

BIRMINGHAM—MUMBAI

Nills Franssens

Shivakumar Gopalakrishnan

Gunther Lenz

Use Azure Kubernetes Service to automate

management, scaling, and deployment of

containerized applications.

Hands-on Kubernetes
on Azure, Third Edition

Hands-on Kubernetes on Azure, Third Edition

Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author(s), nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused
or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Nills Franssens, Shivakumar Gopalakrishnan, and Gunther Lenz

Technical Reviewers: Richard Hooper and Swaminathan Vetri

Managing Editor: Aditya Datar and Siddhant Jain

Acquisitions Editor: Ben Renow-Clarke

Production Editor: Deepak Chavan

Editorial Board: Vishal Bodwani, Ben Renow-Clarke, Arijit Sarkar, and Lucy Wan

First Published: March 2019

Second Published: May 2020

Third Published: April 2021

Production Reference: 3230421

ISBN: 978-1-80107-994-5

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham, B3 2PB, UK.

To mama and papa. This book would not have been possible without everything you
did for me. I love you both.

To Kelly. I wouldn’t be the person I am today without you.

- Nills Franssens

Find out what you can do with a fully managed
service for simplifying Kubernetes deployment,
management and operations, including:
• Build microservices applications.
• Deploy a Kubernetes cluster.
• Easily monitor and manage Kubernetes.

Create a free account and get started with
Kubernetes on Azure. Azure Kubernetes Service
(AKS) is one of more than 25 products that are
always free with your account. Start free >

Then, try these labs to master the basic and
advanced tasks required to deploy a multi-
container application to Kubernetes on Azure
Kubernetes Service (AKS). Try now >

Get started

Kubernetes
on Azure

Start free >

Try now >

https://aka.ms/aa7k3jz
https://aka.ms/AA7k3k0

Table of Contents

Preface 	  i

Foreword 	  1

Section 1:The Basics 	  5

Chapter 1: Introduction to containers and Kubernetes 	  7

The software evolution that brought us here ...  9

Microservices ..  9
Advantages of running microservices ...  10
Disadvantages of running microservices ..  11
DevOps ..  12
Fundamentals of containers ...  14
Container images ...  16

Kubernetes as a container orchestration platform ...................................  20

Pods in Kubernetes ..  21
Deployments in Kubernetes ...  22
Services in Kubernetes ..  23
Azure Kubernetes Service ...  23

Summary ..  25

Chapter 2: Getting started with Azure Kubernetes Service 	  27

Different ways to create an AKS cluster ..  28

Getting started with the Azure portal ..  29

Creating your first AKS cluster ...  29
A quick overview of your cluster in the Azure portal ..  36
Accessing your cluster using Azure Cloud Shell ...  40
Deploying and inspecting your first demo application .....................................  43
Deploying the demo application ..  44

Summary ..  52

Section 2: Deploying on AKS 	  53

Chapter 3: Application deployment on AKS 	  55

Deploying the sample guestbook application step by step ......................  57

Introducing the application ..  57
Deploying the Redis master ..  58
Examining the deployment ...  62
Redis master with a ConfigMap ...  64

Complete deployment of the sample guestbook application ...................  71

Exposing the Redis master service ..  72
Deploying the Redis replicas ...  75
Deploying and exposing the front end ..  77
The guestbook application in action ...  84

Installing complex Kubernetes applications using Helm ...........................  85

Installing WordPress using Helm ...  86

Summary ..  94

Chapter 4: Building scalable applications 	  95

Scaling your application ...  96

Manually scaling your application ...  97
Scaling the guestbook front-end component ...  100
Using the HPA ...  102

Scaling your cluster ..  107

Manually scaling your cluster ...  107
Scaling your cluster using the cluster autoscaler ..  109

Upgrading your application ...  112

Upgrading by changing YAML files ...  113
Upgrading an application using kubectl edit ..  118
Upgrading an application using kubectl patch ...  119
Upgrading applications using Helm ...  122

Summary ..  126

Chapter 5: Handling common failures in AKS 	  127

Handling node failures ...  128

Solving out-of-resource failures ..  135

Fixing storage mount issues ..  139

Starting the WordPress installation ...  140
Using persistent volumes to avoid data loss ..  142

Summary ..  153

Chapter 6: Securing your application with HTTPS 	  155

Setting up Azure Application Gateway as a Kubernetes ingress ............  156

Creating a new application gateway ...  157
Setting up the AGIC ..  160
Adding an ingress rule for the guestbook application ....................................  161

Adding TLS to an ingress ..  165

Installing cert-manager ...  166
Installing the certificate issuer ...  168
Creating the TLS certificate and securing the ingress .....................................  169

Summary ..  176

Chapter 7: Monitoring the AKS cluster and
the application 	  177

Commands for monitoring applications ..  178

The kubectl get command ..  179
The kubectl describe command ...  181
Debugging applications ...  186

Readiness and liveness probes ...  196

Building two web containers ..  197
Experimenting with liveness and readiness probes ..  201

Metrics reported by Kubernetes ...  205

Node status and consumption ...  205
Pod consumption ...  207

Using AKS Diagnostics ..  210

Azure Monitor metrics and logs ..  213

AKS Insights ..  213

Summary ..  226

Section 3: Securing your AKS cluster and workloads 	  227

Chapter 8: Role-based access control in AKS 	  229

RBAC in Kubernetes explained ..  230

Enabling Azure AD integration in your AKS cluster ..................................  232

Creating a user and group in Azure AD ..  235

Configuring RBAC in AKS ..  240

Verifying RBAC for a user ...  245

Summary ..  250

Chapter 9: Azure Active Directory pod‑managed
identities in AKS 	  251

An overview of Azure AD pod-managed identities ...................................  253

Setting up a new cluster with Azure AD pod-managed identities ..........  256

Linking an identity to your cluster ...  258

Using a pod with managed identity ..  262

Summary ..  271

Chapter 10: Storing secrets in AKS 	  273

Different secret types in Kubernetes ...  274

Creating secrets in Kubernetes ...  275

Creating Secrets from files ..  275
Creating secrets manually using YAML files ...  279
Creating generic secrets using literals in kubectl ..  281

Using your secrets ..  282

Secrets as environment variables ..  283
Secrets as files ..  285

Installing the Azure Key Vault provider for Secrets Store CSI driver ......  289

Creating a managed identity ..  291
Creating a key vault ...  294
Installing the CSI driver for Key Vault ..  300

Using the Azure Key Vault provider for Secrets Store CSI driver ............  301

Mounting a Key Vault secret as a file ..  301
Using a Key Vault secret as an environment variable .....................................  305

Summary ..  310

Chapter 11: Network security in AKS 	  311

Networking and network security in AKS ..  312

Control plane networking ...  312
Workload networking ..  315

Control plane network security ..  317

Securing the control plane using authorized IP ranges ..................................  317
Securing the control plane using a private cluster ..  321

Workload network security ...  330

Securing the workload network using an internal load balancer ..................  330
Securing the workload network using network security groups ...................  336
Securing the workload network using network policies .................................  343

Summary ..  352

Section 4: Integrating with Azure managed services 	  353

Chapter 12: Connecting an application to an
Azure database 	  355

Azure Service Operator ..  356

What is ASO? ...  357

Installing ASO on your cluster ...  359

Creating a new AKS cluster ...  359
Creating a managed identity ..  361
Creating a key vault ...  367
Setting up ASO on your cluster ..  370

Deploying Azure Database for MySQL using ASO .....................................  373

Creating an application using the MySQL database ................................  380

Summary ..  387

Chapter 13: Azure Security Center for Kubernetes 	  389

Setting up Azure Security Center for Kubernetes .....................................  391

Deploying offending workloads ..  396

Analyzing configuration using Azure Secure Score ..................................  403

Neutralizing threats using Azure Defender ...  415

Summary ..  428

Chapter 14: Serverless functions 	  429

Various functions platforms ..  431

Setting up the prerequisites ..  433

Azure Container Registry ..  433
Creating a VM ...  436

Creating an HTTP-triggered Azure function ..  442

Creating a queue-triggered function ..  447

Creating a queue ..  448
Creating a queue-triggered function ...  451
Scale testing functions ..  458

Summary ..  461

Chapter 15: Continuous integration and continuous
deployment for AKS 	  463

CI/CD process for containers and Kubernetes ..  464

Setting up Azure and GitHub ...  466

Setting up a CI pipeline ..  473

Setting up a CD pipeline ...  485

Summary ..  494

Final thoughts ...  495

Index 	  497

>
Preface

About

This section briefly introduces the authors and reviewers, the coverage of this book,
the technical skills you'll need to get started, and the hardware and software needed to
complete all of the topics.

ii | Preface

Hands-on Kubernetes on Azure – Third Edition

Containers and Kubernetes containers facilitate cloud deployments and application
development by enabling efficient versioning with improved security and
portability.

With updated chapters on role-based access control, pod identity, storing secrets,
and network security in AKS, this third edition begins by introducing you to
containers, Kubernetes, and Azure Kubernetes Service (AKS), and guides you
through deploying an AKS cluster in different ways. You will then delve into the
specifics of Kubernetes by deploying a sample guestbook application on AKS
and installing complex Kubernetes apps using Helm. With the help of real-world
examples, you'll also get to grips with scaling your applications and clusters.

As you advance, you'll learn how to overcome common challenges in AKS and
secure your applications with HTTPS. You will also learn how to secure your
clusters and applications in a dedicated section on security. In the final section,
you'll learn about advanced integrations, which give you the ability to create Azure
databases and run serverless functions on AKS as well as the ability to integrate
AKS with a continuous integration and continuous delivery pipeline using GitHub
Actions.

By the end of this Kubernetes book, you will be proficient in deploying
containerized workloads on Microsoft Azure with minimal management overhead.

About the authors

Nills Franssens is a technology enthusiast and a specialist in multiple open-source
technologies. He has been working with public cloud technologies since 2013.

In his current position as a Principal Cloud Solutions Architect at Microsoft, he
works with Microsoft's strategic customers on their cloud adoption. He has worked
with multiple customers in migrating applications to run on Kubernetes on Azure.
Nills' areas of expertise are Kubernetes, networking, and storage in Azure.

When he's not working, you can find Nills playing board games with his wife Kelly
and friends, or running one of the many trails in San Jose, California.

Hands-on Kubernetes on Azure – Third Edition | iii

Shivakumar Gopalakrishnan is DevOps architect at Varian Medical Systems. He
has introduced Docker, Kubernetes, and other cloud-native tools to Varian product
development to enable "Everything as Code".

He has years of software development experience in a wide variety of fields,
including networking, storage, medical imaging, and currently, DevOps. He has
worked to develop scalable storage appliances specifically tuned for medical
imaging needs and has helped architect cloud-native solutions for delivering
modular AngularJS applications backed by microservices. He has spoken at multiple
events on incorporating AI and machine learning in DevOps to enable a culture of
learning in large enterprises.

He has helped teams in highly regulated large medical enterprises adopt modern
agile/DevOps methodologies, including the "You build it, you run it" model. He
has defined and leads the implementation of a DevOps roadmap that transforms
traditional teams to teams that seamlessly adopt security- and quality-first
approaches using CI/CD tools. He holds a bachelor of engineering degree from
College of Engineering, Guindy, and a master of science degree from University of
Maryland, College Park.

Gunther Lenz is senior director of the technology office at Varian. He is an
innovative software R&D leader, architect, MBA, published author, public speaker,
and strategic technology visionary with more than 20 years of experience.

He has a proven track record of successfully leading large, innovative, and
transformational software development and DevOps teams of more than 50 people,
with a focus on continuous improvement. He has defined and lead distributed
teams throughout the entire software product lifecycle by leveraging ground-
breaking processes, tools, and technologies such as the cloud, DevOps, lean/agile,
microservices architecture, digital transformation, software platforms, AI, and
distributed machine learning.

He was awarded Microsoft Most Valuable Professional for Software Architecture
(2005-2008). Gunther has published two books, .NET – A Complete Development
Cycle and Practical Software Factories in .NET.

iv | Preface

About the reviewers

Richard Hooper also known as PixelRobots online lives in Newcastle, England, he
is a Microsoft MVP for Azure and a Microsoft Certified Trainer (MCT) who works
as an Azure architect at a company called Intercept based in the Netherlands. He
has more than 15 years of professional experience in the IT industry. He has worked
with Microsoft technologies all of his career but also has dabbled with Linux. He
is very enthusiastic about Azure and Azure Kubernetes Service (AKS) and has
been using them daily. In his spare time, he enjoys sharing knowledge and helping
people. He does this by blogging, podcasts, videos, and whatever technology
is at hand to share his passion, hoping it will help someone to progress in their
Azure journey. Richard has a passion for blogging and learning, which leads him
to discover new things every week. When the opportunity arose to be a technical
reviewer for a book about AKS, he jumped at the chance! Find him on Twitter at @
pixel_robots.

Swaminathan Vetri (Swami) works as an Architect at Maersk Technology Center
Bangalore building cloud native applications on Azure using various Azure PaaS
offerings and Kubernetes. He has also been recognised as a Microsoft MVP -
Developer Technologies since 2016 for his technical contributions to the developer
community. In addition to writing technical blogs, he can often be seen speaking
at local developer conferences, user group meets, meetups etc., on various topics
ranging from .NET, C#, Docker, Kubernetes, Azure DevOps, GitHub Actions
to name a few. A continuous learner who is passionate about sharing his little
knowledge to the community. You can follow him on Twitter and GitHub at @
svswaminathan.

