
White paper

Azure Proof of Concept
Guide for Developers

03 /
Introduction
4 What is a proof of concept?
5 About this guide
5 What is Microsoft Azure?

06 /
Chapter 1: Proof of concept guide
6	 Step	1:	Defining	your	goal	and	success	criteria
6	 Step	2:	Setting	your	timeline	and	budget
7 Step 3: Scoping the proof of concept project
8	 Step	4:	Creating	a	high-level	architecture
9	 Step	5:	Assembling	your	team
9	 Step	6:	Implementation	and	testing
9	 Step	7:	When	your	proof	of	concept	is	complete

11 /
Chapter 2: Sample project –
implementing a web app using Azure
Static Web Apps
13	 Azure	Static	Web	Apps	vs.	traditional	web	server
13	 Key	features	of	Azure	Static	Web	Apps
13 Use case of Azure Static Web Apps
14 Putting it into practice
21	 To	learn	more

22 /
Chapter 3: Sample project – building an
intelligent chatbot
22	 Key	features	of	chatbots
24 Use case for chatbots
25 Putting it into practice

36 /
Chapter 4: An overview of
Azure for developers
36	 Getting	started	with	Microsoft	Azure
36	 The	benefits	of	Azure
37 Azure subscription
37	 What	does	the	Azure	free	account	include?

50 /
Chapter 5: Further learning and resources
50	 Learning	the	Azure	fundamentals
50	 Tools	that	you	need	for	developing	your	proof	of	

concept project for Azure
51	 Other	useful	resources

52 /
Conclusion

Azure Proof of Concept
Guide for Developers

© 2020 Microsoft Corporation. All rights reserved.
This document is provided “as is.” Information and views expressed in this document, including URL and other internet website
references, may change without notice. You bear the risk of using it. This document does not provide you with any legal rights to
any intellectual property in any Microsoft product. You may copy and use this document for your internal, reference purposes.

3

Azure Proof of Concept Guide for Developers

Introduction
With	the	advent	of	new	technologies,	many	organizations	are	embarking	on	proof	of	
concept	projects	to	learn	and	explore	new	capabilities,	and	conduct	feasibility	assessments	
of	proposed	concepts.	A	proof	of	concept	is	an	important	first	step	in	cultivating	business	
innovations.

In	a	recent	survey	(see	Figure 1)	conducted	by	Packt	Publishing,	building	a	proof	of	concept	
project	is	the	most	popular	choice	for	developers	when	it	comes	to	evaluating	and	adopting	
new	tools	and	platforms.

Figure 1: How tools/platforms are evaluated and adopted by developers

4

Azure Proof of Concept Guide for Developers

What is a proof of concept?
A	proof	of	concept	is	a	scoped,	time-bound	exercise	with	specific,	measurable	goals	and	
metrics	of	success.	Ideally,	it	should	have	some	basis	in	business	reality	so	that	the	results	are	
meaningful.

Benefits of proof of concept projects

A	proof	of	concept	project	can	be	a	valuable	tool	to	evaluate	whether	a	potential	technology	
or	concept	can	be	used	to	fulfill	the	requirements	of	a	business	solution.	It	can	help	identify	
any	potential	technical	and	logistical	issues	before	the	service	is	implemented	in	a	mainstream	
project.	In	addition,	it	provides	timely	insights	on	the	technology	while	mitigating	risks	by	
allowing	key	decisions	to	be	made	in	the	early	stages	of	the	development	process.

There	are	several	benefits	that	proof	of	concept	projects	provide:

Experimenting with new technologies

As	technologies	evolve,	proof	of	concept	projects	enable	organizations	to	discover,	learn,	
and	experiment	with	groundbreaking	technologies	that	can	potentially	be	used	in	upcoming	
projects.	Under	the	guidelines	of	a	well-scoped	and	time-framed	execution,	the	development	
team	can	quickly	ramp	up	on	new	technology	without	posing	risks	to	the	company’s	
mainstream	large-scale	projects.	Best	of	all,	the	success	of	the	proof	of	concept	project	
might	be	adapted	in	a	mainstream	project	in	the	future.	As	a	result,	proof	of	concept	projects	
encourage	innovation.

Minimizing risks

Prior	to	embarking	on	a	high-risk,	large-scale,	and	potentially	expensive	project,	it	is	a	good	
practice	to	minimize	risks	and	costs	by	performing	a	quick	validation	of	the	parts	of	the	
project	that	are	considered	risky.	For	example,	a	project	team	could	identify	and	isolate	a	
particular	technology	used	in	a	large-scale	project,	and	flag	it	as	risky	due	to	the	development	
team’s	inexperience	with	such	technology.	The	project	team	can	perform	a	quick	feasibility	
experimentation	and	assessment	of	said	technology	by	scoping	out	a	small	sub-project	with	
a	fixed	budget	and	timeline.	The	risks	are	mitigated	as	proof	of	concept	projects	are	typically	
executed	in	a	controlled	and	sandboxed	environment.

5

Azure Proof of Concept Guide for Developers

About this guide
The	purpose	of	the	Azure	Proof	of	Concept	Guide	for	Developers	is	to	present	the	reader	with	
guidance	on	how	to	plan	a	successful	proof	of	concept	project.	It	will	also	provide	directions	
on	how	to	start	developing	in	the	Microsoft	Azure	cloud	platform.	This	guide	is	designed	for	
developers	and	architects	who	are	embarking	on	their	first	journey	into	Azure.

The	methodology	outlined	in	Chapter 1: Proof of concept guide	builds	the	core	foundation	
necessary	for	planning	and	executing	a	successful	proof	of	concept	project.

In Chapter	2:	Sample	project	–	implementing	a	web	app	using	Azure	Static	Web	Apps and
Chapter	3:	Sample	project	–	building	an	intelligent	chat	bot,	we	will	showcase	two	practical	
projects	that	might	inspire	you	to	come	up	with	your	own	proof	of	concept	projects.

In Chapter	4:	An	overview	of	Azure	for	developers,	we	introduce	you	to	the	Azure	platform.	
For	those	who	are	new	to	Azure,	you	will	learn	how	to	obtain	an	Azure	free	account	to	begin	
your	proof	of	concept	journey	on	Azure.	You	will	also	learn	how	to	pick	the	appropriate	cloud	
model	and	services	to	start	developing	your	project	for	Azure.

We	will	also	provide	you	with	some	useful	learning	materials	in	Chapter	5:	Further	learning	
and resources.

What is Microsoft Azure?
The	focus	of	this	guide	will	be	on	Microsoft	Azure.	Azure	is	a	cloud	platform	that	enables	you	
to	host	your	existing	applications	with	minimum	changes,	as	well	as	develop	new	cloud-native	
applications.	There	is	a	vast	number	of	ready-to-use	Azure	services	that	you	can	integrate	with	
your	applications	to	instantly	take	advantage	of	new	cloud	capabilities,	while	minimizing	the	
need	to	develop	those	services	yourself.

By	hosting	your	applications	in	Azure,	you	can	build	a	Minimum	Viable	Product	and	then	scale	
your	application	as	your	customer	demand	grows.	Azure	offers	the	reliability	that	is	needed	
for	high-availability	applications,	even	including	failover	between	different	regions.	The	Azure	
portal	lets	you	easily	manage	all	your	Azure	services.	You	can	also	manage	your	services	
programmatically	by	using	service-specific	APIs	and	templates.

