU cores and omits the number of threads that can be
run per core. It also doesn’t expose which bus the GPU core is on, so that jobs that
need access to one another or to the same memory might be colocated on the same
Kubernetes nodes. All these considerations might be addressed by device plug-ins
in the future but for now might leave you wondering why you cannot get 100%
utilization on that beefy GPU you just purchased. It’s also worth mentioning that you
cannot request fractions of GPUs (for example, 0.1), which means that even if the

196 | Chapter 14: Running Machine Learning in Kubernetes

https://oreil.ly/RgKuz

•
•

specific GPU supports running multiple threads concurrently, you will not be able to
utilize that capacity.

Libraries, Drivers, and Kernel Modules
To access specialized hardware, you typically need purpose-built libraries, drivers,
and kernel modules. You will need to ensure that these are mounted into the con‐
tainer runtime so that they are available to the tooling running in the container. You
might ask, “Why don’t I just add these to the container image itself?” The answer is
simple: the tools need to match the version on the underlying host and must be con‐
figured appropriately for that specific system. Container runtimes such as NVIDIA
Docker remove the burden of having to map host volumes into each container. In lieu
of having a purpose-built container runtime, you might be able to build an admission
webhook that provides the same functionality. It’s also important to consider that you
might need privileged containers to access some specialized hardware, which affects
the cluster security profile. The installation of the associated libraries, drivers, and
kernel modules might also be facilitated by Kubernetes device plug-ins. Many device
plug-ins run checks on each machine to confirm that all installations have been
completed before they advertise the schedulable GPU resources to the Kubernetes
scheduler.

Storage
Storage is one of the most critical aspects of the machine learning workflow. You
need to consider storage because it directly affects the following pieces of the machine
learning workflow:

• Dataset storage and distribution among nodes during training
• Checkpoints and saving models

Dataset storage and distribution among nodes during training
During training, the dataset must be retrievable by every node. The storage needs
are read-only, and, typically, the faster the disk, the better. The type of disk that’s
providing the storage is almost completely dependent on the size of the dataset.
Datasets of hundreds of megabytes or gigabytes might be perfect for block storage,
but datasets that are several or hundreds of terabytes in size might be better suited to
object storage. Depending on the size and location of the disks that hold the datasets,
there might be a performance hit on your networking.

Checkpoints and saving models
Checkpoints are created as a model is being trained, and saving models allows you to
use them for serving. In both cases, you need storage attached to each of the nodes to

Machine Learning for Kubernetes Cluster Admins | 197

https://oreil.ly/Re0Ef
https://oreil.ly/Re0Ef

store this data. The data is typically stored under a single directory, and each node is
writing to a specific checkpoint or save file. Most tools expect the checkpoint and save
data to be in a single location and require ReadWriteMany. ReadWriteMany simply
means that the volume can be mounted as read-write by many nodes. When using
Kubernetes PersistentVolumes, you will need to determine the best storage platform
for your needs. The Kubernetes documentation keeps a list of volume plug-ins that
support ReadWriteMany.

Networking
The training phase of the machine learning workflow has a large impact on the net‐
work (specifically, when running distributed training). If we consider TensorFlow’s
distributed architecture, two discrete phases create a lot of network traffic: variable
distribution from each of the parameter servers to each of the nodes, and the appli‐
cation of gradients from each node back to the parameter server (refer back to
Figure 14-2). The time it takes for this exchange to happen directly affects the time it
takes to train a model. So, it’s a simple game of the faster, the better (within reason,
of course). With most public clouds and servers today supporting 1-Gbps, 10-Gbps,
and sometimes 40-Gbps network interface cards, generally network bandwidth is a
concern only at lower bandwidths. You might also consider InfiniBand if you need
high network bandwidth.

While raw network bandwidth is more often than not a limiting factor, in some
instances the problem is getting the data onto the wire from the kernel in the first
place. Some open source projects take advantage of Remote Direct Memory Access
(RDMA) to further accelerate network traffic without the need to modify your nodes
or application code. RDMA allows computers in a network to exchange data in main
memory without using the processor, cache, or operating system of either computer.

Specialized Protocols
Other specialized protocols you can consider when using machine learning on
Kubernetes are often vendor specific, but they all seek to address distributed training
scaling issues by removing areas of the architecture that quickly become bottlenecks.
For example, parameter servers. These protocols often allow the direct exchange of
information between GPUs on multiple nodes without the need to involve the node
CPU and OS. Here are a couple you might want to look into to more efficiently scale
your distributed training:

Message Passing Interface (MPI)
A standardized portable API for the transfer of data between distributed pro‐
cesses

198 | Chapter 14: Running Machine Learning in Kubernetes

https://oreil.ly/aMjGd

NVIDIA Collective Communications Library (NCCL)
A library of topology-aware multi-GPU communication primitives

Data Scientist Concerns
Earlier in the chapter, we shared considerations you need to make in order to be able
to run machine learning workloads on your Kubernetes cluster. But what about the
data scientist? Here we cover some popular tools that make it easy for data scientists
to utilize Kubernetes for machine learning without having to be a Kubernetes expert:

Kubeflow
A machine learning toolkit for Kubernetes, it is native to Kubernetes and ships
with several tools necessary to complete the machine learning workflow. Tools
such as Jupyter Notebooks, pipelines, and Kubernetes-native controllers make it
simple and easy for data scientists to get the most out of Kubernetes as a platform
for machine learning.

Polyaxon
A tool for managing machine learning workflows that supports many popular
libraries and runs on any Kubernetes cluster. Polyaxon has both commercial and
open source offerings.

Pachyderm
An enterprise-ready data science platform with a rich suite of tools for dataset
preparation, life cycle, and versioning, along with the ability to build machine
learning pipelines. Pachyderm has a commercial offering you can deploy to any
Kubernetes cluster.

Machine Learning on Kubernetes Best Practices
To achieve optimal performance for your machine learning workloads, consider the
following best practices:

Smart scheduling and autoscaling
Given that most stages of the machine learning workflow are batch by nature,
we recommend you utilize a Cluster Autoscaler. GPU-enabled hardware is costly,
and you certainly do not want to be paying for it when it’s not in use. We recom‐
mend batching jobs to run at specific times using either taints and tolerations or
via a time-specific Cluster Autoscaler. That way, the cluster can scale to the needs
of the machine learning workloads when needed, and not a moment sooner.
Regarding taints and tolerations, upstream convention is to taint the node with
the extended resource as the key. For example, a node with NVIDIA GPUs
should be tainted as follows: Key: nvidia.com/gpu, Effect: NoSchedule.
Using this method means you can also utilize the ExtendedResourceToleration

Machine Learning on Kubernetes Best Practices | 199

https://oreil.ly/UVxjM
https://oreil.ly/NZ7Nj
https://oreil.ly/CivM_

admission controller, which will automatically add the appropriate tolerations for
such taints to pods requesting extended resources so that the users don’t need to
add them manually.

The truth is that model training is a delicate balance
Allowing things to move faster in one area often leads to bottlenecks in others.
It’s an endeavor of constant observation and tuning. As a general rule, we recom‐
mend you try to make the GPU become the bottleneck because it is the most
costly resource. Keep your GPUs saturated. Be prepared to always be on the
lookout for bottlenecks, and set up your monitoring to track the GPU, CPU,
network, and storage utilization.

Mixed workload clusters
Clusters that are used to run the day-to-day business services might also be
used for machine learning. Given the high performance requirements of machine
learning workloads, we recommend using a separate node pool that’s tainted
to accept only machine learning workloads. This will help protect the rest of
the cluster from any impact from the machine learning workloads running on
the machine learning node pool. Furthermore, you should consider multiple
GPU-enabled node pools, each with different performance characteristics to
suit the workload types. We also recommend enabling node autoscaling on the
machine learning node pool(s). Use mixed mode clusters only after you have
a solid understanding of the performance impact that your machine learning
workloads have on your cluster.

Achieving linear scaling with distributed training
This is the holy grail of distributed model training. Most libraries unfortunately
don’t scale linearly when distributed. A lot of work is being done to make scaling
better, but it’s important to understand the costs because this isn’t as simple as
throwing more hardware at the problem. In our experience, it’s almost always
the model itself and not the infrastructure supporting it that is the source of the
bottleneck. It is, however, important to review the utilization of the GPU, CPU,
network, and storage before pointing fingers at the model. Open source tools
such as Horovod seek to improve distributed training frameworks and provide
better model scaling.

200 | Chapter 14: Running Machine Learning in Kubernetes

https://oreil.ly/3NMtg

Summary
We’ve covered a lot of ground in this chapter and hopefully have provided valuable
insight into why Kubernetes is a great platform for machine learning, especially deep
learning, and the considerations you need to be aware of before deploying your first
machine learning workload. If you exercise the recommendations in this chapter, you
will be well equipped to build and maintain a Kubernetes cluster for these specialized
workloads.

Summary | 201

CHAPTER 15

Building Higher-Level Application
Patterns on Top of Kubernetes

It’s no secret that Kubernetes is a complex system. Although it simplifies the deploy‐
ment and operations of distributed applications, it does little to make the develop‐
ment of such systems easy. In fact, when adding new concepts and artifacts for the
developer to interact with, it adds a layer of complexity in the service of simplified
operations. Consequently, in many environments, it makes sense to develop higher-
level abstractions to provide more developer-friendly primitives on top of Kuber‐
netes. Additionally, in many large companies, it makes sense to standardize the way
in which applications are configured and deployed so that everyone adheres to the
same operational best practices. This can also be achieved by developing higher-level
abstractions so that developers automatically adhere to these principles. However,
developing these abstractions can hide important details from the developer and
might introduce a walled garden. This limits or complicates the development of
certain applications or the integration of existing solutions. Throughout the devel‐
opment of the cloud, the tension between the flexibility of infrastructure and the
power of the platform has been a constant. Designing the appropriate higher-level
abstractions enables us to walk an ideal path through this divide.

Approaches to Developing Higher-Level Abstractions
When considering how to develop a higher-level primitive on top of Kubernetes,
there are two basic approaches. The first is to wrap Kubernetes as an implementation
detail. With this approach, developers who consume your platform should be largely
unaware that they are running on top of Kubernetes; instead, they should think
of themselves as consumers of the platform you supply, and thus Kubernetes is an
implementation detail.

203

The second option is to use the extensibility capabilities built into Kubernetes itself.
The Kubernetes Server API is quite flexible, and you can dynamically add arbitrary
new resources to the Kubernetes API. With this approach, your new higher-level
resources coexist alongside the built-in Kubernetes objects, and the users use the
built-in tooling for interacting with all the Kubernetes resources, both built-in ones
and extensions. This extension model results in an environment in which Kubernetes
is still front and center for your developers but with additions that reduce complexity
and make it easier to use.

How do you choose the approach that is appropriate? It depends on the goals for
the abstraction layer that you are building. If you are constructing a fully isolated,
integrated environment in which you have strong confidence that users will not need
to “break glass” and escape, and where ease of use is an important characteristic, the
first option is a great choice. A good example of this would be building a machine
learning pipeline. The domain is relatively well understood. The data scientists who
are your users are likely not familiar with Kubernetes. Enabling these data scientists
to rapidly get their work done and focus on their domains rather than distributed
systems is the primary goal. As a result, building a complete abstraction on top of
Kubernetes makes the most sense.

On the other hand, when building a higher-level developer abstraction—for example,
an easy way to deploy Java applications—it is a far better choice to extend Kubernetes
rather than wrap it, for two reasons. First, the domain of application development
is extraordinarily broad. It will be difficult for you to anticipate all the requirements
and use cases for your developers, especially as the applications and business iterate
and change over time. The other reason is to ensure that you can continue to take
advantage of the Kubernetes ecosystem of tools. There are countless cloud native
tools for monitoring, continuous delivery, and more. Extending rather than replacing
the Kubernetes API ensures that you can continue to use these tools and new ones
as they are developed. Additionally, when you choose to extend rather than obfuscate
the Kubernetes API, it is relatively straightforward to find people with industry
experience in Kubernetes. Experience building applications in a bespoke application
platform that exists only in your environment is definitionally rare.

Extending Kubernetes
Because every layer that you might build over Kubernetes is unique, it is beyond
the scope of this book to describe how you might build such a layer to extend
Kubernetes. But the tools and techniques for extending Kubernetes are generic to any
construction you might do on top of Kubernetes, so we’ll spend time covering them.

204 | Chapter 15: Building Higher-Level Application Patterns on Top of Kubernetes

Extending Kubernetes Clusters
A complete how-to for extending a Kubernetes cluster is a large topic and more
completely covered in other books like Managing Kubernetes and Kubernetes: Up
and Running (O’Reilly). Rather than going over the same material here, this section
focuses on providing an understanding of how to use Kubernetes extensibility.

Extending the Kubernetes cluster involves understanding the touch points for
resources in Kubernetes. There are three related technical solutions. The first is the
sidecar. Sidecar containers (shown in Figure 15-1) have been popularized in the con‐
text of service meshes. These containers run alongside a main application container
to provide additional capabilities that are decoupled from the main application and
often maintained by a separate team. For example, in service meshes, a sidecar might
provide transparent mutual Transport Layer Security (mTLS) authentication to a con‐
tainerized application. You can use sidecars to add capabilities to your user-defined
applications.

Figure 15-1. The sidecar design

Within the industry the sidecar approach has become increasingly popular, and
many projects use it to deliver services alongside the developer’s containers. A great
example is the Dapr (Distributed Application Runtime) project. Dapr is an open
source project within the CNCF that implements a sidecar for applications that deliv‐
ers many capabilities like encryption, key/value store, pub/sub queues, and much
more with a very simple, consistent API. Sidecars like Dapr can be used as modular
building blocks for a platform that you are developing on top of Kubernetes.

Of course, the entire goal of this effort was to make a developer’s life easier, but if
we require that they learn about and know how to use sidecars, we’ve actually made
the problem worse. Fortunately, additional tools for extending Kubernetes simplify
things. In particular, Kubernetes features admission controllers. Admission controllers
are interceptors that read Kubernetes API requests prior to them being stored (or
“admitted”) into the cluster’s backing store. You can use these admission controllers
to validate or modify API objects. In the context of sidecars, you can use them to
automatically add sidecars to all pods created in the cluster so that developers do not
need to know about the sidecars to reap their benefits. Figure 15-2 illustrates how
admission controllers interact with the Kubernetes API.

Extending Kubernetes | 205

https://oreil.ly/6kUUX
https://oreil.ly/fdRA3
https://oreil.ly/fdRA3
https://dapr.io

Figure 15-2. Admission controllers

The utility of admission controllers isn’t limited to adding sidecars. You can also
use them to validate objects submitted by developers to Kubernetes. For example,
you could implement a linter (a tool that analyzes code) for Kubernetes that ensures
developers submit pods and other resources that follow best practices for using
Kubernetes. A common mistake for developers is to not reserve resources for their
application. For those circumstances, an admission controller–based linter could
intercept such requests and reject them. Of course, you should also leave an escape
hatch (for example, a special annotation) so that advanced users can opt out of the
lint rule, as appropriate. We discuss the importance of escape hatches later on in this
chapter.

So far, we’ve only covered ways to augment existing applications and to ensure that
developers follow best practices—we haven’t really covered how to add higher-level
abstractions. This is where custom resource definitions (CRDs) come into play. CRDs
are a way to dynamically add new resources to an existing Kubernetes cluster. For
example, using CRDs, you could add a new ReplicatedService resource to a Kuber‐
netes cluster. When a developer creates an instance of a ReplicatedService, it turns
around to Kubernetes and creates corresponding Deployment and Service resources.
Thus, the ReplicatedService is a convenient developer abstraction for a common
pattern. CRDs are generally implemented by a control loop that is deployed into the
cluster itself to manage these new resource types.

Extending the Kubernetes User Experience
Adding new resources to your cluster is a great way to provide new capabilities,
but to truly take advantage of them, it’s often useful to extend the Kubernetes user
experience (UX) as well. By default, the Kubernetes tooling is unaware of custom
resources and other extensions and thus treats them in a very generic and not partic‐
ularly user-friendly manner. Extending the Kubernetes command line can provide an
enhanced user experience.

Generally, the tool used for accessing Kubernetes is the kubectl command-line tool.
Fortunately, it too has been built for extensibility. kubectl plug-ins are binaries that
have a name like kubectl-foo, where foo is the name of the plug-in. When you
invoke kubectl foo ... on the command line, the invocation is in turn routed to
an invocation of the plug-in binary. Using kubectl plug-ins, you can define new
experiences that deeply understand the new resources that you have added to your

206 | Chapter 15: Building Higher-Level Application Patterns on Top of Kubernetes

cluster. You are free to implement whatever kind of experiences are suitable while
at the same time taking advantage of the familiarity of the kubectl tooling. This is
especially valuable because it means that you don’t need to teach developers about a
new tool set. Likewise, you can gradually introduce Kubernetes-native concepts as the
developers advance their Kubernetes knowledge.

If you are looking to build graphical interfaces for your Kubernetes-based platform,
several tools can help. In particular the open source Headlamp project is a library
that enables easy construction of web-based, mobile, or desktop applications for
interacting with Kubernetes infrastructure. Using a tool like Headlamp enables you to
rapidly create a custom developer experience that perfectly fits your platform and its
needs.

Making Containerized Development Easier
Before they can even deploy an application to Kubernetes, a developer must first
containerize that application. Though building containers is second nature for those
familiar with the cloud native ecosystem, for many it is a daunting task that prevents
even getting started with modern application development.

Fortunately, several open source tools can help jump start your development. Tools
like Draft and Skaffold will automatically generate a Dockerfile for a particular
language or development environment.

If developers are familiar with the buildpack idea from cloud foundry or other plat‐
forms, there are also tools like Paketo that provide easy-to-use and vetted container
images for building applications in popular languages as well as command-line tools
to get started easily.

Developing a “Push-to-Deploy” Experience
One of the most popular features of many PaaS products is “push to deploy,” meaning
that a single push of code to a Git repository results in the application deploying
to a cloud environment. Though this has previously been the domain of large-scale
managed PaaS solutions, it is now very easy to build a similar experience using
CI/CD solutions like GitHub Actions, Azure DevOps, or other continuous-build
tooling.

With a properly designed pipeline, once a developer pushes code into their Git
repository, it is automatically tested, built, packaged into a container image, and
pushed to a container registry.

Once the new version of the container image is present in the container registry, it is a
simple step to use another Git commit combined with GitOps to push that image out
to a running application.

Extending Kubernetes | 207

https://oreil.ly/2-4fB
https://draft.sh
https://oreil.ly/H4DzY
https://paketo.io

Combining GitHub actions and GitOps can enable your developers to achieve fast
deployment while also staying true to the cloud native ecosystem and ideas like
Infrastructure as Code (IaC).

Design Considerations When Building Platforms
Countless platforms have been built to enable developer productivity. Given the
opportunity to observe all the places where these platforms have succeeded and
failed, you can develop a common set of patterns and considerations to learn from
the experience of others. Following these design guidelines can help to ensure that the
platform you build is successful instead of a “legacy” dead end from which you must
eventually move away.

Support Exporting to a Container Image
When you are building a platform, many designs provide simplicity by enabling the
user to simply supply code (e.g., a function in Function as a Service [FaaS]) or a
native package (e.g., a JAR file in Java) instead of a complete container image. This
approach has a great deal of appeal because it lets the user stay within the confines
of their well-understood tools and development experience. The platform handles the
containerization of the application for them.

The problem with this approach, however, comes when the developer encounters the
limitations of the programming environment that you have given them. Perhaps it’s
because they need a specific version of a language runtime to work around a bug. Or
it might be that they need to package additional resources or executables that aren’t
part of the way you have structured the automatic containerization of the application.

No matter the reason, hitting this wall is an ugly moment for the developer, because it
is a moment when they suddenly must learn a great deal more about how to package
their application, when all they really wanted to do was to extend it slightly to fix a
bug or deliver a new feature.

However, it doesn’t need to be this way. If you support the exporting of your plat‐
form’s programming environment into a generic container, the developer using your
platform doesn’t need to start from scratch and learn everything there is to know
about containers. Instead, they have a complete working container image that repre‐
sents their current application (i.e., the container image containing their function and
the node runtime). Given this starting point, they can then make the small tweaks
necessary to adapt the container image to their needs. This sort of gradual degra‐
dation and incremental learning dramatically smooths the path from higher-level
platform down into lower-level infrastructure. It also increases the general utility of
the platform because using it doesn’t introduce steep cliffs for developers.

208 | Chapter 15: Building Higher-Level Application Patterns on Top of Kubernetes

•

•

•

Support Existing Mechanisms for Service and Service Discovery
Another common story of platforms is that they evolve and interconnect with other
systems. Many developers might be very happy and productive in your platform, but
any real-world application will span both the platform that you build and lower-level
Kubernetes applications as well as other platforms. Connections to legacy databases
or open source applications built for Kubernetes will always be a part of a sufficiently
large application.

Because of this need for interconnectivity, it’s critically important that the core Kuber‐
netes primitives for services and service discovery are used and exposed by any
platform that you construct. Don’t reinvent the wheel in the interest of improved plat‐
form experience, because in doing so you will be creating a walled garden incapable
of interacting with the broader world.

If you expose the applications defined in your platform as Kubernetes Services, any
application anywhere within your cluster will be able to consume your applications
regardless of whether they are running in your higher-level platform. Likewise, if you
use the Kubernetes DNS servers for service discovery, you will be able to connect
from your higher-level application platform to other applications running in the
cluster, even if they are not defined in your higher-level platform. It might be tempt‐
ing to build something better or easier to use, but interconnectivity across different
platforms is the common design pattern for any application of sufficient age and
complexity. You will always regret the decision to build a walled garden.

Building Application Platforms Best Practices
Although Kubernetes provides powerful tools for operating software, it does consid‐
erably less to enable developers to build applications. It is often necessary to build
platforms on top of Kubernetes to make developers more productive and/or Kuber‐
netes easier. When building such platforms, you’ll benefit from keeping the following
best practices in mind:

• Use admission controllers to limit and modify API calls to the cluster. An
admission controller can validate (and reject invalid) Kubernetes resources. A
mutating admission controller can automatically modify API resources to add
new sidecars or other changes that users might not even need to know about.

• Use kubectl plug-ins to extend the Kubernetes user experience by adding new
tools to the existing command-line tool. In rare occasions, a purpose-built tool
might be more appropriate.

• When building platforms on top of Kubernetes, think carefully about the plat‐
form’s users and how their needs will evolve. Making things simple and easy to
use is clearly a good goal, but if this also leads to users that are trapped and

Building Application Platforms Best Practices | 209

unable to be successful without rewriting everything outside of your platform, it
will ultimately be a frustrating (and unsuccessful) experience.

