
White paper

Azure Proof of Concept
Guide for Developers

03 /
Introduction
4	 What is a proof of concept?
5	 About this guide
5	 What is Microsoft Azure?

06 /
Chapter 1: Proof of concept guide
6	 Step 1: Defining your goal and success criteria
6	 Step 2: Setting your timeline and budget
7	 Step 3: Scoping the proof of concept project
8	 Step 4: Creating a high-level architecture
9	 Step 5: Assembling your team
9	 Step 6: Implementation and testing
9	 Step 7: When your proof of concept is complete

11 /
Chapter 2: Sample project –
implementing a web app using Azure
Static Web Apps
13	 Azure Static Web Apps vs. traditional web server
13	 Key features of Azure Static Web Apps
13	 Use case of Azure Static Web Apps
14	 Putting it into practice
21	 To learn more

22 /
Chapter 3: Sample project – building an
intelligent chatbot
22	 Key features of chatbots
24	 Use case for chatbots
25	 Putting it into practice

36 /
Chapter 4: An overview of
Azure for developers
36	 Getting started with Microsoft Azure
36	 The benefits of Azure
37	 Azure subscription
37	 What does the Azure free account include?

50 /
Chapter 5: Further learning and resources
50	 Learning the Azure fundamentals
50	 Tools that you need for developing your proof of

concept project for Azure
51	 Other useful resources

52 /
Conclusion

Azure Proof of Concept
Guide for Developers

© 2020 Microsoft Corporation. All rights reserved.
This document is provided “as is.” Information and views expressed in this document, including URL and other internet website
references, may change without notice. You bear the risk of using it. This document does not provide you with any legal rights to
any intellectual property in any Microsoft product. You may copy and use this document for your internal, reference purposes.

3

Azure Proof of Concept Guide for Developers

Introduction
With the advent of new technologies, many organizations are embarking on proof of
concept projects to learn and explore new capabilities, and conduct feasibility assessments
of proposed concepts. A proof of concept is an important first step in cultivating business
innovations.

In a recent survey (see Figure 1) conducted by Packt Publishing, building a proof of concept
project is the most popular choice for developers when it comes to evaluating and adopting
new tools and platforms.

Figure 1: How tools/platforms are evaluated and adopted by developers

4

Azure Proof of Concept Guide for Developers

What is a proof of concept?
A proof of concept is a scoped, time-bound exercise with specific, measurable goals and
metrics of success. Ideally, it should have some basis in business reality so that the results are
meaningful.

Benefits of proof of concept projects

A proof of concept project can be a valuable tool to evaluate whether a potential technology
or concept can be used to fulfill the requirements of a business solution. It can help identify
any potential technical and logistical issues before the service is implemented in a mainstream
project. In addition, it provides timely insights on the technology while mitigating risks by
allowing key decisions to be made in the early stages of the development process.

There are several benefits that proof of concept projects provide:

Experimenting with new technologies

As technologies evolve, proof of concept projects enable organizations to discover, learn,
and experiment with groundbreaking technologies that can potentially be used in upcoming
projects. Under the guidelines of a well-scoped and time-framed execution, the development
team can quickly ramp up on new technology without posing risks to the company’s
mainstream large-scale projects. Best of all, the success of the proof of concept project
might be adapted in a mainstream project in the future. As a result, proof of concept projects
encourage innovation.

Minimizing risks

Prior to embarking on a high-risk, large-scale, and potentially expensive project, it is a good
practice to minimize risks and costs by performing a quick validation of the parts of the
project that are considered risky. For example, a project team could identify and isolate a
particular technology used in a large-scale project, and flag it as risky due to the development
team’s inexperience with such technology. The project team can perform a quick feasibility
experimentation and assessment of said technology by scoping out a small sub-project with
a fixed budget and timeline. The risks are mitigated as proof of concept projects are typically
executed in a controlled and sandboxed environment.

5

Azure Proof of Concept Guide for Developers

About this guide
The purpose of the Azure Proof of Concept Guide for Developers is to present the reader with
guidance on how to plan a successful proof of concept project. It will also provide directions
on how to start developing in the Microsoft Azure cloud platform. This guide is designed for
developers and architects who are embarking on their first journey into Azure.

The methodology outlined in Chapter 1: Proof of concept guide builds the core foundation
necessary for planning and executing a successful proof of concept project.

In Chapter 2: Sample project – implementing a web app using Azure Static Web Apps and
Chapter 3: Sample project – building an intelligent chat bot, we will showcase two practical
projects that might inspire you to come up with your own proof of concept projects.

In Chapter 4: An overview of Azure for developers, we introduce you to the Azure platform.
For those who are new to Azure, you will learn how to obtain an Azure free account to begin
your proof of concept journey on Azure. You will also learn how to pick the appropriate cloud
model and services to start developing your project for Azure.

We will also provide you with some useful learning materials in Chapter 5: Further learning
and resources.

What is Microsoft Azure?
The focus of this guide will be on Microsoft Azure. Azure is a cloud platform that enables you
to host your existing applications with minimum changes, as well as develop new cloud-native
applications. There is a vast number of ready-to-use Azure services that you can integrate with
your applications to instantly take advantage of new cloud capabilities, while minimizing the
need to develop those services yourself.

By hosting your applications in Azure, you can build a Minimum Viable Product and then scale
your application as your customer demand grows. Azure offers the reliability that is needed
for high-availability applications, even including failover between different regions. The Azure
portal lets you easily manage all your Azure services. You can also manage your services
programmatically by using service-specific APIs and templates.

We will learn more about Azure in Chapter 4: An overview of Azure for developers.