We	will	learn	more	about	Azure	in	Chapter	4:	An	overview	of	Azure	for	developers.

With	so	much	to	cover,	let’s	get	started	with	the	proof	of	concept	guide.

6

Azure Proof of Concept Guide for Developers

Chapter 1: Proof of concept guide

Step 1: Defining your goal and success criteria
Most	proof	of	concept	projects	are	results	driven.	Set	the	goal	on	what	you	want	to	
accomplish	from	your	proof	of	concept	project	and	determine	what	would	be	considered	a	
successful	execution	of	your	project	by	stating	the	success	criteria.

We	want	to	prove	whether	a	concept	works	or	not	without	investing	a	huge	amount	of	time	
and	resources.	If	the	proof	of	concept	project	succeeds	and	achieves	the	expected	results,	
the	project	team	can	give	the	green	light	to	proceed	with	the	next	steps.	However,	should	the	
experimentation	fail,	it	would	have	failed	within	a	fixed	budget,	timeline,	scope,	and	set	of	
resources,	which	would	be	minimal	costs	in	the	grand	scheme	of	things.	Therefore,	the	benefit	
of	doing	a	proof	of	concept	project	is	that	it	allows	the	project	team	to	quickly	determine	
whether	to	continue	to	pursue	the	concept,	abandon	it,	or	make	alternate	choices.	Bear	in	
mind	when	scoping	out	your	project	(refer	to	Step 3: Scoping the proof of concept project)
that	the	goal	of	your	proof	of	concept	is	to	succeed	quickly	(and	conversely,	fail	quickly)	so	
that	subsequent	decisions	can	be	made	in	a	timely	manner.

Step 2: Setting your timeline and budget
Once	the	goal	and	success	criteria	for	the	proof	of	concept	project	have	been	defined,	you	will	
set	the	timeline	and	budget.

In	our	experience,	proof	of	concept	projects	have	the	best	outcome	when	they	are	timeboxed	
between	two	to	four	weeks.	This	provides	enough	time	for	the	work	to	be	completed	without	
the	burden	of	too	many	use	cases	and	complex	test	matrices.

7

Azure Proof of Concept Guide for Developers

Here	are	some	tips:
 ● Make	realistic	estimates	of	the	time	that	will	be	required	to	complete	the	tasks	in	your	
proof	of	concept.

 ● If	you	find	that	your	proof	of	concept	is	estimated	to	run	longer	than	four	weeks,	consider	
reducing	its	scope	to	focus	on	the	highest	priority	goals.

 ● Get	buy-ins	from	all	key	resources	and	sponsors	for	the	timeline	and	budget	before	
proceeding.

Now	that	you	have	determined	your	timeline	and	budget,	let’s	move	on	to	scoping	the	proof	
of	concept.

Step 3: Scoping the proof of concept project
It	is	important	to	define	the	scope	for	your	proof	of	concept	project	before	you	start	the	
implementation	to	prevent	scope	creep.	Knowing	in	advance	that	the	resources	will	not	stay	
around	indefinitely	sets	appropriate	expectations	for	the	stakeholders	of	the	proof	of	concept.

Tip:	Avoid	turning	a	proof	of	concept	project	into	a	production	project	by	defining	your	scope	
before	starting	the	project.	Then,	throughout	the	course	of	the	project,	ensure	that	everyone	
involved	adheres	to	the	scope.

The	following	key	questions	will	help	you	determine	the	scope	of	your	proof	of	
concept project:

 ● What	do	you	want	to	learn	or	achieve	from	your	proof	of	concept?
 ● What are the success criteria?
 ● What	workloads	or	scenarios	will	be	covered?

Tip:	To	ensure	that	your	proof	of	concept	project	can	be	scoped	and	completed	in	a	timely	
manner,	keep	the	workloads	and	scenarios	as	small	as	possible.

 ● What	resources	must	be	available?
 ● Who	are	the	users	and	teams	to	validate	the	outcome?
 ● What is the duration of the project?

Tip:	Choose	a	timeline	that	aligns	well	with	the	planned	scope,	such	as	two	weeks	or	
four	weeks.

 ● After	the	proof	of	concept	is	complete,	what	will	happen	with	the	resources	that	were	
allocated	during	the	project?	Do	you	plan	to	discard	those	resources?

With	the	scope	defined,	we	can	create	a	high-level	architecture	for	the	proof	of	concept.

8

Azure Proof of Concept Guide for Developers

Step 4: Creating a high-level architecture
Keep	in	mind	that	you	are	developing	a	proof	of	concept	to	validate	whether	a	concept	
is	feasible.	Therefore,	in	order	to	keep	the	goal	of	your	project	achievable	within	your	
well-scoped	timeline,	when	you	create	your	high-level	architecture,	you	must	decide	
which	essential	components	will	be	part	of	the	proof	of	concept	and	which	non-essential	
components	should	be	excluded	from	it.

As	a	rule	of	thumb,	the	more	components	you	include	in	your	proof	of	concept,	the	more	
complicated	your	project	will	become	and	the	longer	it	will	be	for	you	to	achieve	your	
success	criteria.

As	part	of	your	high-level	architecture,	you	will	also	need	to	choose	the	appropriate	
cloud	model	to	host	your	proof	of	concept	application.	You	will	learn	“How	to	choose	the	
appropriate	cloud	model	for	your	Azure	proof	of	concept	project” in Chapter	4:	An	overview	
of	Azure	for	developers.

As	a	best	practice,	your	proof	of	concept	projects	should	always	reside	in	a	separate	Azure	
subscription	from	production.	Ideally,	a	Dev/Test	subscription	should	be	used	to	keep	the	cost	
low.	You	will	learn	more	about	Azure	subscription	in	the	Getting	started	with	Microsoft	Azure
section in Chapter	4:	An	overview	of	Azure	for	developers.

Tip:	There	is	no	need	to	be	perfect.	It	is	tempting	to	try	and	architect	a	perfect	proof	of	
concept,	which	will	mirror	the	eventual	product	if	it	is	rolled	out	to	production.	However,	for	
a	proof	of	concept	project,	this	would	be	counterproductive.	The	closer	you	attempt	to	get	to	
perfection,	the	more	time	and	effort	you	will	have	to	exert	from	start	to	finish.	That	would	be	
undesirable.	As	you	recall,	the	purpose	of	the	proof	of	concept	is	to	quickly	prove	a	certain	
well-scoped	concept.	It	is	to	allow	you	to	make	the	correct	decisions	in	a	timely	manner.	
Therefore,	the	focus	of	the	should	always	be	on	selecting	the	smallest	essential	dependencies	
and	associated	workloads	that	meet	specific	measurable	goals,	to	help	guarantee	a	
swift	victory.

With	the	architectural	plan	in	place,	you	are	ready	to	assemble	your	team	for	the	proof	of	
concept	project.

9

Azure Proof of Concept Guide for Developers

Step 5: Assembling your team
For	a	small	one-off,	simple,	non-critical	experimental	proof	of	concept,	a	one-person	team	
might	suffice.	However,	for	most	typical	proof	of	concept	projects	where	the	results	are	critical	
and	could	influence	the	decision	of	a	bigger	project,	you	should	identify	the	mandatory	team	
members	needed	and	the	commitment	required	to	support	your	proof	of	concept.	The	team	
that	you	are	assembling	must	reflect	the	scope	of	your	project.	