Summary
Kubernetes is a fantastic tool for simplifying the deployment and operation of soft‐
ware; unfortunately, it is not always the most developer-friendly or productive envi‐
ronment. Because of this, a common task is to build a higher-level platform on top of
Kubernetes to make it more approachable and usable by the average developer. This
chapter described several approaches for designing such a higher-level system and
provided a summary of the core extensibility infrastructure available in Kubernetes.
It concluded with lessons and design principles drawn from our observation of other
platforms that have been built on top of Kubernetes, with the hope that they can
guide the design of your platform.

210 | Chapter 15: Building Higher-Level Application Patterns on Top of Kubernetes

CHAPTER 16

Managing State and Stateful Applications

In the early days of container orchestration, the targeted workloads were usually
stateless applications that used external systems to store state when it was needed.
The thought was that containers are very temporal, and orchestration of the backing
storage needed to keep state consistently was difficult at best. Over time, the need
for container-based workloads that kept state became a reality, and, in select cases,
this need might be more performant. As more organizations looked to the cloud for
computing power and Kubernetes became the de facto container runtime for applica‐
tions, the impeding factor became the amount of data and performant access to the
data, sometimes called “data gravity.” Kubernetes adapted over many iterations. Now,
not only does it allow for storage volumes mounted into the pod, but it also allows
for those volumes to be managed by Kubernetes directly. This was an important
component in orchestration of storage with the workloads that require it.

If the ability to mount an external volume to the container was enough, many more
examples of stateful applications running at scale in Kubernetes would exist. The
reality is that volume mounting is the easy component in the grand scheme of stateful
applications. The majority of applications that require state to be maintained after
node failure are complicated data-state engines such as relational database systems,
distributed key/value stores, and complex document management systems. This class
of applications requires more coordination among how members of the clustered
application communicate with one another, how the members are identified, and the
order in which members either appear or disappear in the system.

This chapter focuses on best practices for managing state, from simple patterns
such as saving a file to a network share, to complex data management systems like
MongoDB, MySQL, or Kafka. There is a small section on a new pattern for complex
systems called Operators that brings not only Kubernetes primitives, but also allows

211

for business or application logic to be added as custom controllers that can help make
operating complex data management systems easier.

Volumes and Volume Mounts
Not every workload that requires a way to maintain state needs to be a complex
database or high-throughput data queue service. Often, applications that are being
moved to containerized workloads expect certain directories to exist and to be able
to read and write pertinent information to those directories. The ability to inject
data into a volume that can be read by containers in a pod is covered in Chapter 4;
however, data mounted from ConfigMaps or secrets is usually read-only, and this
section focuses on giving containers volumes that can be written to and will survive a
container failure or, even better, a pod failure.

Every major container runtime, such as Docker, rkt, CRI-O, and even Singularity,
allows for mounting volumes into a container that is mapped to an external storage
system. At its simplest, external storage can be a memory location, a path on the
container’s host, or an external filesystem such as NFS, Glusterfs, CIFS, or Ceph.
Why would this be needed? A useful example is that of a legacy application that was
written to log application-specific information to a local filesystem. Many possible
solutions, such as updating the application code to log out to a stdout or stderr
of a sidecar container, can stream log data to an outside source via a shared pod
volume. Some will take an infrastructure approach by using a host-based logging tool
that can read a volume for both host logs and container application logs by using a
volume mount in the container using a Kubernetes hostPath mount, as shown in the
following:

apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-webserver

spec:
replicas: 3
selector:
matchLabels:
app: nginx-webserver

template:
metadata:
labels:
app: nginx-webserver

spec:
containers:
- name: nginx-webserver
image: nginx:alpine
ports:
- containerPort: 80
volumeMounts:

212 | Chapter 16: Managing State and Stateful Applications

- name: hostvol
mountPath: /usr/share/nginx/html

volumes:
- name: hostvol
hostPath:
path: /home/webcontent

Volume Best Practices
• Try to limit the use of volumes to pods requiring multiple containers that need

to share data, such as adapter or ambassador-type patterns. Use the emptyDir for
those types of sharing patterns.

• Use hostDir when access to the data is required by node-based agents or
services.

• Try to identify any services that write their critical application logs and events
to local disk, and if possible change those to stdout or stderr and let a true
Kubernetes-aware log aggregation system stream the logs instead of leveraging
the volume map.

Kubernetes Storage
The examples we’ve walked through so far show basic volume mapping into a
container in a pod, which is just a basic container engine capability. The real key
is allowing Kubernetes to manage the storage backing the volume mounts. This
allows for more dynamic scenarios where pods can live and die as needed, and the
storage backing the pod will transition accordingly to wherever the pod may live.
Kubernetes manages storage for pods using two distinct APIs, the PersistentVolume
and PersistentVolumeClaim.

PersistentVolume
It is best to think of a PersistentVolume as a disk that will back any volumes that
are mounted to a pod. A PersistentVolume will have a claim policy that will define
the scope of life of the volume independent of the life cycle of the pod that uses the
volume. Kubernetes can use either dynamic or statically defined volumes. To allow
for dynamically created volumes, there must be a StorageClass defined in Kubernetes.
PersistentVolumes of varying types and classes can be created in the cluster, and
only when a PersistentVolumeClaim matches the PersistentVolume will it actually
be assigned to a pod. The volume itself is backed by a volume plug-in. Numerous
plug-ins are supported directly in Kubernetes, and each has different configuration
parameters to adjust:

Kubernetes Storage | 213

apiVersion: v1
kind: PersistentVolume
metadata:
name: pv001
labels:
tier: "silver"

spec:
capacity:
storage: 5Gi

accessModes:
- ReadWriteMany
persistentVolumeReclaimPolicy: Recycle
storageClassName: nfs
mountOptions:
- hard
- nfsvers=4.1

nfs:
path: /tmp
server: 172.17.0.2

PersistentVolumeClaims
PersistentVolumeClaims are a way to give Kubernetes a resource requirement defini‐
tion for storage that a pod will use. Pods will reference the claim, and then if a
persistentVolume that matches the claim request exists, it will allocate that volume
to that specific pod. At minimum, a storage request size and access mode must be
defined, but a specific StorageClass can also be defined. Selectors can also be used to
ensure PersistentVolumes that meet a certain criteria will be allocated appropriately.
In the following example, the label with key tier has a value of "silver":

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: my-pvc

spec:
storageClass: nfs
accessModes:
- ReadWriteMany

resources:
requests:
storage: 5Gi

selector:
matchLabels:
tier: "silver"

The claim will match the PersistentVolume created earlier because the StorageClass
name, the selector match, the size, and the access mode are all equal.

Kubernetes will match the PersistentVolume with the claim and bind them together.
To use the volume, the pod.spec should reference the claim by name, as follows:

214 | Chapter 16: Managing State and Stateful Applications

apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-webserver

spec:
replicas: 3
selector:
matchLabels:
app: nginx-webserver

template:
metadata:
labels:
app: nginx-webserver

spec:
containers:
- name: nginx-webserver
image: nginx:alpine
ports:
- containerPort: 80
volumeMounts:
- name: hostvol
mountPath: /usr/share/nginx/html

volumes:
- name: hostvol
persistentVolumeClaim:
claimName: my-pvc

StorageClasses
Instead of manually defining the PersistentVolumes ahead of time, administrators
might elect to create StorageClass objects, which define the volume plug-in to use.
They can also create any specific mount options and parameters that all PersistentVo‐
lumes of that class will use. This then allows the claim to be defined with the specific
StorageClass to use, and Kubernetes will dynamically create the PersistentVolume
based on the StorageClass parameters and options:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: nfs
provisioner: cluster.local/nfs-client-provisioner
parameters:
archiveOnDelete: True

Kubernetes also allows operators to create a default storage class using the Default‐
StorageClass admission plug-in. If this has been enabled on the API server, then a
default StorageClass can be defined, and any PersistentVolumeClaims that do not
explicitly define a StorageClass will be assigned to the default class. Some cloud
providers will include a default storage class to map to the cheapest storage allowed
by their instances.

Kubernetes Storage | 215

•

•

Container Storage Interface and FlexVolume
Most volume plug-ins today need to wait for direct code additions to the Kubernetes
codebase. However, the Container Storage Interface (CSI) and FlexVolume, often
referred to as “Out-of-Tree” volume plug-ins, enable storage vendors to create custom
storage plug-ins without the need to wait for these direct code additions.

The CSI and FlexVolume plug-ins are deployed on Kubernetes clusters as extensions
by operators and can be updated by the storage vendors when needed to expose new
functionality.

The CSI states its objective on GitHub as:

To define an industry standard Container Storage Interface that will enable storage
vendors (SP) to develop a plug-in once and have it work across a number of container
orchestration (CO) systems.

The FlexVolume interface has been the traditional method used to add additional
features for a storage provider. It does require specific drivers to be installed on all
the nodes of the cluster that will use it. This basically becomes an executable that
is installed on the hosts of the cluster. This last component is the main detractor to
using FlexVolumes, especially in managed service providers, because access to the
nodes is frowned upon and accessing the control plane is practically impossible. The
CSI plug-in solves this by exposing the same functionality and being as easy to use as
deploying a pod into the cluster.

Kubernetes Storage Best Practices
Cloud native application design principles try to enforce stateless application design
as much as possible; however, the growing footprint of container-based services has
created the need for data storage persistence. These best practices around storage in
Kubernetes will help to design an effective approach to providing the required storage
implementations to the application design:

• If possible, enable the DefaultStorageClass admission plug-in and define a default
storage class. Often, Helm charts for applications that require PersistentVolumes
default to a default storage class for the chart, which allows the application to be
installed without too much modification.

• When designing the architecture of the cluster, either on premises or in a cloud
provider, take into consideration zone and connectivity between the compute
and data layers. You will want to use the proper labels for both nodes and
PersistentVolumes, and use affinity to keep the data and workload as close as
possible. The last thing you want is a pod on a node in zone A trying to mount a
volume that is attached to a node in zone B.

216 | Chapter 16: Managing State and Stateful Applications

https://oreil.ly/AuMgE

•

•

•

•

•
•
•

•
•

• Consider very carefully which workloads require state to be maintained on disk.
Can that be handled by an outside service like a database system? Or, can your
instance run in a cloud provider, by a hosted service that is API-consistent with
currently used APIs, say a MongoDB or MySQL as a service?

• Determine how much effort would be involved in modifying the application code
to be more stateless.

• While Kubernetes will track and mount the volumes as workloads are scheduled,
it does not yet handle redundancy and backup of the data that is stored in those
volumes. The CSI specification has added an API for vendors to plug in native
snapshot technologies if the storage backend can support it.

• Verify the proper life cycle of the data that volumes will hold. By default the
reclaim policy is set for dynamically provisioned PersistentVolumes, which will
delete the volume from the backing storage provider when the pod is deleted.
Sensitive data or data that can be used for forensic analysis should be set to
reclaim.

Stateful Applications
Contrary to popular belief, Kubernetes has supported stateful applications since its
infancy, from MySQL, Kafka, and Cassandra to other technologies. Those pioneering
days, however, were fraught with complexities and were usually only for small work‐
loads with lots of work required to get things like scaling and durability to function.

To fully grasp the critical differences, you must understand how a typical ReplicaSet
schedules and manages pods, and how this could be detrimental to traditional stateful
applications:

• Pods in a ReplicaSet are scaled out and assigned random names when scheduled.
• Pods in a ReplicaSet are scaled down arbitrarily.
• Pods in a ReplicaSet are never called directly through their name or IP address

but through their association with a Service.
• Pods in a ReplicaSet can be restarted and moved to another node at any time.
• Pods in a ReplicaSet that have a PersistentVolume mapped are linked only by the

claim, but any new pod with a new name can take over the claim if needed when
rescheduled.

Those who have only cursory knowledge of cluster data management systems can
immediately begin to see issues with these characteristics of ReplicaSet-based pods.
Imagine a pod that has the current writable copy of the database just all of a sudden
getting deleted! Pure pandemonium would ensue for sure.

Stateful Applications | 217

•

•
•

•

Most neophytes to the Kubernetes world assume that StatefulSet applications are
automatically database applications and therefore equate the two. This could not
be farther from the truth. Kubernetes has no sense of what type of application it
is deploying. It does not know that your database system requires leader election
processes, that it can or cannot handle data replication between members of the set,
or, for that matter, that it is a database system at all. This is where StatefulSets come
into play.

StatefulSets
What StatefulSets do is make it easier to run application systems that expect more
reliable node/pod behavior. If we look back at the list of typical pod characteristics
in a ReplicaSet, StatefulSets offer almost the complete opposite. The original spec
back in Kubernetes version 1.3 called PetSets was introduced to answer some of
the critical scheduling and management needs for stateful-type applications such as
complex data management systems:

• Pods in a StatefulSet are scaled out and assigned sequential names. As the set
scales up, the pods get ordinal names, and by default a new pod must be fully
online (pass its liveness and/or readiness probes) before the next pod is added.

• Pods in a StatefulSet are scaled down in reverse sequence.
• Pods in a StatefulSet can be addressed individually by name behind a headless

Service.
• Pods in a StatefulSet that require a volume mount must use a defined Persistent‐

Volume template. Volumes claimed by pods in a StatefulSet are not deleted when
the StatefulSet is deleted.

A StatefulSet specification looks very similar to a Deployment except for the Service
declaration and the PersistentVolume template. The headless Service should be cre‐
ated first, which defines the Service that the pods will be addressed with individually.
The headless Service is the same as a regular Service but does not do the normal load
balancing:

apiVersion: v1
kind: Service
metadata:
name: mongo
labels:
name: mongo

spec:
ports:
- port: 27017
targetPort: 27017

clusterIP: None #This creates the headless Service

218 | Chapter 16: Managing State and Stateful Applications

selector:
role: mongo

The StatefulSet definition will also look exactly like a Deployment with a few changes:

apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
name: mongo

spec:
serviceName: "mongo"
replicas: 3
template:
metadata:
labels:
role: mongo
environment: test

spec:
terminationGracePeriodSeconds: 10
containers:
- name: mongo
image: mongo:3.4
command:
- mongod
- "--replSet"
- rs0
- "--bind_ip"
- 0.0.0.0
- "--smallfiles"
- "--noprealloc"

ports:
- containerPort: 27017

volumeMounts:
- name: mongo-persistent-storage
mountPath: /data/db

- name: mongo-sidecar
image: cvallance/mongo-k8s-sidecar
env:
- name: MONGO_SIDECAR_POD_LABELS
value: "role=mongo,environment=test"

volumeClaimTemplates:
- metadata:

name: mongo-persistent-storage
annotations:
volume.beta.kubernetes.io/storage-class: "fast"

spec:
accessModes: ["ReadWriteOnce"]
resources:
requests:
storage: 2Gi

Stateful Applications | 219

Operators
StatefulSets have been a major factor in introducing complex stateful data systems
as feasible workloads in Kubernetes. The only real issue, as stated earlier, is that
Kubernetes does not really understand the workload that is running in the StatefulSet.
All the other complex operations, like backups, failover, leader registration, new
replica registration, and upgrades, are operations that need to happen regularly and
will require some careful consideration when running as StatefulSets.

Early on in the growth of Kubernetes, CoreOS site reliability engineers (SREs) created
a new class of cloud native software for Kubernetes called Operators. The original
intent was to encapsulate domain-specific knowledge of running a specific applica‐
tion into a specific controller that extends Kubernetes. Imagine building up on the
StatefulSet controller to be able to deploy, scale, upgrade, back up, and run general
maintenance operations on Cassandra or Kafka. Some of the first Operators that were
created were for etcd and Prometheus, which uses a time-series database to keep met‐
rics over time. The proper creation, backup, and restore configuration of Prometheus
or etcd instances can be handled by an Operator and are new Kubernetes-managed
objects just like a pod or Deployment.

Until recently, Operators have been one-off tools created by SREs or by software
vendors for their specific application. In mid-2018, Red Hat created the Operator
Framework, a set of tools including an SDK life cycle manager and future modules
that will enable features such as metering, marketplace, and registry type functions.
Operators are not only for stateful applications, but because of their custom control‐
ler logic they are definitely more amenable to complex data services and stateful
systems.

Operators have become a standard way not only of extending the Kubernetes API but
also bringing in best practice and operational oversight to complex system processes
in Kubernetes. A good place to discover existing Operators published for the Kuber‐
netes ecosystem is OperatorHub. They maintain an updated list of curated Operators.

If you are interested in learning how Operators work, Chapter 21 is new to this
edition and will give you a primer on the development of an Operator and best
practices to use. Also check out Kubernetes Operators (O’Reilly) by Jason Dobies and
Joshua Wood for a more in-depth run-through of building Operators.

220 | Chapter 16: Managing State and Stateful Applications

http://operatorhub.io
https://oreil.ly/zaEEo

•

•

•

•

•

•

•

StatefulSet and Operator Best Practices
Large distributed applications that require state and possibly complicated manage‐
ment and configuration operations benefit from Kubernetes StatefulSets and Opera‐
tors. Operators are still evolving, but they have the backing of the community at large,
so these best practices are based on current capabilities at the time of publication:

• The decision to use StatefulSets should be taken judiciously because stateful
applications usually require much deeper management that the orchestrator can‐
not manage well yet (read “Operators” on page 220 for the possible future answer
to this deficiency in Kubernetes).

• The headless Service for the StatefulSet is not automatically created and must be
created at deployment time to properly address the pods as individual nodes.

• When an application requires ordinal naming and dependable scaling, this does
not always mean it requires the assignment of PersistentVolumes.

• If a node in the cluster becomes unresponsive, any pods that are part of a
StatefulSet are not automatically deleted; instead they will enter a Terminating
or Unknown state after a grace period. The only ways to clear this pod are to
remove the node object from the cluster, the kubelet beginning to work again and
deleting the pod directly, or an Operator force deleting the pod. The force delete
should be the last option, and great care should be taken that the node that had
the deleted pod does not come back online, because there will now be two pods
with the same name in the cluster. You can use kubectl delete pod nginx-0
--grace-period=0 --force to force delete the pod.

• Even after force deleting a pod, it might stay in an Unknown state, so a patch
to the API server will delete the entry and cause the StatefulSet controller to
create a new instance of the deleted pod: kubectl patch pod nginx-0 -p
'{"metadata":{"finalizers":null}}'.

• If you’re running a complex data system with some type of leader election or
data replication confirmation processes, use preStop hook to properly close any
connections, force leader election, or verify data synchronization before the pod
is deleted using a graceful shutdown process.

• When the application that requires stateful data is a complex data management
system, look to determine whether an Operator exists to help manage the more
complicated life-cycle components of the application. If the application is built
in-house, it might be worth investigating whether it would be useful to package
the application as an Operator to add more manageability to the application. See
the CoreOS Operator SDK for an example.

Stateful Applications | 221

https://oreil.ly/gRIej

Summary
Most organizations look to containerize their stateless applications and leave the
stateful applications as is. As more cloud native applications run in cloud provider
Kubernetes offerings, data gravity becomes an issue. Stateful applications require
much more due diligence, but the reality of running them in clusters has been
accelerated by the introduction of StatefulSets and Operators. Mapping volumes into
containers allows Operators to abstract the storage subsystem specifics away from any
application development. Managing stateful applications such as database systems in
Kubernetes is still a complex distributed system and needs to be carefully orchestra‐
ted using the native Kubernetes primitives of pods, ReplicaSets, Deployments, and
StatefulSets. Using Operators that have specific application knowledge built into them
as Kubernetes-native APIs may help to elevate these systems into production-based
clusters.

222 | Chapter 16: Managing State and Stateful Applications

CHAPTER 17

Admission Control and Authorization

Controlling access to the Kubernetes API is key to ensuring that your cluster is not
only secured but also can be used as a means to impart policy and governance for
all users, workloads, and components of your Kubernetes cluster. In this chapter, we
share how you can use admission controllers and authorization modules to enable
specific features and how you can customize them to suit your specific needs.

Before we jump into admission control and authorization let’s review the API request
flow through the API server. Figure 17-1 provides insight on how and where admis‐
sion control and authorization take place in that flow. It depicts the end-to-end
request flow through the Kubernetes API server until the object, if accepted, is saved
to storage. Follow the API request from left to right through the API server, paying
specific attention to the ordering of admission control and authorization. We will be
covering best practices for those in this chapter.

Figure 17-1. Kubernetes API request flow

223

•
•
•

•

Admission Control
Have you ever wondered how namespaces are automatically created when you define
a resource in a namespace that doesn’t already exist? Maybe you’ve wondered how a
default storage class is selected? These changes are powered by a feature called admis‐
sion controllers. In this section, we look at how you can use admission controllers to
implement Kubernetes best practices server-side on behalf of the user and how you
can utilize admission control to govern how a Kubernetes cluster is used.

What Are They?
Admission controllers sit in the path of the Kubernetes API server request flow
and receive requests following the authentication and authorization phases. They are
used to either validate or mutate (or both) the request object before saving it to
storage. The difference between validating and mutating admission controllers is that
mutating admission controllers can modify the request object they admit, whereas
validating admission controllers cannot.

Why Are They Important?
Given that admission controllers sit in the path of all API server requests, you can use
them in a variety of different ways. Most commonly, admission controller usage can
be grouped into the following three categories:

Policy and governance
Admission controllers allow policy to be enforced to meet business requirements;
for example:

• Only internal cloud load balancers can be used when in the dev namespace.
• All containers in a pod must have resource limits.
• Add predefined standard labels or annotations to all resources to make them

discoverable to existing tools.
• All Ingress resources only use HTTPS. For more details on how to use

admission webhooks in this context, see Chapter 11.

Security
You can use admission controllers to enforce a consistent security posture across
your cluster. A canonical example is the Pod Security Admission controller,
which determines whether a pod should be admitted based on the configuration
of security-sensitive fields defined in the pod specification. For instance, it can
deny privileged containers or usage of specific paths from the host filesystem.
You can enforce more granular or custom security rules using admission web‐
hooks.

224 | Chapter 17: Admission Control and Authorization

•

•
•

Resource management
Admission controllers allow you to validate to provide best practices for your
cluster users, for example:

• Ensure all ingress fully qualified domain names (FQDN) fall within a specific
suffix.

• Ensure ingress FQDNs don’t overlap.
• All containers in a pod must have resource limits.

Admission Controller Types
There are two classes of admission controllers: standard and dynamic. Standard
admission controllers are compiled into the API server and are shipped as plug-ins
with each Kubernetes release; they need to be configured when the API server is
started. Dynamic controllers, on the other hand, are configurable at runtime and are
developed outside the core Kubernetes codebase. The only type of dynamic admis‐
sion control is admission webhooks, which receive admission requests via HTTP
callbacks.

By default, the recommended admission controllers are enabled. You may enable
additional admission controllers using the following flag on the Kubernetes API
server:

--enable-admission-plugins

In the current version of Kubernetes, the following admission controllers are enabled
by default:

CertificateApproval, CertificateSigning, CertificateSubjectRestriction,
DefaultIngressClass, DefaultStorageClass, DefaultTolerationSeconds,
LimitRanger, MutatingAdmissionWebhook, NamespaceLifecycle,
PersistentVolumeClaimResize, PodSecurity, Priority, ResourceQuota,
RuntimeClass, ServiceAccount, StorageObjectInUseProtection,
TaintNodesByCondition,
ValidatingAdmissionWebhook

You can find the list of Kubernetes admission controllers and their functionality in
the Kubernetes documentation.