With so much to cover, let’s get started with the proof of concept guide.

6

Azure Proof of Concept Guide for Developers

Chapter 1: Proof of concept guide

Step 1: Defining your goal and success criteria
Most proof of concept projects are results driven. Set the goal on what you want to
accomplish from your proof of concept project and determine what would be considered a
successful execution of your project by stating the success criteria.

We want to prove whether a concept works or not without investing a huge amount of time
and resources. If the proof of concept project succeeds and achieves the expected results,
the project team can give the green light to proceed with the next steps. However, should the
experimentation fail, it would have failed within a fixed budget, timeline, scope, and set of
resources, which would be minimal costs in the grand scheme of things. Therefore, the benefit
of doing a proof of concept project is that it allows the project team to quickly determine
whether to continue to pursue the concept, abandon it, or make alternate choices. Bear in
mind when scoping out your project (refer to Step 3: Scoping the proof of concept project)
that the goal of your proof of concept is to succeed quickly (and conversely, fail quickly) so
that subsequent decisions can be made in a timely manner.

Step 2: Setting your timeline and budget
Once the goal and success criteria for the proof of concept project have been defined, you will
set the timeline and budget.

In our experience, proof of concept projects have the best outcome when they are timeboxed
between two to four weeks. This provides enough time for the work to be completed without
the burden of too many use cases and complex test matrices.

7

Azure Proof of Concept Guide for Developers

Here are some tips:
	● Make realistic estimates of the time that will be required to complete the tasks in your
proof of concept.

	● If you find that your proof of concept is estimated to run longer than four weeks, consider
reducing its scope to focus on the highest priority goals.

	● Get buy-ins from all key resources and sponsors for the timeline and budget before
proceeding.

Now that you have determined your timeline and budget, let’s move on to scoping the proof
of concept.

Step 3: Scoping the proof of concept project
It is important to define the scope for your proof of concept project before you start the
implementation to prevent scope creep. Knowing in advance that the resources will not stay
around indefinitely sets appropriate expectations for the stakeholders of the proof of concept.

Tip: Avoid turning a proof of concept project into a production project by defining your scope
before starting the project. Then, throughout the course of the project, ensure that everyone
involved adheres to the scope.

The following key questions will help you determine the scope of your proof of
concept project:

	● What do you want to learn or achieve from your proof of concept?
	● What are the success criteria?
	● What workloads or scenarios will be covered?

Tip: To ensure that your proof of concept project can be scoped and completed in a timely
manner, keep the workloads and scenarios as small as possible.

	● What resources must be available?
	● Who are the users and teams to validate the outcome?
	● What is the duration of the project?

Tip: Choose a timeline that aligns well with the planned scope, such as two weeks or
four weeks.

	● After the proof of concept is complete, what will happen with the resources that were
allocated during the project? Do you plan to discard those resources?

With the scope defined, we can create a high-level architecture for the proof of concept.

8

Azure Proof of Concept Guide for Developers

Step 4: Creating a high-level architecture
Keep in mind that you are developing a proof of concept to validate whether a concept
is feasible. Therefore, in order to keep the goal of your project achievable within your
well-scoped timeline, when you create your high-level architecture, you must decide
which essential components will be part of the proof of concept and which non-essential
components should be excluded from it.

As a rule of thumb, the more components you include in your proof of concept, the more
complicated your project will become and the longer it will be for you to achieve your
success criteria.

As part of your high-level architecture, you will also need to choose the appropriate
cloud model to host your proof of concept application. You will learn “How to choose the
appropriate cloud model for your Azure proof of concept project” in Chapter 4: An overview
of Azure for developers.

As a best practice, your proof of concept projects should always reside in a separate Azure
subscription from production. Ideally, a Dev/Test subscription should be used to keep the cost
low. You will learn more about Azure subscription in the Getting started with Microsoft Azure
section in Chapter 4: An overview of Azure for developers.

Tip: There is no need to be perfect. It is tempting to try and architect a perfect proof of
concept, which will mirror the eventual product if it is rolled out to production. However, for
a proof of concept project, this would be counterproductive. The closer you attempt to get to
perfection, the more time and effort you will have to exert from start to finish. That would be
undesirable. As you recall, the purpose of the proof of concept is to quickly prove a certain
well-scoped concept. It is to allow you to make the correct decisions in a timely manner.
Therefore, the focus of the should always be on selecting the smallest essential dependencies
and associated workloads that meet specific measurable goals, to help guarantee a
swift victory.

With the architectural plan in place, you are ready to assemble your team for the proof of
concept project.

9

Azure Proof of Concept Guide for Developers

Step 5: Assembling your team
For a small one-off, simple, non-critical experimental proof of concept, a one-person team
might suffice. However, for most typical proof of concept projects where the results are critical
and could influence the decision of a bigger project, you should identify the mandatory team
members needed and the commitment required to support your proof of concept. The team
that you are assembling must reflect the scope of your project.

Step 6: Implementation and testing
With the goal, timeline, budget, and scope defined and your team assembled, you can begin
implementing your proof of concept project based on the high-level architecture. To maximize
execution success, follow modern DevOps processes with iterative development and testing
throughout your implementation.

Step 7: When your proof of concept is complete
Once your proof of concept is complete, evaluate whether you have met the success criteria
which you defined in Step 1: Defining your goal and success criteria.

Figure 2 - Evaluate your proof of concept

Proof of concept

Present your successful
proof of concept results

to key stakeholders

Retry the proof of concept
by redefining the goal,
timeline and budget,

scope and architecture

Conduct a post-mortem
review and capture any

lessons learned

Success Failure

10

Azure Proof of Concept Guide for Developers

If your proof of concept is successful
	● Present your successful results to key stakeholders.