Step 6: Implementation and testing
With	the	goal,	timeline,	budget,	and	scope	defined	and	your	team	assembled,	you	can	begin	
implementing	your	proof	of	concept	project	based	on	the	high-level	architecture.	To	maximize	
execution	success,	follow	modern	DevOps	processes	with	iterative	development	and	testing	
throughout	your	implementation.

Step 7: When your proof of concept is complete
Once	your	proof	of	concept	is	complete,	evaluate	whether	you	have	met	the	success	criteria	
which	you	defined	in	Step	1:	Defining	your	goal	and	success	criteria.

Figure 2 - Evaluate your proof of concept

Proof of concept

Present your successful
proof of concept results

to key stakeholders

Retry the proof of concept
by redefining the goal,
timeline and budget,

scope and architecture

Conduct a post-mortem
review and capture any

lessons learned

Success Failure

10

Azure Proof of Concept Guide for Developers

If your proof of concept is successful
 ● Present	your	successful	results	to	key	stakeholders.

Tip:	When	presenting	to	key	decision	makers	about	your	successful	proof	of	concept,	try	
to	extrapolate	financial	success	to	business	return	on	investment.	Here	are	some	examples:
 - Our	proof	of	concept	demonstrated	that	we	can	save	USD	X	per	month	in	Azure	
spending	due	to	the	optimization	in	the	new	implementation.	We	recommend	
implementing	this	concept	in	production.

 - Customers	have	been	asking	for	this	new	functionality,	which	has	proven	to	be	
successful	in	the	proof	of	concept.	If	we	implement	this	concept	in	Azure,	we	estimate	
that	revenue	will	grow	by	X%	per	quarter.

If your proof of concept failed
 ● You	have	two	decisions:

 - Retry	the	proof	of	concept	by	redefining	the	goal,	timeline	and	budget,	scope,	and	
architecture.

 - Conduct	a	post-mortem	review	on	the	failure	to	see	if	there	is	any	insights	or	lessons	
learned	during	the	proof	of	concept.

In	this	section,	you	learned	how	to	plan	and	execute	the	proof	of	concept.	In	the	following	
section,	we	will	showcase	two	practical	projects,	complete	with	step-by-step	instructions.	We	
hope	that	they	will	inspire	you	to	come	up	with	your	own	proof	of	concept	projects.

11

Azure Proof of Concept Guide for Developers

Chapter 2: Sample project –
implementing a web app using
Azure Static Web Apps
In	the	first	sample	project,	you	will	discover	how	to	implement	a	web	app	using	Azure	Static	
Web	Apps.	You	will	learn	about	Azure	App	Service	in	Chapter 4:	An	overview	of	Azure	for	
developers,	but	this	project	will	cover	one	of	the	expanded	hosting	options	of	App	Service:	
Static	Web	Apps.	Developers	can	use	Static	Web	Apps	to	render	static	contents	(such	as	
HTML,	CSS,	and	JavaScript)	while	delivering	the	necessary	dynamic	logic	by	developing	
serverless	APIs	with	Azure	Functions.

The	Static	Web	Apps	workflow	(see	Figure	3:	Azure	Static	Web	Apps	workflow)	closely	
resembles	the	daily	workflow	of	a	developer.	Static	Web	Apps	provide	a	managed	Continuous	
Integration	and	Continuous	Delivery	(CI/CD)	pipeline	that	automatically	builds	and	deploys	
full	stack	web	apps	from	a	GitHub	repository	to	Azure.	This	is	made	possible	by	GitHub	
Actions	(to	learn	more	about	GitHub	Actions,	visit	this	documentation).

https://docs.github.com/actions

12

Azure Proof of Concept Guide for Developers

Figure 3: Azure Static Web Apps workflow

When	you	create	a	Static	Web	Apps	resource,	Azure	sets	up	a	GitHub	Actions	workflow	in	the	
app’s	source	code	repository,	which	monitors	a	branch	of	your	choice.	Each	time	you	push	
commits	or	accept	pull	requests	into	the	watched	branch,	GitHub	Actions	automatically	builds	
and	deploys	your	app	and	its	API	to	Azure.

Azure	Static	Web	Apps	are	commonly	built	using	libraries	and	frameworks	such	as	Angular,	
React,	Svelte,	or	Vue.	These	apps	include	HTML,	CSS,	JavaScript,	and	image	assets	that	make	
up	the	application.

Branch of your choice

Push / Pull Request

Source Code Repository

GitHub Actions

Azure Static Web Apps
API
Azure Functions

Static Content
HTML, CSS, JavaScript

13

Azure Proof of Concept Guide for Developers

Azure Static Web Apps vs. traditional web server
With	a	traditional	web	server,	assets	are	served	from	a	single	server	alongside	any	required	
API	endpoints.

With	Static	Web	Apps,	static	assets	are	separated	from	a	traditional	web	server	and	are	instead	
served	from	points	geographically	distributed	around	the	world.	This	distribution	makes	
serving	files	much	faster,	as	files	are	physically	closer	to	end	users.

In	addition,	API	endpoints	are	hosted	using	a	serverless	architecture,	which	reduces	the	
necessity	of	a	full	backend	server.

Key features of Azure Static Web Apps
 ● Web	hosting	for	static	content	such	as	HTML,	CSS,	JavaScript,	and	images
 ● Integrated	API	support	provided	by	Azure	Functions
 ● First-party	GitHub	integration	where	repository	changes	trigger	builds	and	deployments
 ● Automatically	create	staging	environments	to	test	code	updates	before	rolling	them	out	

to production
 ● Globally	distributed	static	content,	putting	content	closer	to	your	users
 ● Free	SSL	certificates,	which	are	automatically	renewed
 ● Custom	domains	to	provide	branded	customizations	to	your	app
 ● Seamless	security	model	with	a	reverse-proxy	when	calling	APIs,	which	requires	no	
CORS	configuration

 ● Authentication	provider	integrations	with	Azure	Active	Directory,	Facebook,	Google,	
GitHub,	and	Twitter

 ● Customizable	authorization	role	definition	and	assignments
 ● Backend	routing	rules	enabling	full	control	over	the	content	and	routes	you	serve

Use case of Azure Static Web Apps
 ● Build	single-page	applications	with	frameworks	and	libraries	such	as	Angular,	React,	Svelte,	
or	Vue	with	an	Azure	Functions	backend

 ● Publish	static	sites	with	frameworks	such	as	Gatsby,	Hugo,	and	VuePress
 ● Deploy	web	applications	with	frameworks	such	as	Next.js	and	Nuxt.js

14

Azure Proof of Concept Guide for Developers

Putting it into practice
Note:	As	of	the	time	of	writing,	Azure	Static	Web	App	is	in	preview	and	it	is	free	of	charge.	
This	is	subject	to	change	once	it	is	out	of	preview.
1.	 Sign	in	to	your	GitHub	account	and	go	to	this URL	to	create	a	new	repository.
2.	 Give	your	repository	a	name,	such	as	my-first-static-web-app.	Then	click	the	Create

repository from template button:

Figure 4: Create your GitHub repository from template

3.	 Next,	go	to	the	Azure	portal.
4.	 Go	to	the	Azure	Marketplace	by	clicking	the	Create a resource	button.	Type	Static Web