Hands-on Kubernetes on Azure – Third Edition | v

Learning objectives

•	 Plan, configure, and run containerized applications in production.

•	 Use Docker to build applications in containers and deploy them on
Kubernetes.

•	 Monitor the AKS cluster and the application.

•	 Monitor your infrastructure and applications in Kubernetes using Azure
Monitor.

•	 Secure your cluster and applications using azure-native security tools.

•	 Connect an app to the Azure database.

•	 Store your container images securely with Azure Container Registry.

•	 Install complex Kubernetes applications using Helm.

•	 Integrate Kubernetes with multiple Azure PaaS services, such as databases,
Azure Security Center, and Functions.

•	 Use GitHub Actions to perform continuous integration and continuous
delivery to your cluster.

Audience

This book is designed to benefit aspiring DevOps professionals, system
administrators, developers, and site reliability engineers who are interested in
learning how containers and Kubernetes can benefit them. If you're new to working
with containers and orchestration, you'll find this book useful.

Approach

The book focuses on a well-balanced combination of practical experience and
theoretical knowledge, accompanied by engaging real-world scenarios that have
a direct correlation to how professionals work on the Kubernetes platform. Each
chapter has been explicitly designed to enable you to apply what you learn in a
practical context with maximum impact.

vi | Preface

Hardware and software requirements

Hardware requirements

For the optimal lab experience, we recommend the following hardware
configuration:

•	 Processor: Intel Core i5 or equivalent

•	 Memory: 4GB RAM (8 GB preferred)

•	 Storage: 35 GB available space

Software requirements

We also recommend that you have the following software configuration in advance:

•	 A computer with a Linux, Windows 10, or macOS operating system

•	 An internet connection and web browser so you can connect to Azure

Conventions

Code words in the text, database names, folder names, filenames, and file
extensions are shown as follows.

The front-end-service-internal.yaml file contains the configuration
to create a Kubernetes service using an Azure internal load balancer. The
following code is part of that example:

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: frontend
5 annotations:
6 service.beta.kubernetes.io/azure-load-balancer-internal:
"true"
7 labels:
8 app: guestbook
9 tier: frontend
10 spec:

Hands-on Kubernetes on Azure – Third Edition | vii

11 type: LoadBalancer
12 ports:
13 - port: 80
14 selector:
15 app: guestbook
16 tier: frontend

Downloading resources

The code bundle for this book is available at https://github.com/PacktPublishing/
Hands-on-Kubernetes-on-Azure-Third-Edition.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Hands-on-Kubernetes-on-Azure-Third-Edition
https://github.com/PacktPublishing/Hands-on-Kubernetes-on-Azure-Third-Edition
https://github.com/PacktPublishing/

Foreword

Welcome! By picking up this book, you've shown that you are interested in two
things: Azure and Kubernetes, which are both near and dear to my heart. I'm
excited that you are joining us on our cloud-native journey. Whether you are
new to Azure, new to Kubernetes, or new to both, I'm confident that as you
explore Azure Kubernetes Service (AKS), you will find new ways to transform your
applications, delight your customers, meet the growing needs of your business, or
simply learn new skills that will help you achieve your career goals. Regardless of
your reasons for starting this journey, we are eager to help you along the way and
see what you can build with Kubernetes and Azure.

The journey of Kubernetes on Azure itself has been an exciting one. Over the last
few years, AKS has been the fastest-growing service in the history of Azure. We
find ourselves at the inflection point of both hyperscale growth in Azure itself, as
well as hockey stick growth in applications running on Kubernetes. Combine the
two together, and this has made for an exciting (and busy) few years.

2 | Foreword

It has been thrilling to see the success that we have been able to deliver for our
customers and users. But what is it about Azure and Kubernetes that have enabled
customer success? Though it may seem like magic at times, the truth is that there
is nothing about either Azure or Kubernetes that is truly magic. The value, success,
and transformation that our customers are seeing is related to their needs and how
this technology helps make these goals achievable.

We've seen over the past decade, and especially in the last year, that the ability
to be agile and adapting as the world changes is a critical capability for all of
us. Kubernetes enables this agility by introducing concepts such as containers
and container images, as well as higher-level concepts such as services and
deployments, which naturally push us toward architectures that are decoupled
microservices. Although, of course, you can build microservice applications without
Kubernetes, the natural tendency of the APIs and design patterns is to push you
toward these architectures. Microservices are the gravity well of Kubernetes, so
to speak. However, it's important to note that microservices are not the only way
to run applications on Kubernetes. Many of our customers find great benefits in
bringing their legacy applications to Kubernetes and mixing the management of
existing applications with the development of new cloud-native implementations.

As more and more people have started to conduct more and more of their lives
online, the criticality of all of the services we have built has radically changed.
It's no longer acceptable to have maintenance hours or scheduled downtime. We
live in a 24x7 world where applications need to available at all times, even as we
build, change, and rearrange them. Here, too, Kubernetes and Azure provide
the tools that you need to build reliable applications. Kubernetes has health
checks that automatically restart your application if it crashes, infrastructure
for zero‑downtime rollouts, and autoscaling technology that enables you to
automatically grow to sustain a customer's load. On top of these capabilities, Azure
provides the infrastructure to perform upgrades to Kubernetes itself without
affecting applications running in the cluster, and autoscaling of the cluster itself to
provide additional capacity to meet the demands of growing applications and the
elasticity to right-size your cluster to the most efficient shape possible.

﻿ | 3

In addition to these core capabilities, using AKS provides access to broader cloud-
native ecosystems. There are countless engineers and projects in the Cloud Native
Compute Foundation (CNCF) ecosystem that can help you build your applications
more quickly and reliably. As a leader and a contributor to many of these projects,
Azure provides integration and supports access to some of the best open-source
software that the world has to offer, including Helm, Gatekeeper, Flux, and more.

But the truth is that building any application on Kubernetes involves much more
than just the Kubernetes bits. Microsoft has a unique set of tools that integrate
with AKS to provide a seamless, end-to-end experience. Starting with GitHub,
where the world comes togeher to develop and collaborate, through to Visual
Studio Code, where people build the software itself, and to tools such as Azure
Monitor and Azure Security Center to keep your applications healthy and secure,
it is truly the combined capabilities of Azure that makes AKS a fantastic place for
your applications to thrive. When you combine that with Azure's cloud-leading
footprint around the world, which delivers more managed Kubernetes deployments
in more locations than anyone else, you can see that AKS enables businesses to
rapidly scale and grow to meet their needs from the initial startup phase through
to the global enterprise level.

Thank you for choosing Azure and Kubernetes! I'm excited that you're here and I
hope you enjoy learning about everything Kubernetes and Azure has to offer.

– �Brendan Burns
Co-founder of Kubernetes and Corporate Vice President at Microsoft

Section 1:
The Basics

In Section 1 of this book, we will cover the basic concepts that you need to
understand in order to follow the examples in this book.

We will start this section by explaining the basics of these underlying concepts,
such as containers and Kubernetes. Then, we will explain how to create a
Kubernetes cluster on Azure and deploy an example application.

By the time you have finished this section, you will have a foundational knowledge
of containers and Kubernetes and will have a Kubernetes cluster up and running in
Azure that will allow you to follow the examples in this book.

This section contains the following chapters:

•	 Chapter 1, Introduction to containers and Kubernetes

•	 Chapter 2, Getting started with Azure Kubernetes Service

1
Introduction to
containers and

Kubernetes
Kubernetes has become the leading standard in container orchestration. Since
its inception in 2014, Kubernetes has gained tremendous popularity. It has been
adopted by start-ups as well as major enterprises, with all major public cloud
vendors offering a managed Kubernetes service.

Kubernetes builds upon the success of the Docker container revolution. Docker
is both a company and the name of a technology. Docker as a technology is the
most common way of creating and running software containers, called Docker
containers. A container is a way of packaging software that makes it easy to run
that software on any platform, ranging from your laptop to a server in a datacenter
to a cluster running in the public cloud.

Although the core technology is open source, the Docker company focuses on
reducing complexity for developers through a number of commercial offerings.

8 | Introduction to containers and Kubernetes

Kubernetes takes containers to the next level. Kubernetes is a container
orchestrator. A container orchestrator is a software platform that makes it easy to
run many thousands of containers on top of thousands of machines. It automates
a lot of the manual tasks required to deploy, run, and scale applications. The
orchestrator takes care of scheduling the right container to run on the right
machine. It also takes care of health monitoring and failover, as well as scaling your
deployed application.

The container technology Docker uses and Kubernetes are both open-source
software projects. Open-source software allows developers from many companies
to collaborate on a single piece of software. Kubernetes itself has contributors from
companies such as Microsoft, Google, Red Hat, VMware, and many others.

The three major public cloud platforms—Azure, Amazon Web Services (AWS),
and Google Cloud Platform (GCP)—all offer a managed Kubernetes service. They
attract a lot of interest in the market since the virtually unlimited compute power
and the ease of use of these managed services make it easy to build and deploy
large-scale applications.

Azure Kubernetes Service (AKS) is Azure's managed service for Kubernetes. It
reduces the complexity of building and managing Kubernetes clusters. In this book,
you will learn how to use AKS to run your applications. Each chapter will introduce
new concepts, which you will apply through the many examples in this book.

As a user, however, it is still very useful to understand the technologies that
underpin AKS. We will explore these foundations in this chapter. You will learn
about Linux processes and how they are related to Docker and containers. You will
see how various processes fit nicely into containers and how containers fit nicely
into Kubernetes.

This chapter introduces fundamental Docker concepts so that you can begin
your Kubernetes journey. This chapter also briefly introduces the basics that will
help you build containers, implement clusters, perform container orchestration,
and troubleshoot applications on AKS. Having cursory knowledge of what's in
this chapter will demystify much of the work needed to build your authenticated,
encrypted, and highly scalable applications on AKS. Over the next few chapters,
you will gradually build scalable and secure applications.

The software evolution that brought us here | 9

The following topics will be covered in this chapter:

•	 The software evolution that brought us here

•	 The fundamentals of containers

•	 The fundamentals of Kubernetes

•	 The fundamentals of AKS

The aim of this chapter is to introduce the essentials rather than to provide a
thorough information source describing Docker and Kubernetes. To begin with,
we'll first take a look at how software has evolved to get us to where we are now.

The software evolution that brought us here

There are two major software development evolutions that enabled the popularity
of containers and Kubernetes. One is the adoption of a microservices architectural
style. Microservices allow an application to be built from a collection of small
services that each serve a specific function. The other evolution that enabled
containers and Kubernetes is DevOps. DevOps is a set of cultural practices that
allows people, processes, and tools to build and release software faster, more
frequently, and more reliably.

Although you can use both containers and Kubernetes without using either
microservices or DevOps, the technologies are most widely adopted for deploying
microservices using DevOps methodologies.

In this section, we'll discuss both evolutions, starting with microservices.

Microservices

Software development has drastically evolved over time. Initially, software was
developed and run on a single system, typically a mainframe. A client could connect
to the mainframe through a terminal, and only through that terminal. This changed
when computer networks became common when the client-server programming
model emerged. A client could connect remotely to a server and even run part of
the application on their own system while connecting to the server to retrieve the
data the application required.

10 | Introduction to containers and Kubernetes

The client-server programming model has evolved toward distributed systems.
Distributed systems are different from the traditional client-server model as they
have multiple different applications running on multiple different systems, all
interconnected.

Nowadays, a microservices architecture is common when developing distributed
systems. A microservices-based application consists of a group of services that
work together to form the application, while the individual services themselves can
be built, tested, deployed, and scaled independently of each other. The style has
many benefits but also has several disadvantages.

A key part of a microservices architecture is the fact that each individual service
serves one and only one core function. Each service serves a single-bound business
function. Different services work together to form the complete application. Those
services work together over network communication, commonly using HTTP REST
APIs or gRPC:

Figure 1.1: A standard microservices architecture

This architectural approach is commonly adopted by applications that run using
containers and Kubernetes. Containers are used as the packaging format for the
individual services, while Kubernetes is the orchestrator that deploys and manages
the different services running together.

Before we dive into container and Kubernetes specifics, let's first explore the
benefits and downsides of adopting microservices.

Advantages of running microservices

There are several advantages to running a microservices-based application. The
first is the fact that each service is independent of the other services. The services
are designed to be small enough (hence micro) to handle the needs of a business
domain. As they are small, they can be made self-contained and independently
testable, and so are independently releasable.

The software evolution that brought us here | 11

This leads to the benefit that each microservice is independently scalable as
well. If a certain part of the application is getting more demand, that part of the
application can be scaled independently from the rest of the application.

The fact that services are independently scalable also means that they are
independently deployable. There are multiple deployment strategies when it comes to
microservices. The most popular are rolling deployments and blue/green deployments.

With a rolling upgrade, a new version of the service is deployed only to a part of the
application. This new version is carefully monitored and gradually gets more traffic
if the service remains healthy. If something goes wrong, the previous version is still
running, and traffic can easily be cut over.

With a blue/green deployment, you deploy the new version of the service in
isolation. Once the new version of the service is deployed and tested, you cut over
100% of the production traffic to the new version. This allows for a clean transition
between service versions.

Another benefit of the microservices architecture is that each service can be
written in a different programming language. This is described as polyglot—the
ability to understand and use multiple languages. For example, the front-end
service can be developed in a popular JavaScript framework, the back end can
be developed in C#, and the machine learning algorithm can be developed in
Python. This allows you to select the right language for the right service and allows
developers to use the languages they are most familiar with.