Tip: When presenting to key decision makers about your successful proof of concept, try
to extrapolate financial success to business return on investment. Here are some examples:
	- Our proof of concept demonstrated that we can save USD X per month in Azure
spending due to the optimization in the new implementation. We recommend
implementing this concept in production.

	- Customers have been asking for this new functionality, which has proven to be
successful in the proof of concept. If we implement this concept in Azure, we estimate
that revenue will grow by X% per quarter.

If your proof of concept failed
	● You have two decisions:

	- Retry the proof of concept by redefining the goal, timeline and budget, scope, and
architecture.

	- Conduct a post-mortem review on the failure to see if there is any insights or lessons
learned during the proof of concept.

In this section, you learned how to plan and execute the proof of concept. In the following
section, we will showcase two practical projects, complete with step-by-step instructions. We
hope that they will inspire you to come up with your own proof of concept projects.

11

Azure Proof of Concept Guide for Developers

Chapter 2: Sample project –
implementing a web app using
Azure Static Web Apps
In the first sample project, you will discover how to implement a web app using Azure Static
Web Apps. You will learn about Azure App Service in Chapter 4: An overview of Azure for
developers, but this project will cover one of the expanded hosting options of App Service:
Static Web Apps. Developers can use Static Web Apps to render static contents (such as
HTML, CSS, and JavaScript) while delivering the necessary dynamic logic by developing
serverless APIs with Azure Functions.

The Static Web Apps workflow (see Figure 3: Azure Static Web Apps workflow) closely
resembles the daily workflow of a developer. Static Web Apps provide a managed Continuous
Integration and Continuous Delivery (CI/CD) pipeline that automatically builds and deploys
full stack web apps from a GitHub repository to Azure. This is made possible by GitHub
Actions (to learn more about GitHub Actions, visit this documentation).

https://docs.github.com/actions

12

Azure Proof of Concept Guide for Developers

Figure 3: Azure Static Web Apps workflow

When you create a Static Web Apps resource, Azure sets up a GitHub Actions workflow in the
app’s source code repository, which monitors a branch of your choice. Each time you push
commits or accept pull requests into the watched branch, GitHub Actions automatically builds
and deploys your app and its API to Azure.

Azure Static Web Apps are commonly built using libraries and frameworks such as Angular,
React, Svelte, or Vue. These apps include HTML, CSS, JavaScript, and image assets that make
up the application.

Branch of your choice

Push / Pull Request

Source Code Repository

GitHub Actions

Azure Static Web Apps
API
Azure Functions

Static Content
HTML, CSS, JavaScript

13

Azure Proof of Concept Guide for Developers

Azure Static Web Apps vs. traditional web server
With a traditional web server, assets are served from a single server alongside any required
API endpoints.

With Static Web Apps, static assets are separated from a traditional web server and are instead
served from points geographically distributed around the world. This distribution makes
serving files much faster, as files are physically closer to end users.

In addition, API endpoints are hosted using a serverless architecture, which reduces the
necessity of a full backend server.

Key features of Azure Static Web Apps
	● Web hosting for static content such as HTML, CSS, JavaScript, and images
	● Integrated API support provided by Azure Functions
	● First-party GitHub integration where repository changes trigger builds and deployments
	● Automatically create staging environments to test code updates before rolling them out

to production
	● Globally distributed static content, putting content closer to your users
	● Free SSL certificates, which are automatically renewed
	● Custom domains to provide branded customizations to your app
	● Seamless security model with a reverse-proxy when calling APIs, which requires no
CORS configuration

	● Authentication provider integrations with Azure Active Directory, Facebook, Google,
GitHub, and Twitter

	● Customizable authorization role definition and assignments
	● Backend routing rules enabling full control over the content and routes you serve

Use case of Azure Static Web Apps
	● Build single-page applications with frameworks and libraries such as Angular, React, Svelte,
or Vue with an Azure Functions backend

	● Publish static sites with frameworks such as Gatsby, Hugo, and VuePress
	● Deploy web applications with frameworks such as Next.js and Nuxt.js

14

Azure Proof of Concept Guide for Developers

Putting it into practice
Note: As of the time of writing, Azure Static Web App is in preview and it is free of charge.
This is subject to change once it is out of preview.
1.	 Sign in to your GitHub account and go to this URL to create a new repository.
2.	 Give your repository a name, such as my-first-static-web-app. Then click the Create

repository from template button:

Figure 4: Create your GitHub repository from template

3.	 Next, go to the Azure portal.
4.	 Go to the Azure Marketplace by clicking the Create a resource button. Type Static Web

App in the search box.

https://github.com/staticwebdev/angular-basic/generate
https://portal.azure.com

15

Azure Proof of Concept Guide for Developers

5.	 Click Static Web App (preview), then click the Create button:

Figure 5: Create Static Web App

6.	 Fill in the form:

Figure 6: Create a new Resource Group

16

Azure Proof of Concept Guide for Developers

7.	 Pick a region where you want your Azure Static Web App to be hosted:

Figure 7: Pick a region

17

Azure Proof of Concept Guide for Developers

8.	 Connect to your GitHub account:

Figure 8: Connect to your GitHub account

18

Azure Proof of Concept Guide for Developers

9.	 In the GitHub account section, supply the Organization, Repository, and Branch
information as shown:

Figure 9: Supply the Organization, Repository and Branch information

19

Azure Proof of Concept Guide for Developers

10.	Provide the initial build variables as shown:

Figure 10: Provide the initial build variables

20

Azure Proof of Concept Guide for Developers

11.	Navigate to the Review + create tab and click the Create button:

Figure 11: Review + create

12.	Once your deployment is complete, click the Go to resources button to find the new URL
that has been generated for your static web app:

Figure 12: Deployment is complete

21

Azure Proof of Concept Guide for Developers

13.	Find the new URL that has been generated for your static web app:

Figure 13: Static Web App URL

14.	Open your browser and visit the generated URL to see your static web app in action:

Figure 14: Static Web App in action

Congratulations, you have successfully deployed your first Azure Static Web App.