App	in	the	search	box.

https://github.com/staticwebdev/angular-basic/generate
https://portal.azure.com

15

Azure Proof of Concept Guide for Developers

5.	 Click	Static Web App (preview),	then	click	the	Create button:

Figure 5: Create Static Web App

6.	 Fill	in	the	form:

Figure 6: Create a new Resource Group

16

Azure Proof of Concept Guide for Developers

7.	 Pick	a	region	where	you	want	your	Azure	Static	Web	App	to	be	hosted:

Figure 7: Pick a region

17

Azure Proof of Concept Guide for Developers

8.	 Connect	to	your	GitHub	account:

Figure 8: Connect to your GitHub account

18

Azure Proof of Concept Guide for Developers

9.	 In	the	GitHub	account	section,	supply	the	Organization,	Repository,	and	Branch
information	as	shown:

Figure 9: Supply the Organization, Repository and Branch information

19

Azure Proof of Concept Guide for Developers

10.	Provide	the	initial	build	variables	as	shown:

Figure 10: Provide the initial build variables

20

Azure Proof of Concept Guide for Developers

11.	Navigate	to	the	Review + create	tab	and	click	the	Create button:

Figure 11: Review + create

12.	Once	your	deployment	is	complete,	click	the	Go to resources	button	to	find	the	new	URL	
that	has	been	generated	for	your	static	web	app:

Figure 12: Deployment is complete

21

Azure Proof of Concept Guide for Developers

13.	Find	the	new	URL	that	has	been	generated	for	your	static	web	app:

Figure 13: Static Web App URL

14.	Open	your	browser	and	visit	the	generated	URL	to	see	your	static	web	app	in	action:

Figure 14: Static Web App in action

Congratulations,	you	have	successfully	deployed	your	first	Azure	Static	Web	App.

To learn more
 ● GitHub	Actions	official	documentation
 ● Review	pull	requests	in	pre-production	environments	in	Azure	Static	Web	Apps
Next,	we	will	explore	a	second	sample	project,	building	an	intelligent	chatbot.

https://docs.github.com/actions
https://docs.microsoft.com/azure/static-web-apps/review-publish-pull-requests

22

Azure Proof of Concept Guide for Developers

Chapter 3: Sample project –
building an intelligent chatbot
In	this	sample	project,	you	will	explore	how	to	build	an	intelligent	chatbot	that	uses	artificial	
intelligence	(AI).	As	AI	continues	to	dominate	in	mainstream	technology,	the	time	is	now	for	
developers	like	you	to	harness	the	power	of	AI	in	your	applications.

Today,	many	of	us	use	a	variety	of	technologies	to	communicate.	For	example:
 ● Phone	calls
 ● Messaging	services
 ● Online	chat	applications
 ● Email
 ● Social	media	platforms
 ● Collaborative	tools
We	have	become	accustomed	to	ubiquitous	connectivity,	and	we	expect	the	organizations	
we	deal	with	to	be	easily	contactable	and	immediately	responsive	through	the	channels	we	
already	use.	Additionally,	we	expect	these	organizations	to	engage	with	us	individually,	and	be	
able	to	answer	complex	questions	at	a	personal	level.

Key features of chatbots
While	many	organizations	publish	support	information	and	answers	to	frequently	asked	
questions	(FAQs)	that	can	be	accessed	through	a	web	browser	or	dedicated	app,	answers	to	
specific	questions	are	difficult	to	find.	These	organizations	frequently	find	their	support	staff	
being	overburdened	with	requests	for	help	through	various	channels,	including	phone	calls,	
email,	text	messages,	and	social	media.

23

Azure Proof of Concept Guide for Developers

Many	businesses	are	progressively	turning	to	AI	solutions	that	make	use	of	AI	agents	
(commonly	known	as	chatbots)	to	provide	a	first	line	of	automated	support	through	the	full	
range	of	channels	that	we	use	to	communicate.	Bots	are	designed	to	interact	with	users	in	a	
conversational	manner,	as	shown	in	Figure	15:	An	example	of	a	chatbot	user	interface:

Figure 15: An example of a chatbot user interface

The	example	shown	here	is	a	chatbot	interface	like	ones	that	you	find	on	retail	store	websites.	
However,	bots	can	be	designed	to	work	across	multiple	channels,	including	email,	social	media	
platforms,	and	even	voice	calls.	Regardless	of	the	channel	used,	chatbots	typically	manage	
conversation	flows	using	a	combination	of	natural	language	and	constrained	option	responses	
that	guide	the	user	to	a	resolution.

24

Azure Proof of Concept Guide for Developers

Use case for chatbots
Figure	16:	Azure	QnA	Maker	and	Azure	Bot	Service,	illustrates	the	two	key	components	in	
creating	an	intelligent	chatbot.	The	first	component	is	a	knowledge	base	of	questions	and	
answers.	On	Azure,	this	is	QnA	Maker.	The	second	component	is	a	bot	service	that	provides	
an	interface	to	the	knowledge	base.	On	Azure,	this	is	Azure	Bot	Service.	Using	QnA	Maker	
and	Azure	Bot	Service,	you	can	build	a	chatbot	that	provides	users	with	answers	to	FAQs.	The	
interface	of	the	bot	can	be	a	chat	section	on	your	website.

Typically,	conversations	take	the	form	of	messages	exchanged	in	turns.	One	of	the	most	
common	kinds	of	conversational	exchange	is	a	question	followed	by	an	answer.	This	
pattern	forms	the	basis	for	many	user	support	bots	and	can	often	be	based	on	existing	FAQ	
documentation.

Figure 16: Azure QnA Maker and Azure Bot Service

Two key components in creating an intelligent chatbot
proof of concept

A knowledge base of QnA A bot service
 ● Enables questions that can be phrased in

multiple ways to be understood with the
same semantic meaning

 ● Usually with some built-in natural
language processing model

 ● Provides an interface to the knowledge
base through one or more channels

What technology in Azure should we use?

Azure QnA Maker Azure Bot Service
Enables you to create and publish a
knowledge base with built-in natural

language processing capabilities.

Provides a framework for developing,
publishing, and managing bots on Azure.

25

Azure Proof of Concept Guide for Developers

Putting it into practice
1.	 Sign in to the QnA	Maker	portal	using	your	Azure	credentials	(if	you	don’t	have	an	Azure	

subscription	yet,	review	the	Azure	subscription	section	in	Chapter	4:	An	overview	of	Azure	
for	developers).