You might have noticed the following from the list of recommended admission
controllers to enable: “MutatingAdmissionWebhook,ValidatingAdmissionWebhook.”
These standard admission controllers don’t implement any admission logic them‐
selves; rather, they are used to configure a webhook endpoint running in-cluster to
forward the admission request object.

Admission Control | 225

https://oreil.ly/APrUE

Configuring Admission Webhooks
As previously mentioned, one of the main advantages of admission webhooks is that
they are dynamically configurable. It is important that you understand how to effec‐
tively configure admission webhooks because there are implications and trade-offs
when it comes to consistency and failure modes.

The snippet that follows is a ValidatingWebhookConfiguration resource manifest.
This manifest is used to define a validating admission webhook. The snippet provides
detailed descriptions of the function of each field:

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
metadata:
name: ## Resource name

webhooks:
- name: ## Admission webhook name, which will be shown to the user when

any admission reviews are denied
clientConfig:
service:
namespace: ## The namespace where the admission

webhook pod resides
name: ## The service name that is used to connect to the admission

webhook
path: ## The webhook URL

caBundle: ## The PEM encoded CA bundle which will be used to validate the
webhook's server certificate

rules: ## Describes what operations on what resources/subresources the API
server must send to this webhook

- operations:
- ## The specific operation that triggers the API server to send to this
webhook (e.g., create, update, delete, connect)

apiGroups:
- ""
apiVersions:
- "*"
resources:
- ## Specific resources by name (e.g., deployments, services, ingresses)

failurePolicy: ## Defines how to handle access issues or unrecognized errors,
and must be Ignore or Fail

admissionReviewVersions: ["v1"] ## Specify what versions of AdmissionReview
objects are accepted

sideEffects: ## Signal whether the webhook may out-of-band changes that need
to be handled

timeoutSeconds: 5 ## How long the API server should wait for a response
before treating the request as a failure

226 | Chapter 17: Admission Control and Authorization

For completeness, let’s look at a MutatingWebhookConfiguration resource manifest.
This manifest defines a mutating admission webhook. The snippet provides detailed
descriptions on the function of each field:

apiVersion: admissionregistration.k8s.io/v1
kind: MutatingWebhookConfiguration
metadata:
name: ## Resource name

webhooks:
- name: ## Admission webhook name, which will be shown to the user when any

admission reviews are denied
clientConfig:
service:
namespace: ## The namespace where the admission webhook pod resides
name: ## The service name that is used to connect to the admission

webhook
path: ## The webhook URL

caBundle: ## The PEM encoded CA bundle which will be used to validate the
webhook's server certificate

rules: ## Describes what operations on what resources/subresources the API
server must send to this webhook

- operations:
- ## The specific operation that triggers the API server to send to this
webhook (e.g., create, update, delete, connect)

apiGroups:
- ""
apiVersions:
- "*"
resources:
- ## Specific resources by name (e.g., deployments, services, ingresses)

failurePolicy: ## Defines how to handle access issues or unrecognized errors,
and must be Ignore or Fail

admissionReviewVersions: ["v1"] ## Specify what versions of AdmissionReview
objects are accepted

sideEffects: ## Signal whether the webhook may out-of-band changes that need
to be handled

reinvocationPolicy: ## Control whether mutating webhooks are reinvoked if
another mutation to an object occurs

timeoutSeconds: 5 ## How long the API server should wait for a response
before treating the request as a failure

You might have noticed that both resources are identical, with the exception of the
kind and the reinvocationPolicy fields. There is one difference on the backend,
however: MutatingWebhookConfiguration allows the admission webhook to return a
modified request object, whereas ValidatingWebhookConfiguration does not. Still, it
is acceptable to define a MutatingWebhookConfiguration and simply validate; there
are security considerations that come into play, and you should consider following
the least-privilege rule.

Admission Control | 227

You have likely wondered, “What happens if I define a Validating‐
WebhookConfiguration or MutatingWebhookConfiguration with
the resource field under the rule object to be either Validating‐
WebhookConfiguration or MutatingWebhookConfiguration?” The
good news is that neither ValidatingAdmissionWebhooks or Muta‐
tingAdmissionWebhooks are ever called on admission requests for
ValidatingWebhookConfiguration and MutatingWebhookConfigu‐
ration objects. This is for good reason: you don’t want to acciden‐
tally put the cluster in an unrecoverable state.

Admission Control Best Practices
Now that we’ve covered the power of admission controllers, here are our best practi‐
ces to help you make the most of using them.

Admission plug-in ordering doesn’t matter
In earlier versions of Kubernetes, the ordering of the admission plug-ins was specific
to the processing order; hence it mattered. In current supported Kubernetes versions,
the ordering of the admission plug-ins as specified as API server flags via --enable-
admission-plugins no longer matters. Ordering does, however, play a small role
when it comes to admission webhooks, so it’s important to understand the request
flow in this case. Request admittance or rejection operates as a logical AND, meaning
if any of the admission webhooks rejects a request, the entire request is rejected and
an error is sent back to the user. It’s also important to note that mutating admission
controllers are always run prior to running validating admission controllers. If you
think about it, this makes good sense: you probably don’t want to validate objects
that you are going to subsequently modify. Figure 17-2 illustrates a request flow
via admission webhooks; you will see that the mutating admission controller is run
before the validating admission controller.

Figure 17-2. An API request flow via admission webhooks

228 | Chapter 17: Admission Control and Authorization

Don’t mutate the same fields
Configuring multiple mutating admission webhooks also presents challenges. There
is no way to order the request flow through multiple mutating admission webhooks,
so it’s important to not have mutating admission controllers modify the same fields,
because this can result in inconsistent behavior. In the case where you have multi‐
ple mutating admission webhooks, we generally recommend configuring validating
admission webhooks to confirm that the final resource manifest is what you expect
post-mutation because it’s guaranteed to be run following mutating webhooks.

Mutating admission webhooks must be idempotent
This means that they must be able to process and admit an object that has already
been processed and may have already been modified.

Fail open/fail closed

You might recall seeing the failurePolicy field as part of both the mutating and
validating webhook configuration resources. This field defines how the API server
should proceed in the case where the admission webhooks have access issues or
encounter unrecognized errors. You can set this field to either Ignore or Fail. Ignore
essentially fails to open, meaning that processing of the request will continue, whereas
Fail denies the entire request. This might seem obvious, but the implications in both
cases require consideration. Ignoring a critical admission webhook could result in
policy that the business relies on not being applied to a resource without the user
knowing.

One potential solution to protect against this would be to raise an alert when the API
server logs that it cannot reach a given admission webhook. Fail can be even more
devastating by denying all requests if the admission webhook is experiencing issues.
To protect against this you can scope the rules to ensure that only specific resource
requests are set to the admission webhook. As a tenet, you should never have any
rules that apply to all resources in the cluster.

Admission webhooks must respond quickly
If you have written your own admission webhook, it’s important to remember that
user/system requests can be directly affected by the time it takes for your admission
webhook to make a decision and respond. All admission webhook calls are config‐
ured with a 30-second timeout, after which time the failurePolicy takes effect.
Even if it takes several seconds for your admission webhook to make an admit/deny
decision, it can severely affect user experience when working with the cluster. Avoid
having complex logic or relying on external systems such as databases to process the
admit/deny logic.

Admission Control | 229

Scoping admission webhooks
An optional field allows you to scope the namespaces in which the admission web‐
hooks operate on via the NamespaceSelector field. This field defaults to empty,
which matches everything, but it can be used to match namespace labels via the use
of the matchLabels field. We recommend that you always use this field because it
allows for an explicit opt-in per namespace.

Always deploy in a separate namespace using NamespaceSelector
When self-hosting a webhook admission controller, deploy the webhook admission
controller to a separate namespace and use the NamespaceSelector field to exclude
resources deployed to that namespace from being processed.

Don’t touch the kube-system namespace

The kube-system namespace is a reserved namespace that’s common across all
Kubernetes clusters. It’s where all system-level services operate. We recommend never
running admission webhooks against the resources in this namespace specifically,
and you can achieve this by using the NamespaceSelector field and simply not
matching the kube-system namespace. You should also consider doing this for any
system-level namespaces that are required for cluster operation.

Lock down admission webhook configurations with RBAC
Now that you know about all the fields in the admission webhook configuration,
you have probably thought of a really simple way to break access to a cluster. It
goes without saying that the creation of both a MutatingWebhookConfiguration and
ValidatingWebhookConfiguration is a root-level operation on the cluster and must
be locked down appropriately using RBAC. Failure to do so can result in a broken
cluster or, even worse, an injection attack on your application workloads.

Don’t send sensitive data
Admission webhooks are essentially opaque boxes that accept AdmissionRequests
and output AdmissionResponses. How they store and manipulate the request is
opaque to the user. It’s important to think about what request payloads you are send‐
ing to the admission webhook. In the case of Kubernetes secrets or ConfigMaps, they
might contain sensitive information and require strong guarantees about how that
information is stored and shared. Sharing these resources with an admission web‐
hook can leak sensitive information, which is why you should scope your resource
rules to the minimum resource needed to validate and/or mutate.

230 | Chapter 17: Admission Control and Authorization

Authorization
We often think about authorization in the context of answering the following
question: “Is this user able to perform these actions on these resources?” In Kuber‐
netes, the authorization of each request is performed after authentication but before
admission. In this section, we explore how you can configure different authorization
modules and better understand how you can create the appropriate policy to serve
the needs of your cluster. Figure 17-3 illustrates where authorization sits in the
request flow.

Figure 17-3. API request flow via authorization modules

Authorization Modules
Authorization modules are responsible for either granting or denying permission
to access. They determine whether to grant access based on policy that must be
explicitly defined; otherwise all requests will be implicitly denied.

Kubernetes ships with the following authorization modules out of the box:

Attribute-Based Access Control (ABAC)
Allows authorization policy to be configured via local files

RBAC
Allows authorization policy to be configured via the Kubernetes API (refer to
Chapter 4 for more detail)

Webhook
Allows the authorization of a request to be handled via a remote REST endpoint

Node
Specialized authorization module that authorizes requests from kubelets

Authorization | 231

The modules are configured by the cluster administrator via the following flag on
the API server: --authorization-mode. Multiple modules can be configured and
are checked in order. Unlike admission controllers, if a single authorization module
admits the request, the request can proceed. Only for the case in which all modules
deny the request will an error be returned to the user.

ABAC
Let’s look at a policy definition in the context of using the ABAC authorization mod‐
ule. The following grants user Mary read-only access to a pod in the kube-system
namespace:

apiVersion: abac.authorization.kubernetes.io/v1beta1
kind: Policy
spec:
user: mary
resource: pods
readonly: true
namespace: kube-system

If Mary were to make the following request, it would be denied because Mary doesn’t
have access to get pods in the demo-app namespace:

apiVersion: authorization.k8s.io/v1
kind: SubjectAccessReview
spec:
resourceAttributes:
verb: get
resource: pods
namespace: demo-app

This example introduced a new API group, authorization.k8s.io. This set of APIs
exposes API server authorization to external services and has the following APIs,
which are great for debugging:

SelfSubjectAccessReview
Access review for the current user

SubjectAccessReview
Like SelfSubjectAccessReview but for any user

LocalSubjectAccessReview
Like SubjectAccessReview but namespace specific

SelfSubjectRulesReview
Returns a list of actions a user can perform in a given namespace

The cool part is that you can query these APIs by creating resources as you typically
would. Let’s take the previous example and test this using the SelfSubjectAccessRe‐
view. The status field in the output indicates that this request is allowed:

232 | Chapter 17: Admission Control and Authorization

$ cat << EOF | kubectl create -f - -o yaml
apiVersion: authorization.k8s.io/v1
kind: SelfSubjectAccessReview
spec:
 resourceAttributes:
 verb: get
 resource: pods
 namespace: demo-app

EOF
apiVersion: authorization.k8s.io/v1
kind: SelfSubjectAccessReview
metadata:
creationTimestamp: null

spec:
resourceAttributes:
namespace: kube-system
resource: pods
verb: get

status:
allowed: true

In fact, Kubernetes ships with tooling built into kubectl to make this even easier. The
kubectl auth can-i command operates by querying the same API as the previous
example:

$ kubectl auth can-i get pods --namespace demo-app
yes

With administrator credentials, you can also run the same command to check actions
as another user:

$ kubectl auth can-i get pods --namespace demo-app --as mary
yes

RBAC
Kubernetes role-based access control is covered in depth in Chapter 4.

Webhook
Using the webhook authorization module allows a cluster administrator to con‐
figure an external REST endpoint to delegate the authorization process to. This
would run off-cluster and be reachable via URL. The configuration of the REST
endpoint is found in a file on the control plane host filesystem and configured on
the API server via --authorization-webhook-config-file=SOME_FILENAME. After
you’ve configured it, the API server will send SubjectAccessReview objects as part
of the request body to the authorization webhook application, which processes and
returns the object with the status field complete.

Authorization | 233

Authorization Best Practices
Consider the following best practices before making changes to the authorization
modules configured on your cluster:

Don’t use ABAC on multiple control plane clusters
Given that the ABAC policies need to be placed on the filesystem of each control
plane host and kept synchronized, we generally recommend against using ABAC
in multiple control plane clusters. The same can be said for the webhook module
because the configuration is based on a file and a corresponding flag being present.
Furthermore, changes to these policies in the files require a restart of the API server
to take effect, which is effectively a control plane outage in a single control plane
cluster or inconsistent configuration in a multiple control plane cluster. Given these
details, we recommend using the RBAC module only for user authorization because
the rules are configured and stored in Kubernetes itself.

Don’t use webhook modules
Webhook modules, although powerful, are potentially very dangerous. Given that
every request is subject to the authorization process, a failure of a webhook ser‐
vice would be devastating for a cluster. Therefore, we generally recommend not
using external authorization modules unless you completely vet and are comfortable
with your cluster failure modes if the webhook service becomes unreachable or
unavailable.

Summary
In this chapter, we covered the foundational topics of admission and authorization
and covered best practices. Put these skills to use by determining the best admission
and authorization configuration that allows you to customize the controls and poli‐
cies needed for the life of your cluster.

234 | Chapter 17: Admission Control and Authorization

•
•
•
•
•

•
•
•
•

CHAPTER 18

GitOps and Deployment

In this chapter, we will discuss GitOps and how it can be used to deploy and manage
applications on Kubernetes. We will deep dive into best practices of setting up a
GitOps workflow and how to utilize the different tools available to achieve this.

GitOps is a way to do Kubernetes application deployment. It works by utilizing Git as
a single source of truth for your Kubernetes resources. With Git at the center of your
deployment pipelines, developers and operators can make pull requests to accelerate
and simplify application deployments and operations tasks in Kubernetes. This allows
you to utilize the same practices for managing Kubernetes resources as you do for
managing application code. Developers will be very familiar with the workflow, as
they can utilize the same tools they use to work with application code.

We cover the following topics in this chapter:

• What is GitOps?
• Why utilize GitOps?
• GitOps compared to other deployment methods
• Patterns and best practices
• GitOps tooling

We also go through an example GitOps workflow consisting of the following tasks:

• Setting up a GitOps agent with Flux
• Connecting Flux agent to a Git repository
• Syncing resources to a Kubernetes cluster
• Deploying an application to the cluster

235

What Is GitOps?
GitOps was popularized by the folks at Weaveworks, and the idea and fundamentals
were based on their experience of running Kubernetes in production. GitOps takes
the concepts of the software development life cycle and applies them to operations.
With GitOps, your Git repository becomes your source of truth, and your cluster
is synchronized to the configured Git repository. For example, if you update a Kuber‐
netes Deployment manifest, those configuration changes are automatically reflected
in the cluster state in Git.

By using this method, you can make it easier to maintain multiclusters that are
consistent and avoid configuration drift across the fleet. GitOps allows you to declar‐
atively describe your clusters for multiple environments and drives to maintain that
state for the cluster. The practice of GitOps can apply to both application delivery and
operations and provides developers with a common toolchain.

Weaveworks Flux was one of the first tools to enable the GitOps approach, and it’s the
tool we will use throughout the rest of the chapter. Many new tools that have been
released into the cloud native ecosystem are worth a look, such as Argo CD, from the
folks at Intuit, which has also been widely adopted for the GitOps approach. We will
dive more into the tooling available for GitOps later in the chapter.

Figure 18-1 provides a representation of a GitOps workflow. We have a Git repository
that contains the application code and Kubernetes manifests for our application.
The Flux agent is configured to watch the repo for any changes. When a developer
commits a code change, the Flux agent will sync any new changes to the Kubernetes
clusters.

Figure 18-1. GitOps workflow

When building your GitOps workflow, you should consider the four core principals
of GitOps defined by the OpenGitOps Project:

Declarative configuration
All configuration is stored in Git as declarative YAML files. This allows for a
single source of truth for your cluster configuration.

236 | Chapter 18: GitOps and Deployment

https://oreil.ly/3Rz55

Versioned configuration
All configuration is stored in Git, and all changes are tracked and versioned. This
allows for easy auditing of changes and rollbacks.

Immutable configuration
All configuration is immutable. This means that once a change is made, it cannot
be modified. This allows for a consistent state of the cluster.

Continuous state reconciliation
The cluster state is continuously reconciled with the state defined in Git. This
allows for the cluster to be in a consistent state.

Why GitOps?
GitOps is a excellent way to manage your Kubernetes clusters, and it can be used to
deploy applications to your cluster as well as manage cluster and application configu‐
ration. Before we talk about all the benefits, let’s first look at how we traditionally
deployed and configured applications on Kubernetes.

Figure 18-2 shows a traditional deployment workflow. We have a developer who is
working on a new feature for an application. The developer will make changes to
the application code and then build a new container image. Next, the developer will
push the new container image to a container registry. The developer will then update
the Kubernetes manifest to use the new container image, and then apply the changes
to the cluster. This is a very manual process, and it can be very time consuming.
Some of these steps can be automated with tools, but this can become complex as the
number of applications and clusters grow.

Figure 18-2. Traditional deployment workflow

This workflow can be very error prone, and it can be difficult to track down the
source of the issue. It can also be difficult to roll back changes, as you will need
to manually revert the changes to the Kubernetes manifest. It can also cause config‐
uration drift, as users may make direct changes to the resources in Kubernetes.
Controlling security access to the environment can also become complex with multi‐
ple pipelines and users needing access. Auditing of each interaction from change to
deployment can also be difficult with multiple pipelines.

Why GitOps? | 237

We can solve these problems with the following benefits GitOps provides:

Declarative configuration
All configuration is stored in Git as declarative YAML files. This allows for a
single source of truth. It also allows for easy auditing of changes using Git history.
Developers will be accustomed to working with Git, so they will be familiar with
the workflow.

Version controlled
Git repository supports immutability and version history. For example, using Git
for the previously mentioned configuration will give you a single source from
which everything for your application is driven. This allows you to easily track
any changes made at any time. It allows you to look at all changes found in Git
history and compare those changes.

Continuous reconciliation
The cluster state is continuously reconciled with the state defined in Git. It also
allows for easy rollbacks, as you can simply revert the changes in Git. The system
can automatically sync the same state in Git to your cluster. This allows for the
cluster to be in a consistent state.

Security
When you use Git to manage applications deployed to Kubernetes, you gain a
complete audit log of all changes to the cluster. All changes are made to the Git
repository, and the GitOps agent can automatically reconcile any changes made
directly to a Kubernetes resource. This provides a full audit trail of who changed
what. It enables consistent operations and enhances security of the environment.

While you may have a very automated CI/CD pipeline, you may still have some
manual steps in your workflow. GitOps aims to solve these challenges by automating
the workflow and providing a developer-centric workflow.

GitOps Repo Structure
One of the first questions about GitOps is how to structure your Git repository. There
are many different ways to structure your Git repository, but all come with their own
pros and cons.

Four common strategies for structuring your Git repository are:

Single monorepo
All Kubernetes manifests and application code are stored in a single repository.
This is the simple approach, but it becomes much more difficult as the company
scales. This approach also does not allow for separation of concerns, as all teams’
source code and Kubernetes manifests will live in a single repository. This can

238 | Chapter 18: GitOps and Deployment

work well for a smaller company, but you’ll quickly outgrow this approach as
your company grows. Following is a sample of this type of repo layout structure:

├── app-x
│ ├── common
│ └── deploy
│ └── manifest
├── app-y
│ ├── prod
│ └── staging
├── app-z
└── ops-team

├── flux
├── ingress
└── prometheus

Repo per team
Each team has its own repository, and the Kubernetes manifests are stored in
the same repository. This approach allows for better organization and separation
of concerns but becomes more difficult to manage as your application portfolio
grows over time. Following is a sample of this type of repo layout structure:

├── ops-team
│ ├── elk
│ ├── flux
│ └── prometheus
├── team-x
│ └── app-x
│ └── deploy
│ └── manifest
└── team-y

├── prod
└── staging

Repo per application
Each application has its own repository, and the Kubernetes manifests are stored
in the same repository. This approach allows for better organization and separa‐
tion of concerns, as it can be locked down to read-only access for the team. The
con of using this structure is not everything can be seen in one place. Following
is a sample of this type of repo layout structure:

──
│ ├──
│ ├──
│ └──

──
│ └──
│ └──
│ └──

GitOps Repo Structure | 239

ops-team-repo
elk
flux
prometheus

team-x-repo
app-x

deploy
manifest

Branch per environment
Each environment has its own branch in the same repository. This approach
allows you to promote environments with a simple Git merge. Promoting via
a simple Git merge can lead to unwanted changes between environments and
merge conflicts between environments. The downside to this is you will typically
have a lot of branches, and it can be difficult to manage. This approach also
doesn’t fit with templating tools such as Kustomize and Helm. Following is a
sample of this type of repo layout structure:

-- main
-- staging
-- QA
-- dev

Typically, you will want to assess your organization and team layout to decide which
structure works best for you. Starting with a repo per team is a excellent starting
point, as it’s a good middle ground that provides clear separation of concerns and
easy repo management.

Managing Secrets
Secrets management is a common challenge when implementing a GitOps workflow.
There are many different ways to manage secrets, and the best approach will depend
on your organization. Next we will dive into the five common approaches you can
take with managing secrets in a GitOps way:

Store secrets directly in Git
This approach is the simplest, but it is not recommended. The problem with this
approach is that you are storing plain text secrets in a repository that may be
public. Even if your repository is internal and private, your are still storing the
secrets in plain text. Multiple users may have access to this repo and will then
have access to the secrets.

Bake secrets into container image
This approach is a little better than storing secrets in plain text in Git. The
problem with this approach is baking secrets into the image will require you
to rebuild the image each time secrets are rotated. It also doesn’t address the
security concerns as multiple users may be able to pull the image and run it. This
approach is also not recommended due to security concerns.