To learn more
	● GitHub Actions official documentation
	● Review pull requests in pre-production environments in Azure Static Web Apps
Next, we will explore a second sample project, building an intelligent chatbot.

https://docs.github.com/actions
https://docs.microsoft.com/azure/static-web-apps/review-publish-pull-requests

22

Azure Proof of Concept Guide for Developers

Chapter 3: Sample project –
building an intelligent chatbot
In this sample project, you will explore how to build an intelligent chatbot that uses artificial
intelligence (AI). As AI continues to dominate in mainstream technology, the time is now for
developers like you to harness the power of AI in your applications.

Today, many of us use a variety of technologies to communicate. For example:
	● Phone calls
	● Messaging services
	● Online chat applications
	● Email
	● Social media platforms
	● Collaborative tools
We have become accustomed to ubiquitous connectivity, and we expect the organizations
we deal with to be easily contactable and immediately responsive through the channels we
already use. Additionally, we expect these organizations to engage with us individually, and be
able to answer complex questions at a personal level.

Key features of chatbots
While many organizations publish support information and answers to frequently asked
questions (FAQs) that can be accessed through a web browser or dedicated app, answers to
specific questions are difficult to find. These organizations frequently find their support staff
being overburdened with requests for help through various channels, including phone calls,
email, text messages, and social media.

23

Azure Proof of Concept Guide for Developers

Many businesses are progressively turning to AI solutions that make use of AI agents
(commonly known as chatbots) to provide a first line of automated support through the full
range of channels that we use to communicate. Bots are designed to interact with users in a
conversational manner, as shown in Figure 15: An example of a chatbot user interface:

Figure 15: An example of a chatbot user interface

The example shown here is a chatbot interface like ones that you find on retail store websites.
However, bots can be designed to work across multiple channels, including email, social media
platforms, and even voice calls. Regardless of the channel used, chatbots typically manage
conversation flows using a combination of natural language and constrained option responses
that guide the user to a resolution.

24

Azure Proof of Concept Guide for Developers

Use case for chatbots
Figure 16: Azure QnA Maker and Azure Bot Service, illustrates the two key components in
creating an intelligent chatbot. The first component is a knowledge base of questions and
answers. On Azure, this is QnA Maker. The second component is a bot service that provides
an interface to the knowledge base. On Azure, this is Azure Bot Service. Using QnA Maker
and Azure Bot Service, you can build a chatbot that provides users with answers to FAQs. The
interface of the bot can be a chat section on your website.

Typically, conversations take the form of messages exchanged in turns. One of the most
common kinds of conversational exchange is a question followed by an answer. This
pattern forms the basis for many user support bots and can often be based on existing FAQ
documentation.

Figure 16: Azure QnA Maker and Azure Bot Service

Two key components in creating an intelligent chatbot
proof of concept

A knowledge base of QnA A bot service
 ● Enables questions that can be phrased in

multiple ways to be understood with the
same semantic meaning

 ● Usually with some built-in natural
language processing model

 ● Provides an interface to the knowledge
base through one or more channels

What technology in Azure should we use?

Azure QnA Maker Azure Bot Service
Enables you to create and publish a
knowledge base with built-in natural

language processing capabilities.

Provides a framework for developing,
publishing, and managing bots on Azure.

25

Azure Proof of Concept Guide for Developers

Putting it into practice
1.	 Sign in to the QnA Maker portal using your Azure credentials (if you don’t have an Azure

subscription yet, review the Azure subscription section in Chapter 4: An overview of Azure
for developers).

2.	 Click Create a knowledge base and then the Create a QnA service button to create a
new QnA Maker resource:

Figure 17: Create a new QnA Maker resource

https://www.qnamaker.ai/

26

Azure Proof of Concept Guide for Developers

3.	 Once the Azure portal is launched, populate the form as follows, then click the Review +
create tab. The entry in the Name field must be globally unique. If you receive a name
conflict error, just try again with another unique name:

Figure 18: Add details in the Basics tab

27

Azure Proof of Concept Guide for Developers

4.	 After your QnA Maker resource has been provisioned, go back to Create a knowledge
base, refresh the page, and continue to Step 2:

Figure 19: Step 2 of QnA Maker – Connecting QnA service to your KB

5.	 In Step 3, name your knowledge base:

Figure 20: Step 3 of QnA Maker – Name your KB

https://www.qnamaker.ai/Create
https://www.qnamaker.ai/Create

28

Azure Proof of Concept Guide for Developers

6.	 Populate Step 4 as follows:

Figure 21: Step 4 of QnA Maker – Populate your KB

7.	 Click the Create your KB button in Step 5:

Figure 22: Step 5 of QnA Maker – Create your KB

29

Azure Proof of Concept Guide for Developers

8.	 In the QnA Maker portal, on the Edit page, select + Add QnA pair from the toolbar:

Figure 23: Add a QnA pair

9.	 Add the question and answer. Then click the Save and train button:

Figure 24: Add questions and answers

30

Azure Proof of Concept Guide for Developers

10.	You can test your knowledge base right away by pressing the Test button. Then, enter a
question such as “What are the professional sports teams in Toronto”:

Figure 25: Test your knowledge base

11.	Press Inspect to examine the details of the conversation:

Figure 26: Examine the details of the conversation

12.	Click the Test button to close the test panel.

31

Azure Proof of Concept Guide for Developers

Publishing your QnA knowledge base

When you publish your knowledge base, its contents move from the test index to a
production index in Azure Search.