Disadvantages of running microservices

There's a flip side to every coin, and the same is true for microservices. While there
are multiple advantages to a microservices-based architecture, this architecture
has its downsides as well.

Microservices designs and architectures require a high degree of software
development maturity in order to be implemented correctly. Architects who
understand the domain very well must ensure that each service is bounded and
that different services are cohesive. Since services are independent of each other
and versioned independently, the software contract between these different
services is important to get right.

12 | Introduction to containers and Kubernetes

Another common issue with a microservices design is the added complexity when
it comes to monitoring and troubleshooting such an application. Since different
services make up a single application, and those different services run on multiple
servers, both logging and tracing such an application is a complicated endeavor.

Linked to the disadvantages mentioned before is that, typically, in microservices,
you need to build more fault tolerance into your application. Due to the dynamic
nature of the different services in an application, faults are more likely to happen.
In order to guarantee application availability, it is important to build fault tolerance
into the different microservices that make up an application. Implementing
patterns such as retry logic or circuit breakers is critical to avoid a single fault
causing application downtime.

In this section, you learned about microservices, their benefits, and their
disadvantages. Often linked to microservices, but a separate topic, is the DevOps
movement. We will explore what DevOps means in the next section.

DevOps

DevOps literally means the combination of development and operations. More
specifically, DevOps is the union of people, processes, and tools to deliver software
faster, more frequently, and more reliably. DevOps is more about a set of cultural
practices than about any specific tools or implementations. Typically, DevOps
spans four areas of software development: planning, developing, releasing, and
operating software.

Note

Many definitions of DevOps exist. The authors have adopted this definition,
but you as a reader are encouraged to explore different definitions in the
literature around DevOps.

The software evolution that brought us here | 13

The DevOps culture starts with planning. In the planning phase of a DevOps
project, the goals of a project are outlined. These goals are outlined both at a high
level (called an epic) and at a lower level (as features and tasks). The different work
items in a DevOps project are captured in the feature backlog. Typically, DevOps
teams use an agile planning methodology working in programming sprints. Kanban
boards are often used to represent project status and to track work. As a task
changes status from to do to doing to done, it moves from left to right on a Kanban
board.

When work is planned, actual development can be done. Development in a
DevOps culture isn't only about writing code but also about testing, reviewing,
and integrating code with team members. A version control system such as
Git is used for different team members to share code with each other. An
automated continuous integration (CI) tool is used to automate most manual tasks
such as testing and building code.

When a feature is code-complete, tested, and built, it is ready to be delivered. The
next phase in a DevOps project can start delivery. A continuous delivery (CD) tool
is used to automate the deployment of software. Typically, software is deployed
to different environments, such as testing, quality assurance, and production.
A combination of automated and manual gates is used to ensure quality before
moving to the next environment.

Finally, when a piece of software is running in production, the operations phase
can start. This phase involves the maintaining, monitoring, and supporting of an
application in production. The end goal is to operate an application reliably with
as little downtime as possible. Any issues are to be identified as proactively as
possible. Bugs in the software will be tracked in the backlog.

The DevOps process is an iterative process. A single team is never in a single phase
of the process. The whole team is continuously planning, developing, delivering,
and operating software.

14 | Introduction to containers and Kubernetes

Multiple tools exist to implement DevOps practices. There are point solutions for a
single phase, such as Jira for planning or Jenkins for CI and CD, as well as complete
DevOps platforms, such as GitLab. Microsoft operates two solutions that enable
customers to adopt DevOps practices: Azure DevOps and GitHub. Azure DevOps
is a suite of services to support all phases of the DevOps process. GitHub is a
separate platform that enables DevOps software development. GitHub is known as
the leading open-source software development platform, hosting over 40 million
open-source projects.

Both microservices and DevOps are commonly used in combination with
containers and Kubernetes. Now that we've had this introduction to microservices
and DevOps, we'll continue this first chapter with the fundamentals of containers
and then the fundamentals of Kubernetes.

Fundamentals of containers

A form of container technology has existed in the Linux kernel since the 1970s. The
technology powering today's containers, called cgroups (abbreviated from control
groups), was introduced into the Linux kernel in 2006 by Google. The Docker
company popularized the technology in 2013 by introducing an easy developer
workflow. Although the name Docker can refer to both the company as well as the
technology, most commonly, though, we use Docker to refer to the technology.

Note

Although the Docker technology is a popular way to build and run containers,
it is not the only way to build and run them. Many alternatives exist for either
building or running containers. One of those alternatives is containerd, which
is a container runtime also used by Kubernetes.

Docker as a technology is both a packaging format and a container runtime.
Packaging is a process that allows an application to be packaged together with
its dependencies, such as binaries and runtime. The runtime points at the actual
process of running the container images.

The software evolution that brought us here | 15

There are three important pieces in Docker's architecture: the client, the daemon,
and the registry:

•	 The Docker client is a client-side tool that you use to interact with the
Docker daemon, running locally or remotely.

•	 The Docker daemon is a long-running process that is responsible for
building container images and running containers. The Docker daemon can
run on either your local machine or a remote machine.

•	 A Docker registry is a place to store Docker images. There are public
registries such as Docker Hub that contain public images, and there are
private registries such as Azure Container Registry (ACR) that you can use
to store your own private images. The Docker daemon can pull images from
a registry if images are not available locally:

Figure 1.2: Fundamentals of Docker architecture

16 | Introduction to containers and Kubernetes

You can experiment with Docker by creating a free Docker account at Docker
Hub (https://hub.docker.com/) and using that login to open Docker Labs
(https://labs.play-with-docker.com/). This will give you access to an environment
with Docker pre-installed that is valid for 4 hours. We will be using Docker Labs in
this section as we build our own container and image.

Note

Although we are using the browser-based Docker Labs in this chapter to
introduce Docker, you can also install Docker on your local desktop or server.
For workstations, Docker has a product called Docker Desktop
(https://www.docker.com/products/docker-desktop) that is available for
Windows and Mac to create Docker containers locally. On servers—both
Windows and Linux—Docker is also available as a runtime for containers.

Container images

To start a new container, you need an image. An image contains all the software
you need to run within your container. Container images can be stored locally on
your machine, as well as in a container registry. There are public registries, such
as the public Docker Hub (https://hub.docker.com/), or private registries, such as
ACR. When you, as a user, don't have an image locally on your PC, you can pull an
image from a registry using the docker pull command.

In the following example, we will pull an image from the public Docker Hub
repository and run the actual container. You can run this example in Docker Labs,
which we introduced in the previous section, by following these instructions:

#First, we will pull an image
docker pull docker/whalesay
#We can then look at which images are stored locally
docker images
#Then we will run our container
docker run docker/whalesay cowsay boo

https://hub.docker.com/
https://labs.play-with-docker.com/
https://azure.microsoft.com/resources/designing-distributed-systems/
https://hub.docker.com/

The software evolution that brought us here | 17

The output of these commands will look similar to Figure 1.3:

Figure 1.3: An example of running containers in Docker Labs

18 | Introduction to containers and Kubernetes

What happened here is that Docker first pulled your image in multiple parts
and stored it locally on the machine it was running on. When you ran the
actual application, it used that local image to start a container. If we look
at the commands in detail, you will see that docker pull took in a single
parameter, docker/whalesay. If you don't provide a private container registry,
Docker will look in the public Docker Hub for images, which is where Docker pulled
this image from. The docker run command took in a couple of arguments. The first
argument was docker/whalesay, which is the reference to the image. The next two
arguments, cowsay boo, are commands that were passed to the running container
to execute.

In the previous example, you learned that it is possible to run a container without
building an image first. It is, however, very common that you will want to build
your own images. To do this, you use a Dockerfile. A Dockerfile contains steps
that Docker will follow to start from a base image and build your image. These
instructions can range from adding files to installing software or setting up
networking.

In the next example, you will build a custom Docker image. This custom image will
display inspirational quotes in the whale output. The following Dockerfile will be
used to generate this custom image. You will create it in your Docker playground:

FROM docker/whalesay:latest
RUN apt-get -y -qq update
RUN apt-get install -qq -y fortunes
CMD /usr/games/fortune -a | cowsay

There are four lines in this Dockerfile. The first one will instruct Docker on
which image to use as a source image for this new image. The next two steps
are commands that are run to add new functionality to our image, in this case,
updating your apt repository and installing an application called fortunes. The
fortunes application is a small command-line tool that generates inspirational
quotes. We will use that to include quotes in the output rather than user input.
Finally, the CMD command tells Docker which command to execute when a
container based on this image is run.

The software evolution that brought us here | 19

You typically save a Dockerfile in a file called Dockerfile, without an extension. To
build an image, you need to execute the docker build command and point it to the
Dockerfile you created. In building the Docker image, the Docker daemon will read
the Dockerfile and execute the different steps in the Dockerfile. This command will
also output the steps it took to run a container and build your image. Let's walk
through a demo of building an image.

In order to create this Dockerfile, open up a text editor via the vi Dockerfile
command. vi is an advanced text editor on the Linux command line. If you are not
familiar with it, let's walk through how you would enter the text in there:

1.	 After you've opened vi, hit the I key to enter insert mode.
2.	 Then, either copy and paste or type the four code lines.
3.	 Afterward, hit the Esc key, and type :wq! to write (w) your file and quit (q) the

text editor.

The next step is to execute docker build to build the image. We will add a
final bit to that command, namely adding a tag to our image so we can call it
by a meaningful name. To build the image, you will use the docker build -t
smartwhale. command (don't forget to add the final period here).

You will now see Docker execute a number of steps—four in this case—to build
the image. After the image is built, you can run your application. To run your
container, you run docker run smartwhale, and you should see an output similar
to Figure 1.4. However, you will probably see a different smart quote. This is due
to the fortunes application generating different quotes. If you run the container
multiple times, you will see different quotes appear, as shown in Figure 1.4:

20 | Introduction to containers and Kubernetes

Figure 1.4: Running a custom container

That concludes our overview and demo of containers. In this section, you started
with an existing container image and launched it on Docker Labs. Afterward,
you took that a step further and built your own container image, then started
containers using that image. You have now learned what it takes to build and run a
container. In the next section, we will cover Kubernetes. Kubernetes allows you to
run multiple containers at scale.

Kubernetes as a container orchestration platform

Building and running a single container seems easy enough. However, things can
get complicated when you need to run multiple containers across multiple servers.
This is where a container orchestrator can help. A container orchestrator takes
care of scheduling containers to be run on servers, restarting containers when they
fail, moving containers to a new host when a host becomes unhealthy, and much
more.

The current leading orchestration platform is Kubernetes (https://kubernetes.io/).
Kubernetes was inspired by Google's Borg project, which, by itself, was running
millions of containers in production.

https://kubernetes.io/

Kubernetes as a container orchestration platform | 21

Kubernetes takes a declarative approach to orchestration; that is, you specify what
you need, and Kubernetes takes care of deploying the workload you specified. You
don't need to start these containers manually yourself anymore, as Kubernetes will
launch the containers you specified.

Note

Although Kubernetes used to support Docker as the container runtime, that
support has been deprecated in Kubernetes version 1.20. In AKS, containerd
has become the default container runtime starting with Kubernetes 1.19.

Throughout the book, you will build multiple examples that run containers in
Kubernetes, and you will learn more about the different objects in Kubernetes. In
this introductory chapter, you will learn three elementary objects in Kubernetes
that you will likely see in every application: a pod, a deployment, and a service.

Pods in Kubernetes

A pod in Kubernetes is the essential scheduling element. A pod is a group of one
or more containers. This means a pod can contain either a single container or
multiple containers. When creating a pod with a single container, you can use the
terms container and pod interchangeably. However, the term pod is still preferred
and is the term used throughout this book.

When a pod contains multiple containers, these containers share the same file
system and the same network namespace. This means that when a container that
is part of a pod writes a file, other containers in that same pod can read that file as
well. This also means that all containers in a pod can communicate with each other
using localhost networking.

In terms of design, you should only put containers that need to be tightly
integrated in the same pod. Imagine the following situation: you have an old web
application that does not support HTTPS. You want to upgrade that application
to support HTTPS. You could create a pod that contains your old web application
and includes another container that would do Transport Layer Security (TLS)
offloading for that application, as described in Figure 1.5. Users would connect to
your application using HTTPS, while the container in the middle converts HTTPS
traffic to HTTP:

22 | Introduction to containers and Kubernetes

Figure 1.5: An example of a multi-container pod that does HTTPS offloading

Note

This design principle is known as a sidecar. Microsoft has a free e-book
available that describes multiple multi-container pod designs and designing
distributed systems (https://azure.microsoft.com/resources/designing-
distributed-systems/).

A pod, whether it be a single- or multi-container pod, is an ephemeral resource.
This means that a pod can be terminated at any point and restarted on another
node. When this happens, the state that was stored in that pod will be lost. If
you need to store state in your application, you either need to store that state in
external storage, such as an external disk or a file share, or store the state outside
of Kubernetes in an external database.

Deployments in Kubernetes

A deployment in Kubernetes provides a layer of functionality around pods. It allows
you to create multiple pods from the same definition and to easily perform updates
to your deployed pods. A deployment also helps with scaling your application, and
potentially even autoscaling your application.