2.	 Click	Create a knowledge base and then the Create a QnA service button to create a
new	QnA	Maker	resource:

Figure 17: Create a new QnA Maker resource

https://www.qnamaker.ai/

26

Azure Proof of Concept Guide for Developers

3.	 Once	the	Azure	portal	is	launched,	populate	the	form	as	follows,	then	click	the	Review +
create	tab.	The	entry	in	the	Name	field	must	be	globally	unique.	If	you	receive	a	name	
conflict	error,	just	try	again	with	another	unique	name:

Figure 18: Add details in the Basics tab

27

Azure Proof of Concept Guide for Developers

4.	 After	your	QnA	Maker	resource	has	been	provisioned,	go	back	to	Create	a	knowledge	
base,	refresh	the	page,	and	continue	to	Step	2:

Figure 19: Step 2 of QnA Maker – Connecting QnA service to your KB

5.	 In	Step	3,	name	your	knowledge	base:

Figure 20: Step 3 of QnA Maker – Name your KB

https://www.qnamaker.ai/Create
https://www.qnamaker.ai/Create

28

Azure Proof of Concept Guide for Developers

6.	 Populate	Step	4	as	follows:

Figure 21: Step 4 of QnA Maker – Populate your KB

7.	 Click	the	Create your KB button in Step 5:

Figure 22: Step 5 of QnA Maker – Create your KB

29

Azure Proof of Concept Guide for Developers

8.	 In	the	QnA	Maker	portal,	on	the	Edit	page,	select	+ Add QnA pair	from	the	toolbar:

Figure 23: Add a QnA pair

9.	 Add	the	question	and	answer.	Then	click	the	Save and train button:

Figure 24: Add questions and answers

30

Azure Proof of Concept Guide for Developers

10.	You	can	test	your	knowledge	base	right	away	by	pressing	the	Test	button.	Then,	enter	a	
question	such	as	“What are the professional sports teams in Toronto”:

Figure 25: Test your knowledge base

11.	Press Inspect	to	examine	the	details	of	the	conversation:

Figure 26: Examine the details of the conversation

12.	Click	the	Test	button	to	close	the	test	panel.

31

Azure Proof of Concept Guide for Developers

Publishing your QnA knowledge base

When	you	publish	your	knowledge	base,	its	contents	move	from	the	test	index	to	a	
production	index	in	Azure	Search.

In	the	QnA	Maker	portal,	click	the	Publish button:

Figure 27: Publish your QnA KB

32

Azure Proof of Concept Guide for Developers

Create the bot in Azure Bot Service

Next,	you	will	create	a	bot	in	Azure	Bot	Service	to	bind	to	the	knowledge	base	you	created	in	
the	previous	steps:
1.	 After	your	knowledge	base	has	been	successfully	deployed,	click	the	Create Bot button to

launch	the	Azure	Bot	Service	creation	page	in	the	Azure	portal:

Figure 28: Launch the Azure Bot Service creation page

33

Azure Proof of Concept Guide for Developers

2.	 On	the	Azure	Bot	Service	creation	page,	populate	the	form	as	follows:

Figure 29: Add Web App Bot details

34

Azure Proof of Concept Guide for Developers

3.	 Once	the	bot	has	been	provisioned,	open	it	from	Bot	Services:

Figure 30: Open bot from Bot Services

4.	 Under Bot management,	select	Test in Web Chat:

Figure 31: Select Test in Web Chat

35

Azure Proof of Concept Guide for Developers

In	summary,	you	used	the	QnA	Maker	to	create	a	new	knowledge	base	in	Azure.	You	added	
a	public	URL	to	the	knowledge	base.	Then,	you	added	your	own	QnA	pair,	trained,	and	
tested.	After	publishing	your	knowledge	base,	you	created	a	Web	App	Bot	in	Azure	Bot	
Services.	Finally,	you	tested	the	bot	running	in	Azure.	Bots	can	help	reduce	support	costs	by	
providing	automated	support	through	multiple	communication	channels.	We	have	shown	
you	how	to	use	QnA	Maker	and	Azure	Bot	Services	to	create	a	chatbot	that	answers	user	
support	questions.

This	concludes	our	tour	of	two	practical	projects.	We	hope	they	inspire	you	to	come	up	with	
your	own	proof	of	concept	projects.	In	the	next	section,	we	will	explore	an	overview	of	Azure	
for	developers,	and	learn	how	to	pick	the	appropriate	cloud	model	for	your	Azure	proof	of	
concept	projects.

36

Azure Proof of Concept Guide for Developers

Chapter 4: An overview of
Azure for developers

Getting started with Microsoft Azure
As	discussed	in	the	introduction,	Azure	is	a	cloud	platform	which	empowers	you	to:

 ● Host	your	existing	applications	with	minimum	changes
 ● Develop	new	cloud-native	applications
There	is	a	huge	number	of	ready-to-use	Azure	services	that	you	can	integrate	with	your	
applications	to	instantly	take	advantage	of	new	cloud	capabilities	while	minimizing	the	need	
to	develop	those	services	yourself.	In	this	section,	we	will	discuss:

 ● The	benefits	of	Azure
 ● How	to	get	started	with	Azure
 ● Tools	you	need	to	develop	your	application	for	Azure
 ● How	to	choose	the	appropriate	cloud	model	for	your	Azure	proof	of	concept	project

The benefits of Azure
The	following	are	some	key	benefits	of	hosting	your	applications	on	Azure:

Lower costs
 ● By	developing	applications	on	Azure,	your	company	will	save	on	capital	expenditures	in	
the	long	run	thanks	to	Azure’s	pay-as-you-go	pricing	model.

 ● You	pay	only	for	the	services	that	you	use.
 ● There’s	no	need	to	carry	capital	expenses	by	purchasing	on-premises	servers.

37

Azure Proof of Concept Guide for Developers

Less maintenance
 ● With	managed	services,	you	can	focus	on	developing	your	application.
 ● Azure	will	look	after	infrastructure	maintenance	for	you.

Scalability
 ● Azure	services	are	highly	scalable	to	meet	the	growing	demands	of	your	business.

High availability and reliability
 ● You	can	configure	your	Azure	services	to	ensure	your	applications	are	highly	available	
and	reliable.

Azure subscription
To	start	building	applications	to	run	on	Azure,	you	will	need	an	Azure	subscription.	If	your	
company	provides	you	with	Azure	credits,	you	are	all	set.	Otherwise,	simply	sign	up	for	an	
Azure free account.

What does the Azure free account include?
The	Azure	free	account	allows	you	to	get	started	with	12	months	of	free	services	and	USD200	
credit	to	explore	Azure	for	30	days.	These	offers	may	change	over	time.	For	the	most	up-to-date	
details	on	what	is	included	in	the	Azure	free	account,	please	visit	the	Azure	free	account	FAQ.

If	you	are	new	to	Azure,	there	are	plenty	of	free	resources	to	help	you	get	started	with	ease.	
You	can	find	these	resources	in	Chapter	5:	Further	learning	and	resources.

In	the	next	section,	you	will	look	at	tools	that	you	need	to	develop	your	proof	of	concept	
project	for	Azure.

Tools that you need to develop your proof of concept project for Azure

The	following	is	a	list	of	tools	that	are	essential	for	the	examples	shown	in	this	guide:	
 ● Azure subscription
 ● Visual	Studio	Code
 ● Azure	Functions	Core	Tools
 ● GitHub	account
 ● Microsoft	Edge	(Chromium-based)	browser
 ● Node.js

https://azure.microsoft.com/free/
https://azure.microsoft.com/free/free-account-faq/
https://azure.microsoft.com/free/
https://code.visualstudio.com/
https://docs.microsoft.com/azure/azure-functions/functions-run-local
https://github.com/
https://www.microsoft.com/edge
https://nodejs.org/

38

Azure Proof of Concept Guide for Developers

In	the	next	section,	you	will	learn	how	to	choose	the	appropriate	cloud	model	for	your	Azure	
proof	of	concept	project.