In the QnA Maker portal, click the Publish button:

Figure 27: Publish your QnA KB

32

Azure Proof of Concept Guide for Developers

Create the bot in Azure Bot Service

Next, you will create a bot in Azure Bot Service to bind to the knowledge base you created in
the previous steps:
1.	 After your knowledge base has been successfully deployed, click the Create Bot button to

launch the Azure Bot Service creation page in the Azure portal:

Figure 28: Launch the Azure Bot Service creation page

33

Azure Proof of Concept Guide for Developers

2.	 On the Azure Bot Service creation page, populate the form as follows:

Figure 29: Add Web App Bot details

34

Azure Proof of Concept Guide for Developers

3.	 Once the bot has been provisioned, open it from Bot Services:

Figure 30: Open bot from Bot Services

4.	 Under Bot management, select Test in Web Chat:

Figure 31: Select Test in Web Chat

35

Azure Proof of Concept Guide for Developers

In summary, you used the QnA Maker to create a new knowledge base in Azure. You added
a public URL to the knowledge base. Then, you added your own QnA pair, trained, and
tested. After publishing your knowledge base, you created a Web App Bot in Azure Bot
Services. Finally, you tested the bot running in Azure. Bots can help reduce support costs by
providing automated support through multiple communication channels. We have shown
you how to use QnA Maker and Azure Bot Services to create a chatbot that answers user
support questions.

This concludes our tour of two practical projects. We hope they inspire you to come up with
your own proof of concept projects. In the next section, we will explore an overview of Azure
for developers, and learn how to pick the appropriate cloud model for your Azure proof of
concept projects.

36

Azure Proof of Concept Guide for Developers

Chapter 4: An overview of
Azure for developers

Getting started with Microsoft Azure
As discussed in the introduction, Azure is a cloud platform which empowers you to:

	● Host your existing applications with minimum changes
	● Develop new cloud-native applications
There is a huge number of ready-to-use Azure services that you can integrate with your
applications to instantly take advantage of new cloud capabilities while minimizing the need
to develop those services yourself. In this section, we will discuss:

	● The benefits of Azure
	● How to get started with Azure
	● Tools you need to develop your application for Azure
	● How to choose the appropriate cloud model for your Azure proof of concept project

The benefits of Azure
The following are some key benefits of hosting your applications on Azure:

Lower costs
	● By developing applications on Azure, your company will save on capital expenditures in
the long run thanks to Azure’s pay-as-you-go pricing model.

	● You pay only for the services that you use.
	● There’s no need to carry capital expenses by purchasing on-premises servers.

37

Azure Proof of Concept Guide for Developers

Less maintenance
	● With managed services, you can focus on developing your application.
	● Azure will look after infrastructure maintenance for you.

Scalability
	● Azure services are highly scalable to meet the growing demands of your business.

High availability and reliability
	● You can configure your Azure services to ensure your applications are highly available
and reliable.

Azure subscription
To start building applications to run on Azure, you will need an Azure subscription. If your
company provides you with Azure credits, you are all set. Otherwise, simply sign up for an
Azure free account.

What does the Azure free account include?
The Azure free account allows you to get started with 12 months of free services and USD200
credit to explore Azure for 30 days. These offers may change over time. For the most up-to-date
details on what is included in the Azure free account, please visit the Azure free account FAQ.

If you are new to Azure, there are plenty of free resources to help you get started with ease.
You can find these resources in Chapter 5: Further learning and resources.

In the next section, you will look at tools that you need to develop your proof of concept
project for Azure.

Tools that you need to develop your proof of concept project for Azure

The following is a list of tools that are essential for the examples shown in this guide:
	● Azure subscription
	● Visual Studio Code
	● Azure Functions Core Tools
	● GitHub account
	● Microsoft Edge (Chromium-based) browser
	● Node.js

https://azure.microsoft.com/free/
https://azure.microsoft.com/free/free-account-faq/
https://azure.microsoft.com/free/
https://code.visualstudio.com/
https://docs.microsoft.com/azure/azure-functions/functions-run-local
https://github.com/
https://www.microsoft.com/edge
https://nodejs.org/

38

Azure Proof of Concept Guide for Developers

In the next section, you will learn how to choose the appropriate cloud model for your Azure
proof of concept project.

How to choose the appropriate cloud model for your Azure proof of
concept project

In Chapter 1: Proof of concept guide, you learned about the proof of concept. Once you have
your proof of concept planning in place, you can start your implementation and testing. In
this section, we will show you the four cloud models (see Figure 32: Azure cloud models for
application development and hosting) that are available for you to choose for your Azure
proof of concept project. We will explain the use case for each of these cloud models so that
you can make an informed choice.

Figure 32: Azure cloud models for Application Development and Hosting

39

Azure Proof of Concept Guide for Developers

Infrastructure as a Service (IaaS)

In the IaaS model, Azure gives you full control to manage your own application hosting
environment.

Introduction to Azure Virtual Machines

In the IaaS model, Azure enables you to deploy or migrate your application to either Windows
or Linux virtual machines. You will have full control over the machine configuration. However,
in the IaaS model, you are responsible for all operating system upgrades, server software
installation, configuration, and maintenance.