Under the hood, a deployment creates a ReplicaSet, which in turn will create the
replica pods you requested. A ReplicaSet is another object in Kubernetes. The
purpose of a ReplicaSet is to maintain a stable set of replica pods running at any
given time. If you perform updates on your deployment, Kubernetes will create a
new ReplicaSet that will contain the updated pods. By default, Kubernetes will do
a rolling upgrade to the new version. This means that it will start a few new pods,
verify those are running correctly, and if so, then Kubernetes will terminate the old
pods and continue this loop until only new pods are running:

https://azure.microsoft.com/resources/designing-distributed-systems/
https://azure.microsoft.com/resources/designing-distributed-systems/

Kubernetes as a container orchestration platform | 23

Figure1.6: The relationship between deployments, ReplicaSets, and pods

Services in Kubernetes

A service in Kubernetes is a network-level abstraction. This allows you to expose
multiple pods under a single IP address and a single DNS name.

Each pod in Kubernetes has its own private IP address. You could theoretically
connect to your applications using this private IP address. However, as mentioned
before, Kubernetes pods are ephemeral, meaning they can be terminated and
moved, which would change their IP address. By using a service, you can connect
to your applications using a single IP address. When a pod moves from one node
to another, the service ensures that traffic is routed to the correct endpoint. If
there are multiple pods serving traffic behind one service, that traffic will be load
balanced between the different pods.

In this section, we have introduced Kubernetes and three essential objects with
Kubernetes. In the next section, we'll introduce AKS.

Azure Kubernetes Service

AKS makes creating and managing Kubernetes clusters easier.

A typical Kubernetes cluster consists of a number of master nodes and a number
of worker nodes. A node within Kubernetes is equivalent to a server or a virtual
machine (VM). The master nodes contain the Kubernetes API and a database that
contains the cluster state. The worker nodes are the machines that run your actual
workload.

24 | Introduction to containers and Kubernetes

AKS makes it easier to create a cluster. When you create an AKS cluster, AKS
sets up the Kubernetes master for you. AKS will then create one or more virtual
machine scale sets (VMSS) in your subscription and turn the VMs in these VMSSs
into worker nodes of your Kubernetes cluster in your network. In AKS, you have
the option to either use a free Kubernetes control plane or pay for a control plane
that comes with a financially backed SLA. In either case, you also need to pay for
the VMs hosting your worker nodes:

Figure 1.7: Scheduling of pods in AKS

Within AKS, services running on Kubernetes are integrated with Azure Load
Balancer and Kubernetes Ingresses can be integrated with Azure Application
Gateway. The Azure Load Balancer is a layer-4 network load balancer service;
Application Gateway is a layer-7 HTTP-based load balancer. The integration
between Kubernetes and both services means that when you create a service or
Ingress in Kubernetes, Kubernetes will create a rule in an Azure Load Balancer
or Azure Application Gateway respectively. Azure Load Balancer or Application
Gateway will then route the traffic to the right node in your cluster that hosts
your pod.

Summary | 25

Additionally, AKS adds a number of functionalities that make it easier to manage
a cluster. AKS contains logic to upgrade clusters to newer Kubernetes versions.
It also can easily scale your clusters, by either adding or removing nodes to
the cluster.

AKS also comes with integration options that make operations easier. AKS clusters
can be configured with integration with Azure Active Directory (Azure AD) to
make managing identities and role-based access control (RBAC) straightforward.
RBAC is the configuration process that defines which users get access to resources
and which actions they can take against those resources. AKS can also easily
be integrated into Azure Monitor for containers, which makes monitoring and
troubleshooting your applications simpler. You will learn about all these capabilities
throughout this book.

Summary

In this chapter, you learned about the concepts of containers and Kubernetes.
You ran a number of containers, starting with an existing image and then using an
image you built yourself. After that demo, you were introduced to three essential
Kubernetes objects: the pod, the deployment, and the service.

This provides the context for the remaining chapters, where you will deploy
containerized applications using Microsoft AKS. You will see how the AKS offering
from Microsoft streamlines deployment by handling many of the management and
operational tasks that you would have to do yourself if you managed and operated
your own Kubernetes infrastructure.

In the next chapter, you will use the Azure portal to create your first AKS cluster.

2
Getting started with

Azure Kubernetes
Service

Installing and maintaining Kubernetes clusters correctly and securely is difficult.
Thankfully, all the major cloud providers, such as Azure, Amazon Web Services
(AWS), and Google Cloud Platform (GCP), facilitate installing and maintaining
clusters. In this chapter, you will navigate through the Azure portal, launch your
own cluster, and run a sample application. You will accomplish all of this from your
browser.

The following topics will be covered in this chapter:

•	 Creating a new Azure free account

•	 Creating and launching your first cluster

•	 Deploying and inspecting your first demo application

28 | Getting started with Azure Kubernetes Service

Let's start by looking at different ways to create an Azure Kubernetes Service
(AKS) cluster, and then we will run our sample application.

Different ways to create an AKS cluster

In this chapter, you will use the Azure portal to deploy your AKS cluster. There are,
however, multiple ways to create an AKS cluster:

•	 Using the portal: The portal offers a graphical user interface (GUI) for
deploying your cluster through a wizard. This is a great way to deploy your
first cluster. For multiple deployments or automated deployments, one of
the following methods is recommended.

•	 Using the Azure CLI: The Azure command-line interface (CLI) is a
cross‑platform CLI for managing Azure resources. This allows you to script
your cluster deployment, which can be integrated into other scripts.

•	 Using Azure PowerShell: Azure PowerShell is a set of PowerShell commands
used for managing Azure resources directly from PowerShell. It can also be
used to create Kubernetes clusters.

•	 Using ARM templates: Azure Resource Manager (ARM) templates are
an Azure‑native way to deploy Azure resources using Infrastructure as
Code (IaC). You can declaratively deploy your cluster, allowing you to create
a template that can be reused by multiple teams.

•	 Using Terraform for Azure: Terraform is an open-source IaC tool developed
by HashiCorp. The tool is very popular in the open-source community for
deploying cloud resources, including AKS. Like ARM templates, Terraform
also uses declarative templates for your cluster.

In this chapter, you will create your cluster using the Azure portal. If you are
interested in deploying a cluster using either CLI, ARM templates, or Terraform,
the following Azure documentation contains steps on how to use these tools to
create your own clusters https://docs.microsoft.com/azure/aks.

https://docs.microsoft.com/azure/aks

Getting started with the Azure portal | 29

Getting started with the Azure portal

We will start our initial cluster deployment using the Azure portal. The Azure
portal is a web-based management console. It allows you to build, manage, and
monitor all your Azure deployments worldwide through a single console.

Note

To follow along with the examples in this book, you will need an Azure
account. If you don't have an Azure account, you can create a free account by
following the steps at azure.microsoft.com/free. If you plan to run this in an
existing subscription, you will need owner rights to the subscription and the
ability to create service principals in Azure Active Directory (Azure AD).
All the examples in this book have been verified with a free trial account.

We are going to jump straight in by creating our AKS cluster. By doing so, we are
also going to familiarize ourselves with the Azure portal.

Creating your first AKS cluster

To start, browse to the Azure portal on https://portal.azure.com. Enter the
keyword aks in the search bar at the top of the Azure portal. Click on Kubernetes
services under the Services category in the search results:

Figure 2.1: Searching for AKS with the search bar

http://azure.microsoft.com/free
https://portal.azure.com

30 | Getting started with Azure Kubernetes Service

This will take you to the AKS pane in the portal. As you might have expected, you
don't have any clusters yet. Go ahead and create a new cluster by hitting the +
Add button, and select the + Add Kubernetes cluster option:

Figure 2.2: Clicking the + Add button and the + Add Kubernetes cluster button
to start the cluster creation process

Note

There are a lot of options to configure when you're creating an AKS cluster.
For your first cluster, we recommend sticking with the defaults from the
portal and following our naming guidelines during this example. The following
settings were tested by us to work reliably with a free account.

This will take you to the creation wizard to create your first AKS cluster. The first
step here is to create a new resource group. Click Create new, give your resource
group a name, and hit OK. If you want to follow along with the examples in this
book, please name the resource group rg-handsonaks:

Getting started with the Azure portal | 31

Figure 2.3: Creating a new resource group

Next up, we'll provide the cluster details. Give your cluster a name—if you want to
follow the examples in the book, please call it handsonaks. The region we will use
in the book is (US) West US 2, but you could use any other region of choice close
to your location. If the region you selected supports Availability Zones, unselect all
the zones.

Select a Kubernetes version—at the time of writing, version 1.19.6 is the latest
version that is supported; don't worry if that specific version is not available for
you. Kubernetes and AKS evolve very quickly, and new versions are introduced
often:

Note

For production environments, deploying a cluster in an Availability Zone is
recommended. However, since we are deploying a small cluster, not using
Availability Zones works best for the examples in the book.

32 | Getting started with Azure Kubernetes Service

Figure 2.4: Providing the cluster details

Next, change the node count to 2. For the purposes of the demo in this book, the
default Standard DS2 v2 node size is sufficient. This should make your cluster size
look similar to that shown in Figure 2.5:

Figure 2.5: Updated Node size and Node count

Note

Your free account has a four-core limit that will be breached if you go with the
defaults.

Getting started with the Azure portal | 33

The final view of the first pane should look like Figure 2.6. There are a number of
configuration panes, which you need not change for the demo cluster we'll that
you'll use throughout this book. Since you are ready, hit the Review + create button
to do a final review and create your cluster:

Figure 2.6: Setting the cluster configuration

34 | Getting started with Azure Kubernetes Service

In the final view, Azure will validate the configuration that was applied to your first
cluster. If you get the message Validation passed, click Create:

Figure 2.7: The final validation of your cluster configuration

Getting started with the Azure portal | 35

Deploying the cluster should take roughly 10 minutes. Once the deployment is
complete, you can check the deployment details as shown in Figure 2.8:

Figure 2.8: Deployment details once the cluster is successfully deployed

36 | Getting started with Azure Kubernetes Service

If you get a quota limitation error, as shown in Figure 2.9, check the settings and try
again. Make sure that you select the Standard DS2_v2 node size and only two nodes:

Figure 2.9: Retrying with a smaller cluster size due to a quota limit error

Moving to the next section, we'll take a quick first look at your cluster; hit the Go
to resource button as seen in Figure 2.8. This will take you to the AKS cluster
dashboard in the portal.

A quick overview of your cluster in the Azure portal

If you hit the Go to resource button in the previous section, you will see the
overview of your cluster in the Azure portal:

Getting started with the Azure portal | 37

Figure 2.10: The AKS pane in the Azure portal

38 | Getting started with Azure Kubernetes Service

This is a quick overview of your cluster. It displays the name, the location, and the
API server address. The navigation menu on the left provides different options to
control and manage your cluster. Let's walk through a couple of interesting options
that the has to portal offer.

The Kubernetes resources section gives you an insight into the workloads that are
running on your cluster. You could, for instance, see running deployments and
running pods in your cluster. It also allows you to create new resources on your
cluster. We will use this section later in the chapter after you have deployed your
first application on AKS.

In the Node pools pane, you can scale your existing node pool (meaning the nodes
or servers in your cluster) either up or down by adding or removing nodes. You can
add a new node pool, potentially with a different virtual machine size, and you can
also upgrade your node pools individually. In Figure 2.11, you can see the + Add node
pool option at the top-left corner, and if you select your node pool, the Upgrade
and Scale options also become available in the top bar:

Figure 2.11: Adding, scaling, and upgrading node pools

In the Cluster configuration pane, you can instruct AKS to upgrade the control
plane to a newer version. Typically, in a Kubernetes upgrade, you first upgrade the
control plane, and then the individual node pools separately. This pane also allows
you to enable role‑based access control (RBAC) (which is enabled by default), and
optionally integrate your cluster with Azure AD. You will learn more about Azure
AD integration in Chapter 8, Role-based access control in AKS:

Getting started with the Azure portal | 39

Figure 2.12: Upgrading the Kubernetes version of the API server using the Upgrade pane

Finally, the Insights pane allows you to monitor your cluster infrastructure and the
workloads running on your cluster. Since your cluster is brand new, there isn't a lot
of data to investigate. We will return back to this, in Chapter 7, Monitoring the AKS
cluster and the application:

Figure 2.13: Displaying cluster utilization using the Insights pane

40 | Getting started with Azure Kubernetes Service

This concludes our quick overview of the cluster and some of the interesting
configuration options in the Azure portal. In the next section, we'll connect to our
AKS cluster using Cloud Shell and then launch a demo application on top of this
cluster.

Accessing your cluster using Azure Cloud Shell

Once the deployment is completed successfully, find the small Cloud Shell icon
near the search bar, as highlighted in Figure 2.14, and click it:

Figure 2.14: Clicking the Cloud Shell icon to open Azure Cloud Shell

The portal will ask you to select either PowerShell or Bash as your default shell
experience. As we will be working mainly with Linux workloads, please select Bash:

Figure 2.15: Selecting the Bash option

Getting started with the Azure portal | 41

If this is the first time you have launched Cloud Shell, you will be asked to create a
storage account; confirm and create it:

Figure 2.16: Creating a new storage account for Cloud Shell

After creating the storage, you might get an error message that contains a mount
storage error. If that occurs, please restart your Cloud Shell:

Figure 2.17: Hitting the restart button upon receiving a mount storage error

42 | Getting started with Azure Kubernetes Service

Click on the power button. It should restart, and you should see something similar
to Figure 2.18:

Figure 2.18: Launching Cloud Shell successfully

You can pull the splitter/divider up or down to see more or less of the shell:

Figure 2.19: Using the divider to make Cloud Shell larger or smaller

The command-line tool that is used to interface with Kubernetes clusters is
called kubectl. The benefit of using Azure Cloud Shell is that this tool, along
with many others, comes preinstalled and is regularly maintained. kubectl uses
a configuration file stored in ~/.kube/config to store credentials to access your
cluster.