Use Kubernetes Secrets
This approach is available directly in Kubernetes and provides an easy way to
get started. The problem with this approach is that Kubernetes Secrets are not
really secret. What we mean here is that Kubernetes Secrets look encrypted, but

240 | Chapter 18: GitOps and Deployment

are actually just base64 encoded. This approach is also not recommended due to
security concerns.

Use Sealed Secrets
Sealed Secrets is a project by Bitnami. It has two components: a cluster controller
and a client-side tool call kubeseal. The kubeseal utility uses asymmetric crypto
to encrypt secrets that only the controller can decrypt. These secrets can then
be stored in Git encrypted and can only be decrypted by the controller in your
cluster. This is a recommended approach for managing secrets in a GitOps way.

Store secrets in a secret management tool
This approach allows you to store secrets in a secure location and then access
them from your cluster. These secrets can be stored in an external secret man‐
agement solution like HashiCorp Vault, Azure Keyvault, Google KMS, etc. This
approach allows you to use existing solutions you may already have in place
and continue with the same workflow. This approach is also a recommended
approach for managing secrets in a GitOps way.

While there are lot of different ways to manage secrets, the best approach will
depend on your organization. As we discussed, Sealed Secrets and external secret
management are the recommended approaches for managing secrets.

Setting Up Flux
Flux is a Kubernetes operator that watches your Git repository for changes and
automatically applies those changes to your cluster. Flux is a mature tool for imple‐
menting GitOps in your cluster, and it is the tool we will use throughout the rest of
the chapter.

First, we’ll start by getting minikube set up to deploy Flux. You can install minikube
from the minikube website. We are using Macs so we’ll use brew to install minikube:

brew install minikube

Now we’ll install Flux and prepare our cluster to sync to a Git repository. We’ll use the
flux CLI to install Flux. You can install the flux CLI from the flux website.

Install Flux CLI:

brew install fluxcd/tap/flux

Export your GitHub token:

export GITHUB_TOKEN=<your-token>
export GITHUB_USER=<your-username>

Setting Up Flux | 241

https://oreil.ly/GMPMl
https://oreil.ly/h2_hQ

Check that your cluster can install Flux:

flux check --pre

Bootstrap Flux:

flux bootstrap github \
--owner=$GITHUB_USER \
--repository=kbp-flux \
--branch=main \
--path=./clusters/prod \
--personal

The preceding bootstrap command will create a Git repo called kbp-flux in your
GitHub account. It will also create a main branch and a clusters/prod directory. The
clusters/prod directory will contain the Flux components that will be deployed to your
cluster. The clusters/prod directory will also contain a gotk-components.yaml file that
will be used to deploy the Flux components to your cluster. This also installs the Flux
components into the flux-system namespace.

Now let’s check the flux-system namespace to see if the Flux components are
deployed:

kubectl get pods -n flux-system

You should see the following output:

NAME READY STATUS RESTARTS AGE
helm-controller-8664d9dcfc-4gd2h 1/1 Running 0 6m30s
kustomize-controller-9888f965-ld5g6 1/1 Running 0 6m30s
notification-controller-b6d8458c7-vjb86 1/1 Running 0 6m30s
source-controller-5b68b64c65-pj2tn 1/1 Running 0 6m30s

Now let’s clone the repo it created to our local machine:

git clone https://github.com/$GITHUB_USER/kbp-flux

Next we’ll add a Flux configuration to our repo and use a public repository on
GitHub. We’ll use a sample application created by Stefan Prodan from Weaveworks.

Let’s create a Git repository manifest pointing to the apps repository’s main branch:

flux create source git podinfo \
--url=https://github.com/stefanprodan/podinfo \
--branch=master \
--interval=30s \
--export > ./clusters/prod/podinfo-source.yaml

Then we’ll configure Flux to deploy the application and apply a Kustomize configura‐
tion to the application:

flux create kustomization podinfo \
--target-namespace=default \
--source=podinfo \

242 | Chapter 18: GitOps and Deployment

--path="./kustomize" \
--prune=true \
--interval=5m \
--export > ./clusters/prod/podinfo-kustomization.yaml

Now we’ll push the changes to our repo:

git add -A && git commit -m "Add podinfo Kustomization"

git push

We can seeing this being applied by using the Flux CLI:

flux get kustomizations

You should see the following output:

flux get kustomizations --watch
NAME REVISION SUSPENDED READY MESSAGE
flux-system main@sha1:9c3fb6f1 False True Applied revision: main@sh...
podinfo master@sha1:1abc44f0 False True Applied revision: master@...

We can see the resources have been deployed to our cluster:

kubectl get pods -n default

Any changes made to the podinfo Kubernetes manifests in the main branch are now
reflected in your cluster automatically.

We have now set up Flux in our cluster, bootstrapped it to a Git repository, and
configured Flux to deploy an application. We can now start to use Flux to manage our
cluster.

This is a very basic example of how to get Flux set up, and if you want a deeper dive
into Flux, you can check out the Flux documentation.

GitOps Tooling
Many different tools can be used to implement GitOps in your cluster. In this section,
we will go over some of the most popular.

When evaluating tools for GitOps, you should consider ease of use, enterprise fea‐
tures, and extensibility. Listed next are both open source and commercial tools that
can be used to implement GitOps in your cluster:

Flux
Flux is a Kubernetes operator that watches your Git repository for changes and
automatically applies those changes to your cluster. Flux is a mature tool for
implementing GitOps in your cluster. Weaveworks also provides a hosted version
of Flux. Flux is currently a CNCF graduated project.

GitOps Tooling | 243

https://oreil.ly/F5D2p

•

•

•

•

•

•

ArgoCD
Argo CD is an open source GitOps continuous delivery tool. It monitors your
cluster and your declaratively defined infrastructure stored in a Git repository
and resolves differences between the two—effectively automating an application
deployment. ArgoCD is currently a CNCF graduated project.

Codefresh
Codefresh is a CI/CD platform that can be used to implement GitOps in your
cluster. Codefresh provides a hosted platform that provides ArgoCD as a service.

Harness
Harness is a CI/CD platform that can be used to implement GitOps in your
cluster. Harness is a mature tool for implementing GitOps in your cluster and
provides a hosted version. Harness is geared toward enterprise customers and
provides a full suite of continuous delivery features.

GitOps Best Practices
Consider the following best practices when using GitOps with Kubernetes:

• Start with a small application and then scale your efforts for managing every‐
thing with a GitOps model. This will allow you to build confidence in your
GitOps implementation.

• Evaluate tools that fit your requirements or start with proven OSS tools like Flux
or ArgoCD.

• Avoid using branches for your repository layout, as this is the most complex and
error-prone repository layout.

• Start with a folder per environment, as this provides flexibility and allows you to
use tools like Kustomize or Helm for templating.

• Utilize Sealed Secrets or an external secrets provider to manage secrets in your
cluster.

• Remember GitOps is a process and not a tool, and your existing tool set may fit
your needs.

Summary
In this chapter, we went over what GitOps is and how it can be used to manage
your Kubernetes cluster. We also went over some of the tools that can be used to
implement GitOps in your cluster. When looking to see if GitOps is right for you, you
should consider what problems you are trying to solve and what your requirements
are. If GitOps help solves these problems for you, then looking at a tool like Flux or
ArgoCD is a good place to start.

244 | Chapter 18: GitOps and Deployment

CHAPTER 19

Security

Kubernetes is a powerful platform for orchestrating cloud native applications. How‐
ever, under the veneer and polish of the APIs and tooling we know and love lies a
large, complex distributed system that requires specific knowledge to secure. Securing
Kubernetes is a complex topic that honestly requires its own book; however, there’s so
much at stake if you overlook taking the time to understand and implement security
best practices that we cover it in brief here. The risk of not securing your Kubernetes
clusters and workloads properly is the possibility of exposing your data and resources
to hackers, malware, and unauthorized access. We would be remiss not to cover some
of the main security areas and provide best practices to help along the way.

Given the complexity of Kubernetes, we recommend breaking the problem down into
logical layers where you can focus on specific tooling at each layer. A great way to
handle security is to follow the “defense in depth” strategy. This requires the use of
multiple security measures at each layer to protect Kubernetes and your workloads.
Additionally, keep the principle of least privilege in mind, which states that users
and workloads should have access only to what they absolutely need to perform their
functions. This all sounds great in theory, but what does it look like in practice? This
chapter lays out an approach to bucketing security concerns into layers that will help
you focus on the solutions and tooling available as well as cluster security, container
security, and code security.

Many security best practices have been covered in detail in other chapters, including
Chapters 4 through 11. We encourage you to review those chapters as we won’t cover
those specific topics in the same level of detail again here but rather focus on areas
we haven’t covered. In particular, this chapter will focus on layers; digging deeper into
them, covering security areas, and providing best practices for each layer.

245

Cluster Security
Given that the Kubernetes control plane is exposed via a set of APIs, the first step in
securing the cluster is to regulate and restrict who can access the cluster and what
actions they can perform. Next, we will cover the different parts of the Kubernetes
control plane and how to secure them.

etcd Access
The default storage system for Kubernetes is etcd. You must ensure that only the
Kubernetes API server has access to etcd by using strong credentials that aren’t
shared. You must also make sure that only the API servers have network access
to etcd by using network firewalls. Having direct access to etcd bypasses all the
subsequent security measures you have in place, so this is an incredibly important
layer to secure.

Authentication
Kubernetes provides several different authentication methods, from bearer tokens
and certificates to OpenID Connect (OIDC) and Lightweight Directory Access Pro‐
tocol (LDAP) integrations. It’s important to choose the right authentication model
that suits the needs of your business. Security challenges usually appear in the cre‐
ation, distribution, and storage of Kubeconfig files that users require to authenticate
to Kubernetes using tools like kubectl. Using authentication providers allows the
retrieval of temporary dynamic tokens rather that using static tokens or certificates
that can be easily retrieved by a malicious actor. Papers have been written about
instances of malicious code stored in Kubeconfig files, so it’s important to control
their creation and distribution.

Authorization
We covered authorization in Chapter 17; however, in the context of Kubernetes secu‐
rity it’s a powerful tool to enforce who can perform what actions on what resources.
The primary tool at your disposal is role-based access control (RBAC). Thankfully,
Kubernetes ships with sane defaults; however, you will want to consider incorporating
attributes such as team membership as well as namespaces as a way of scaling the
number of RBAC resources that need to be created to support a growing number
of workloads and users. It’s also very important to lock down service accounts using
RBAC to confirm that workloads that need access to the Kubernetes API can access
only the minimum actions required to perform their function.

246 | Chapter 19: Security

TLS
By default, Kubernetes ships with TLS-secured API endpoints enabled. However,
different tools and platforms may enable HTTP plaintext communications, which
opens up an attack vector as the traffic will be unsecure. It’s important to safely store
and control access to any certificates and keys in use by Kubernetes and create a plan
to rotate them if they are lost or compromised. Having short lifetimes on certificates
helps decrease the security risk.

Kubelet and Cloud Metadata Access
Kubelets are the component that run on each node and are responsible for managing
the node and the pods that run on it. Unfortunately, Kubelet ships with unauthenti‐
cated API enabled. The Kubelet API is extremely powerful and hence should have
authentication and authorization enabled. It is likely that your Kubernetes provider
has taken care of this for you; however, you should double check if rolling your own
Kubernetes cluster. In addition to the Kubelet API, if running on a cloud provider it’s
likely that the node has access to a cloud metadata API that could be used to expose
Kubernetes provisioning credentials. It’s recommended that you lock down access to
the metadata endpoint using network policies.

Secrets
It’s no secret that Kubernetes secrets are not encrypted by default. This means that
malicious actors may be able to read these secrets at rest from other vectors. Thank‐
fully, there are several different solutions to help with this. The Kubernetes API server
provides the ability to configure an encryption provider that is used in partnership
with a configuration file to encrypt specific Kubernetes resources prior to storage in
etcd. Encryption providers are typically cloud secret storage services. The only chal‐
lenge with the current encryption provider implementation is that there is no way to
encrypt everything, and the configuration is cumbersome and error prone. Another
solution that the Kubernetes community has built is csi secret store, which enables
secrets to be mounted directly into pods via a temporary RAMDISK filesystem. Using
csi-secret-store enables you to bypass the need to use Kubernetes secrets and
instead directly access them from another trusted secret store.

Logging and Auditing
Kubernetes ships with rich logging configured out of the box. In addition, it’s impor‐
tant to also enable audit logging on the API server, which will enable a chronological
log of all security-specific events and is configurable via an audit policy. Enabling
auditing is only part of the solution; you also must make sure that the audit logs are
shipped to a point of aggregation and configure triggers that, if detected, fire an alert
to the security team that a suspicious event has occurred.

Cluster Security | 247

https://oreil.ly/cbiYT

•

•
•

•
•
•
•

•

•

Cluster Security Posture Tooling
Getting Kubernetes security implemented can be challenging. The great news is
that there are open source tools that can scan your Kubernetes clusters, detect secu‐
rity risks, and flag common misconfigurations. Additionally, they can scan all the
resources on a cluster and provide best practices. Tools like Kubescape are quick to
run and provide outputs based on severity. It’s recommended that you run these tools
periodically on all clusters to determine the security posture of your cluster and the
resources deployed to it.

Cluster Security Best Practices
Now that we’ve covered the biggest security areas at the cluster layer, here is a handy
list of security best practices for you to check off:

• Lock down etcd access and store access credentials and certificates in secure
locations.

• Disable insecure and unauthenticated API endpoints.
• Use authentication providers that provide temporary dynamic tokens rather than

static configured tokens in Kubeconfig.
• Ensure users and services follow least privilege.
• Rotate infrastructure credentials regularly.
• Encrypt sensitive data at rest and in transit using keys and certificates.
• Scan container images for vulnerabilities and malware before deploying them to

the cluster.
• Enable audit logging and monitoring to detect and respond to suspicious

activities.
• Use security scanning tools such as Kubescape to baseline the security posture of

your Kubernetes cluster and workloads.

Workload Container Security
Now that we’ve covered the core components of cluster security we’ll look at the
security mechanisms at the workload layer. Kubernetes offers many security-focused
APIs, which makes configuration simple via the same tooling that you use to deploy
your workloads.

248 | Chapter 19: Security

https://oreil.ly/qPoHQ

Pod Security Admission
Pod Security Admission is a critical piece of your workload security story that allows
you to configure and manage all the security-sensitive components of your pod
configuration and apply out-of-the-box best practices either to a namespace or at the
cluster level. Chapter 10 is dedicated to container and pod security, and we encourage
you to review it for further detail.

Seccomp, AppArmor, and SELinux
Linux offers several different security mechanisms that can be utilized in concert
with Kubernetes to increase the security posture of your workloads running on
Kubernetes. Seccomp allows the creation of syscall filtering profiles that can be used
to restrict syscalls coming from a container. Unfortunately, Seccomp profiles aren’t
talked about enough in the Kubernetes community and have not been configured
at all or are misconfigured, allowing containers access to syscalls that could be
used for malicious purposes. The Kubernetes community has created a great tool
called the security profile operator that simplifies the management overhead in the
configuration of Seccomp profiles. Seccomp is low-hanging fruit to configure from a
security perspective, so you are strongly encouraged to enable the Seccomp default
profile at a minimum.

AppArmor and SELinux are Linux kernel security modules that allow the granu‐
lar configuration of per-container mandatory access control. These allow a cluster
administrator fine-grained control over what action a container can perform. Using
both Pod Security Admission and these Linux security mechanisms, you can control
the level of access a container should have to the operating system.

Admission Controllers
Admission controllers are a critical piece in securing your workloads. Kubernetes
ships with a set of integrated admission controllers, and all security-related admission
controllers are enabled by default. For example, the NodeRestriction admission con‐
troller restricts Kubelet’s permissions to only be able to modify pods assigned to
that specific node. Admission controllers are a big topic, and we suggest you look at
Chapter 17 for more details.

Operators
Operators are controllers that use the Kubernetes APIs to provide custom resources
to support specific workloads that require application-specific knowledge. If you
would like to learn more about the Operator pattern, refer to Chapter 21 where
we cover how to implement an operator in detail. In the context of security, unfortu‐
nately, many operators ship with very permissive RBAC configuration, for ease of

Workload Container Security | 249

https://oreil.ly/g0tNJ

use. Many grant cluster-admin or equivalent privileges, which may serve as an attack
vector. Additionally, though less common, these operators may expose other APIs
directly, which could provide a pathway to privilege escalation.

Network Policy
Kubernetes ships with a network policy resource; however, you need to double
check that your networking provider implements the resource at runtime. For more
details on network security, refer to Chapter 9. Kubernetes network policy provides
fine-grained control over what network traffic is allowed to enter or exit a service
or namespace for resources both internal and external to your cluster. Network
policy also allows cluster administrators to create cluster-wide or namespace-specific
policies and delegate application-specific network policy to application developers.
Network policy covers only IP addresses and TCP/UDP ports and not specific HTTP
traffic or endpoint routing access control. If you require application-specific access
policies, service meshes include higher-level access policies that aren’t part of the
integrated APIs of Kubernetes.

Runtime Security
Most Kubernetes clusters utilize container runtimes such as containerd or CRI-O
by default, which leverage Linux cgroups under the hood to provide a lightweight
sandbox for the container runtime. For some security-sensitive workloads, these
security guarantees may not be sufficient. There is an ecosystem of different container
runtimes, including Kata containers and gvisor, that provide different security pro‐
files to suit the needs of the workload. Kubernetes supports the use of multiple
container runtimes on the same cluster using the RuntimeClass field in the pod
specification. Please refer to Chapter 10 for more detail on RuntimeClass. If you still
require a higher level of security then Confidential Containers may also be something
to consider. Confidential Containers leverage trusted execution environments, which
are secure areas on the CPU to run the workload.

Like audit logs at the Kubernetes control plane, you should also invest in audit
logging inside the container runtime. Tooling like Falco provides a way to enable
audit logging and policy on what the application can do inside the container runtime.
Having visibility into the container runtime allows you to monitor and catch mali‐
cious behavior as close to the source as possible.

Workload Container Security Best Practices
Kubernetes provides a rich set of security tooling for you to use that can almost be
overwhelming to grok. Here is a shortlist of best practices you can focus on to quickly
improve the security posture of the workloads running on your cluster:

250 | Chapter 19: Security

https://oreil.ly/Vyq_N
https://oreil.ly/OiXpP
https://oreil.ly/ANDje
https://oreil.ly/fuNPn
https://oreil.ly/v66K0
https://oreil.ly/eSJfX
https://oreil.ly/9KOeg

•

•

•
•

•
•

•

•

•

•

• Use the Node and RBAC authorizers together, in combination with the NodeRes‐
triction admission plug-in.

• Secure the cluster control plane with strong authentication and authorization
mechanisms.

• Review operator API permissions and make sure that they follow least privilege.
• Apply the principle of least privilege to limit the access and permissions of users,

pods, and service accounts.
• Implement network policies to restrict the traffic between pods and namespaces.
• Ensure the recommended set of security-based admission controllers are

enabled.
• Use Seccomp, AppArmor, and SELinux to minimize the Linux kernel attack

surface area the container runtime has access to.
• Ensure dynamic webhook admission controllers are securely configured, scoped

to only the resources they need to validate/mutate, and follow least privilege
RBAC.

• Provide different container runtime sandboxes on your cluster and use Runtime
Class to allow application developers to select the runtime to match the security
requirements.

• Use admission controllers to validate security best practices on application
workloads.

Code Security
Good security starts before the code even reaches Kubernetes. We’ll cover some dif‐
ferent tools and techniques that you can introduce to further improve your security
posture.

Non-Root and Distroless Containers
There are two quick wins when it comes to building containers with an improved
security posture. Configure the application process to not run as the root user by
specifying a non-root user as part of the container build file. Kubernetes allows for
this also to be set as part of the securityContext section of the pod specification via
the runAsUser. This can be used as a fail-safe; however, configuring it in the container
build file is preferred. Additionally, many base containers provide commonly used
packages preinstalled in the container. These packages may not be used and can
introduce vulnerabilities. Tools like distroless and scratch containers provide the
smallest possible base container image, which again decreases the attack surface area.

Code Security | 251

https://oreil.ly/tpSEA

•
•
•
•

•
•

Container Vulnerability Scanning
Many open source tools provide vulnerability scanning of container images. These
tools, like Trivy, are easy to use and can provide a baseline of the vulnerabilities in a
container image. You can then decide whether or not to deploy the container based
on these results. However, these tools can be very noisy and provide inconsistent
results. Many container repository providers offer integrated vulnerability scanning,
and some admission controllers will either admit or deny a workload being deployed
based on the vulnerabilities present in the image.

Code Repository Security
Source code repositories are another great place to improve security, and thankfully
there is tooling and guidance to help improve the security posture at this layer.

Supply-Chain Levels for Software Artifacts, or SLSA, is a framework that provides a
checklist of controls based on incremental levels that you can adopt to help improve
software security and integrity. Many open source projects are adopting SLSA in
an effort to improve software security. The levels are well-defined and when imple‐
mented raise the security posture of your source code.

OpenSSF Scorecard gives an automated set of tools that provide a 0–10 score on the
security posture of an open source repository that you might be using or considering
to use as a dependency. The aggregate score provides an at-a-glance view that can be
used to evaluate how trustworthy an open source project is. Many prominent open
source projects are adopting this scorecard.

Code Security Best Practices
Good security starts well before a container is deployed to a Kubernetes cluster. The
code repository is a great place to also implement security measures to build your
in-depth security strategy. Here are some best practices to help guide you to some
quick wins on your code security front:

• Review operator API permissions and make sure that they follow least privilege.
• Configure the container build file to run application processes as a non-root user.
• Use container base images like scratch and distroless.
• Perform vulnerability scanning on your containers, and implement policy on

whether to allow a container to be deployed based on these vulnerabilities.
• Review OpenSSF scorecards on open source projects that you depend on.
• Implement SLSA level 1 to provide baseline-level transparency and integrity for

your software.

252 | Chapter 19: Security

https://oreil.ly/pFbNN
https://oreil.ly/CWXWD
https://oreil.ly/q-NI3

Summary
We’ve covered a lot of ground in this chapter. It’s important to understand the full
breadth of what it takes to secure Kubernetes so that you can start to break down the
problem into smaller pieces that you can implement. Security is a journey and not a
destination. It will always be a moving target, and by following these best practices,
you can improve the security posture of your Kubernetes cluster and reduce the risk
of data breaches or compromises.

Summary | 253

CHAPTER 20

Chaos Testing, Load Testing,
and Experiments

This chapter covers three different methods of testing applications in your Kuber‐
netes cluster: chaos testing, load testing, and experiments. All these tools can be used
to help you build more useful, more resilient, and more performant applications.
They can also provide insight into your application and help you better understand
your users and anticipate the impact of changes before you roll them out broadly.
This insight enables you to make better decisions and identify areas for future
improvements. The following sections will describe the details of each type of test,
their goals, and the prerequisites necessary before starting each test.