Key Features of Azure Virtual Machines
	● Azure Virtual Machines allows you to have complete control of the operating system.
	● You can fine-tune the CPU/memory balance, the machine family (SKU), and the disk
layouts.

Use case for Azure Virtual Machines
	● Azure Virtual Machines would be a good choice if you wish to have full control over your
application infrastructure or to migrate on-premises application workloads to Azure with
little to no changes.

To learn more
	● Windows Virtual Machines documentation
	● Linux Virtual Machines documentation

https://docs.microsoft.com/azure/virtual-machines/windows/
https://docs.microsoft.com/azure/virtual-machines/linux/

40

Azure Proof of Concept Guide for Developers

Container as a Service (CaaS)

A container, by definition, is a standard unit of software that bundles an entire runtime
environment (an application, configuration files required to run it, and all its dependencies,
libraries, and other binaries) into a single package. By containerizing the application platform
and its dependencies, variances in OS environments and underlying infrastructure are
abstracted from it.

Introduction to Azure Kubernetes Service

In the CaaS model, once you run more than one container, you need an orchestrator. The
managed container orchestrator in Azure is called the Azure Kubernetes Services (AKS).

AKS manages your hosted Kubernetes environment and makes it simple to deploy a managed
Kubernetes cluster in Azure. You can create an AKS cluster in the Azure portal, with the
Azure command-line interface, or template-driven deployment options (such as Azure
Resource Manager templates and Terraform). With AKS, you can easily deploy and manage
containerized applications. You do not need to be an expert in container orchestration to
use AKS.

The Kubernetes master and worker nodes are deployed and configured for you when you
deploy an AKS cluster. During deployment, other features (such as Azure Active Directory
integration, monitoring, and advanced networking) can also be configured. AKS supports
Windows Server containers as well.

Key features of AKS
	● Reduces the complexity and operational overhead of managing Kubernetes by offloading
much of that responsibility to Azure.

	● Azure handles critical tasks like health monitoring and maintenance for you.
	● Azure manages the Kubernetes masters for you.
	● Kubernetes masters are free of charge.
	● You only manage and maintain the agent nodes.
	● You only pay for the agent nodes within your clusters.

Use case for AKS
	● AKS is a good choice if you want to simplify the deployment and management of
applications based on microservices. You can also use AKS to migrate existing applications
to containers and run them.

To learn more
	● Azure Kubernetes Service

https://docs.microsoft.com/azure/aks/

41

Azure Proof of Concept Guide for Developers

Platform as a Service (PaaS)

In the PaaS model, Azure provides you with a fully managed hosted environment to run your
application on. You will not have to worry about the underlying infrastructure details.

Introduction to Azure App Service

Azure App Service is a PaaS that gives you the fastest way to publish your web-based projects.
With App Service, you can easily extend your web apps to support your mobile clients and
publish REST APIs.

With App Service, you can create the following types of applications:
	● Web apps
	● APIs
	● Mobile app backends
Since all these application types share the App Service runtime, you can literally host
a website, support mobile clients, and expose your APIs in Azure from a single project
or solution.

App Service is designed with DevOps in mind. It supports various tools for publishing and
CI/CD, such as:

	● Azure DevOps
	● GitHub
	● Bitbucket
	● Docker Hub
	● Azure Container Registry

Key features of Azure App Service
	● Authentication using social media providers (such as Microsoft Account, Facebook,
Twitter, Google)

	● Traffic-based auto-scaling
	● Testing in production
	● Continuous and container-based deployments

42

Azure Proof of Concept Guide for Developers

Use case for Azure App Service
	● Azure App Service supports a wide range of web technologies
	● Great way to create proof of concepts to almost any web service or web frontend
(such as .NET, Java, Python, or PHP, just to name a few)

	● Azure App Service would be a good choice when:
	- You are migrating an existing web application to Azure.
	- You need a fully managed hosting platform for your web apps.
	- You need to deploy and run a containerized web app.
	- You need to expose REST APIs with your app.

Migrating to Azure App Service
	● The Migrate to Azure App Service tool assists you with the migration of existing .NET and
PHP apps to Azure App Service.

To learn more
	● Azure App Service overview

Putting it into practice

To put App Service in action, go to Try Azure App Service.

This allows you to provision a short-term proof of concept app and try the platform in a
sandbox environment without requiring an Azure subscription. It is free of charge and there’s
no commitment.

https://appmigration.microsoft.com/
https://docs.microsoft.com/azure/app-service/overview
https://azure.microsoft.com/try/app-service/

43

Azure Proof of Concept Guide for Developers

1.	 From the main page, you can select Web App or Web App for Containers. Let’s pick
Web App:

Figure 33: Pick Web App or Web App for Containers

2.	 Next, pick a language to select a template to create your Web App. Let’s pick C# and
ASP.NET Core. Then click the Create button:

Figure 34: Pick a language

44

Azure Proof of Concept Guide for Developers

3.	 In the next step, you would need to sign in to create your Web App using any one of these
four options:

Figure 35: Sign in to create your Web App

4.	 Once this is successfully deployed, you can make changes to the content and experiment
with the changed results:

Figure 36: Successfully deployed website

45

Azure Proof of Concept Guide for Developers

5.	 When you are done with this proof of concept app, go back to the Try Azure App Service
site and experiment with another template.

Next, let’s consider the serverless offering known as Azure Functions.

Function as a Service (FaaS)

With the FaaS model, Azure provides you with a serverless environment. All you need to do is
develop your code. The underlying infrastructure details are all handled by Azure.