Note

There is some discussion in the Kubernetes community around the correct
pronunciation of kubectl. The common way to pronounce it is either
kube-c-t-l, kube-control, or kube-cuddle.

Getting started with the Azure portal | 43

To get the required credentials to access your cluster, you need to type the
following command:

az aks get-credentials \
 --resource-group rg-handsonaks \
 --name handsonaks

Note

In this book, you will commonly see longer commands spread over multiple
lines using the backslash symbol. This helps improve the readability of the
commands, while still allowing you to copy and paste them. If you are typing
these commands, you can safely ignore the backslash and type the full
command in a single line.

To verify that you have access, type the following:

kubectl get nodes

You should see something like Figure 2.20:

Figure 2.20: Output of the kubectl get nodes command

This command has verified that you can connect to your AKS cluster. In the next
section, you'll go ahead and launch your first application.

Deploying and inspecting your first demo application

As you are all connected, let's launch your very first application. In this section, you
will deploy your first application and inspect it using kubectl and later using the
Azure portal. Let's start by deploying the application.

44 | Getting started with Azure Kubernetes Service

Deploying the demo application

In this section, you will deploy your demo application. For this, you will have to
write a bit of code. In Cloud Shell, there are two options to edit code. You can do
this either via command-line tools such as vi or nano or you can use a GUI-based
code editor by typing the code commands in Cloud Shell. Throughout this book,
you will mainly be instructed to use the graphical editor in the examples, but feel
free to use any other tool you feel most comfortable with.

For the purpose of this book, all the code examples are hosted in a GitHub
repository. You can clone this repository to your Cloud Shell and work with the
code examples directly. To clone the GitHub repo into your Cloud Shell, use the
following command:

git clone https://github.com/PacktPublishing/Hands-on-Kubernetes-on-
Azure-Third-Edition.git Hands-On-Kubernetes-on-Azure

To access the code examples for this chapter, navigate into the directory of the
code examples and go to the Chapter02 directory:

cd Hands-On-Kubernetes-on-Azure/Chapter02/

You will use the code directly in the Chapter02 folder for now. At this point
in the book, you will not focus on what is in the code files just yet. The goal of
this chapter is to launch a cluster and deploy an application on top of it. In the
following chapters, we will dive into how Kubernetes configuration files are built
and how you can create your own.

You will create an application based on the definition in the azure-vote.yaml file.
To open that file in Cloud Shell, you can type the following command:

code azure-vote.yaml

Here is the code example for your convenience:

1 	 apiVersion: apps/v1
2 	 kind: Deployment
3 	 metadata:
4 	 name: azure-vote-back
5 	 spec:
6 	 replicas: 1
7 	 selector:

https://github.com/PacktPublishing/Hands-on-Kubernetes-on-Azure-Third-Edition.git
https://github.com/PacktPublishing/Hands-on-Kubernetes-on-Azure-Third-Edition.git

Getting started with the Azure portal | 45

8 		 matchLabels:
9 		 app: azure-vote-back
10	 template:
11		 metadata:
12		 labels:
13			 app: azure-vote-back
14		 spec:
15		 containers:
16		 - name: azure-vote-back
17			 image: redis
18			 resources:
19			 requests:
20				 cpu: 100m
21				 memory: 128Mi
22			 limits:
23				 cpu: 250m
24				 memory: 256Mi
25			 ports:
26			 - containerPort: 6379
27			 name: redis
28	 ---
29	 apiVersion: v1
30	 kind: Service
31	 metadata:
32	 name: azure-vote-back
33	 spec:
34	 ports:
35	 - port: 6379
36	 selector:
37		 app: azure-vote-back
38	 ---
39	 apiVersion: apps/v1
40	 kind: Deployment
41	 metadata:
42	 name: azure-vote-front
43	 spec:
44	 replicas: 1
45	 selector:
46		 matchLabels:
47		 app: azure-vote-front
48	 template:
49		 metadata:
50		 labels:

46 | Getting started with Azure Kubernetes Service

51			 app: azure-vote-front
52		 spec:
53		 containers:
54		 - name: azure-vote-front
55			 image: microsoft/azure-vote-front:v1
56			 resources:
57			 requests:
58				 cpu: 100m
59				 memory: 128Mi
60			 limits:
61				 cpu: 250m
62				 memory: 256Mi
63			 ports:
64			 - containerPort: 80
65			 env:
66			 - name: REDIS
67			 value: "azure-vote-back"
68	 ---
69	 apiVersion: v1
70	 kind: Service
71	 metadata:
72	 name: azure-vote-front
73	 spec:
74	 type: LoadBalancer
75	 ports:
76	 - port: 80
77	 selector:
78		 app: azure-vote-front

You can make changes to files in the Cloud Shell code editor. If you've made
changes, you can save them by clicking on the ... icon in the upper-right corner,
and then click Save to save the file as highlighted in Figure 2.21:

Getting started with the Azure portal | 47

Figure 2.21: Save the azure-vote.yaml file

The file should be saved. You can check this with the following command:

cat azure-vote.yaml

Note:

Hitting the Tab button expands the file name in Linux. In the preceding
scenario, if you hit Tab after typing az, it should expand to azure-vote.
yaml.

Now, let's launch the application:

kubectl create -f azure-vote.yaml

You should quickly see the output as shown in Figure 2.22, it tells you which
resources have been created:

Figure 2.22: Output of the kubectl create command

48 | Getting started with Azure Kubernetes Service

You have successfully created your demo application. In the next section, you
will inspect all the different objects Kubernetes created for this application and
connect to your application.

Exploring the demo application

In the previous section, you deployed a demo application. In this section, you will
explore the different objects that Kubernetes created for this application and
connect to it.

You can check the progress of the deployment by typing the following command:

kubectl get pods

If you typed this soon after creating the application, you might have seen that a
certain pod was still in the ContainerCreating process:

Figure 2.23: Output of the kubectl get pods command

Note

Typing kubectl can become tedious. You can use the alias command to
make your life easier. You can use k instead of kubectl as the alias with
the following command: alias k=kubectl. After running the preceding
command, you can just use k get pods. For instructional purposes in this
book, we will continue to use the full kubectl command.

Hit the up arrow key and press Enter to repeat the kubectl get pods command
until the status of all pods is Running. Setting up all the pods takes some time, and
you could optionally follow their status using the following command:

kubectl get pods --watch

To stop following the status of the pods (when they are all in a running state), you
can press Ctrl + C.

Getting started with the Azure portal | 49

In order to access your application publicly, you need one more thing. You need to
know the public IP of the load balancer so that you can access it. If you remember
from Chapter 1, Introduction to containers and Kubernetes, a service in Kubernetes
will create an Azure load balancer. This load balancer will get a public IP in your
application so you can access it publicly.

Type the following command to get the public IP of the load balancer:

kubectl get service azure-vote-front --watch

At first, the external IP might show pending. Wait for the public IP to appear and
then press Ctrl + C to exit:

Figure 2.24: Watching the service IP change from pending to the actual IP address

Note the external IP address and type it in a browser. You should see an output
similar to Figure 2.25:

Figure 2.25: The actual application you just launched

Click on Cats or Dogs and watch the count go up.

To see all the objects in Kubernetes that were created for your application, you can
use the kubectl get all command. This will show an output similar to Figure 2.26:

50 | Getting started with Azure Kubernetes Service

Figure 2.26: Exploring all the Kubernetes objects created for your application

As you can see, a number of objects were created:

•	 Pods: You will see two pods, one for the back end and one for the front end.

•	 Services: You will also see two services, one for the back end of type
ClusterIP and one for the front end of type LoadBalancer. What these types
mean will be explored in Chapter 3, Application deployment on AKS.

•	 Deployments: You will also see two deployments.

•	 ReplicaSets: And finally you'll see two ReplicaSets.

You can also view these objects from the Azure portal. To see, for example, the
two deployments, you can click on Workloads in the left-hand navigation menu
of the AKS pane, and you will see all the deployments in your cluster as shown in
Figure 2.27. This figure shows you all the deployments in your cluster, including the
system deployments. At the bottom of the list, you can see your own deployments.
As you can also see in this figure, you can explore other objects such as pods and
ReplicaSets using the top menu:

Getting started with the Azure portal | 51

Figure 2.27: Exploring the two deployments part of your application in the Azure portal

You have now launched your own cluster and your first Kubernetes application.
Note that Kubernetes took care of tasks such as connecting the front end and the
back end, and exposing them to the outside world, as well as providing storage for
the services.

Before moving on to the next chapter, let's clean up your deployment. Since
you created everything from a file, you can also delete everything by pointing
Kubernetes to that file. Type kubectl delete -f azure-vote.yaml and watch all
your objects get deleted:

Figure 2.28: Cleaning up the application

52 | Getting started with Azure Kubernetes Service

In this section, you have connected to your AKS cluster using Cloud Shell,
successfully launched and connected to a demo application, explored the objects
created using Cloud Shell and the Azure portal, and finally, cleaned up the
resources that were created.

Summary

Having completed this chapter, you will now be able to access and navigate the
Azure portal to perform all the functions required to deploy an AKS cluster. We
used the free trial on Azure to our advantage to learn the ins and outs of AKS. We
also launched our own AKS cluster with the ability to customize configurations if
required using the Azure portal.

We also used Cloud Shell without installing anything on the computer. This is
important for all the upcoming sections, where you will be doing more than just
launching simple applications. Finally, we launched a publicly accessible service.
The skeleton of this application is the same as for complex applications that we will
cover in the later chapters.

In the next chapter, we will take an in-depth look at different deployment options
to deploy applications onto AKS.

Section 2:
Deploying on AKS

At this point in the book, you have learned the basics of containers and Kubernetes
and set up a Kubernetes cluster on Azure. In this section, you will learn how to
deploy applications on top of that Kubernetes cluster.

Throughout this section, you will progressively build and deploy different
applications on top of AKS. You will start by deploying a simple application, and
later introduce concepts such as scaling, monitoring, and authentication. By the
end of the section, you should feel comfortable deploying applications to AKS.

This section contains the following chapters:

•	 Chapter 3, Application deployment on AKS

•	 Chapter 4, Building scalable applications

•	 Chapter 5, Handling common failures in AKS

•	 Chapter 6, Securing your application with HTTPS

•	 Chapter 7, Monitoring the AKS cluster and the application

Let's start this section by exploring application deployment on AKS in Chapter 3,
Application deployment on AKS.

3
Application

deployment on AKS

In this chapter, you will deploy two applications on Azure Kubernetes
Service (AKS). An application consists of multiple parts, and you will build the
applications one step at a time while the conceptual model behind them is
explained. You will be able to easily adapt the steps in this chapter to deploy any
other application on AKS.

To deploy the applications and make changes to them, you will be using YAML
files. YAML is a recursive acronym for YAML Ain't Markup Language. YAML is
a language that is used to create configuration files to deploy to Kubernetes.
Although you can use either JSON or YAML files to deploy applications to
Kubernetes, YAML is the most commonly used language to do so. YAML became
popular because it is easier for a human to read when compared to JSON or
XML. You will see multiple examples of YAML files throughout this chapter and
throughout the book.

56 | Application deployment on AKS

During the deployment of the sample guestbook application, you will see
Kubernetes concepts in action. You will see how a deployment is linked to a
ReplicaSet, and how that is linked to the pods that are deployed. A deployment is
an object in Kubernetes that is used to define the desired state of an application.
A deployment will create a ReplicaSet. A ReplicaSet is an object in Kubernetes
that guarantees that a certain number of pods will always be available. Hence,
a ReplicaSet will create one or more pods. A pod is an object in Kubernetes
that is a group of one or more containers. Let's revisit the relationship between
deployments, ReplicaSets, and pods:

Figure 3.1: Relationship between a deployment, a ReplicaSet, and pods

While deploying the sample applications, you will use the service object to connect
to the application. A service in Kubernetes is an object that is used to provide a
static IP address and DNS name to an application. Since a pod can be killed and
moved to different nodes in the cluster, a service ensures you can connect to a
static endpoint for your application.

You will also edit the sample applications to provide configuration details using a
ConfigMap. A ConfigMap is an object that is used to provide configuration details
to pods. It allows you to keep configuration settings outside of the actual container.
You can then provide these configuration details to your application by connecting
the ConfigMap to your deployment.

Finally, you will be introduced to Helm. Helm is a package manager for Kubernetes
that helps to streamline the deployment process. You will deploy a WordPress site
using Helm and gain an understanding of the value Helm brings to Kubernetes. This
WordPress installation makes use of persistent storage in Kubernetes and you will
learn how persistent storage in AKS is set up.

The following topics will be covered in this chapter:

•	 Deploying the sample guestbook application step by step

•	 Full deployment of the sample guestbook application

•	 Using Helm to install complex Kubernetes applications

Deploying the sample guestbook application step by step | 57

We'll begin with the sample guestbook application.

Deploying the sample guestbook application step by step

In this chapter, you will deploy the classic guestbook sample Kubernetes
application. You will be mostly following the steps from https://kubernetes.io/
docs/tutorials/stateless-application/guestbook/ with some modifications. You
will employ these modifications to show additional concepts, such as ConfigMaps,
that are not present in the original sample.