Chaos Testing
Chaos testing, as its name indicates, is testing your application’s ability to respond
to chaos in the world, But what exactly does chaos mean? Broadly speaking, for
an application chaos means introducing unusual, but not wholly unexpected, edge
conditions to your application and seeing how it responds. This enables you to
understand if your application is resilient to these edge conditions that may not have
previously occurred during development of the application but may occur at some
point during the operation of your application. Often our application development
occurs during idealized conditions. Unfortunately, when exposed to the real world
for long enough, these idealized conditions are challenged by errors and failures that
were not present during initial development. These errors can include communica‐
tion errors, network disconnections, storage problems, and application crashes and
failures. Chaos testing is the art of artificially introducing these errors into your test
environments and observing how well your application copes with them.

255

Goals for Chaos Testing
The goals for chaos testing are to introduce extreme conditions into your applica‐
tion’s environment and to observe how your application behaves in these conditions,
especially, how it fails. It may seem unusual to test in such a way that failures are
expected and desirable. While application failures in general are something that we
try to avoid, it is far better to observe those failures in a test environment where
customers or users are not impacted. We hope to observe failures when chaos testing
because they offer an opportunity to fix those problems before they affect our users
or customers.

Of course the goal is to introduce a realistic level of error into our applications to
see how they behave. Introducing a level of error that is not expected to ever occur
in practice, while interesting, isn’t a great use of time or resources. Excessive levels
of error can help us harden our applications for extreme environments, but if such
extremes never occur, the effort to harden the application is wasted. Of course each
application has a different level of both variability and resilience that is desired. The
level of resiliency expected of a mobile game is dramatically less than the level of
resilience expected of an aircraft or automobile. Understanding both the resilience
requirements and expected environment for your application is a critical prerequisite
for high-quality chaos testing.

Prerequisites for Chaos Testing
To build a useful chaos test it is critical to understand the environmental conditions
that your application may encounter. This includes both the expected frequency of
errors and also the types of errors that may occur. For example, is your storage
already resilient? If you are building a stateless application that uses cloud-backed
storage as a service, you may not need to test your application for disk failures, but
you will likely want to introduce chaos in the communication with the cloud storage
solution.

Before beginning chaos testing think about the risks in your application, and identify
places where you want to introduce error and at what frequency. When thinking
about frequency, remember that we’re not trying to test for the average case. The
average case is already well represented in your existing integration tests. Instead we
are looking to simulate the kind of environment that may occur only once a year or
once in a decade. You need to understand your application well enough to describe
what is plausible.

In terms of understanding your application, the other important prerequisite for
chaos testing is high-quality monitoring for the correctness and behavior of your
application. It is one thing to introduce chaos into your environment, but to make
this chaos useful you also need to be able to observe the operation of your application
with sufficient detail to determine the impact of the chaos and to identify the areas

256 | Chapter 20: Chaos Testing, Load Testing, and Experiments

where your application needs hardening to be able to deal with the chaos. In general,
this monitoring is necessary for any production application. In addition to its core
contributions around resiliency, chaos testing can also be a good test to see if your
monitoring and logging are sufficient to handle a real outage.

Chaos Testing Your Application’s Communication
One of the easiest ways to inject chaos into your application’s communication is
to place a proxy between each client and your service. This proxy handles all the
network traffic between your client and the server and injects random faults like
extra latency, disconnects, or other errors. There are several different open source
options for such a proxy, but one of the most popular is ToxiProxy, which was created
by Shopify. The easiest way to add ToxiProxy to your system is to effectively run a
ToxiProxy layer in front of each actual service in your cluster.

To achieve this, you first need to rename each service to which you want to add
chaos. To see this in more detail, suppose you have a service named backend that
serves traffic on port 8080. You can update a Kubernetes Service named backend to
be called backend-real. Then you can create new Deployment of ToxiProxy Pods
that are configured using the ToxiProxy command-line tool as follows:

toxiproxy-cli create -l 0.0.0.0:8080 -u backend-real:8080 backend

When you build the Pod definition for this Deployment of ToxiProxy, you can run
this command as a PostStart life-cycle hook. This command configures ToxiProxy to
listen on port 8080 within the pod and then forward traffic to your actual backend
service, which has the DNS name backend-real.

Next you create a new service named backend to replace the one that you renamed,
and you point this service at the Deployment of ToxiProxy Pods that you just created.
In this way, any client in your application that communicates with backend will
automatically start communicating with the chaos proxy instead.

Finally, you can start adding chaos to your application using the ToxiProxy
command-line tool by issuing commands like:

kubectl exec $SomeToxiProxyPod -- toxiproxy-cli toxic add -t latency
 -a latency=2000 backend

This will add 2,000 milliseconds of latency to all traffic through this proxy. If you
create multiple pods in your proxy Deployment, you will need to run this command
for each pod, or automate it using scripts or code.

Chaos Testing | 257

https://oreil.ly/N8QNF

Chaos Testing Your Application’s Operation
In addition to testing the operation of your application when communication is flaky,
it is also a good idea to test your application in situations where the infrastructure it is
running on is flaky or overloaded.

The easiest way to start with infrastructure failures is to simply delete pods. Starting
with a single Deployment, you can delete random pods within the Deployment based
on its label selector using a simple bash script:

NAMESPACE="some-namespace"
LABEL=k8s-app=my-app
PODS=$(kubectl get pods --selector=${LABEL} -n ${NAMESPACE} --no-headers | awk

 '{print $1}')
for x in $PODS; do

 if [$[$RANDOM % 10] == 0]; then
 kubectl delete pods -n $NAMESPACE $x;

 fi;
done

Of course if you’d rather have something more complete you can write code using the
various Kubernetes clients out there or even an existing open source tool like Chaos
Mesh.

Once you have moved through all the microservice Deployments in your application,
you can move on to deleting pods within the different services at once. This simulates
a more broad outage. You can extend the previous script to randomly delete pods
within a particular namespace as follows:

NAMESPACE="some-namespace"
PODS=$(kubectl get pods -n ${NAMESPACE} --no-headers | awk '{print $1}')
for x in $PODS; do

 if [$[$RANDOM % 10] == 0]; then
 kubectl delete pods -n $NAMESPACE $x;

 fi;
done

Finally, you can simulate complete failures in your infrastructure by causing entire
nodes in your cluster to fail. There are a variety of ways to accomplish this. If you are
running in a cloud-based Kubernetes, you can use cloud VM APIs to shut down or
reboot a machine in your cluster. If you are running on physical infrastructure, you
can literally pull the power plug on a particular machine, or reboot it by logging in
and running commands. On both physical and virtual hardware you can also cause
your kernel to panic by running sudo sh -c 'echo c > /proc/sysrq-trigger'.

Here is a simple script that will randomly panic approximately 10% of the machines
in a Kubernetes cluster:

NODES=$(kubectl get nodes -o jsonpath='{.items[*].status.addresses[0].address}')
for x in $NODES; do

258 | Chapter 20: Chaos Testing, Load Testing, and Experiments

https://oreil.ly/Ib1kp
https://chaos-mesh.org
https://chaos-mesh.org

 if [$[$RANDOM % 10] == 0]; then
 ssh $x sudo sh -c 'echo c > /proc/sysrq-trigger'

 fi
done

Fuzz Testing Your Application for Security and Resiliency
One final type of testing in the same spirit as chaos testing is fuzz testing. Fuzz testing
is like chaos testing in that it introduces randomness and chaos into your application,
but instead of introducing failures, fuzz testing focuses on introducing inputs that are
technically legal but extreme in one way or another. For example, you might send an
endpoint a legal JSON request but include duplicate fields or data that is especially
long or contains random values. The goal of fuzz testing is to test the resiliency of
your application to random extreme or malicious inputs. Fuzz testing is most often
used in the context of security testing because random inputs can cause unexpected
code paths to be executed and to introduce vulnerabilities or crashes. Fuzz testing
can help you ensure that your application is resilient to chaos from malicious or
erroneous input in addition to failures in the environment. Fuzz testing can be added
at both the cluster service level as well as the unit test level.

Summary
Chaos testing is the art of introducing unexpected but not impossible conditions into
the runtime of your application and observing what happens. Introducing potential
errors and failures into an environment before any failures can impact actual usage of
your application helps you identify problem areas before they become critical.

Load Testing
Load testing is used to determine how your application behaves under load. A load-
testing tool is used to generate realistic application traffic that is equivalent to real
production usage of your application. This traffic can either be artificially generated
or recorded traffic from actual production traffic that is replayed. Load testing can be
used to either identify areas that may become problems in the future or to ensure that
new code and features do not cause regressions.

Goals for Load Testing
The core goal for load testing is to understand how your application behaves under
load. When you are building an application, it is generally exposed to occasional traf‐
fic from only a few users. This traffic is sufficient for understanding the correctness of
the application, but it doesn’t help us understand how the application behaves under
realistic load. Thus, to understand how your application works when deployed in
production, load testing is necessary.

Load Testing | 259

Two fundamental uses of load testing are estimating current capacity and regression
prevention. Regression prevention is the use of load testing to ensure that a new
release of software can sustain the same load as the previous version of the software.
Whenever we roll out a new version of our software there is new code and configu‐
ration in the release (if there wasn’t, then what is the point of the release?). While
these code changes introduce new features and fix bugs, they can also introduce
performance regressions: the new version cannot serve the same level of load as the
previous version. Of course sometimes these performance regressions are known and
expected; for example, a new feature may have made a computation more complex
and thus slower, but even in such cases, load testing is necessary to determine how
the infrastructure (e.g., the number of pods, the resources they require) needs to be
scaled up to sustain production traffic.

In contrast to regression prevention, which is used to catch problems newly intro‐
duced into your application, predictive load testing is used to anticipate problems
before they occur. For many services, there is a steady growth in the use of the
service. Each month there are more users and more requests to your service. In
general this is a good thing, but keeping those users happy means continuing to
improve your infrastructure to keep up with the new load. Predictive load testing
takes the historical growth trends from your application and uses them to test your
application as if it were operating in the future. For example, if your application’s
traffic is growing 10% each month, you might run a predictive load test at 110% of
the current peak traffic to simulate how your application will work in the next month.
While scaling up your application can be as easy as adding more replicas and more
resources, often fundamental bottlenecks in your application require rearchitecting.
Predictive load testing allows you to anticipate the future and perform these changes
without the emergency of a user-facing outage due to increased load.

Predictive load testing can also be used to anticipate how an application will behave
prior to launch. Rather than using historical information, you can use your predic‐
tions about usage at launch to ensure that such a launch is successful and not a
disaster.

Prerequisites for Load Testing
Load testing is used to ensure that your application can perform while operating
under significant load. Further, like chaos testing, load testing can also introduce
failure conditions in your application due to that load. Consequently, load testing
shares the same prerequisites as chaos testing around application observability. To
successfully use a load test, you need to be able to verify that your application is
operating correctly and have enough information to gain insight into where and why
failures occur if they do.

260 | Chapter 20: Chaos Testing, Load Testing, and Experiments

In addition to the core observability of your application, another critical prerequisite
for load testing is the ability to generate realistic load for your test. If your load test
doesn’t closely mimic real-world user behaviors, then it is of little use. As a concrete
example, imagine if your load test continuously makes repeated requests for a single
user. In many applications, such traffic will produce an unrealistic cache hit rate, and
your load test will seem to show an ability to handle large amounts of load that is not
possible under more realistic traffic.

Generating Realistic Traffic
Methods for generating real-world traffic patterns for your application vary depend‐
ing on your application. For certain types of more read-only sites, for example, a
news site, it may be sufficient to repeatedly access each of the different pages using
some sort of probability distribution. But for many applications, especially those that
involve both reading and writing operations, the only way to generate a realistic load
test is to record real-world traffic and play it back. One of the easiest ways to do this
is to write the complete details of each HTTP request to a file, and then resend those
requests back to the server at a later time.

Unfortunately, such an approach can have complications. The first and foremost
consequence of recording all the requests to your application is user privacy and
security. In many cases requests to an application contain both private information
as well as security tokens. If you record all this information to a file for playback,
you must be very, very careful in handling these files to ensure that user privacy and
security are respected.

Another challenge with recording and playing back actual user requests has to do
with the timeliness of the requests themselves. If there is a time component to the
requests, for example, search queries about the latest news events, these requests
will have a very different behavior several weeks (or months) after those events
have occurred. There will be many fewer messages related to old news. Timeliness
also affects the correct behavior of your application. Requests often contain security
tokens and if you are doing security properly, those tokens are short lived. This
means that recorded tokens will likely not work correctly when verified.

Finally, when requests write data to backend storage systems, replaying requests that
modify storage must be performed in a copy or snapshot of the production storage
infrastructure. If you are not careful about how you set this up, you can cause
significant problems with customer data.

For all these reasons, simply recording and playing back requests, though easy, is not
a best practice. Instead the more useful way to use requests is to build up a model of
the ways in which your service is used. How many read requests? For what resources?
How many writes? Using this model you can generate synthetic load that has realistic
characteristics.

Load Testing | 261

Load Testing Your Application
Once you have generated the requests to power your load test, it is simply a matter
of applying that load to your service. Unfortunately, it is rarely that simple. In most
real-world applications there are databases and other storage systems involved. To
correctly simulate your application under load, you also need to write into storage
systems, but not to the production data store since this is artificial load. Thus, to
correctly load test your application, you need to be able to turn up a true copy of your
application with all its dependencies.

Once your application clone is up and running, it is a matter of sending all the
requests. It turns out large-scale load testing is also a distributed systems problem.
You will want to use a large number of different pods to send load onto your applica‐
tion. This is to ensure an even distribution of requests through the load balancers
and to make it feasible to send more load than a single pod’s network can support.
One of the choices you will need to make is whether to run these load testing pods
within the same cluster as your application or in a separate cluster. Running the pods
within the same cluster maximizes the load that you can send to your application, but
it does exercise the edge load balancers that bring traffic from the internet onto your
application. Depending on which parts of your application you wish to test, you may
want to run the load within the cluster, outside of the cluster, or both.

Two popular tools for running distributed load tests in Kubernetes are JMeter and
Locust. Both provide ways to describe the load that you want to send to your service
and allow you to deploy distributed load test bots to Kubernetes.

Tuning Your Application Using Load Tests
In addition to using load tests to prevent performance regressions and to anticipate
future performance problems, load testing can also be used to optimize the resource
utilization of your application. For any given service multiple variables can be tuned
and can impact system performance. For the purposes of this discussion we consider
three: number of pods, number of cores, and memory.

At first it might seem that an application would perform the same given the same
number of replicas times cores. That is, an application with five pods, each with three
cores, would perform the same as an application with three pods, each with five cores.
In some cases this is true, but in many cases it is not; the specific details of the service
and location of its bottlenecks often cause differences in behavior that are hard to
anticipate. For example, an application built in a language like Java, dotnet, or Go that
provides garbage collection: with one or two cores, the application is going to tune
the garbage collector significantly differently than if it has many cores.

The same thing is true of memory. More memory means that more things can be kept
in cache, and this often leads to more performance, but this benefit has an asymptotic

262 | Chapter 20: Chaos Testing, Load Testing, and Experiments

https://oreil.ly/MXBgj
https://locust.io

limit. You cannot simply throw more memory at a service and expect it to continue to
improve in performance.

Often times the only way to understand how your application will behave under
different configurations is to actually do the experimentation. To do this properly you
can set up an experimental set of configurations with different values for pods, cores,
and memory and run each configuration through a load test. Using the data from
these experiments you often can identify patterns of behavior that can drive insight
into the particular details of your system’s performance, and you can use the results to
select the most efficient configuration for your service.

Summary
Performance is a critical part of building an application that delights users. Load
testing ensures that you do not introduce regressions that impact performance and
lead to poor user experiences. Load testing can also serve as a time machine, enabling
you to imagine your application’s behavior in the future and make changes to your
architecture to support additional growth. Load testing can also help you understand
and optimize your resource usage, lowering costs and improving efficiency.

Experiments
In contrast to chaos testing and load testing, experiments are used not to discover
problems in your service’s architecture and operation but to identify ways to improve
how your users use your service. An experiment is a long-running change to your
service, generally in the user experience, in which a small percentage of users (for
example, 1% of all traffic) receive a slightly different experience. From examining
the difference between the control (the group with no changes) and the experiment
(the group that had a different experience) you can understand the impact of the
changes and decide whether to continue to experiment or to roll out the changes
more broadly.

Goals for Experiments
When we build a service, we build it with a goal in mind. That goal more often than
not is to provide something that is useful, easy to use, and pleasing to our customers
or users. But how can we know if we have achieved that goal? It’s relatively easy to see
that our site breaks in the presence of chaos or that it can only handle a small amount
of load before failing, but understanding how a user experiences our services can be
tricky to determine.

Several traditional methods for understanding user experience include surveys, in
which you ask users how they feel about the current service. While this can be useful
in understanding the current performance of our service, it is much harder to use

Experiments | 263

surveys to predict the impact of future changes. Much like performance regressions,
it is far better to know the impact before the change is rolled out everywhere. That
is the main goal of any experiment: to learn with minimal impact on our users’
experience.

Prerequisites for an Experiment
Just like when we were kids in a science fair, every good experiment starts with a good
hypothesis, and that is a natural prerequisite for our service experiments also. There
is some change that we are thinking about making, and we need to have a guess as to
what impact it will have on user experience.

Of course to understand the impact on user experience, we also need to be able
to measure the user experience. This data can come in the form of the surveys
mentioned previously, through which you can gather metrics like satisfaction (“please
rate us one through five”) or net promoter score (“how likely are you to recommend
this to a friend?”). Or it can come from passive metrics associated with user behavior
(“how long did they spend on our site?” or “how many pages did they click on?” etc.).

Once you have a hypothesis and a way to measure user experience, you’re ready to
begin the experiment.

Setting Up an Experiment
There are two different ways to set up an experiment. The approach you take depends
on the specific things being tested. You can include multiple possible experiences in a
single service, or you can deploy two copies of your service and use a service mesh to
direct traffic between them.

The first approach is to check both versions of the code into your release binary and
switch between the experiment and control using some property of the requests that
your service is receiving. You can use HTTP headers, cookies, or query parameters
to enable users to explicitly opt in to the experiment. Alternatively you can use
characteristics of the requests, such as the source IP, to randomly select users for your
experiments. For example, you could choose people for the experiments whose IP
addresses ended in one.

A common way to implement experiments is to use explicit feature flagging where a
user decides to opt in to an experiment by supplying the query parameter or cookie
that turns on the experiment. This is a good way to allow specific customers to
try new functionality or to demonstrate a new feature without releasing it broadly.
Feature flags can also be used to rapidly turn features on or off in the case of instabil‐
ity. Numerous open source projects, for example Flagger, can be used to implement
feature flagging.

264 | Chapter 20: Chaos Testing, Load Testing, and Experiments

https://flagger.app

The benefit of placing the experiment in the same binary as your control code is
that it is simplest to roll it out into production, but this simplicity also leads to two
drawbacks. The first is that if the experimental code is unstable and crashes, it can
also impact your production traffic. The other is that because any changes are tied to
a complete release of your service it is much slower to make changes to update the
experiment or to roll out new experiments.

The second approach to experiments is to deploy two (or more) different versions of
your service. In this approach, you have the control production service that receives
the bulk of the traffic and a separate experimental deployment of your service that
receives only a fraction of the traffic. You can use a service mesh (described in
Chapter 9) to route a small percentage of traffic to this experimental deployment
instead of the production deployment. Though this approach is more complex to
implement, it is significantly more agile and robust than including experimental code
in your production binary. Because it requires a completely new deployment of code
the upfront cost of setting up an experiment is increased, but because it has no impact
on anything except the experimental traffic, you can easily deploy new versions of
the experiment (or even multiple versions of the experiment) at any time without
impacting the bulk of your traffic.

Additionally, because the service mesh can measure whether requests are successful,
if the experimental code starts failing it can quickly be removed from use and user
impact is minimized. Of course detecting these failures can be a challenge. You need
to make sure that the experimental infrastructure is monitored independently from
the standard production monitoring; otherwise the experimental failures may be lost
in successful requests that are processed by the current production infrastructure.
Ideally the name of the pod or the deployment provides sufficient context to deter‐
mine if the monitoring signals are from production or an experiment.

In general, using separate deployments and some sort of traffic router like a service
mesh is the best practice for experiments, but it is a lot of infrastructure to set up.
For your initial experiments, or if you are a small team that is already fairly agile, it
may be that checking in experimental code is the easiest path to experimentation and
iteration.

Summary
Experiments enable you to understand the impact of changes on your users’ experi‐
ence before those changes are rolled out to the broad user base. Experiments play
a critical role in helping us quickly understand what changes are possible and how
we can update our services to better serve our users. Experiments make the improve‐
ment of our services easier, quicker, and safer.

Experiments | 265

Chaos Testing, Load Testing, and Experiments Summary
In this chapter we’ve covered a variety of different ways to learn more about your
service to make it more resilient, more performant, and more useful. Just as testing
your code with unit tests is a critical part of the software development process, testing
your service with chaos, load, and experiments is a critical part of service design and
operation.

266 | Chapter 20: Chaos Testing, Load Testing, and Experiments

CHAPTER 21

Implementing an Operator

A key tenet of Kubernetes is its ability to be extended beyond the core API by the
operators of the system. Many (these authors included) believe this extensibility was
a driving factor in the dominance of Kubernetes in the marketplace. As developers
began to create applications that would run on Kubernetes, operators developed
helper applications that knew how to call the Kubernetes API and automate much of
the routine work they would need to do to keep the applications stable. Many of these
applications were bash scripts or helper containers running in a cluster.

In 2016, a key group of Kubernetes contributors, led by CoreOS (now Red Hat),
positioned an Operator pattern to allow for easier development and implementation
of Kubernetes applications. The Operator pattern outlined a way to package, deploy,
and maintain an application that is integrated with the Kubernetes API and client
tooling such as kubectl. Using an Operator, an application developer could natively
create an application that could run in Kubernetes, be integrated with the existing
Kubernetes process, and embed institutional knowledge. This knowledge wasn’t limi‐
ted to deploying the application but also allowed for smooth upgrades, reconciliation
across disparate services, custom scaling processes, and embedding observability
into the complex system, which drove the acceptance of the framework into the
Kubernetes ecosystem.

The goal of this chapter is not to teach you how to write an Operator. Numerous
resources are available on this topic and have much more in-depth coverage than
what can be covered in a single chapter. The goal here is to introduce the concept
and explain when and why to implement an Operator into your environment while
sharing some of the key considerations you will need to plan.