Introduction to Azure Functions

Azure Functions enables you to run serverless code without needing to provision your
own infrastructure. An Azure function is a unit of code logic that can be triggered by HTTP
requests, an event in another Azure service, or on a schedule.

Azure Functions is serverless because you can focus on writing your code without having to
worry about a server that executes the code. You are only billed when the endpoint is called.
When the endpoints are not being used, there is no charge. With consumption-based billing,
you only pay for the time that your code executes, and Azure will scale as needed. This makes
Azure Functions an ideal choice for APIs.

Key features of Azure Functions

Features Benefits

No need to manage
any infrastructure

Allows you to focus on adding value. Scaling can be
automated and flexible.

Support for many
popular languages

You can write your code in:
	- C#
	- JavaScript
	- F#
	- Java
	- PowerShell
	- Python
	- TypeScript

For details on supported languages in Azure Functions,
see this documentation.

https://azure.microsoft.com/try/app-service/
https://docs.microsoft.com/azure/azure-functions/supported-languages

46

Azure Proof of Concept Guide for Developers

Features Benefits

Full development
experience

Integrated tools and built-in DevOps capabilities, which allow
you to build and debug as well as deploy and monitor.

Simplified integration Easily integrate with Azure services and Software-as-a-Service
(SaaS) offerings.

Pay-per-use pricing With the Consumption hosting plan, you are only charged
when your code runs.

Using Azure Functions, you can build small pieces of functionality quickly, and host them in an
elastic environment that automatically manages scaling.

Use case for Azure Functions
	● Azure Functions would be a good choice when you have code that is triggered by other
Azure services, by web-based events, or on a schedule. You can also use Azure Functions
when you have no need for the overhead of a complete hosted project, or when you only
want to pay for the time that your code runs.

	● To further exemplify this, suppose you want to automate the image resizing process
whenever a new image file is uploaded to Azure Blob storage. You can create an Azure
Function that is triggered every time a new image file is uploaded to Azure Blob storage.
The function then resizes the image and writes it back to the Blob storage account. There
is no need to write the plumbing for connecting to Blob storage; you just configure it.

To learn more
	● Azure Functions documentation
	● Azure Functions triggers and bindings concepts

https://docs.microsoft.com/azure/azure-functions/functions-overview
https://docs.microsoft.com/azure/azure-functions/functions-triggers-bindings

47

Azure Proof of Concept Guide for Developers

Putting it into practice

Like Azure App Service, you can try Azure Functions for free in a sandbox environment,
without an Azure subscription:
1.	 Navigate to this URL and create your first Azure function.
2.	 Select the I’m not a robot checkbox and click the Create a sample function app button:

Figure 37: Create a sample function app

https://tryfunctions.com/ng-min/try?trial=true

48

Azure Proof of Concept Guide for Developers

3.	 A sample HTTP trigger function app is pre-populated in the editor pane for you. This
function is triggered by an HTTP GET or POST request and sends as output an HTTP
response based on the user code provided. Click the Run button to see it in action:

Figure 38: Click Run

4.	 If the execution is successful, you will see the following output:

Figure 39: Check the output after execution

49

Azure Proof of Concept Guide for Developers

5.	 Now, change the HTTP method to GET and provide the query name and variable as
follows. Observe the output after you click the Run button:

Figure 40: HTTP Get

6.	 You can build another simple Azure Functions proof of concept app in this free interface.
Give it a try and experiment with it!

Find out more about choosing an Azure compute service for your application. In the next
section, we will provide you with some useful learning materials and resources.

https://docs.microsoft.com/azure/architecture/guide/technology-choices/compute-decision-tree

50

Azure Proof of Concept Guide for Developers

Chapter 5: Further learning
and resources

Learning the Azure fundamentals
If you are new to Azure, we recommend the following interactive learning paths:

	● Azure Fundamentals
	● Explore Microsoft Azure cloud concepts
	● Distinguish Microsoft Azure Core Services
	● Examine Microsoft Azure security, privacy, compliance, and trust
	● Review Microsoft Azure pricing, service level agreements, and lifecycles
	● Microsoft Learn
Once you have become proficient in Azure, you might want to consider taking the Microsoft
Azure Fundamental AZ-900 exam to get certified. For more information, please visit this exam
guideline.

Tools that you need for developing your proof of
concept project for Azure
The following is a list of tools that are essential for the examples shown in this guide:

	● Azure subscription
	● Visual Studio Code
	● Azure Functions Core Tools
	● GitHub account
	● Microsoft Edge (Chromium-based) browser
	● Node.js

https://docs.microsoft.com/learn/paths/azure-fundamentals/?WT.mc_id=appinn_azuredevproof-email5-gep
https://docs.microsoft.com/learn/paths/explore-microsoft-azure-cloud-concepts/?WT.mc_id=appinn_azuredevproof-email5-gep
https://docs.microsoft.com/learn/paths/distinguish-microsoft-azure-core-services/?WT.mc_id=appinn_azuredevproof-email5-gep
https://docs.microsoft.com/learn/paths/examine-microsoft-azure-security-privacy-compliance-trust/?WT.mc_id=appinn_azuredevproof-email5-gep
https://docs.microsoft.com/learn/paths/review-microsoft-azure-pricing-slas-lifecycles/?WT.mc_id=appinn_azuredevproof-email5-gep
https://docs.microsoft.com/learn/?WT.mc_id=appinn_azuredevproof-email5-gep
https://docs.microsoft.com/learn/certifications/exams/az-900/?WT.mc_id=appinn_azuredevproof-email5-gep
https://docs.microsoft.com/learn/certifications/exams/az-900/?WT.mc_id=appinn_azuredevproof-email5-gep
https://azure.microsoft.com/free/
https://code.visualstudio.com/
https://docs.microsoft.com/azure/azure-functions/functions-run-local
https://github.com/
https://www.microsoft.com/edge
https://nodejs.org/