The sample guestbook application is a simple, multi-tier web application. The
different tiers in this application will have multiple instances. This is beneficial
for both high availability and scalability. The guestbook's front end is a stateless
application because the front end doesn't store any state. The Redis cluster in the
back end is stateful as it stores all the guestbook entries.

You will be using this application as the basis for testing out the scaling of the back
end and the front end, independently, in the next chapter.

Before we get started, let's consider the application that we'll be deploying.

Introducing the application

The application stores and displays guestbook entries. You can use it to record the
opinion of all the people who visit your hotel or restaurant, for example.

Figure 3.2 shows you a high-level overview of the application. The application
uses PHP as a front end. The front end will be deployed using multiple replicas.
The application uses Redis for its data storage. Redis is an in-memory key-value
database. Redis is most often used as a cache.

https://kubernetes.io/docs/tutorials/stateless-application/guestbook/
https://kubernetes.io/docs/tutorials/stateless-application/guestbook/

58 | Application deployment on AKS

Figure 3.2: High-level overview of the guestbook application

We will begin deploying this application by deploying the Redis master.

Deploying the Redis master

In this section, you are going to deploy the Redis master. You will learn about the
YAML syntax that is required for this deployment. In the next section, you will
make changes to this YAML. Before making changes, let's start by deploying the
Redis master.

Perform the following steps to complete the task:

1.	 Open your friendly Azure Cloud Shell, as highlighted in Figure 3.3:

Figure 3.3: Opening the Cloud Shell

Deploying the sample guestbook application step by step | 59

2.	 If you have not cloned the GitHub repository for this book, please do so now by
using the following command:

git clone https: //github.com/PacktPublishing/Hands-on-Kubernetes-on-
Azure-Third-Edition/

3.	 Change into the directory for Chapter 3 using the following command:

cd Hands-On-Kubernetes-on-Azure/Chapter03/

4.	 Enter the following command to deploy the master:

kubectl apply -f redis-master-deployment.yaml

It will take some time for the application to download and start running. While
you wait, let's understand the command you just typed and executed. Let's
start by exploring the content of the YAML file that was used (the line numbers
are used for explaining key elements from the code snippets):

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: redis-master
5 labels:
6 app: redis
7 spec:
8 selector:
9 matchLabels:
10 app: redis
11 role: master
12 tier: backend
13 replicas: 1
14 template:
15 metadata:
16 labels:
17 app: redis
18 role: master
19 tier: backend
20 spec:
21 containers:
22 - name: master

60 | Application deployment on AKS

23 image: k8s.gcr.io/redis:e2e
24 resources:
25 requests:
26 cpu: 100m
27 memory: 100Mi
28 limits:
29 cpu: 250m
30 memory: 1024Mi
31 ports:
32 - containerPort: 6379

Let's dive deeper into the code line by line to understand the provided
parameters:

•	 Line 2: This states that we are creating a deployment. As explained in
Chapter 1, Introduction to containers and Kubernetes, a deployment is a
wrapper around pods that makes it easy to update and scale pods.

•	 Lines 4-6: Here, the deployment is given a name, which is redis-
master.

•	 Lines 7-12: These lines let us specify the containers that this
deployment will manage. In this example, the deployment will select
and manage all containers for which labels match (app: redis, role:
master, and tier: backend). The preceding label exactly matches the
labels provided in lines 14-19.

•	 Line 13: This line tells Kubernetes that we need exactly one copy
of the running Redis master. This is a key aspect of the declarative
nature of Kubernetes. You provide a description of the containers your
applications need to run (in this case, only one replica of the Redis
master), and Kubernetes takes care of it.

•	 Line 14-19: These lines add labels to the running instance so that it can
be grouped and connected to other pods. We will discuss them later to
see how they are used.

•	 Line 22: This line gives the single container in the pod a name, which
is master. In the case of a multi-container pod, each container in a pod
requires a unique name.

Deploying the sample guestbook application step by step | 61

•	 Line 23: This line indicates the container image that will be run. In this
case, it is the redis image tagged with e2e (the latest Redis image that
successfully passed its end-to-end [e2e] tests).

•	 Lines 24-30: These lines set the cpu/memory resources requested for
the container. A request in Kubernetes is a reservation of resources
that cannot be used by other pods. If those resources are not available
in the cluster, the pod will not start. In this case, the request is 0.1 CPU,
which is equal to 100m and is also often referred to as 100 millicores.
The memory requested is 100Mi, or 104,857,600 bytes, which is equal
to ~105 MB. CPU and memory limits are set in a similar way. Limits are
caps on what a container can use. If your pod hits the CPU limit, it'll get
throttled, whereas if it hits the memory limits, it'll get restarted. Setting
requests and limits is a best practice in Kubernetes. For more info,
refer to https://kubernetes.io/docs/concepts/configuration/manage-
compute-resources-container/.

•	 Lines 31-32: These two lines indicate that the container is going to
listen on port 6379.

As you can see, the YAML definition for the deployment contains several settings
and parameters that Kubernetes will use to deploy and configure your application.

Note

The Kubernetes YAML definition is similar to the arguments given to Docker
to run a particular container image. If you had to run this manually, you would
define this example in the following way:
Run a container named master, listening on port 6379, with 100M memory
and 100m CPU using the redis:e2e image.
docker run --name master -p 6379:6379 -m 100M -c 100m -d k8s.gcr.io/
redis:e2e

In this section, you have deployed the Redis master and learned about the syntax of
the YAML file that was used to create this deployment. In the next section, you will
examine the deployment and learn about the different elements that were created.

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

62 | Application deployment on AKS

Examining the deployment

The redis-master deployment should be complete by now. Continue in the Azure
Cloud Shell that you opened in the previous section and type the following:

kubectl get all

You should get an output similar to the one displayed in Figure 3.4. In your case, the
name of the pod and the ReplicaSet might contain different IDs at the end of the
name. If you do not see a pod, a deployment, and a ReplicaSet, please run the code
as explained in step 4 in the previous section again.

Figure 3.4: Objects that were created by your deployment

You can see that you created a deployment named redis-master. It controls a
ReplicaSet named redis-master-f46ff57fd. On further examination, you will also
find that the ReplicaSet is controlling a pod, redis- master-f46ff57fd-b8cjp.
Figure 3.1 has a graphical representation of this relationship.

More details can be obtained by executing the kubectl describe <object>
<instance-name> command, as follows:

kubectl describe deployment/redis-master

Deploying the sample guestbook application step by step | 63

This will generate an output as follows:

Figure 3.5: Description of the deployment

You have now launched a Redis master with the default configuration. Typically,
you would launch an application with an environment-specific configuration.

In the next section, you will get acquainted with a new concept called ConfigMaps
and then recreate the Redis master. So, before proceeding, clean up the current
version, which you can do by running the following command:

kubectl delete deployment/redis-master

64 | Application deployment on AKS

Executing this command will produce the following output:

deployment.apps "redis-master" deleted

In this section, you examined the Redis master deployment you created. You
saw how a deployment relates to a ReplicaSet and how a ReplicaSet relates
to pods. In the following section, you will recreate this Redis master with an
environment‑specific configuration provided via a ConfigMap.

Redis master with a ConfigMap

There was nothing wrong with the previous deployment. In practical use cases, it
would be rare that you would launch an application without some configuration
settings. In this case, you are going to set the configuration settings for redis-
master using a ConfigMap.

A ConfigMap is a portable way of configuring containers without having specialized
images for each environment. It has a key-value pair for data that needs to be set
on a container. A ConfigMap is used for non-sensitive configuration. Kubernetes
has a separate object called a Secret. A Secret is used for configurations that
contain critical data such as passwords. This will be explored in detail in Chapter 10,
Storing Secrets in AKS of this book.

In this example, you are going to create a ConfigMap. In this ConfigMap, you will
configure redis-config as the key and the value will be the following two lines:

maxmemory 2mb
maxmemory-policy allkeys-lru

Now, let's create this ConfigMap. There are two ways to create a ConfigMap:

•	 Creating a ConfigMap from a file

•	 Creating a ConfigMap from a YAML file

In the following two sections, you'll explore both.

Deploying the sample guestbook application step by step | 65

Creating a ConfigMap from a file

The following steps will help us create a ConfigMap from a file:

1.	 Open the Azure Cloud Shell code editor by typing code redis-config in the
terminal. Copy and paste the following two lines and save the file as redis-
config:

maxmemory 2mb
maxmemory-policy allkeys-lru

2.	 Now you can create the ConfigMap using the following code:

kubectl create configmap \
 example-redis-config --from-file=redis-config

You should get an output as follows:

configmap/example-redis-config created

3.	 You can use the same command to describe this ConfigMap:

kubectl describe configmap/example-redis-config

The output will be as shown in Figure 3.6:

Figure 3.6: Description of the ConfigMap

In this example, you created the ConfigMap by referring to a file on disk. A different
way to deploy ConfigMaps is by creating them from a YAML file. Let's have a look at
how this can be done in the following section.

66 | Application deployment on AKS

Creating a ConfigMap from a YAML file

In this section, you will recreate the ConfigMap from the previous section using a
YAML file:

1.	 To start, delete the previously created ConfigMap:

kubectl delete configmap/example-redis-config

2.	 Copy and paste the following lines into a file named example-redis-config.
yaml, and then save the file:

1 apiVersion: v1
2 data:
3 redis-config: |-
4 maxmemory 2mb
5 maxmemory-policy allkeys-lru
6 kind: ConfigMap
7 metadata:
8 name: example-redis-config

3.	 You can now create your ConfigMap via the following command:

kubectl create -f example-redis-config.yaml

You should get an output as follows:

configmap/example-redis-config created

4.	 Next, run the following command:

kubectl describe configmap/example-redis-config

This command returns the same output as the previous one, as shown in
Figure 3.6.

Deploying the sample guestbook application step by step | 67

As you can see, using a YAML file, you were able to create the same ConfigMap.

Note

kubectl get has the useful -o option, which can be used to get the output of
an object in either YAML or JSON. This is very useful in cases where you have
made manual changes to a system and want to see the resulting object in
YAML format. You can get the current ConfigMap in YAML using the following
command:
kubectl get -o yaml configmap/example-redis-config

Now that you have the ConfigMap defined, let's use it.

Using a ConfigMap to read in configuration data

In this section, you will reconfigure the redis-master deployment to read
configuration from the ConfigMap:

1.	 To start, modify redis-master-deployment.yaml to use the ConfigMap as
follows. The changes you need to make will be explained after the source code:

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: redis-master
5 labels:
6 app: redis
7 spec:
8 selector:
9 matchLabels:
10 app: redis
11 role: master
12 tier: backend
13 replicas: 1
14 template:
15 metadata:

68 | Application deployment on AKS

16 labels:
17 app: redis
18 role: master
19 tier: backend
20 spec:
21 containers:
22 - name: master
23 image: k8s.gcr.io/redis:e2e
24 command:
25 - redis-server
26 - "/redis-master/redis.conf"
27 env:
28 - name: MASTER
29 value: "true"
30 volumeMounts:
31 - mountPath: /redis-master
32 name: config
33 resources:
34 requests:
35 cpu: 100m
36 memory: 100Mi
37 ports:
38 - containerPort: 6379
39 volumes:
40 - name: config
41 configMap:
42 name: example-redis-config
43 items:
44 - key: redis-config
45 path: redis.conf

Note

If you downloaded the source code accompanying this book, there is a file
in Chapter 3, Application deployment on AKS, called redis-master-deployment_
Modified.yaml, that has the necessary changes applied to it.

Deploying the sample guestbook application step by step | 69

Let's dive deeper into the code to understand the different sections:

•	 Lines 24-26: These lines introduce a command that will be executed
when your pod starts. In this case, this will start the redis-server
pointing to a specific configuration file.

•	 Lines 27-29: These lines show how to pass configuration data to your
running container. This method uses environment variables. In Docker
form, this would be equivalent to docker run -e "MASTER=true".
--name master -p 6379:6379 -m 100M -c 100m -d Kubernetes /
redis:v1. This sets the environment variable MASTER to true.
Your application can read the environment variable settings for its
configuration.

•	 Lines 30-32: These lines mount the volume called config (this volume
is defined in lines 39-45) on the /redis-master path on the running
container. It will hide whatever exists on /redis-master on the original
container.

•	 In Docker terms, it would be equivalent to docker run -v config:/
redis-master. -e "MASTER=TRUE" --name master -p 6379:6379 -m
100M -c 100m -d Kubernetes /redis:v1.

•	 Line 40: This gives the volume the name config. This name will be used
within the context of this pod.

•	 Lines 41-42: This declares that this volume should be loaded from the
example-redis-config ConfigMap. This ConfigMap should already exist
in the system. You have already defined this, so you are good.

•	 Lines 43-45: Here, you are loading the value of the redis-config key
(the two-line maxmemory settings) as a redis.conf file.

70 | Application deployment on AKS

By adding the ConfigMap as a volume and mounting the volume, you are able to
load dynamic configuration.