267

Operator Key Components
The Operator Framework itself is an open source toolkit with a well-defined soft‐
ware development kit (SDK), life-cycle management, and publication tooling. A few
projects out there have been built around the concept of the Operator pattern and
making it easier for the community to develop. The members of the API Machinery
SIG in the Kubernetes community sponsored the development of kubebuilder to offer
a base SDK for working with the two main components of an Operator: Custom
Resource Definitions (CRDs) and controllers. Sponsored by Google as part of the
community, kubebuilder is being positioned as the base SDK for all operators and
other projects such as KUDO, KubeOps, and Kopf. Examples in this chapter will be
based on kubebuilder syntax where specific code is discussed; however, the concepts
are very similar in many of the Operator SDKs out there.

Custom Resource Definitions
Often the need to define complex application dependencies and resources using only
native Kubernetes resources becomes challenging in actual practice. The platform
engineers usually have to build complex yaml templates, with rendering pipelines
and additional resources like jobs and init containers to manage much of the custom‐
ization needed to run a large application. However, the Custom Resource Definition
allows developers to extend the Kubernetes API to provide new resource types that
can then better represent declaratively the resource needs of an application.

Kubernetes allows for the dynamic registration of new resources using the Custom
ResourceDefinition interface and will automatically register a new RESTful resource
path for the versions you specify. Unlike many of the resources that are built into
Kubernetes natively, CRDs can be maintained independently and updated when
needed. CRDs will define a specification of the resource under the spec field and will
have a spec.scope defining if the custom resources that are created from the CRD
will be namespaced or cluster-wide resources. Before we see a CRD and its custom
resource implementation, a small diversion into nomenclature of the Kubernetes API
is important.

Kubernetes API objects, resources, version, group, and kind
Objects in Kubernetes are the actual entities that are persisted in the system to repre‐
sent the state of the cluster. The object itself is what the typical CRUD operations act
on within a cluster. In essence an object will be the entire resource definition in state
such as a pod or PersistentVolume.

268 | Chapter 21: Implementing an Operator

https://oreil.ly/YG0gU

A Kubernetes resource is an endpoint in the API that represents a collection of
objects of a specific kind. So a pod resource will contain a collection of Pod objects.
One can see this in the cluster easily with:

kubectl api-versions
NAME SHORTNAMES APIVERSION NAMESPACED KIND
bindings v1 true Binding
componentstatu... cs v1 false ComponentS...
configmaps cm v1 true ConfigMap
edited for space
mutatingwebhoo... admissionregistration... false MutatingWe...
validatingwebh... admissionregistration... false Validating...
customresource... crd,crds apiextensions.k8s.io/... false CustomReso...
apiservices apiregistration.k8s.i... false APIService
controllerrevi... apps/v1 true Controller...
daemonsets ds apps/v1 true DaemonSet
deployments deploy apps/v1 true Deployment
replicasets rs apps/v1 true ReplicaSet
statefulsets sts apps/v1 true StatefulSet

Groups bring objects of similar concern together. This grouping combined with
versioning allows for objects within the same group to be managed individually and
updated as needed. The group is represented in the RESTful path in the apiVersion
field of the object. In Kubernetes the core group (also described as legacy) will fall
under the /api/REST path. Often seen in a Pod spec or Deployment yaml in the
apiVersion field with the base path removed as such:

kind: Deployment
apiVersion: apps/v1
metadata:
 name: sample
spec:
 selector:
 matchLabels:

As with any good API, Kubernetes APIs are versioned and support multiple versions
using different API paths. There are guidelines for Kubernetes versioning and the
same guidelines should be used when versioning Custom Resources. APIs can also
fall into different levels based on support or stability of the API, so often you will see
Alpha, Beta, or Stable APIs. In a cluster, for example, you may have v1 and v1beta1
for the same group:

kubectl api-versions
---- excerpt
autoscaling/v1
autoscaling/v2
autoscaling/v2beta1
autoscaling/v2beta2

Custom Resource Definitions | 269

Often, Kind and Resource are used as the same context; however, a resource is a con‐
crete implementation of a Kind. Often there is a direct Kind to Resource relationship
such as when defining a kind: Pod specification that will create a pod resource in
the cluster. On occasion there is a one to many relationship such as the Scale kind,
which can be returned by different resources such as Deployment or ReplicaSet. This
is known as a subresource.

Putting these principles together we can begin to model our API for our customer
resource. For the rest of this chapter, kubebuilder-generated snippets will be used,
but the actual code is not important and will be only a partial representation. The
concept discussed is what the focus will be and how it relates to best practices when
implementing an Operator.

Creating Our API
A Customer Resource Definition can be created in yaml by hand; however, kube‐
builder and other Operator SDKs will automatically generate the API definition for
you based on the code provided. In kubebuilder you can create a scaffold of the API
and the required Go code after your project is initialized. To initialize a project, once
kubebuilder and its prerequisites are met, you can simply run an init command
from a new directory that will contain your project files:

$ kubebuilder init --domain platform.evillgenius.com
--repo platform.evillgenius.com/platformapp --project-name=pe-app

Writing kustomize manifests for you to edit...
Writing scaffold for you to edit...
Get controller runtime:
$ go get sigs.k8s.io/controller-runtime@v0.14.1
go: downloading sigs.k8s.io/controller-runtime v0.14.1
go: downloading k8s.io/apimachinery v0.26.0
... removed for brevity ...
Update dependencies:
$ go mod tidy
go: downloading github.com/go-logr/zapr v1.2.3
go: downloading go.uber.org/zap v1.24.0
go: downloading github.com/onsi/ginkgo/v2 v2.6.0
go: downloading github.com/onsi/gomega v1.24.1
go: downloading gopkg.in/check.v1 v1.0.0-20200227125254-8fa46927fb4f
go: downloading github.com/niemeyer/pretty v0.0.0-20200227124842-a10e7caefd8e
Next: define a resource with:
$ kubebuilder create api

This will create some basic files and placeholder boilerplate code:

$ tree
.
├── config
│ ├── default
│ │ ├── kustomization.yaml

270 | Chapter 21: Implementing an Operator

│ │ ├── manager_auth_proxy_patch.yaml
│ │ └── manager_config_patch.yaml
│ ├── manager
│ │ ├── kustomization.yaml
│ │ └── manager.yaml
│ ├── prometheus
│ │ ├── kustomization.yaml
│ │ └── monitor.yaml
│ └── rbac
│ ├── auth_proxy_client_clusterrole.yaml
│ ├── auth_proxy_role_binding.yaml
│ ├── auth_proxy_role.yaml
│ ├── auth_proxy_service.yaml
│ ├── kustomization.yaml
│ ├── leader_election_role_binding.yaml
│ ├── leader_election_role.yaml
│ ├── role_binding.yaml
│ └── service_account.yaml
├── Dockerfile
├── go.mod
├── go.sum
├── hack
│ └── boilerplate.go.txt
├── main.go
├── Makefile
├── PROJECT
└── README.md

Once that is completed you can create the scaffold for the API definition by running
the following:

$ kubebuilder create api --group egplatform --version v1alpha1 --kind EGApp
Create Resource [y/n]
y
Create Controller [y/n]
y
Writing kustomize manifests for you to edit...
Writing scaffold for you to edit...
api/v1alpha1/egapp_types.go
controllers/egapp_controller.go
Update dependencies:
$ go mod tidy
Running make:
$ make generate
mkdir -p /home/eddiejv/dev/projects/operators/platformapp/bin
test -s /home/eddiejv/dev/projects/operators/platformapp/bin/controller-gen
&& /home/eddiejv/dev/projects/operators/platformapp/bin/controller-gen
--version | grep -q v0.11.1 || \

GOBIN=/home/eddiejv/dev/projects/operators/platformapp/bin
go install sigs.k8s.io/controller-tools/cmd/controller-gen@v0.11.1

go: downloading sigs.k8s.io/controller-tools v0.11.1
go: downloading github.com/spf13/cobra v1.6.1
go: downloading github.com/gobuffalo/flect v0.3.0

Creating Our API | 271

go: downloading golang.org/x/tools v0.4.0
go: downloading k8s.io/utils v0.0.0-20221107191617-1a15be271d1d
go: downloading github.com/mattn/go-colorable v0.1.9
/home/eddiejv/dev/projects/operators/platformapp/bin/controller-gen
 object:headerFile="hack/boilerplate.go.txt" paths="./..."

Next: implement your new API and generate the manifests (e.g. CRDs,CRs) with:
$ make manifests

This will add an API, bin, and controllers directories and update other directories
with more boilerplate code. The two main files to work with are the api/<version>/
<kind>_types.go and controllers/<kind>_controller.go files.

To start modifying your API to map to the resources you want expressed in your
CRD, you will add new fields to the struct created for your new object in the api/
<version>/<kind>_types.go file. So for our example here we add the following:

type EGAppSpec struct {
// INSERT ADDITIONAL SPEC FIELDS - desired state of cluster
// Important: Run "make" to regenerate code after modifying this file

// Foo is an example field of EGApp. Edit egapp_types.go to remove/update
Foo string `json:"foo,omitempty"`

}

// EGAppStatus defines the observed state of EGApp
// +kubebuilder:subresource:status
type EGAppStatus struct {

// INSERT ADDITIONAL STATUS FIELD - define observed state of cluster
 // Important: Run "make" to regenerate code after modifying this file

}

If you are not a Go programmer do not worry as there are
other projects such as Java Operator SDK and Kopf that
can help you build Operators in either Java or Python as
well. The Operator Framework SDK also has support to
create Operators from Ansible or Helm.

To continue with the example, we want to add specific fields to the spec and also have
a status. To update specification the information can be added as such:

type EGAppSpec struct {
// INSERT ADDITIONAL SPEC FIELDS - desired state of cluster

 // Important: Run "make" to regenerate code after modifying this file

// AppId is the unique AppId match to internal catalog systems
AppId string `json:"appId,omitempty"`

// +kubebuilder:validation:Enum=java;python;go
Framework string `json:"framework"`

272 | Chapter 21: Implementing an Operator

// +kubebuilder:validation:Optional
// +kubebuilder:validation:Enum=lowMem;highMem;highCPU;balanced
// +kubebuilder:default="lowMem"
InstanceType string `json:"instanceType"`

 // +kubebuilder:validation:Enum=dev;stage;prod
Environment string `json:"environment"`

// +kubebuilder:validation:Optional
// +kubebuilder:default:=1
 ReplicaCount int32 `json:"replicaCount"`

}

// EGAppStatus defines the observed state of EGApp
// +kubebuilder:subresource:status
type EGAppStatus struct {

// INSERT ADDITIONAL STATUS FIELD - define observed state of cluster
// Important: Run "make" to regenerate code after modifying this file

Pods []string `json:"pods"`
}

What is of importance here is we mapped the information we need in the spec
that defines the application into data types and gave them a JSON representation.
The // +kubebuilder: lines that look like they are in comments are marker com‐
ments that kubebuilder uses to generate code based on the information provided. As
an example, we are declaring to kubebuilder to generate all the needed code to ensure
that the Framework field is validated against three possible strings of Java, Python, or
Go. That is why it was noted at the end of the kubebuilder create api command
that any changes made to the API require a make generate to update all the other
generated code required and the make manifests to update all the yaml manifests’
boilerplate. This will then give you a starting CRD that looks something like this:

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
annotations:
controller-gen.kubebuilder.io/version: v0.11.1

 creationTimestamp: null
name: egapps.egplatform.platform.evillgenius.com

spec:
group: egplatform.platform.evillgenius.com
names:
kind: EGApp
listKind: EGAppList
plural: egapps
singular: egapp

scope: Namespaced
versions:
- name: v1alpha1

Creating Our API | 273

schema:
openAPIV3Schema:
description: EGApp is the Schema for the egapps API
properties:
apiVersion:
description: 'APIVersion defines the versioned schema of this
representation of an object. Servers should convert recognized
schemas to the latest internal value, and may reject unrecognized
values. More info: https://git.k8s.io/community/contributors/
devel/sig-architecture/api-conventions.md#resources'

type: string
kind:
description: 'Kind is a string value representing the REST resource
this object represents. Servers may infer this from the endpoint
the client submits requests to. Cannot be updated. In CamelCase.
More info: https://git.k8s.io/community/contributors/devel/
sig-architecture/api-conventions.md#types-kinds'

type: string
metadata:
type: object

spec:
description: EGAppSpec defines the desired state of EGApp
properties:
appId:
description: Foo is an example field of EGApp. Edit
egapp_types.go to remove/update

type: string
environment:
enum:
- dev
- stage
- prod
type: string

framework:
enum:
- java
- python
- go
type: string

instanceType:
default: lowMem
enum:
- lowMem
- highMem
- highCPU
- balanced
type: string

replicaCount:
default: 1
format: int32
type: integer

required:

274 | Chapter 21: Implementing an Operator

- environment
- framework
type: object

status:
description: EGAppStatus defines the observed state of EGApp
properties:
pods:
items:
type: string

type: array
required:
- pods
type: object

type: object
served: true
storage: true
subresources:
status: {}

You will notice that kubebuilder also added the OpenAPI validation information so
the CR can be validated against the requirements of the CRD. Kubebuilder also allows
for the creation of additional validators using logic via a webhook. To add admission
webhooks for your CRD, by implementing the Defaulter and/or the Validator inter‐
face, kubebuilder provides code generation to create the webhook server and registers
it with the controller manager. Using the kubebuilder CLI this can easily be generated
in a scaffold again with:

$ kubebuilder create webhook --group egplatform --version v1alpha1 --kind EGApp
--defaulting --programmatic-validation

We can deploy this custom resource easily with kubebuilder:

$ make install
test -s /home/eddiejv/dev/projects/operators/platformapp/bin/controller-gen &&
/home/eddiejv/dev/projects/operators/platformapp/bin/controller-gen --version |
grep -q v0.11.1 || \
GOBIN=/home/eddiejv/dev/projects/operators/platformapp/bin go install
sigs.k8s.io/controller-tools/cmd/controller-gen@v0.11.1/home/eddiejv/dev/
projects/operators/platformapp/bin/controller-gen rbac:roleName =manager-role
crd webhook paths="./..." output:crd:artifacts:config=config/crd/bases
/home/eddiejv/dev/projects/operators/platformapp/bin/kustomize build config/crd
| kubectl apply -f -
customresourcedefinition.apiextensions.k8s.io/
egapps.egplatform.platform.evillgenius.com created

We can then see from the kubectl command that the egapp resource is now installed
in the cluster, and we can see the structure of the resource itself:

$ kubectl explain egapp --recursive
KIND: EGApp
VERSION: egplatform.platform.evillgenius.com/v1alpha1

Creating Our API | 275

DESCRIPTION:
EGApp is the Schema for the egapps API

FIELDS:
apiVersion <string>
kind <string>
metadata <Object>

annotations <map[string]string>
creationTimestamp <string>
deletionGracePeriodSeconds <integer>
deletionTimestamp <string>
finalizers <[]string>
generateName <string>
generation <integer>
labels <map[string]string>
managedFields <[]Object>

apiVersion <string>
fieldsType <string>
fieldsV1 <map[string]>
manager <string>
operation <string>
subresource <string>
time <string>

name <string>
namespace <string>
ownerReferences <[]Object>

apiVersion <string>
blockOwnerDeletion <boolean>
controller <boolean>
kind <string>
name <string>
uid <string>

resourceVersion <string>
selfLink <string>
uid <string>

spec <Object>
appId <string>
environment <string>
framework <string>
instanceType <string>
replicaCount <integer>

status <Object>
pods <[]string>

Now that the API has been created and installed in the cluster, it can’t really do
anything. At this stage if we create a yaml and deploy it to the cluster in a namespace
it will create an entry in etcd with the information stated in the yaml, but until we
create the controller, nothing will happen. Now let’s explore how the controller works.

276 | Chapter 21: Implementing an Operator

1.
2.
3.

Controller Reconciliation
The controller code was created when the API was created and will have much of
the boilerplate needed to start building the reconciliation logic needed. Note that
the code is not important here, but the understanding of what is happening behind
the scenes is key to understanding what an Operator can do. The controller code is
located in the controllers/<kind>_controller.go file. The Reconcile method is where
the logic should be added. Before we dive into that, a plan for reconciliation and
understanding the phases is required. This is shown in Figure 21-1.

Figure 21-1. Operator overview

Operators are services that watch for events related to the resource types the operator
cares about. When an event occurs that meets the criteria, called a predicate in the
Operator pattern, the Operator begins the process of reconciling the desired state
to the running state. During the reconciliation process, any logic to determine how
to handle the state change is implemented; regardless of what exactly changed, the
reconcile cycle handles it all. This is known as level-based triggering, and while less
efficient, it is well-suited for complex distributed system like Kubernetes.

In the Operator, developers will code into the Reconcile method the logic repre‐
sented in Figure 21-2:

1. Is there an instance of the Custom Resource?
2. If so, do some validation.
3. If valid, check to see if state needs to be changed and change it.

If the resource is being deleted, the logic to handle cleanup is also implemented here.

If your CR implements other resources that it does not directly own, you should
implement a Finalizer to handle the cleanup of those sources and block the deletion
of the CR until the finalizer completes its process. This is often used for CRs that
will create resources on a cloud provider, for example, or PersistentVolumes as they

Controller Reconciliation | 277

may have some reclaim policy defined that needs to be honored before the PV is
considered deleted.

Figure 21-2. Reconciliation logic

Resource Validation
An important aspect of designing an efficient Operator is the validation of the
resources being requested. As mentioned there are a few ways to validate the resource
against the API specification; however, it is important to build redundancies into
the process to ensure consistent behavior. The first layer of validation should be the
OpenAPI validation defined in the CRD specification. This validation will prevent
the CR from ever making it to the etcd server as a resource and causing detrimental
aftereffects. The second layer of validation should be a validating admission control‐
ler implementation that will check the resource against the API specification through
a webhook request. This again prevents the resource from ever making it into the
API server. Adding some validation logic in the reconciliation loop code is also a
valid strategy, but it is important to understand that it will be validation against an
already existing resource in the cluster state, and therefore proper error handling
needs to take place. Often this is implemented as an IsValid method that calls the
same validation logic that the Validating Webhook implementation has.

278 | Chapter 21: Implementing an Operator

Controller Implementation
If we continue with the example used so far, the logic for our controller will be in the
following code:

// +kubebuilder:rbac:groups=egplatform.platform.evillgenius.com,
resources=egapps,verbs=get;list;watch;create;update;patch;delete

// +kubebuilder:rbac:groups=egplatform.platform.evillgenius.com,
resources=egapps/status,verbs=get;update;patch

// +kubebuilder:rbac:groups=egplatform.platform.evillgenius.com,
resources=egapps/finalizers,verbs=update

// Reconcile is part of the main Kubernetes reconciliation loop which aims to
// move the current state of the cluster closer to the desired state.
// TODO(user): Modify the Reconcile function to compare the state specified by
// the EGApp object against the actual cluster state, and then
// perform operations to make the cluster state reflect the state specified by
// the user.
//
// For more details, check Reconcile and its Result here:
// - https://pkg.go.dev/sigs.k8s.io/controller-runtime@v0.14.1/pkg/reconcile
func (r *EGAppReconciler) Reconcile(ctx context.Context, req ctrl.Request)
(ctrl.Result, error) {
 _ = log.FromContext(ctx)

// TODO(user): your logic here
logger := log.Log.WithValues("EGApp", req.NamespacedName)
logger.Info("EGApp Reconcile started...")

// fetch the EGApp CR instance
egApp := &egplatformv1alpha1.EGApp{}

err := r.Get(ctx, req.NamespacedName, egApp)
if err != nil {

if errors.IsNotFound(err) {
logger.Info("EGApp resource not found. Object must be deleted")
return ctrl.Result{}, nil

}
logger.Error(err, "Failed to get EGApp")
return ctrl.Result{}, nil

}
// check if the deployment already exists, if not create a new one
found := &appsv1.Deployment{}
err = r.Get(ctx, types.NamespacedName{Name: egApp.Name, Namespace:
egApp.Namespace}, found)

if err != nil {
dep := r.deploymentForEGApp(egApp)
logger.Info("Creating a new deployment", "Deployment.Namespace",
dep.Namespace, "Deployment.Name", dep.Name)

err = r.Create(ctx, dep)
if err != nil {

logger.Error(err, "Failed to create new deployment",

Controller Implementation | 279

"Deployment.Namespace", dep.Namespace, "Deployment.Name", dep.Name)
return ctrl.Result{}, err

}
return ctrl.Result{}, nil

} else if err != nil {
logger.Error(err, "Failed to get deployment")
return ctrl.Result{}, nil

}
// This point, we have the deployment object created
// Ensure the deployment size is same as the spec
replicas := egApp.Spec.ReplicaCount
if *found.Spec.Replicas != replicas {

found.Spec.Replicas = &replicas
err = r.Update(ctx, found)
if err != nil {

logger.Error(err, "Failed to update Deployment",
"Deployment.Namespace", found.Namespace, "Deployment.Name",
found.Name)

return ctrl.Result{}, err
}
// Spec updated return and requeue
// Requeue for any reason other than an error
return ctrl.Result{Requeue: true}, nil

}

// Update the egApp status with pod names
// List the pods for this egApp's deployment
podList := & corev1.PodList{}
listOpts := []client.ListOption{

client.InNamespace(egApp.Namespace),
client.MatchingLabels(egApp.GetLabels()),

}

if err = r.List(ctx, podList, listOpts...); err != nil {
logger.Error(err, "Failed to list pods", "egApp.Namespace",
egApp.Namespace, "egApp.Name", egApp.Name)

return ctrl.Result{}, err
}
podNames := getPodNames(podList.Items)

// Update status.Pods if needed
if !reflect.DeepEqual(podNames, egApp.Status.Pods) {

egApp.Status.Pods = podNames
err := r.Status().Update(ctx, egApp)
if err != nil {

logger.Error(err, "Failed to update egApp status")
return ctrl.Result{}, err

}
}

return ctrl.Result{}, nil
}

280 | Chapter 21: Implementing an Operator

func (r *EGAppReconciler) deploymentForEGApp(m *egplatformv1alpha1.EGApp)
*appsv1.Deployment {
ls := m.GetLabels()
replicas := m.Spec.ReplicaCount

deploy := &appsv1.Deployment{
ObjectMeta: metav1.ObjectMeta{

Name: m.Name,
Namespace: m.Namespace,

},
Spec: appsv1.DeploymentSpec{

Replicas: &replicas,
Selector: &metav1.LabelSelector{

MatchLabels: ls,
},
Template: corev1.PodTemplateSpec{

ObjectMeta: metav1.ObjectMeta{
Labels: ls,

},
Spec: corev1.PodSpec{

Containers: []corev1.Container{{
Image: "gcr.io/kuar-demo/kuard-amd64:1", // hard-coded
here, make this dynamic

Name: m.Spec.AppId,
Ports: []corev1.ContainerPort{{

ContainerPort: 8080,
Name: "http",

}},
}},

},
},

},
}
ctrl.SetControllerReference(m, deploy, r.Scheme)
return deploy

}

// Utility function to iterate over pods and return the names slice
func getPodNames(pods []corev1.Pod) []string {

var podNames []string
for _, pod := range pods {

podNames = append(podNames, pod.Name)
}
return podNames

}

// SetupWithManager sets up the controller with the Manager.
func (r *EGAppReconciler) SetupWithManager(mgr ctrl.Manager) error {

return ctrl.NewControllerManagedBy(mgr).
For(&egplatformv1alpha1.EGApp{}).