How to choose the appropriate cloud model for your Azure proof of
concept project

In Chapter 1: Proof of concept guide,	you	learned	about	the	proof	of	concept.	Once	you	have	
your	proof	of	concept	planning	in	place,	you	can	start	your	implementation	and	testing.	In	
this	section,	we	will	show	you	the	four	cloud	models	(see	Figure	32:	Azure	cloud	models	for	
application	development	and	hosting)	that	are	available	for	you	to	choose	for	your	Azure	
proof	of	concept	project.	We	will	explain	the	use	case	for	each	of	these	cloud	models	so	that	
you	can	make	an	informed	choice.

Figure 32: Azure cloud models for Application Development and Hosting

39

Azure Proof of Concept Guide for Developers

Infrastructure as a Service (IaaS)

In	the	IaaS	model,	Azure	gives	you	full	control	to	manage	your	own	application	hosting	
environment.

Introduction to Azure Virtual Machines

In	the	IaaS	model,	Azure	enables	you	to	deploy	or	migrate	your	application	to	either	Windows	
or	Linux	virtual	machines.	You	will	have	full	control	over	the	machine	configuration.	However,	
in	the	IaaS	model,	you	are	responsible	for	all	operating	system	upgrades,	server	software	
installation,	configuration,	and	maintenance.

Key Features of Azure Virtual Machines
 ● Azure	Virtual	Machines	allows	you	to	have	complete	control	of	the	operating	system.
 ● You	can	fine-tune	the	CPU/memory	balance,	the	machine	family	(SKU),	and	the	disk	
layouts.

Use case for Azure Virtual Machines
 ● Azure	Virtual	Machines	would	be	a	good	choice	if	you	wish	to	have	full	control	over	your	
application	infrastructure	or	to	migrate	on-premises	application	workloads	to	Azure	with	
little	to	no	changes.

To learn more
 ● Windows	Virtual	Machines	documentation
 ● Linux	Virtual	Machines	documentation

https://docs.microsoft.com/azure/virtual-machines/windows/
https://docs.microsoft.com/azure/virtual-machines/linux/

40

Azure Proof of Concept Guide for Developers

Container as a Service (CaaS)

A	container,	by	definition,	is	a	standard	unit	of	software	that	bundles	an	entire	runtime	
environment	(an	application,	configuration	files	required	to	run	it,	and	all	its	dependencies,	
libraries,	and	other	binaries)	into	a	single	package.	By	containerizing	the	application	platform	
and	its	dependencies,	variances	in	OS	environments	and	underlying	infrastructure	are	
abstracted	from	it.

Introduction to Azure Kubernetes Service

In	the	CaaS	model,	once	you	run	more	than	one	container,	you	need	an	orchestrator.	The	
managed	container	orchestrator	in	Azure	is	called	the	Azure	Kubernetes	Services	(AKS).

AKS	manages	your	hosted	Kubernetes	environment	and	makes	it	simple	to	deploy	a	managed	
Kubernetes	cluster	in	Azure.	You	can	create	an	AKS	cluster	in	the	Azure	portal,	with	the	
Azure	command-line	interface,	or	template-driven	deployment	options	(such	as	Azure	
Resource	Manager	templates	and	Terraform).	With	AKS,	you	can	easily	deploy	and	manage	
containerized	applications.	You	do	not	need	to	be	an	expert	in	container	orchestration	to	
use	AKS.	

The	Kubernetes	master	and	worker	nodes	are	deployed	and	configured	for	you	when	you	
deploy	an	AKS	cluster.	During	deployment,	other	features	(such	as	Azure	Active	Directory	
integration,	monitoring,	and	advanced	networking)	can	also	be	configured.	AKS	supports	
Windows	Server	containers	as	well.

Key features of AKS
 ● Reduces	the	complexity	and	operational	overhead	of	managing	Kubernetes	by	offloading	
much	of	that	responsibility	to	Azure.

 ● Azure	handles	critical	tasks	like	health	monitoring	and	maintenance	for	you.
 ● Azure	manages	the	Kubernetes	masters	for	you.
 ● Kubernetes	masters	are	free	of	charge.
 ● You	only	manage	and	maintain	the	agent	nodes.
 ● You	only	pay	for	the	agent	nodes	within	your	clusters.

Use case for AKS
 ● AKS	is	a	good	choice	if	you	want	to	simplify	the	deployment	and	management	of	
applications	based	on	microservices.	You	can	also	use	AKS	to	migrate	existing	applications	
to	containers	and	run	them.

To learn more
 ● Azure	Kubernetes	Service

https://docs.microsoft.com/azure/aks/

41

Azure Proof of Concept Guide for Developers

Platform as a Service (PaaS)

In	the	PaaS	model,	Azure	provides	you	with	a	fully	managed	hosted	environment	to	run	your	
application	on.	You	will	not	have	to	worry	about	the	underlying	infrastructure	details.

Introduction to Azure App Service

Azure	App	Service	is	a	PaaS	that	gives	you	the	fastest	way	to	publish	your	web-based	projects.	
With	App	Service,	you	can	easily	extend	your	web	apps	to	support	your	mobile	clients	and	
publish	REST	APIs.	

With	App	Service,	you	can	create	the	following	types	of	applications:
 ● Web apps
 ● APIs
 ● Mobile	app	backends
Since	all	these	application	types	share	the	App	Service	runtime,	you	can	literally	host	
a	website,	support	mobile	clients,	and	expose	your	APIs	in	Azure	from	a	single	project	
or	solution.

App	Service	is	designed	with	DevOps	in	mind.	It	supports	various	tools	for	publishing	and	
CI/CD,	such	as:

 ● Azure	DevOps
 ● GitHub
 ● Bitbucket
 ● Docker	Hub
 ● Azure	Container	Registry

Key features of Azure App Service
 ● Authentication	using	social	media	providers	(such	as	Microsoft	Account,	Facebook,	
Twitter,	Google)

 ● Traffic-based	auto-scaling
 ● Testing in production
 ● Continuous	and	container-based	deployments

42

Azure Proof of Concept Guide for Developers

Use case for Azure App Service
 ● Azure	App	Service	supports	a	wide	range	of	web	technologies
 ● Great	way	to	create	proof	of	concepts	to	almost	any	web	service	or	web	frontend	
(such	as	.NET,	Java,	Python,	or	PHP,	just	to	name	a	few)

 ● Azure	App	Service	would	be	a	good	choice	when:
 - You	are	migrating	an	existing	web	application	to	Azure.
 - You	need	a	fully	managed	hosting	platform	for	your	web	apps.
 - You	need	to	deploy	and	run	a	containerized	web	app.
 - You	need	to	expose	REST	APIs	with	your	app.

Migrating to Azure App Service
 ● The Migrate	to	Azure	App	Service	tool	assists	you	with	the	migration	of	existing	.NET	and	
PHP	apps	to	Azure	App	Service.

To learn more
 ● Azure	App	Service	overview

Putting it into practice

To	put	App	Service	in	action,	go	to	Try	Azure	App	Service.