1.	 Let's create this updated deployment:

kubectl create -f redis-master-deployment_Modified.yaml

This should output the following:

deployment.apps/redis-master created

2.	 Let's now make sure that the configuration was successfully applied. First, get
the pod's name:

kubectl get pods

This should return an output similar to Figure 3.7:

Figure 3.7: Details of the pod

3.	 Then exec into the pod and verify that the settings were applied:

kubectl exec -it redis-master-<pod-id> -- redis-cli

This open a redis-cli session with the running pod. Now you can get the
maxmemory configuration:

CONFIG GET maxmemory

And then you can get the maxmemory-policy configuration:

CONFIG GET maxmemory-policy

This should give you an output similar to Figure 3.8:

Figure 3.8: Verifying the Redis configuration in the pod

Complete deployment of the sample guestbook application | 71

4.	 To leave the Redis shell, type the exit command.

To summarize, you have just performed an important part of configuring cloud-
native applications, namely providing dynamic configuration data to an application.
You will have also noticed that the apps have to be configured to read config
dynamically. After you set up your app with configuration, you accessed a running
container to verify the running configuration. You will use this methodology
frequently throughout this book to verify the functionality of running applications.

Note

Connecting to a running container by using the kubectl exec command is
useful for troubleshooting and doing diagnostics. Due to the ephemeral
nature of containers, you should never connect to a container to do additional
configuration or installation. This should either be part of your container
image or configuration you provide via Kubernetes (as you just did).

In this section, you configured the Redis master to load configuration data from a
ConfigMap. In the next section, we will deploy the end-to-end application.

Complete deployment of the sample guestbook application

Having taken a detour to understand the dynamic configuration of applications
using a ConfigMap, you will now return to the deployment of the rest of
the guestbook application. You will once again come across the concepts of
deployment, ReplicaSets, and pods. Apart from this, you will also be introduced to
another key concept, called a service.

To start the complete deployment, we are going to create a service to expose the
Redis master service.

72 | Application deployment on AKS

Exposing the Redis master service

When exposing a port in plain Docker, the exposed port is constrained to the
host it is running on. With Kubernetes networking, there is network connectivity
between different pods in the cluster. However, pods themselves are ephemeral in
nature, meaning they can be shut down, restarted, or even moved to other hosts
without maintaining their IP address. If you were to connect to the IP of a pod
directly, you might lose connectivity if that pod was moved to a new host.

Kubernetes provides the service object, which handles this exact problem. Using
label-matching selectors, it sends traffic to the right pods. If there are multiple
pods serving traffic to a service, it will also do load balancing. In this case, the
master has only one pod, so it just ensures that the traffic is directed to the pod
independent of the node the pod runs on. To create the service, run the following
command:

kubectl apply -f redis-master-service.yaml

The redis-master-service.yaml file has the following content:

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: redis-master
5 labels:
6 app: redis
7 role: master
8 tier: backend
9 spec:
10 ports:
11 - port: 6379
12 targetPort: 6379
13 selector:
14 app: redis
15 role: master
16 tier: backend

Complete deployment of the sample guestbook application | 73

Let's now see what you have created using the preceding code:

•	 Lines 1-8: These lines tell Kubernetes that we want a service called redis-
master, which has the same labels as our redis-master server pod.

•	 Lines 10-12: These lines indicate that the service should handle traffic
arriving at port 6379 and forward it to port 6379 of the pods that match the
selector defined between lines 13 and 16.

•	 Lines 13-16: These lines are used to find the pods to which the incoming
traffic needs to be sent. So, any pod with labels matching (app: redis,
role: master and tier: backend) is expected to handle port 6379 traffic.
If you look back at the previous example, those are the exact labels we
applied to that deployment.

You can check the properties of the service by running the following command:

kubectl get service

This will give you an output as shown in Figure 3.9:

Figure 3.9: Properties of the created service

You see that a new service, named redis-master, has been created. It has a
Cluster-IP of 10.0.106.207 (in your case, the IP will likely be different). Note that
this IP will work only within the cluster (hence the ClusterIP type).

Note

You are now creating a service of type ClusterIP. There are other types of
service as well, which will be introduced later in this chapter.

74 | Application deployment on AKS

A service also introduces a Domain Name Server (DNS) name for that service. The
DNS name is of the form <service-name>.<namespace>.svc.cluster.local; in
this case, it would be redis-master.default.svc.cluster.local. To see this in
action, we'll do a name resolution on our redis-master pod. The default image
doesn't have nslookup installed, so we'll bypass that by running a ping command.
Don't worry if that traffic doesn't return; this is because you didn't expose ping on
your service, only the redis port. The command is, however, useful to see the full
DNS name and the name resolution work. Let's have a look:

kubectl get pods
#note the name of your redis-master pod
kubectl exec -it redis-master-<pod-id> -- bash
ping redis-master

This should output the resulting name resolution, showing you the Fully Qualified
Domain Name (FQDN) of your service and the IP address that showed up earlier.
You can stop the ping command from running by pressing Ctrl+C. You can exit the
pod via the exit command, as shown in Figure 3.10:

Figure 3.10: Using a ping command to view the FQDN of your service

In this section, you exposed the Redis master using a service. This ensures that
even if a pod moves to a different host, it can be reached through the service's
IP address. In the next section, you will deploy the Redis replicas, which help to
handle more read traffic.

Complete deployment of the sample guestbook application | 75

Deploying the Redis replicas

Running a single back end on the cloud is not recommended. You can configure
Redis in a leader-follower (master-slave) setup. This means that you can have
a master that will serve write traffic and multiple replicas that can handle read
traffic. It is useful for handling increased read traffic and high availability.

Let's set this up:

1.	 Create the deployment by running the following command:

kubectl apply -f redis-replica-deployment.yaml

2.	 Let's check all the resources that have been created now:

kubectl get all

The output would be as shown in Figure 3.11:

Figure 3.11: Deploying the Redis replicas creates a number of new objects

76 | Application deployment on AKS

3.	 Based on the preceding output, you can see that you created two replicas
of the redis-replica pods. This can be confirmed by examining the redis-
replica- deployment.yaml file:

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: redis-replica
5 labels:
6 app: redis
7 spec:
8 selector:
9 matchLabels:
10 app: redis
11 role: replica
12 tier: backend
13 replicas: 2
14 template:
15 metadata:
16 labels:
17 app: redis
18 role: replica
19 tier: backend
20 spec:
21 containers:
22 - name: replica
23 image: gcr.io/google-samples/gb-redis-follower:v1
24 resources:
25 requests:
26 cpu: 100m
27 memory: 100Mi
28 env:
29 - name: GET_HOSTS_FROM
30 value: dns
31 ports:
32 - containerPort: 6379

Complete deployment of the sample guestbook application | 77

Everything is the same except for the following:

•	 Line 13: The number of replicas is 2.

•	 Line 23: You are now using a specific replica (follower) image.

•	 Lines 29-30: Setting GET_HOSTS_FROM to dns. This is a setting that
specifies that Redis should get the hostname of the master using DNS.

As you can see, this is similar to the Redis master you created earlier.

4.	 Like the master service, you need to expose the replica service by running the
following:

kubectl apply -f redis-replica-service.yaml

The only difference between this service and the redis-master service is that
this service proxies traffic to pods that have the role:replica label.

5.	 Check the redis-replica service by running the following command:

kubectl get service

This should give you the output shown in Figure 3.12:

Figure 3.12: Redis-master and redis-replica service

You now have a Redis cluster up and running, with a single master and two
replicas. In the next section, you will deploy and expose the front end.

Deploying and exposing the front end

Up to now, you have focused on the Redis back end. Now you are ready to deploy
the front end. This will add a graphical web page to your application that you'll be
able to interact with.

78 | Application deployment on AKS

You can create the front end using the following command:

kubectl apply -f frontend-deployment.yaml

To verify the deployment, run this command:

kubectl get pods

This will display the output shown in Figure 3.13:

Figure 3.13: Verifying the front end deployment

You will notice that this deployment specifies 3 replicas. The deployment has the
usual aspects with minor changes, as shown in the following code:

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: frontend
5 labels:
6 app: guestbook
7 spec:
8 selector:
9 matchLabels:
10 app: guestbook
11 tier: frontend
12 replicas: 3
13 template:
14 metadata:
15 labels:
16 app: guestbook
17 tier: frontend
18 spec:
19 containers:
20 - name: php-redis
21 image: gcr.io/google-samples/gb-frontend:v4

Complete deployment of the sample guestbook application | 79

22 resources:
23 requests:
24 cpu: 100m
25 memory: 100Mi
26 env:
27 - name: GET_HOSTS_FROM
28 value: env
29 - name: REDIS_SLAVE_SERVICE_HOST
30 value: redis-replica
31 ports:
32 - containerPort: 80

Let's see these changes:

•	 Line 11: The replica count is set to 3.

•	 Line 8-10 and 14-16: The labels are set to app: guestbook and tier:
frontend.

•	 Line 20: gb-frontend:v4 is used as the image.

You have now created the front-end deployment. You now need to expose it as a
service.

Exposing the front-end service

There are multiple ways to define a Kubernetes service. The two Redis services we
created were of the type ClusterIP. This means they are exposed on an IP that is
reachable only from the cluster, as shown in Figure 3.14:

Figure 3.14: Kubernetes service of type ClusterIP

80 | Application deployment on AKS

Another type of service is the type NodePort. A service of type NodePort is accessible
from outside the cluster, by connecting to the IP of a node and the specified port.
This service is exposed on a static port on each node as shown in Figure 3.15:

Figure 3.15: Kubernetes service of type NodePort

Complete deployment of the sample guestbook application | 81

A final type – which will be used in this example – is the LoadBalancer type. This
will create an Azure Load Balancer that will get a public IP that you can use to
connect to, as shown in Figure 3.16:

Figure 3.16: Kubernetes service of type LoadBalancer

82 | Application deployment on AKS

The following code will help you to understand how the frontend service is
exposed:

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: frontend
5 labels:
6 app: guestbook
7 tier: frontend
8 spec:
9 type: LoadBalancer # line uncommented
10 ports:
11 - port: 80
12 selector:
13 app: guestbook
14 tier: frontend

This definition is similar to the services you created earlier, except that in line 9
you defined type: Load Balancer. This will create a service of that type, which
will cause AKS to add rules to the Azure load balancer.

Now that you have seen how a front-end service is exposed, let's make the
guestbook application ready for use with the following steps:

1.	 To create the service, run the following command:

kubectl create -f frontend-service.yaml

This step takes some time to execute when you run it for the first time. In the
background, Azure must perform a couple of actions to make it seamless. It has
to create an Azure load balancer and a public IP and set the port-forwarding
rules to forward traffic on port 80 to internal ports of the cluster.

Complete deployment of the sample guestbook application | 83

2.	 Run the following until there is a value in the EXTERNAL-IP column:

kubectl get service -w

This should display the output shown in Figure 3.17:

Figure 3.17: External IP value

3.	 In the Azure portal, if you click on All Resources and filter on Load balancer, you
will see a kubernetes Load balancer. Clicking on it shows you something similar
to Figure 3.18. The highlighted sections show you that there is a load balancing
rule accepting traffic on port 80 and you have two public IP addresses:

Figure 3.18: kubernetes Load balancer in the Azure portal

84 | Application deployment on AKS

If you click through on the two public IP addresses, you'll see both IP addresses
linked to your cluster. One of those will be the IP address of your actual front-end
service; the other one is used by AKS to make outbound connections.

Note

Azure has two types of load balancers: basic and standard.
Virtual machines behind a basic load balancer can make outbound
connections without any specific configuration. Virtual machines behind a
standard load balancer (which is the default for AKS now) need an outbound
rule on the load balancer to make outbound connections. This is why you see
a second IP address configured.

You're finally ready to see your guestbook app in action!

The guestbook application in action

Type the public IP of the service in your favorite browser. You should get the
output shown in Figure 3.19:

Figure 3.19: The guestbook application in action

Go ahead and record your messages. They will be saved. Open another browser
and type the same IP; you will see all the messages you typed.

Congratulations – you have completed your first fully deployed, multi-tier,
cloud‑native Kubernetes application!

Installing complex Kubernetes applications using Helm | 85

To conserve resources on your free-trial virtual machines, it is better to delete
the created deployments to run the next round of the deployments by using the
following commands:

kubectl delete deployment frontend redis-master redis-replica
kubectl delete service frontend redis-master redis-replica

Over the course of the preceding sections, you have deployed a Redis cluster and
deployed a publicly accessible web application. You have learned how deployments,
ReplicaSets, and pods are linked, and you have learned how Kubernetes uses the
service object to route network traffic. In the next section of this chapter, you will
use Helm to deploy a more complex application on top of Kubernetes.

Installing complex Kubernetes applications using Helm

In the previous section, you used static YAML files to deploy an application. When
deploying more complicated applications, across multiple environments (such as
dev/test/prod), it can become cumbersome to manually edit YAML files for each
environment. This is where the Helm tool comes in.

Helm is the package manager for Kubernetes. Helm helps you deploy, update, and
manage Kubernetes applications at scale. For this, you write something called Helm
Charts.

You can think of Helm Charts as parameterized Kubernetes YAML files. If you think
about the Kubernetes YAML files we wrote in the previous section, those files were
static. You would need to go into the files and edit them to make changes.

Helm Charts allow you to write YAML files with certain parameters in them, which
you can dynamically set. This setting of the parameters can be done through a
values file or as a command-line variable when you deploy the chart.

Finally, with Helm, you don't necessarily have to write Helm Charts yourself;
you can also use a rich library of pre-written Helm Charts and install popular
software in your cluster through a simple command such as helm install --name
my-release stable/mysql.