51

Azure Proof of Concept Guide for Developers

Other useful resources

Introduction to Azure Virtual Machines
	● Windows Virtual Machines documentation
	● Linux Virtual Machines documentation

Introduction to Azure Kubernetes Service (AKS)
	● Azure Kubernetes Service

Introduction to Azure App Service
	● App Service Migration tool
	● Azure App Service overview
	● Try Azure App Service

Introduction to Azure Functions
	● Azure Functions documentation
	● About Azure Functions triggers and bindings concepts
	● Try Azure Functions

Chapter 2: Sample project – implementing a web app using Azure
Static Web Apps

	● GitHub Actions official documentation
	● Review pull requests in pre-production environments in Azure Static Web Apps

Chapter 3: Sample project – building an intelligent chatbot
	● Microsoft Bot Framework SDK
	● Bot Builder Samples
	● QnA Maker

General resources
	● Choose an Azure compute service for your application
	● Azure free account FAQ

https://docs.microsoft.com/azure/virtual-machines/windows/
https://docs.microsoft.com/azure/virtual-machines/linux/
https://docs.microsoft.com/azure/aks/
https://appmigration.microsoft.com/
https://docs.microsoft.com/azure/app-service/overview
https://azure.microsoft.com/try/app-service/
https://docs.microsoft.com/azure/azure-functions/functions-overview
https://docs.microsoft.com/azure/azure-functions/functions-triggers-bindings
https://tryfunctions.com/ng-min/try?trial=true
https://docs.github.com/actions
https://docs.microsoft.com/azure/static-web-apps/review-publish-pull-requests
https://dev.botframework.com/
https://github.com/Microsoft/BotBuilder-Samples
https://www.qnamaker.ai/
https://docs.microsoft.com/azure/architecture/guide/technology-choices/compute-decision-tree
https://azure.microsoft.com/free/free-account-faq/

52

Azure Proof of Concept Guide for Developers

Conclusion
In this guide, we discussed how a proof of concept project can be a valuable tool to evaluate
whether a potential technology or concept can be used to fulfill the requirements of a
business solution. It can help you to identify any potential technical and logistical issues
before it is implemented in a mainstream project. In addition, it provides timely insights on
the technology while mitigating risks by allowing key decisions to be made in the early stages
of the development process.

In Chapter 1: Proof of concept guide, you learned the core foundations necessary for
planning and executing a successful proof of concept project.

In Chapter 2: Sample Project – implementing a web app using Azure Static Web Apps and
Chapter 3: Sample project – building an intelligent chatbot, we showcased two practical
projects that might inspire you to come up with your own proof of concept projects.

In Chapter 4: An overview of Azure for developers, you were introduced to the Azure
platform. You learned how to obtain an Azure free account to get started. You also learned
how to pick the appropriate cloud model and services to start developing your proof of
concept project for Azure.

We also provided you with some useful learning materials in Chapter 5: Further learning
and resources.

You are now ready to begin your proof of concept project. Good luck!

53

Azure Proof of Concept Guide for Developers

Get started today

Sign up for an Azure free account

Learn more about Azure solutions

Speak to a sales specialist for help with pricing,
best practices, and implementing a proof of concept

https://azure.microsoft.com/free/
https://azure.microsoft.com/solutions/
https://azure.microsoft.com/support/options/
https://azure.microsoft.com/support/options/

By developers,
for developers
Microsoft.Source newsletter

Get technical articles, sample
code, and information on
upcoming events in
Microsoft.Source, the
curated monthly developer
community newsletter.

● Keep up on the latest
 technologies
● Connect with your peers
 at community events
● Learn with
 hands-on resources

Sign upSign up

https://aka.ms/msftsource
https://aka.ms/msftsource

	_Ref51788822
	_Ref50122700
	_Ref50122981
	_Ref50124298
	_Ref50123284
	_Ref50122752
	_Ref50108442
	_Ref50122763
	_Ref50114874
	_Ref50115028
	_Ref50122963
	_Ref50122949
	_Ref50083127
	_Ref51775893
	_Ref51775944
	_Ref51775965
	_Ref51775987
	_Ref50122793
	_Ref51774772
	Introduction
	What is a proof of concept?
	About this guide
	What is Microsoft Azure?

	Chapter 1: Proof of concept guide
	Step 1: Defining your goal and success criteria
	Step 2: Setting your timeline and budget
	Step 3: Scoping the proof of concept project
	Step 4: Creating a high-level architecture
	Step 5: Assembling your team
	Step 6: Implementation and testing
	Step 7: When your proof of concept is complete

	Chapter 2: Sample project – implementing a web app using Azure Static Web Apps
	Azure Static Web Apps vs. traditional web server
	Key features of Azure Static Web Apps
	Use case of Azure Static Web Apps
	Putting it into practice
	To learn more

	Chapter 3: Sample project – building an intelligent chatbot
	Key features of chatbots
	Use case for chatbots
	Putting it into practice

	Chapter 4: An overview of Azure for developers
	Getting started with Microsoft Azure
	The benefits of Azure
	Azure subscription
	What does the Azure free account include?

	Chapter 5: Further learning and resources
	Learning the Azure fundamentals
	Tools that you need for developing your proof of concept project for Azure
	Other useful resources

	Conclusion