Controller Implementation | 281

•

•

Complete(r)
}

The main steps are implemented here through the reconcile process. Two important
points to reference are:

• The Custom Resource actually creates deployments. If the specific instance is
not found, a deployment is created using values from the CR spec to fill in the
required data. The line ctrl.SetControllerReference(m, deploy, r.scheme)
is where ownership of the deployment is obtained by the CR. This allows for the
resource to also clean up any deployments it owns when deleted.

• The status is updated on the resource with a list of pods associated with the
deployment. This update is done to the status.pods property of the CR, which
was created as a subresource on the line err := r.Status().Update(ctx,

egApp). This is important because it will not update the status of our resource
without increasing the ResourceGeneration metadata field. By implementing a
predicate on the watch to not trigger a reconciliation on events that did not
increase the ResourceGeneration metadata field, we can ensure the entire loop is
not repeated for a noop scenario.

Once the controller logic is implemented, to test it against the CR spec deployed
earlier to the cluster, kubebuilder can run the code locally to verify all is working
and then also package it as a container and deploy to the cluster when ready to
operationalize.

Here is what that looks like:

$ make run
test -s /home/eddiejv/dev/projects/operators/platformapp/bin/controller-gen &&
/home/eddiejv/dev/projects/operators/platformapp/bin/controller-gen --version
| grep -q v0.11.1 || \
GOBIN=/home/eddiejv/dev/projects/operators/platformapp/bin go install
sigs.k8s.io/controller-tools/cmd/controller-gen@v0.11.1
/home/eddiejv/dev/projects/operators/platformapp/bin/controller-gen
rbac:roleName=manager-role crd webhook paths="./..."
output:crd:artifacts:config=config/crd/bases
/home/eddiejv/dev/projects/operators/platformapp/bin/controller-gen
object:headerFile="hack/boilerplate.go.txt" paths="./..."
go fmt ./...
go vet ./...
go run ./main.go
2023-02-24T11:07:21-06:00 INFO controller-runtime.metrics Metrics server is
starting to listen {"addr": ":8080"}

2023-02-24T11:07:21-06:00 INFO setup starting manager
2023-02-24T11:07:21-06:00 INFO Starting server {"path": "/metrics", "kind":
"metrics", "addr": "[::]:8080"}

2023-02-24T11:07:21-06:00 INFO Starting server {"kind": "health probe",
"addr": "[::]:8081"}

282 | Chapter 21: Implementing an Operator

2023-02-24T11:07:21-06:00 INFO Starting EventSource {"controller": "egapp",
"controllerGroup": "egplatform.platform.evillgenius.com", "controllerKind":
"EGApp", "source": "kind source: *v1alpha1.EGApp"}

2023-02-24T11:07:21-06:00 INFO Starting Controller {"controller": "egapp",
"controllerGroup": "egplatform.platform.evillgenius.com", "controllerKind":
"EGApp"}

2023-02-24T11:07:21-06:00 INFO Starting workers {"controller": "egapp",
"controllerGroup": "egplatform.platform.evillgenius.com", "controllerKind":
"EGApp", "worker count": 1}

The logs show that the controller is up and listening for events. Then a CR was
deployed to the cluster using:

apiVersion: egplatform.platform.evillgenius.com/v1alpha1
kind: EGApp
metadata:
labels:
app.Kubernetes.io/name: egapp
app.Kubernetes.io/instance: egapp-sample
app.Kubernetes.io/part-of: pe-app
app.Kubernetes.io/managed-by: kustomize
app.Kubernetes.io/created-by: pe-app

name: egapp-sample
spec:
appId: egapp-sample
framework: go
instanceType: lowMem
environment: dev
replicaCount: 2

The controller log shows the reconciliation loop starting, and because a deployment
did not exist it created the deployment:

2023-02-24T11:12:46-06:00 INFO EGApp Reconcile started... {"EGApp":
"default/egapp-sample"}

2023-02-24T11:12:46-06:00 INFO Creating a new deployment {"EGApp":
"default/egapp-sample", "Deployment.Namespace": "default", "Deployment.Name":
"egapp-sample"}

Then a kubectl delete was called on the instance and the controller began another
reconciliation loop and deleted the object:

2023-02-24T11:21:39-06:00 INFO EGApp Reconcile started... {"EGApp":
"default/egapp-sample"}

2023-02-24T11:21:39-06:00 INFO EGApp resource not found. Object must
be deleted {"EGApp": "default/egapp-sample"}

Much more can be done within the context of the controller and API itself, for
example, implementing complex logic around cleanup, such as calling backups,
rebalancing workloads across nodes, scaling with custom logic, etc. This is where
an engineer’s deep knowledge of how a system should behave, how it should be

Controller Implementation | 283

deployed, and how to react in case of a problem is codified. The whole premise of the
benefits of the Operator pattern is encapsulated in this code example.

Operator Life Cycle
The development of an Operator is not an easy undertaking, but it does not have
to answer all the operational problems of the application. Development should focus
on the big hurdles and then iterate through versions to enhance the Operator’s
capabilities over time. The team at CoreOS and RedHat put together a solid spectrum
of capabilities they call Operator Capability Levels that outline some of the main
concerns the Operator should tackle when maturing through the levels. These are:

Basic install
Automated application provisioning and configuration management

Seamless upgrades
Patch and minor version upgrades are supported

Full life cycle
App life cycle, storage life cycle (backup, failure recovery)

Deep insights
Metrics, alerts, log processing and workload analysis

Auto pilot
Horizontal/vertical scaling, auto config tuning, abnormal detection, scheduling
tuning

This is a solid framework for planning the life of an Operator that will progress over
time. The focus is that the Operator should be treated like any piece of software
with defined life cycle, product management, deprecation policies, and clear and
consistent versioning.

Version Upgrades
In our example we started with v1alphav1 as our stated version supported in the
CRD. Through the life cycle of the Operator there may be a need to support multiple
versions depending on the stage and stability of the API.

When a new version is introduced, a process should be followed carefully to ensure
that issues will not arise with existing resources. A Custom Resource object will
need the ability to be served by all defined versions of the CRD. That means there
could be a mismatch between the version being served and the one stored in state.
A conversion process should be implemented on the Custom Resource object to
be converted between the version stored and the version that is served. When the
conversion involves schema changes or custom logic, a conversion webhook can be

284 | Chapter 21: Implementing an Operator

https://oreil.ly/X_Lun

used to make the required updates. The default None conversion strategy is used
when there are no schema or custom logic is needed as only the apiVersion field will
be changed.

You will add a conversion strategy field to the CRD and point it to the webhook
listening for the specific resource. This would look like:

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
...
spec:
...
conversion:
strategy: Webhook
webhook:
clientConfig:
service:
namespace: egapp-conversion
name: egapp
path: /egapp-conversion
port: 8081

caBundle: "Hf8j0Kw...<base64-encoded PEM bundle>...tLS0K"
...

Operator Best Practices
The development and ongoing upkeep of an Operator is no small endeavor and
should be thought about and planned very carefully. Many times it is easier to
package an application using simpler paradigms such as Helm charts, Kustomize
repositories, or Terraform modules. When it becomes important to include special
reconciliation logic to maintain the application or ease the burden for the users of
the application, then an Operator pattern may make sense. If you decide to build an
Operator then best practice guidelines are:

• Do not overload an Operator to manage more than a single application, and own
each CRD it controls.

• If your Operator manages multiple CRDs then the Operator should also have
multiple controllers. Keep it simple: one controller for each CRD.

• Operators should not be specific to the namespace they are watching resources in
and also should not be specific to the namespace they will be deployed in.

• Operators should be versioned using semantic versioning, and as extensions
of the Kubernetes API, they should also follow the Kubernetes API versioning
guidelines as they relate to version changes.

• CRDs should follow the OpenAPI spec to allow for a known schema. Most
Operator SDK-based tooling will provide a method to create boilerplate CRDs
based on the OpenAPI spec to make them easier to develop.

Operator Life Cycle | 285

https://semver.org
https://oreil.ly/O-5lH
https://oreil.ly/O-5lH

•

•

•

•

•

•

• As with any Kubernetes service the Operator itself should follow sound security
guidelines such as run as non-root, least privilege RBAC, and observability.
Metrics and logs should be external to the system. The Operator should be
instrumented to allow for visibility into the Operator’s health and any known
Service Level Indicators (SLIs). Metric exports such as Prometheus, DataDog,
Cloud Operations, and OpenTelemetry can all be leveraged.

• Operators do not install other Operators and should not register their own CRDs
as those resources are global to the cluster and would require escalated privileges
for the Operator.

• Check all CRDs for validity before accepting the request. The CRDs could be
validated against a known schema such as an OpenAPI validation schema or
through an admission controller that can validate the CRD. These methods will
prevent the resource from wasting space on etcd as it will not be submitted to the
API. There should also be some validation logic within the reconciliation cycle as
a last effort to validate and clean up the resource.

• The Operator should be self-cleaning when no longer needed. Proper resource
clean up after deletion is important, not only for direct resources created by
the Operator but also for any external resources that may have been created in
support of the application requirements of the Operator (e.g., PVs for storage
attached to pods as needed by the application, external resources to the cluster,
etc.).

• Think carefully about the life cycle of the Operator and when breaking changes
are introduced to the upgrade path for existing users of the prior versions.
Implement conversion webhooks to allow the conversion to and from a specific
version to ensure there is no loss of information converting a resource from a vX
to a vY and back to vX.

• Be thoughtful on the status information written to the resources managed by the
Operator. The customer resource is the only interface to the user to understand
the state of the resource. By having a status that is clear and concise written to the
resource by the controller the user can easily use the existing Kubernetes client
tooling to query and act on the status as desired. Status should be implemented
as a subresource, and a predicate should be used so as not to trigger a reconcilia‐
tion loop after an update that did not increase the ResourceGeneration metadata
field of the main resource.

Summary
The promise of fully automated deployment and “day 2” operations for an application
has driven the Operator market beyond just experimental to become a key feature
in the Kubernetes ecosystem. Operators should be used when complex applications
are needed to support an organization’s business, but be careful in creating them

286 | Chapter 21: Implementing an Operator

when easier mechanisms exist. Leverage existing Operators created by software
vendors that help support and maintain them, many of which can be found on
operatorhub.io. While the Operator pattern can be a very powerful tool, it requires
commitment to ensure that it doesn’t create more problems than it can solve. All
warnings aside, if you are building a large application platform based on Kubernetes
the Operator pattern should be front and center in reducing operator toil.

Summary | 287

https://oreil.ly/wMLSA

CHAPTER 22

Conclusion

The primary strength of Kubernetes is its modularity and generality. Nearly every
kind of application that you might want to deploy you can fit within Kubernetes, and
no matter what kind of adjustments or tuning you need to make to your system,
they’re generally possible.

Of course, this modularity and generality come at a cost, and that cost is a reasonable
amount of complexity. Understanding how the APIs and components of Kubernetes
work is critical to successfully unlocking the power of Kubernetes to make your
application development, management, and deployment easier and more reliable.

Likewise, understanding how to connect Kubernetes to a wide variety of external
systems like on-premise databases and continuous delivery systems is critical to
efficiently using Kubernetes in the real world.

Throughout this book we have worked to provide insights from concrete, real-world
experience on specific topics that you will likely encounter whether you are a new‐
comer to Kubernetes or an experienced administrator. Regardless of whether you are
facing a new area where you’re working to become an expert, or you simply want a
refresher about how others have addressed a familiar problem, our goal is that the
chapters in this book have enabled you to learn from our experience. It is our hope
that you can consult this book throughout your Kubernetes journey and quickly flick
to a chapter and have a handful of best practices accessible at your fingertips.

By following these best practices, you can leverage our combined experience to help
avoid common pitfalls, optimize performance and security, and quickly grow in
confidence to get the most out of Kubernetes. Thank you, and we look forward to
seeing you out in the real world!

289

Index

A
ABAC (Attribute-Based Access Control),

232-233
access control, 10

RBAC (see RBAC)
activating Pod Security, 149-150
active controller-based services, 182-183
admission controllers, 153, 205-206

best practices, 228-230
configuring admission webhooks, 226-228
purpose of, 224-225
types of, 225
workload security, 249

admission webhooks
best practices, 229-230
configuring, 226-228

alert thresholds, 53
alerting

best practices, 55
when to alert, 53-54

algorithm development phase (machine learn
ing), 191

anti-affinity rules, 109-110
API request flow, 223, 231
APIs (application programming interfaces),

creating, 270-276
AppArmor, 249
application container logs, 49
application example

authentication management, 9-12
CI/CD workflow, 81-85
configuration file management, 2-3
configuring with ConfigMaps, 8-9
external ingress setup, 6-8

‐

list of components, 1
parameterization with Helm, 19-20
replicated service creation, 3-6
stateful database deployment, 12-16
static file server setup, 17-19
TCP load balancer creation, 16-17

application scaling, 121
ArgoCD, 244
assigning namespaces, 30-31
audit logs, 49, 247, 250
authentication

cluster security, 246
with secrets, 9-12

authorization
in API request flow, 231
best practices, 234
cluster security, 246
modules

ABAC, 232-233
list of, 231-232
webhook, 233

autoscaling, 120-121, 199
AWS Container Insights, 44
Azure Monitor, 43

B
best practices

admission controllers, 228-230
alerting, 55
authorization, 234
CI/CD workflow, 85-86
cluster security, 248
CNI plug-in, 130
code security, 252

291

ConfigMaps, 9, 59-64
connecting services, 188
deployments, 21
development clusters, 34-35
GitOps, 244
global distribution, 105
higher-level abstractions, 209
image management, 4
Kubenet, 129
logging, 55
machine learning, 199-200
monitoring, 54
multiple cluster management, 176-177
network security policies, 142-143
Operators, 285-286
policy and governance, 164
RBAC (Role Based Access Control), 68-69
resource management, 124
secrets, 59-65
service meshes, 145
services/ingress controllers, 139
stateful applications, 221
stateful services, 13
storage, 216-217
version control, 6
versioning/releases/rollouts, 93-94
volumes, 213
workload container security, 250-251
workload isolation/RuntimeClass, 152

binding
secrets, 10
users to namespaces, 29-30

blue/green deployments, 78
bounded time to live (TTL) namespaces, 30
burstable QoS, 114

C
cAdvisor, 39
canary deployments, 79-80
canary regions, 102
CD (continuous delivery)

multiple clusters, 171
setting up, 84
testing, importance of, 75

certificates for shared development clusters,
26-28

chaos engineering, 80, 85
chaos testing

application operation, 258

communication, 257
goals of, 256
prerequisites, 256-257
purpose of, 255

Chaos Toolkit, 85
checkpoints, 197
CI (continuous integration), 72, 81-84
CI/CD (continuous integration/continuous

delivery), 6
application example, 81-85
best practices, 85-86
continuous deployment in, 75
continuous integration in, 72
deployment strategies, 75-80
image size optimization, 73-74
image tagging, 74-75
purpose of, 71
testing in, 73
version control, 72

closed-box monitoring, 37
cloud metadata access, 247
cloud native policy engine, 156
cloud provider monitoring tools, 43
CloudWatch Container Insights, 44
Cluster API, 171
cluster daemons, 187
cluster-level services, 31
ClusterIP service type, 131-132
clusters

components of, 39
development (see development clusters)
extending, 205-206
mixed workload, 200
multiple (see multiple clusters)
scaling, 120-121
security, 246-248

CNAME-based services, 181-182
CNI (Container Network Interface) plug-in,

129-130
code review, 3
code security, 251-252
Codefresh, 244
comments, 5
communication, chaos testing of, 257
compliance with multiple clusters, 168
ConfigMaps resource, 8-9, 58, 59-64
configuration drift, 75
configuration files, managing, 2-3
configurations, passwords as, 10

292 | Index

configuring
admission webhooks, 226-228
with ConfigMaps, 8-9, 58
Flux, 241-243
with secrets, 58-59

constraint templates, 156, 157-159
constraints

defining, 159-160
in machine learning, 195
purpose of, 157

container runtime security, 150-152
container-to-container communication, 126
containerized development, 207
containers

exporting to, 208
image size optimization, 73-74
image tagging, 74-75

controller implementation, 279-284
controller reconciliation, 277-278
CRDs (custom resource definitions)

allocating namespaces, 31
definition of, 172
dynamically adding resources, 206
Operators and, 268

CSI (Container Storage Interface) drivers, 11,
216

custom controllers, 172
Custom Metrics API, 40

D
Dapr (Distributed Application Runtime), 205
data replication, 160, 170
data scientist tools, 199
databases, stateful deployment, 12-16
Datadog, 43
dataset preparation phase (machine learning),

191
datasets for machine learning, 197
debugging development clusters, 34
declarative approach, 2
deep learning (see machine learning)
dependencies, installing, 32-33
deploying

best practices, 21
parameterization with Helm, 19-20
stateful databases, 12-16

Deployment resource, 4-6
adding Volumes to, 10
rolling out, 33

static file server setup, 17
versioning/releases/rollouts example, 90-93

deployment strategies, 75-80
deployments

multiple clusters, managing, 171-173
parameterizing, 97-98
replicated service creation, 3-6
traditional workflow, 237

designing
higher-level abstractions, 208-209
multiple clusters, 169-171

developer workflows (see development clusters)
developing phase (development clusters), 24
development clusters

best practices, 34-35
dependencies, installing, 32-33
Deployment resource, rolling out, 33
goals of, 23-24
purpose of, 23
shared

multiple clusters versus, 24-25
setting up, 25-31

testing/debugging, 34
directory organization, 3
distributed training, 195, 200
distribution, global (see global distribution)
distroless images, 73, 251
DNS names, 181-182
docker-registry secrets, 58
drivers for machine learning, 197
Drone, 81
dynamic admission controllers, 225

E
enabling Pod Security Admission controller,

148
encryption, 11
enforcement actions, 161-163
environment variables with Config‐

Maps/secrets, 61-64
etcd access, 246
evicting pods, 115-116
experiments

goals of, 263-264
prerequisites, 264
purpose of, 263
setting up, 264-265

exporting
to container images, 208

Index | 293

services, 183-184
best practices, 188
integration with external machines,

185-186
with internal load balancers, 184
with NodePorts, 184-185

exposing services, 209
extending

clusters, 205-206
user experience, 206-207

external ingress setup for HTTP traffic, 6-8
external services, importing, 179-180

active controller-based services, 182-183
best practices, 188
CNAME-based services, 181-182
selector-less services, 180-181

ExternalName service type, 134

F
Falco, 153
feature flags, 99, 264
Federation, 176
filesystems, directory organization, 3
flaky tests, 24
FlexVolume plug-in, 216
Flux

configuring, 241-243
purpose of, 243

Four Golden Signals (Google), 39
fuzz testing, 259

G
Gardener, 175
Gatekeeper, 156

constraint templates, 158-159
constraints, 159-160
data replication, 160
demonstration, 163
enforcement actions/audit, 161-163
example policies, 157
mutation policies, 163
terminology, 157
testing policies, 163
violation feedback, 161

Gateway API for Kubernetes, 7, 137-139
GCP Stackdriver, 43
generic secrets, 58
geo-replication, 96
GeoDNS, 97

Git, 3, 72
GitHub, 3
GitOps, 6

benefits of, 237-238
best practices, 244
Flux configuration, 241-243
multiple cluster management, 173-175
purpose of, 235-236
repo structure, 238-240
secrets management, 240-241
tools for, 243
workflow, 236-237

global distribution
best practices, 105
image distribution stage, 96-97
load balancing, 98
parameterizing deployments, 97-98
reasons for, 95
rollouts, 98-99

canary regions, 102
planning, 103-104
pre-rollout validation, 99-102
region types, 103

troubleshooting, 104-105
governance (see policy and governance)
Grafana, 46-47
Gremlin, 85
groups, 269
guaranteed QoS, 114

H
hard multitenancy, 168
hardware for machine learning, 196-197
Harness, 244
Headlamp project, 207
headless Services, 16
Helm, 19-20
higher-level abstractions

best practices, 209
designing, 208-209
development approaches, 203-204
extending Kubernetes

clusters, 205-206
containerized development, 207
"push to deploy" experience, 207
user experience, 206-207

HPA (Horizontal Pod Autoscaler), 122
HTTP requests, external ingress setup, 6-8
hyperparameter tuning, 192

294 | Index

I
IaC (Infrastructure as Code) tools, 170
identity management for shared development

clusters, 26-28
image management

best practices, 4
exporting to container images, 208
global distribution, 96-97
size optimization, 73-74
tagging, 74-75
vulnerability scanning, 252

imperative approach, 2
importing services, 179-180

active controller-based services, 182-183
best practices, 188
CNAME-based services, 181-182
selector-less services, 180-181

indentation in YAML, 2
InfluxDB, 43
Infrastructure as Code (IaC) tools, 170
infrastructure as Software, 171
Ingress API, 136

challenges with, 137
HTTP load balancing, 6-8
static file server setup, 17-19

ingress controllers, 136, 139
installing

dependencies, 32-33
kube-prometheus-stack chart, 46
minikube, 46, 241
Prometheus, 45

integrating external machines with Kubernetes,
185-186

integration testing, 99-100
internal load balancers, 184
internal services, exporting, 183-184

best practices, 188
integration with external machines, 185-186
with internal load balancers, 184
with NodePorts, 184-185

intrusion and anomaly detection, 153
involuntary evictions, 115
IP addresses for selector-less services, 180-181

J
journal service example (see application exam‐

ple)
JSON, syntax support, 2

K
kernel modules for machine learning, 197
Kinds, 270
kube-prometheus-stack chart, installing, 46
kube-state-metrics, 40-41
kube-system namespace, 230
kubeconfig files, 26
kubectl command, 34
Kubeflow, 199
Kubelet, 247
KubeMonkey, 85
Kubenet, 129
Kubernetes control plane logs, 49
Kubernetes Secrets, 240

L
labels, 89

activating Pod Security, 149-150
for deployments, 5

libraries for machine learning, 197
life cycle of Operators, 284
LimitRanges, 119
limits (resource management), 113
linear scaling, 200
linters, 206
load balancers

creating with Services, 16-17
internal, 184

load balancing, 6-8, 98
load testing, 100-102, 262

application tuning with, 262-263
goals of, 259-260
prerequisites, 260-261
purpose of, 259
traffic generation, 261

LoadBalancer service type, 134
logging, 247, 250

best practices, 55
defined, 37
with Loki-Stack, 50-52
retention/archival process, 48
tools for, 49
what to log, 48-49