This	allows	you	to	provision	a	short-term	proof	of	concept	app	and	try	the	platform	in	a	
sandbox	environment	without	requiring	an	Azure	subscription.	It	is	free	of	charge	and	there’s	
no	commitment.

https://appmigration.microsoft.com/
https://docs.microsoft.com/azure/app-service/overview
https://azure.microsoft.com/try/app-service/

43

Azure Proof of Concept Guide for Developers

1.	 From	the	main	page,	you	can	select	Web App or Web App for Containers.	Let’s	pick	
Web App:

Figure 33: Pick Web App or Web App for Containers

2.	 Next,	pick	a	language	to	select	a	template	to	create	your	Web	App.	Let’s	pick	C#	and	
ASP.NET	Core.	Then	click	the	Create button:

Figure 34: Pick a language

44

Azure Proof of Concept Guide for Developers

3.	 In	the	next	step,	you	would	need	to	sign	in	to	create	your	Web	App	using	any	one	of	these	
four options:

Figure 35: Sign in to create your Web App

4.	 Once	this	is	successfully	deployed,	you	can	make	changes	to	the	content	and	experiment	
with	the	changed	results:

Figure 36: Successfully deployed website

45

Azure Proof of Concept Guide for Developers

5.	 When	you	are	done	with	this	proof	of	concept	app,	go	back	to	the	Try	Azure	App	Service
site	and	experiment	with	another	template.

Next,	let’s	consider	the	serverless	offering	known	as	Azure	Functions.

Function as a Service (FaaS)

With	the	FaaS	model,	Azure	provides	you	with	a	serverless	environment.	All	you	need	to	do	is	
develop	your	code.	The	underlying	infrastructure	details	are	all	handled	by	Azure.

Introduction to Azure Functions

Azure	Functions	enables	you	to	run	serverless	code	without	needing	to	provision	your	
own	infrastructure.	An	Azure	function	is	a	unit	of	code	logic	that	can	be	triggered	by	HTTP	
requests,	an	event	in	another	Azure	service,	or	on	a	schedule.	

Azure	Functions	is	serverless	because	you	can	focus	on	writing	your	code	without	having	to	
worry	about	a	server	that	executes	the	code.	You	are	only	billed	when	the	endpoint	is	called.	
When	the	endpoints	are	not	being	used,	there	is	no	charge.	With	consumption-based	billing,	
you	only	pay	for	the	time	that	your	code	executes,	and	Azure	will	scale	as	needed.	This	makes	
Azure	Functions	an	ideal	choice	for	APIs.

Key features of Azure Functions

Features Benefits

No	need	to	manage	
any	infrastructure

Allows	you	to	focus	on	adding	value.	Scaling	can	be	
automated	and	flexible.

Support	for	many	
popular	languages

You	can	write	your	code	in:
 - C#
 - JavaScript
 - F#
 - Java
 - PowerShell
 - Python
 - TypeScript

For	details	on	supported	languages	in	Azure	Functions,	
see this	documentation.

https://azure.microsoft.com/try/app-service/
https://docs.microsoft.com/azure/azure-functions/supported-languages

46

Azure Proof of Concept Guide for Developers

Features Benefits

Full	development	
experience

Integrated	tools	and	built-in	DevOps	capabilities,	which	allow	
you	to	build	and	debug	as	well	as	deploy	and	monitor.

Simplified	integration Easily	integrate	with	Azure	services	and	Software-as-a-Service	
(SaaS)	offerings.

Pay-per-use	pricing With	the	Consumption	hosting	plan,	you	are	only	charged	
when	your	code	runs.

Using	Azure	Functions,	you	can	build	small	pieces	of	functionality	quickly,	and	host	them	in	an	
elastic	environment	that	automatically	manages	scaling.

Use case for Azure Functions
 ● Azure	Functions	would	be	a	good	choice	when	you	have	code	that	is	triggered	by	other	
Azure	services,	by	web-based	events,	or	on	a	schedule.	You	can	also	use	Azure	Functions	
when	you	have	no	need	for	the	overhead	of	a	complete	hosted	project,	or	when	you	only	
want	to	pay	for	the	time	that	your	code	runs.

 ● To	further	exemplify	this,	suppose	you	want	to	automate	the	image	resizing	process	
whenever	a	new	image	file	is	uploaded	to	Azure	Blob	storage.	You	can	create	an	Azure	
Function	that	is	triggered	every	time	a	new	image	file	is	uploaded	to	Azure	Blob	storage.	
The	function	then	resizes	the	image	and	writes	it	back	to	the	Blob	storage	account.	There	
is	no	need	to	write	the	plumbing	for	connecting	to	Blob	storage;	you	just	configure	it.

To learn more
 ● Azure	Functions	documentation
 ● Azure Functions triggers and bindings concepts

https://docs.microsoft.com/azure/azure-functions/functions-overview
https://docs.microsoft.com/azure/azure-functions/functions-triggers-bindings

47

Azure Proof of Concept Guide for Developers

Putting it into practice

Like	Azure	App	Service,	you	can	try	Azure	Functions	for	free	in	a	sandbox	environment,	
without	an	Azure	subscription:
1.	 Navigate	to	this URL	and	create	your	first	Azure	function.
2.	 Select	the	I’m not a robot	checkbox	and	click	the	Create a sample function app button:

Figure 37: Create a sample function app

https://tryfunctions.com/ng-min/try?trial=true

48

Azure Proof of Concept Guide for Developers

3.	 A	sample	HTTP	trigger	function	app	is	pre-populated	in	the	editor	pane	for	you.	This	
function	is	triggered	by	an	HTTP	GET	or	POST	request	and	sends	as	output	an	HTTP	
response	based	on	the	user	code	provided.	Click	the	Run button to see it in action:

Figure 38: Click Run

4.	 If	the	execution	is	successful,	you	will	see	the	following	output:

Figure 39: Check the output after execution

49

Azure Proof of Concept Guide for Developers

5.	 Now,	change	the	HTTP method to GET	and	provide	the	query	name	and	variable	as	
follows.	Observe	the	output	after	you	click	the	Run button:

Figure 40: HTTP Get

6.	 You	can	build	another	simple	Azure	Functions	proof	of	concept	app	in	this	free	interface.	
Give	it	a	try	and	experiment	with	it!

Find	out	more	about	choosing	an	Azure	compute	service	for	your	application.	In	the	next	
section,	we	will	provide	you	with	some	useful	learning	materials	and	resources.	

https://docs.microsoft.com/azure/architecture/guide/technology-choices/compute-decision-tree

50

Azure Proof of Concept Guide for Developers

Chapter 5: Further learning
and resources

Learning the Azure fundamentals
If	you	are	new	to	Azure,	we	recommend	the	following	interactive	learning	paths:

 ● Azure	Fundamentals
 ● Explore	Microsoft	Azure	cloud	concepts
 ● Distinguish	Microsoft	Azure	Core	Services
 ● Examine	Microsoft	Azure	security,	privacy,	compliance,	and	trust
 ● Review	Microsoft	Azure	pricing,	service	level	agreements,	and	lifecycles
 ● Microsoft Learn
Once	you	have	become	proficient	in	Azure,	you	might	want	to	consider	taking	the	Microsoft	
Azure	Fundamental	AZ-900	exam	to	get	certified.	For	more	information,	please	visit	this	exam	
guideline.

Tools that you need for developing your proof of
concept project for Azure
The	following	is	a	list	of	tools	that	are	essential	for	the	examples	shown	in	this	guide:

 ● Azure subscription
 ● Visual	Studio	Code
 ● Azure	Functions	Core	Tools
 ● GitHub	account
 ● Microsoft	Edge	(Chromium-based)	browser
 ● Node.js

https://docs.microsoft.com/learn/paths/azure-fundamentals/?WT.mc_id=appinn_azuredevproof-email5-gep
https://docs.microsoft.com/learn/paths/explore-microsoft-azure-cloud-concepts/?WT.mc_id=appinn_azuredevproof-email5-gep
https://docs.microsoft.com/learn/paths/distinguish-microsoft-azure-core-services/?WT.mc_id=appinn_azuredevproof-email5-gep
https://docs.microsoft.com/learn/paths/examine-microsoft-azure-security-privacy-compliance-trust/?WT.mc_id=appinn_azuredevproof-email5-gep
https://docs.microsoft.com/learn/paths/review-microsoft-azure-pricing-slas-lifecycles/?WT.mc_id=appinn_azuredevproof-email5-gep
https://docs.microsoft.com/learn/?WT.mc_id=appinn_azuredevproof-email5-gep
https://docs.microsoft.com/learn/certifications/exams/az-900/?WT.mc_id=appinn_azuredevproof-email5-gep
https://docs.microsoft.com/learn/certifications/exams/az-900/?WT.mc_id=appinn_azuredevproof-email5-gep
https://azure.microsoft.com/free/
https://code.visualstudio.com/
https://docs.microsoft.com/azure/azure-functions/functions-run-local
https://github.com/
https://www.microsoft.com/edge
https://nodejs.org/

51

Azure Proof of Concept Guide for Developers

Other useful resources

Introduction to Azure Virtual Machines
 ● Windows	Virtual	Machines	documentation
 ● Linux	Virtual	Machines	documentation

Introduction to Azure Kubernetes Service (AKS)
 ● Azure	Kubernetes	Service

Introduction to Azure App Service
 ● App	Service	Migration	tool
 ● Azure	App	Service	overview
 ● Try	Azure	App	Service

Introduction to Azure Functions
 ● Azure	Functions	documentation
 ● About Azure Functions triggers and bindings concepts
 ● Try	Azure	Functions

Chapter 2: Sample project – implementing a web app using Azure
Static Web Apps

 ● GitHub	Actions	official	documentation
 ● Review	pull	requests	in	pre-production	environments	in	Azure	Static	Web	Apps

Chapter 3: Sample project – building an intelligent chatbot
 ● Microsoft	Bot	Framework	SDK
 ● Bot	Builder	Samples
 ● QnA	Maker

General resources
 ● Choose	an	Azure	compute	service	for	your	application
 ● Azure	free	account	FAQ

https://docs.microsoft.com/azure/virtual-machines/windows/
https://docs.microsoft.com/azure/virtual-machines/linux/
https://docs.microsoft.com/azure/aks/
https://appmigration.microsoft.com/
https://docs.microsoft.com/azure/app-service/overview
https://azure.microsoft.com/try/app-service/
https://docs.microsoft.com/azure/azure-functions/functions-overview
https://docs.microsoft.com/azure/azure-functions/functions-triggers-bindings
https://tryfunctions.com/ng-min/try?trial=true
https://docs.github.com/actions
https://docs.microsoft.com/azure/static-web-apps/review-publish-pull-requests
https://dev.botframework.com/
https://github.com/Microsoft/BotBuilder-Samples
https://www.qnamaker.ai/
https://docs.microsoft.com/azure/architecture/guide/technology-choices/compute-decision-tree
https://azure.microsoft.com/free/free-account-faq/

52

Azure Proof of Concept Guide for Developers

Conclusion
In	this	guide,	we	discussed	how	a	proof	of	concept	project	can	be	a	valuable	tool	to	evaluate	
whether	a	potential	technology	or	concept	can	be	used	to	fulfill	the	requirements	of	a	
business	solution.	It	can	help	you	to	identify	any	potential	technical	and	logistical	issues	
before	it	is	implemented	in	a	mainstream	project.	In	addition,	it	provides	timely	insights	on	
the	technology	while	mitigating	risks	by	allowing	key	decisions	to	be	made	in	the	early	stages	
of	the	development	process.

In Chapter 1: Proof of concept guide,	you	learned	the	core	foundations	necessary	for	
planning	and	executing	a	successful	proof	of	concept	project.

In Chapter 2:	Sample	Project	–	implementing	a	web	app	using	Azure	Static	Web	Apps and
Chapter 3:	Sample	project	–	building	an	intelligent	chatbot,	we	showcased	two	practical	
projects	that	might	inspire	you	to	come	up	with	your	own	proof	of	concept	projects.

In Chapter 4:	An	overview	of	Azure	for	developers,	you	were	introduced	to	the	Azure	
platform.	You	learned	how	to	obtain	an	Azure	free	account	to	get	started.	You	also	learned	
how	to	pick	the	appropriate	cloud	model	and	services	to	start	developing	your	proof	of	
concept	project	for	Azure.

We	also	provided	you	with	some	useful	learning	materials	in	Chapter 5:	Further	learning	
and resources.

You	are	now	ready	to	begin	your	proof	of	concept	project.	Good	luck!

53

Azure Proof of Concept Guide for Developers

Get started today

Sign up for an Azure free account

Learn more about Azure solutions

Speak to a sales specialist for help with pricing,
best practices, and implementing a proof of concept

https://azure.microsoft.com/free/
https://azure.microsoft.com/solutions/
https://azure.microsoft.com/support/options/
https://azure.microsoft.com/support/options/

By developers,
for developers
Microsoft.Source newsletter

Get technical articles, sample
code, and information on
upcoming events in
Microsoft.Source, the
curated monthly developer
community newsletter.

● Keep up on the latest
 technologies
● Connect with your peers
 at community events
● Learn with
 hands-on resources

Sign upSign up

https://aka.ms/msftsource
https://aka.ms/msftsource

	_Ref51788822
	_Ref50122700
	_Ref50122981
	_Ref50124298
	_Ref50123284
	_Ref50122752
	_Ref50108442
	_Ref50122763
	_Ref50114874
	_Ref50115028
	_Ref50122963
	_Ref50122949
	_Ref50083127
	_Ref51775893
	_Ref51775944
	_Ref51775965
	_Ref51775987
	_Ref50122793
	_Ref51774772
	Introduction
	What is a proof of concept?
	About this guide
	What is Microsoft Azure?

	Chapter 1: Proof of concept guide
	Step 1: Defining your goal and success criteria
	Step 2: Setting your timeline and budget
	Step 3: Scoping the proof of concept project
	Step 4: Creating a high-level architecture
	Step 5: Assembling your team
	Step 6: Implementation and testing
	Step 7: When your proof of concept is complete

	Chapter 2: Sample project – implementing a web app using Azure Static Web Apps
	Azure Static Web Apps vs. traditional web server
	Key features of Azure Static Web Apps
	Use case of Azure Static Web Apps
	Putting it into practice
	To learn more

	Chapter 3: Sample project – building an intelligent chatbot
	Key features of chatbots
	Use case for chatbots
	Putting it into practice

	Chapter 4: An overview of Azure for developers
	Getting started with Microsoft Azure
	The benefits of Azure
	Azure subscription
	What does the Azure free account include?

	Chapter 5: Further learning and resources
	Learning the Azure fundamentals
	Tools that you need for developing your proof of concept project for Azure
	Other useful resources

	Conclusion