Logging as a Service (LaaS), 31
Loki-Stack, 50-52

M
machine learning

Index | 295

advantages of Kubernetes, 189-190
best practices, 199-200
data scientist tools, 199
distributed training, 195
libraries/drivers/kernel modules, 197
model training, 192-195
networking, 198
resource constraints, 195
specialized hardware for, 196-197
specialized protocols for, 198
storage, 197
workflow, 190-191

Message Passing Interface (MPI), 198
metrics

with cAdvisor, 39
defined, 37
with kube-state-metrics, 40-41
in load testing, 101-102
with metrics server, 40
scaling with, 123
what to monitor, 41-42

Metrics Server API, 40
Microsoft Azure Monitor, 43
minikube, installing, 46, 241
mixed workload clusters, 200
model training, 192-195
monitoring

best practices, 54
with cAdvisor, 39
closed-box monitoring, 37
with kube-state-metrics, 40-41
with metrics server, 40
open-box monitoring, 38
patterns of, 38-39
with Prometheus, 44-48
tools for, 42-44
what to monitor, 41-42

mounting volumes as ConfigMaps/secrets,
59-61

Multi-Cluster Service API, 187
multicast IP addresses, 97
multiple clusters

designing, 169-171
Federation, 176
managing

best practices, 176-177
deployments, 171-173
GitOps, 173-175
tools for, 175-176

reasons for using, 167-169
shared clusters versus, 24-25

multistage builds, 73
multitenancy, hard, 168
mutation policies, 163

N
namespaces

activating Pod Security, 149-150
creating/securing, 29-30
managing, 30-31
purpose of, 25
resource management with, 116-117

network policies, workload security, 250
networking

container-to-container communication, 126
for machine learning, 198
plug-ins, 128-130
pod-to-pod communication, 126
security policies, 140-143
service meshes, 143-145, 187
service-to-pod communication, 127
services

best practices, 139
best practices for connecting, 188
ClusterIP, 131-132
exporting, 183-186
ExternalName, 134
Gateway API, 137-139
importing, 179-183
Ingress API/ingress controllers, 136
LoadBalancer, 134
NodePort, 132
purpose of, 130-131

NetworkPolicy API, 140-143
node logs, 48
NodePort service type, 132, 184-185
nodeSelectors, 110
non-root containers, 251
NVIDIA Collective Communications Library

(NCCL), 199

O
objects (Kubernetes), 268
OCM (Open Cluster Management), 175
onboarding phase (development clusters), 23,

26-28
OPA (Open Policy Agent), 156
open-box monitoring, 38

296 | Index

OpenSSF Scorecard, 252
operational management of multiple clusters,

170
Operator pattern, 172-173
Operators, 220-221

API creation, 270-276
best practices, 285-286
components of, 268-270
controller implementation, 279-284
controller reconciliation, 277-278
life cycle of, 284
purpose of, 267
resource validation, 278
version upgrades, 284
workload security, 249

optimized base images, 74
optimizing images, 73-74

P
Pachyderm, 199
parameterization, 10

for global distributions, 97-98
with Helm, 19-20

passwords, as configurations, 10
PersistentVolumeClaims resource, 214
PersistentVolumes resource, 12-16, 213
planning global distribution rollouts, 103-104
platforms (see higher-level abstractions)
plug-ins for networking, 128-130
pod affinity rules, 109-110
pod eviction, 115-116
Pod Security Admission controller, 147-150,

249
activating with namespace labels, 149-150
enabling, 148
security levels, 148-149

pod-to-pod communication, 126
PodDisruptionBudgets, 115-116
PodSecurityPolicy API, 147
policy and governance

admission controllers, 224
best practices, 164
cloud native policy engine, 156
Gatekeeper, 156

constraint templates, 158-159
constraints, 159-160
data replication, 160
demonstration, 163
enforcement actions/audit, 161-163

example policies, 157
mutation policies, 163
terminology, 157
testing policies, 163
violation feedback, 161

importance of, 155
network policies, 250
network security, 140-143
purpose of, 155

Polyaxon, 199
PowerfulSeal, 85
predicates, 107
predictive load testing, 260
prerequisites

chaos testing, 256-257
experiments, 264
load testing, 260-261

preStop life-cycle hooks, 76
priorities (in scheduling), 108
production, testing in, 80-81
Prometheus, 42, 44-48
"push to deploy" experience, 207

Q
QoS (Quality of Service), 114

R
Rancher, 175
RBAC (Role Based Access Control)

best practices, 68-69
components of, 66-67

readiness probes, 76
reconciliation, 277-278
RED method (monitoring), 38
Redis database

authentication management, 9-12
stateful deployment, 12-16

regional distribution, 169
Rego, 157
regression prevention, 260
releases, 88-89

best practices, 93-94
example, 90-93

ReplicaSet resource, 4, 217
replicated services, creating with deployments,

3-6
repositories

GitOps structure, 238-240
security, 252

Index | 297

request flow, 223, 231
requests (for resources), 112-113
resource constraints in machine learning, 195
resource management

admission controllers, 225
best practices, 124
importance of, 112
LimitRanges, 119
limits, 5-6, 113
namespaces, 116-117
PodDisruptionBudgets, 115-116
QoS (Quality of Service), 114
requests, 112-113
ResourceQuotas, 117-119
scaling

application scaling, 121
cluster scaling, 120-121
with custom metrics, 123
with HPA, 122
with VPA, 123

scheduling
nodeSelectors, 110
pod affinity/anti-affinity, 109-110
predicates, 107
priorities, 108
taints/tolerations, 110-112

ResourceQuotas, 117-119
resources

Kinds versus, 270
purpose of, 269
validating, 278

retention/archival process for logging, 48
RoleBinding objects, 29, 67
roles (RBAC), 67
rolling updates, 75-78, 84
rollouts

best practices, 93-94
Deployment resource, 33
example, 90-93
global, 98-99

canary regions, 102
planning, 103-104
pre-rollout validation, 99-102
region types, 103

rules (RBAC), 67
runtime security, 250
RuntimeClass, 150-152

S
saving machine learning models, 197
scaling

applications, 121
clusters, 120-121
with custom metrics, 123
with HPA, 122
linear, 200
with VPA, 123

scheduling
machine learning, 196
nodeSelectors, 110
pod affinity/anti-affinity, 109-110
predicates, 107
priorities, 108
taints/tolerations, 110-112

Sealed Secrets, 241
Seccomp, 249
Secret resource, 10
secrets

authentication management with, 9-12
best practices, 59-65
binding, 10
configuring with, 58-59
encryption, 11

secrets management
cluster security, 247
in GitOps, 240-241

security
admission controllers, 153, 224
clusters, 246-248
code security, 251-252
intrusion and anomaly detection, 153
multiple clusters, 168
namespaces, 29-30
network policies, 140-143
Pod Security Admission controller, 147-150

activating with namespace labels,
149-150

enabling, 148
security levels, 148-149

strategies for, 245
workload containers, 248-251
workload isolation/RuntimeClass, 150-152

selector-less services, 180-181
self-testing, 102
SELinux, 249
semantic versioning, 88
service accounts, 67

298 | Index

service discovery, 170, 209
Service Mesh Interface (SMI), 144
service meshes, 143-145, 187, 265
Service resource, 7

static file server setup, 18
TCP load balancer creation, 16-17

Service-Level Objectives (SLOs), 53
services

best practices, 139
ClusterIP, 131-132
exporting, 183-184

best practices, 188
integration with external machines,

185-186
with internal load balancers, 184
with NodePorts, 184-185

exposing, 209
ExternalName, 134
Gateway API, 137-139
importing, 179-180

active controller-based services, 182-183
best, 188
CNAME-based services, 181-182
selector-less services, 180-181

Ingress API/ingress controllers, 136
LoadBalancer, 134
NodePort, 132
purpose of, 130-131
sharing, 186-187

best practices, 188
serving phase (machine learning), 191
shared development clusters

multiple clusters versus, 24-25
setting up

cluster-level services, 31
creating/securing namespaces, 29-30
managing namespaces, 30-31
onboarding users, 26-28

sharing services, 186-187
best practices, 188

sidecar proxies, 144, 205
SLOs (Service-Level Objectives), 53
SLSA (Supply-Chain Levels for Software Arti‐

facts), 252
SMI (Service Mesh Interface), 144
source control (see version control)
specialized hardware (machine learning),

196-197
specialized protocols (machine learning), 198

specialized workloads, 169
Stackdriver Kubernetes Engine Monitoring, 43
staging, testing in, 81
standard admission controllers, 225
state management

importance of, 211
stateful applications

best practices, 221
Operators, 220
ReplicaSets, 217
StatefulSets, 218-219

storage
best practices, 216-217
CSI (Container Storage Interface) plug-

in, 216
FlexVolume plug-in, 216
PersistentVolumeClaims resource, 214
PersistentVolumes resource, 213
StorageClasses resource, 215

volumes, 212-213
stateful applications

best practices, 221
Operators, 220
ReplicaSets, 217
StatefulSets, 218-219

stateful deployment, 12-16
StatefulSet resource, 13, 218-219, 221
stateless, 4
static file server setup, 17-19
storage

best practices, 216-217
CSI (Container Storage Interface) plug-in,

216
FlexVolume plug-in, 216
for machine learning, 197
PersistentVolumeClaims resource, 214
PersistentVolumes resource, 213
StorageClasses resource, 215

StorageClasses resource, 215
subjects (RBAC), 66
supply-chain attacks, 4
Supply-Chain Levels for Software Artifacts

(SLSA), 252
Sysdig Monitor, 43

T
tagging images, 74-75
taint-based eviction, 112
taints, 110-112

Index | 299

TCP load balancers, creating with Services,
16-17

templating systems, 19
test flakiness, 24
testing

chaos testing
application operation, 258
communication, 257
goals of, 256
prerequisites, 256-257
purpose of, 255

in CI/CD pipeline, 73
development clusters, 34
experiments

goals of, 263-264
prerequisites, 264
purpose of, 263
setting up, 264-265

fuzz testing, 259
load testing, 262

application tuning with, 262-263
goals of, 259-260
prerequisites, 260-261
purpose of, 259
traffic generation, 261

policies, 163
pre-rollout validation, 99-102
in production, 80-81
in staging, 81

testing phase (development clusters), 24
tls secrets, 59
TLS security, 247
tolerations, 110-112
ToxiProxy, 257
traditional deployment workflow, 237
traffic generation for load testing, 261
training phase (machine learning), 191-195
troubleshooting global distributions, 104-105
tuning with load testing, 262-263

U
USE method (monitoring), 38
user experience, extending, 206-207
users

assigning namespaces, 30-31
binding to namespaces, 29-30
onboarding, 26-28

V
validating resources, 278
version control

best practices, 6
CI/CD, 72
declarative state, 3

version upgrades, 284
versioning, 269

best practices, 93-94
example, 90-93
semantic, 88

Virtual Clusters, 169
Visual Studio (VS) Code for Kubernetes, 34
volumes

adding to Deployments, 10
mounting ConfigMaps/secrets as, 59-61
state management, 212-213

voluntary evictions, 115
VPA (Vertical Pod Autoscaler), 123
vulnerability scanning, 252

W
webhook authorization module, 233
workload isolation, 150-152
workload security, 248-251
worldwide distribution (see global distribution)

Y
YAML, syntax support, 2

300 | Index

About the Authors
Brendan Burns is a distinguished engineer at Microsoft Azure and cofounder of the
Kubernetes open source project. He’s been building cloud applications for more than
a decade.

Eddie Villalba is the engineering manager and application platform practice lead
for North America at Google Cloud. He leads a team of engineers that focus on help‐
ing customers build container-optimized platforms for scalable, reliable distributed
applications.

Dave Strebel is a global cloud native architect at Microsoft Azure focusing on open
source cloud and Kubernetes. He’s deeply involved in the Kubernetes open source
project, helping with the Kubernetes release team and leading SIG-Azure.

Lachlan Evenson is a principal program manager on the container compute team at
Microsoft Azure. He’s helped numerous people onboard to Kubernetes through both
hands-on teaching and conference talks.

Colophon
The animal on the cover of Kubernetes Best Practices is an Old World mallard duck
(Anas platyrhynchos), a kind of dabbling duck that feeds on the surface of water
rather than diving for food. Species of Anas are typically separated by their ranges
and behavioral cues; however, mallards frequently interbreed with other species,
which has introduced some fully fertile hybrids.

Mallard ducklings are precocial and capable of swimming as soon as they hatch.
Juveniles begin flying between three and four months of age. They reach full maturity
at 14 months and have an average life expectancy of 3 years.

The mallard is a medium-sized duck that is just slightly heavier than most dabbling
ducks. Adults average 23 inches long with a wingspan of 36 inches, and weigh 2.5
pounds. Ducklings have yellow and black plumage. At around six months of age,
males and females can be distinguished visually as their coloring changes. Males have
green head feathers, a white collar, purple-brown breast, gray-brown wings, and a
yellowish-orange bill. Females are mottled brown, which is the color of most female
dabbling ducks.

Mallards have a wide range of habitats across both northern and southern hemi‐
spheres. They are found in fresh- and salt-water wetlands, from lakes to rivers to
seashores. Northern mallards are migratory and winter father south. The mallard
diet is highly variable and includes plants, seeds, roots, gastropods, invertebrates, and
crustaceans.

Brood parasites will target mallard nests. These are species of other birds who may lay
their eggs in the mallard nest. If the eggs resemble those of the mallard, the mallard
will accept them and raise the hatchlings with their own.

Mallards must contend with a wide variety of predators, most notably foxes and birds
of prey such as falcons and eagles. They have also been preyed upon by catfish and
pike. Crows, swans, and geese have all been known to attack the ducks over territorial
disputes. Unihemispheric sleep (or sleeping with one eye open), which allows one
hemisphere of the brain to sleep while the other is awake, was first noted in mallards.
It is common among aquatic birds as a predation-avoidance behavior.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Jose Marzan, based on a black and white engraving from
The Animal World. The cover fonts are Gilroy Semibold and Guardian Sans. The text
font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

	Kubernetes Best Practices: Blueprints for Building Successful Applications on Kubernetes
	Table of Contents
	Preface
	1. Setting Up a Basic Service
	Application Overview
	Managing Configuration Files
	Creating a Replicated Service Using Deployments
	Best Practices for Image Management
	Creating a Replicated Application

	Setting Up an External Ingress for HTTP Traffic
	Configuring an Application with ConfigMaps
	Managing Authentication with Secrets
	Deploying a Simple Stateful Database
	Creating a TCP Load Balancer by Using Services
	Using Ingress to Route Traffic to a Static File Server
	Parameterizing Your Application by Using Helm
	Deploying Services Best Practices
	Summary

	2. Developer Workflows
	Goals
	Building a Development Cluster
	Setting Up a Shared Cluster for Multiple Developers
	Onboarding Users
	Creating and Securing a Namespace
	Managing Namespaces
	Cluster-Level Services

	Enabling Developer Workflows
	Initial Setup
	Enabling Active Development
	Enabling Testing and Debugging

	Setting Up a Development Environment Best Practices
	Summary

	3. Monitoring and Logging in Kubernetes
	Metrics Versus Logs
	Monitoring Techniques
	Monitoring Patterns
	Kubernetes Metrics Overview
	cAdvisor
	Metrics Server
	kube-state-metrics

	What Metrics Do I Monitor?
	Monitoring Tools
	Monitoring Kubernetes Using Prometheus
	Logging Overview
	Tools for Logging
	Logging by Using a Loki-Stack
	Alerting
	Best Practices for Monitoring, Logging, and Alerting
	Monitoring
	Logging
	Alerting

	Summary

	4. Configuration, Secrets, and RBAC
	Configuration Through ConfigMaps and Secrets
	ConfigMaps
	Secrets

	Common Best Practices for the ConfigMapand Secrets APIs
	Best Practices Specific to Secrets
	RBAC
	RBAC Primer
	RBAC Best Practices

	Summary

	5. Continuous Integration, Testing, and Deployment
	Version Control
	Continuous Integration
	Testing
	Container Builds
	Container Image Tagging
	Continuous Deployment
	Deployment Strategies
	Testing in Production
	Setting Up a Pipeline and Performing a Chaos Experiment
	Setting Up CI
	Setting Up CD
	Performing a Rolling Upgrade
	A Simple Chaos Experiment

	Best Practices for CI/CD
	Summary

	6. Versioning, Releases, and Rollouts
	Versioning
	Releases
	Rollouts
	Putting It All Together
	Best Practices for Versioning, Releases, and Rollouts
	Summary

	7. Worldwide ApplicationDistribution and Staging
	Distributing Your Image
	Parameterizing Your Deployment
	Load-Balancing Traffic Around the World
	Reliably Rolling Out Software Around the World
	Pre-Rollout Validation
	Canary Region
	Identifying Region Types
	Constructing a Global Rollout

	When Something Goes Wrong
	Worldwide Rollout Best Practices
	Summary

	8. Resource Management
	Kubernetes Scheduler
	Predicates
	Priorities

	Advanced Scheduling Techniques
	Pod Affinity and Anti-Affinity
	nodeSelector
	Taints and Tolerations

	Pod Resource Management
	Resource Request
	Resource Limits and Pod Quality of Service
	PodDisruptionBudgets
	Managing Resources by Using Namespaces
	ResourceQuota
	LimitRange
	Cluster Scaling
	Application Scaling
	Scaling with HPA
	HPA with Custom Metrics
	Vertical Pod Autoscaler

	Resource Management Best Practices
	Summary

	9. Networking, Network Security,and Service Mesh
	Kubernetes Network Principles
	Network Plug-ins
	Kubenet
	Kubenet Best Practices
	The CNI Plug-in
	CNI Best Practices

	Services in Kubernetes
	Service Type ClusterIP
	Service Type NodePort
	Service Type ExternalName
	Service Type LoadBalancer
	Ingress and Ingress Controllers
	Gateway API
	Services and Ingress Controllers Best Practices

	Network Security Policy
	Network Policy Best Practices
	Service Meshes
	Service Mesh Best Practices
	Summary

	10. Pod and Container Security
	Pod Security Admission Controller
	Enabling Pod Security Admission
	Pod Security levels
	Activating Pod Security Using Namespace Labels

	Workload Isolation and RuntimeClass
	Using RuntimeClass
	Runtime Implementations
	Workload Isolation and RuntimeClass Best Practices

	Other Pod and Container Security Considerations
	Admission Controllers
	Intrusion and Anomaly Detection Tooling

	Summary

	11. Policy and Governance for Your Cluster
	Why Policy and Governance Are Important
	How Is This Policy Different?
	Cloud Native Policy Engine
	Introducing Gatekeeper
	Example Policies
	Gatekeeper Terminology
	Defining Constraint Templates
	Defining Constraints
	Data Replication
	UX

	Using Enforcement Action and Audit
	Mutation
	Testing Policies
	Becoming Familiar with Gatekeeper

	Policy and Governance Best Practices
	Summary

	12. Managing Multiple Clusters
	Why Multiple Clusters?
	Multicluster Design Concerns
	Managing Multiple Cluster Deployments
	Deployment and Management Patterns
	The GitOps Approach to Managing Clusters
	Multicluster Management Tools
	Kubernetes Federation
	Managing Multiple Clusters Best Practices
	Summary

	13. Integrating External Services with Kubernetes
	Importing Services into Kubernetes
	Selector-Less Services for Stable IP Addresses
	CNAME-Based Services for Stable DNS Names
	Active Controller-Based Approaches

	Exporting Services from Kubernetes
	Exporting Services by Using Internal Load Balancers
	Exporting Services on NodePorts
	Integrating External Machines and Kubernetes

	Sharing Services Between Kubernetes
	Third-Party Tools
	Connecting Cluster and External Services Best Practices
	Summary

	14. Running Machine Learning in Kubernetes
	Why Is Kubernetes Great for Machine Learning?
	Machine Learning Workflow
	Machine Learning for Kubernetes Cluster Admins
	Model Training on Kubernetes
	Distributed Training on Kubernetes
	Resource Constraints
	Specialized Hardware
	Libraries, Drivers, and Kernel Modules
	Storage
	Networking
	Specialized Protocols

	Data Scientist Concerns
	Machine Learning on Kubernetes Best Practices
	Summary

	15. Building Higher-Level Application Patterns on Top of Kubernetes
	Approaches to Developing Higher-Level Abstractions
	Extending Kubernetes
	Extending Kubernetes Clusters
	Extending the Kubernetes User Experience
	Making Containerized Development Easier
	Developing a “Push-to-Deploy” Experience

	Design Considerations When Building Platforms
	Support Exporting to a Container Image
	Support Existing Mechanisms for Service and Service Discovery

	Building Application Platforms Best Practices
	Summary

	16. Managing State and Stateful Applications
	Volumes and Volume Mounts
	Volume Best Practices
	Kubernetes Storage
	PersistentVolume
	PersistentVolumeClaims
	StorageClasses
	Kubernetes Storage Best Practices

	Stateful Applications
	StatefulSets
	Operators
	StatefulSet and Operator Best Practices

	Summary

	17. Admission Control and Authorization
	Admission Control
	What Are They?
	Why Are They Important?
	Admission Controller Types
	Configuring Admission Webhooks
	Admission Control Best Practices

	Authorization
	Authorization Modules
	Authorization Best Practices

	Summary

	18. GitOps and Deployment
	What Is GitOps?
	Why GitOps?
	GitOps Repo Structure
	Managing Secrets
	Setting Up Flux
	GitOps Tooling
	GitOps Best Practices
	Summary

	19. Security
	Cluster Security
	etcd Access
	Authentication
	Authorization
	TLS
	Kubelet and Cloud Metadata Access
	Secrets
	Logging and Auditing
	Cluster Security Posture Tooling

	Cluster Security Best Practices
	Workload Container Security
	Pod Security Admission
	Seccomp, AppArmor, and SELinux
	Admission Controllers
	Operators
	Network Policy
	Runtime Security
	Workload Container Security Best Practices

	Code Security
	Non-Root and Distroless Containers
	Container Vulnerability Scanning
	Code Repository Security

	Code Security Best Practices
	Summary

	20. Chaos Testing, Load Testing,and Experiments
	Chaos Testing
	Goals for Chaos Testing
	Prerequisites for Chaos Testing
	Chaos Testing Your Application’s Communication
	Chaos Testing Your Application’s Operation
	Fuzz Testing Your Application for Security and Resiliency
	Summary

	Load Testing
	Goals for Load Testing
	Prerequisites for Load Testing
	Generating Realistic Traffic
	Load Testing Your Application
	Tuning Your Application Using Load Tests
	Summary

	Experiments
	Goals for Experiments
	Prerequisites for an Experiment
	Setting Up an Experiment
	Summary

	Chaos Testing, Load Testing, and Experiments Summary

	21. Implementing an Operator
	Operator Key Components
	Custom Resource Definitions
	Creating Our API
	Controller Reconciliation
	Resource Validation
	Controller Implementation
	Operator Life Cycle
	Version Upgrades
	Operator Best Practices

	Summary

	22. Conclusion
	Index