86 | Application deployment on AKS

This is exactly what you are going to do in the next section. You will install
WordPress on your cluster by issuing only two commands. In the next chapters,
you'll also dive into custom Helm Charts that you'll edit.

Note

On November 13, 2019, the first stable release of Helm v3 was released.
We will be using Helm v3 in the following examples. The biggest difference
between Helm v2 and Helm v3 is that Helm v3 is a fully client-side tool that no
longer requires the server-side tool called Tiller.

Let's start by installing WordPress on your cluster using Helm. In this section, you'll
also learn about persistent storage in Kubernetes.

Installing WordPress using Helm

As mentioned in the introduction, Helm has a rich library of pre-written Helm
Charts. To access this library, you'll have to add a repo to your Helm client:

1.	 Add the repo that contains the stable Helm Charts using the following
command:

helm repo add bitnami \
 https://charts.bitnami.com/bitnami

2.	 To install WordPress, run the following command:

helm install handsonakswp bitnami/wordpress

This execution will cause Helm to install the chart detailed at https://github.
com/bitnami/charts/tree/master/bitnami/wordpress.

It takes some time for Helm to install and the site to come up. Let's look at a key
concept, PersistentVolumeClaims, while the site is loading. After covering this,
we'll go back and look at your site that got created.

https://github.com/bitnami/charts/tree/master/bitnami/wordpress
https://github.com/bitnami/charts/tree/master/bitnami/wordpress

Installing complex Kubernetes applications using Helm | 87

PersistentVolumeClaims

A typical process requires compute, memory, network, and storage. In the
guestbook example, we saw how Kubernetes helps us abstract the compute,
memory, and network. The same YAML files work across all cloud providers,
including a cloud-specific setup of public-facing load balancers. The WordPress
example shows how the last piece, namely storage, is abstracted from the
underlying cloud provider.

In this case, the WordPress Helm Chart depends on the MariaDB helm chart
(https://github.com/bitnami/charts/tree/master/bitnami/mariadb) for its
database installation.

Unlike stateless applications, such as our front ends, MariaDB requires careful
handling of storage. To make Kubernetes handle stateful workloads, it has a
specific object called a StatefulSet. A StatefulSet (https://kubernetes.io/docs/
concepts/workloads/controllers/statefulset/) is like a deployment with the
additional capability of ordering, and the uniqueness of the pods. This means that
Kubernetes will ensure that the pod and its storage are kept together. Another way
that StatefulSets help is with the consistent naming of pods in a StatefulSet. The
pods are named <pod-name>-#, where # starts from 0 for the first pod, and 1 for the
second pod.

Running the following command, you can see that MariaDB has a predictable
number attached to it, whereas the WordPress deployment has a random number
attached to the end:

kubectl get pods

This will generate the output shown in Figure 3.20:

Figure 3.20: Numbers attached to MariaDB and WordPress pods

The numbering reinforces the ephemeral nature of the deployment pods versus the
StatefulSet pods.

https://github.com/bitnami/charts/tree/master/bitnami/mariadb
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

88 | Application deployment on AKS

Another difference is how pod deletion is handled. When a deployment pod
is deleted, Kubernetes will launch it again anywhere it can, whereas when
a StatefulSet pod is deleted, Kubernetes will relaunch it only on the node it
was running on. It will relocate the pod only if the node is removed from the
Kubernetes cluster.

Often, you will want to attach storage to a StatefulSet. To achieve this, a StatefulSet
requires a PersistentVolume (PV). This volume can be backed by many mechanisms
(including blocks, such as Azure Blob, EBS, and iSCSI, and network filesystems,
such as AFS, NFS, and GlusterFS). StatefulSets require either a pre-provisioned
volume or a dynamically provisioned volume handled by a PersistentVolumeClaim
(PVC). A PVC allows a user to dynamically request storage, which will result in a PV
being created.

Please refer to https://kubernetes.io/docs/concepts/storage/persistent-
volumes/ for more detailed information.

In this WordPress example, you are using a PVC. A PVC provides an abstraction
over the underlying storage mechanism. Let's look at what the MariaDB Helm Chart
did by running the following:

kubectl get statefulset -o yaml > mariadbss.yaml
code mariadbss.yaml

In the preceding command, you got the YAML definition of the StatefulSet that
was created and stored it in a file called mariadbss.yaml. Let's look at the most
relevant parts of that YAML file. The code has been truncated to only show the
most relevant parts:

1 apiVersion: v1
2 items:
3 - apiVersion: apps/v1
4 kind: StatefulSet
...
285 volumeMounts:
286 - mountPath: /bitnami/mariadb
287 name: data
...
306 volumeClaimTemplates:
307 - apiVersion: v1
308 kind: PersistentVolumeClaim

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Installing complex Kubernetes applications using Helm | 89

309 metadata:
310 creationTimestamp: null
311 labels:
312 app.kubernetes.io/component: primary
313 app.kubernetes.io/instance: handsonakswp
314 app.kubernetes.io/name: mariadb
315 name: data
316 spec:
317 accessModes:
318 - ReadWriteOnce
319 resources:
320 requests:
321 storage: 8Gi
322 volumeMode: Filesystem
...

Most of the elements of the preceding code have been covered earlier in the
deployment. In the following points, we will highlight the key differences, to take a
look at just the PVC:

Note

PVC can be used by any pod, not just StatefulSet pods.

Let's discuss the different elements of the preceding code in detail:

•	 Line 4: This line indicates the StatefulSet declaration.

•	 Lines 285-287: These lines mount the volume defined as data and mount it
under the /bitnami/mariadb path.

•	 Lines 306-322: These lines declare the PVC. Note specifically:

•	 Line 315: This line gives it the name data, which is reused at line 285.

•	 Line 318: This line gives the access mode ReadWriteOnce, which will
create block storage, which on Azure is a disk. There are other access
modes as well, namely ReadOnlyMany and ReadWriteMany. As the name
suggests, a ReadWriteOnce volume can only be attached to a single pod,
while a ReadOnlyMany or ReadWriteMany volume can be attached to
multiple pods at the same time. These last two types require a different
underlying storage mechanism such as Azure Files or Azure Blob.

•	 Line 321: This line defines the size of the disk.

90 | Application deployment on AKS

Based on the preceding information, Kubernetes dynamically requests and binds
an 8 GiB volume to this pod. In this case, the default dynamic-storage provisioner
backed by the Azure disk is used. The dynamic provisioner was set up by Azure
when you created the cluster. To see the storage classes available on your cluster,
you can run the following command:

kubectl get storageclass

This will show you an output similar to Figure 3.21:

Figure 3.21: Different storage classes in your cluster

We can get more details about the PVC by running the following:

kubectl get pvc

The output generated is displayed in Figure 3.22:

Figure 3.22: Different PVCs in the cluster

When we asked for storage in the StatefulSet description (lines 128-143),
Kubernetes performed Azure-disk-specific operations to get the Azure disk with 8
GiB of storage. If you copy the name of the PVC and paste that in the Azure search
bar, you should find the disk that was created:

Figure 3.23: Getting the disk linked to a PVC

Installing complex Kubernetes applications using Helm | 91

The concept of a PVC abstracts cloud provider storage specifics. This allows the
same Helm template to work across Azure, AWS, or GCP. On AWS, it will be backed
by Elastic Block Store (EBS), and on GCP it will be backed by Persistent Disk.

Also, note that PVCs can be deployed without using Helm.

In this section, the concept of storage in Kubernetes using PersistentVolumeClaim
(PVC) was introduced. You saw how they were created by the WordPress Helm
deployment, and how Kubernetes created an Azure disk to support the PVC used
by MariaDB. In the next section, you will explore the WordPress application on
Kubernetes in more detail.

Checking the WordPress deployment

After our analysis of the PVCs, let's check back in with the Helm deployment. You
can check the status of the deployment using:

helm ls

This should return the output shown in Figure 3.24:

Figure 3.24: WordPress application deployment status

We can get more info from our deployment in Helm using the following command:

helm status handsonakswp

92 | Application deployment on AKS

This will return the output shown in Figure 3.25:

Figure 3.25: Getting more details about the deployment

This shows you that your chart was deployed successfully. It also shows more
info on how you can connect to your site. You won't be using these steps for now;
you will revisit these steps in Chapter 5, Handling common failures in AKS, in
the section where we cover fixing storage mount issues. For now, let's look into
everything that Helm created for you:

kubectl get all

Installing complex Kubernetes applications using Helm | 93

This will generate an output similar to Figure 3.26:

Figure 3.26: List of objects created by Helm

If you don't have an external IP yet, wait for a couple of minutes and retry the
command.

You can then go ahead and connect to your external IP and access your WordPress
site. Figure 3.27 is the resulting output:

Figure 3.27: WordPress site being displayed on connection with the external IP

94 | Application deployment on AKS

To make sure you don't run into issues in the following chapters, let's delete the
WordPress site. This can be done in the following way:

helm delete handsonakswp

By design, the PVCs won't be deleted. This ensures persistent data is kept. As you
don't have any persistent data, you can safely delete the PVCs as well:

kubectl delete pvc --all

Note

Be very careful when executing kubectl delete <object> --all as it will
delete all the objects in a namespace. This is not recommended on a
production cluster.

In this section, you have deployed a full WordPress site using Helm. You also
learned how Kubernetes handles persistent storage using PVCs.

Summary

In this chapter, you deployed two applications. You started the chapter by
deploying the guestbook application. During that deployment, the details of pods,
ReplicaSets, and deployments were explored. You also used dynamic configuration
using ConfigMaps. Finally, you looked into how services are used to route traffic to
the deployed applications.

The second application you deployed was a WordPress application. You deployed
it via the Helm package manager. As part of this deployment, PVCs were used, and
you explored how they were used in the system and how they were linked to disks
on Azure.

In Chapter 4, Building scalable applications, you will look into scaling applications
and the cluster itself. You will first learn about the manual and automatic scaling of
the application, and afterward, you'll learn about the manual and automatic scaling
of the cluster itself. Finally, different ways in which applications can be updated on
Kubernetes will be explained.

4
Building scalable

applications

When running an application efficiently, the ability to scale and upgrade your
application is critical. Scaling allows your application to handle additional load.
While upgrading, scaling is needed to keep your application up to date and to
introduce new functionality.

Scaling on demand is one of the key benefits of using cloud-native applications.
It also helps optimize resources for your application. If the front end component
encounters heavy load, you can scale the front end alone, while keeping the
same number of back end instances. You can increase or reduce the number of
virtual machines (VMs) required depending on your workload and peak demand
hours. This chapter will cover the scale dimensions of the application and its
infrastructure in detail.

96 | Building scalable applications

In this chapter, you will learn how to scale the sample guestbook application that
was introduced in Chapter 3, Application deployment on AKS. You will first scale this
application using manual commands, and afterward you'll learn how to autoscale
it using the Horizontal Pod Autoscaler (HPA). The goal is to make you comfortable
with kubectl, which is an important tool for managing applications running on
top of Azure Kubernetes Service (AKS). After scaling the application, you will also
scale the cluster. You will first scale the cluster manually, and then use the cluster
autoscaler to automatically scale the cluster. In addition, you will get a brief
introduction on how you can upgrade applications running on top of AKS.

In this chapter, we will cover the following topics:

•	 Scaling your application

•	 Scaling your cluster

•	 Upgrading your application

Let's begin this chapter by discussing the different dimensions of scaling
applications on top of AKS.

Scaling your application

There are two scale dimensions for applications running on top of AKS. The first
scale dimension is the number of pods a deployment has, while the second scale
dimension in AKS is the number of nodes in the cluster.

By adding new pods to a deployment, also known as scaling out, you can add
additional compute power to the deployed application. You can either scale out
your applications manually or have Kubernetes take care of this automatically via
HPA. HPA can monitor metrics such as the CPU to determine whether pods need to
be added to your deployment.

The second scale dimension in AKS is the number of nodes in the cluster. The
number of nodes in a cluster defines how much CPU and memory are available for
all the applications running on that cluster. You can scale your cluster manually
by changing the number of nodes, or you can use the cluster autoscaler to
automatically scale out your cluster. The cluster autoscaler watches the cluster

Scaling your application | 97

for pods that cannot be scheduled due to resource constraints. If pods cannot be
scheduled, it will add nodes to the cluster to ensure that your applications can run.

Both scale dimensions will be covered in this chapter. In this section, you will learn
how you can scale your application. First, you will scale your application manually,
and then later, you will scale your application automatically.

Manually scaling your application

To demonstrate manual scaling, let's use the guestbook example that we used in
the previous chapter. Follow these steps to learn how to implement manual scaling:

Note

In the previous chapter, we cloned the example files in Cloud Shell. If you
didn't do this back then, we recommend doing that now:
git clone https://github.com/PacktPublishing/Hands-On-Kubernetes-on-
Azure-third-edition
For this chapter, navigate to the Chapter04 directory:
cd Chapter04

1.	 Set up the guestbook by running the kubectl create command in the Azure
command line:

kubectl create -f guestbook-all-in-one.yaml

2.	 After you have entered the preceding command, you should see something
similar to what is shown in Figure 4.1 in your command-line output:

Figure 4.1: Launching the guestbook application

3.	 Right now, none of the services are publicly accessible. We can verify this by
running the following command:

kubectl get service

98 | Building scalable applications

4.	 As seen in Figure 4.2, none of the services have an external IP:

Figure 4.2: Output confirming that none of the services have a public IP

5.	 To test the application, you will need to expose it publicly. For this, let's
introduce a new command that will allow you to edit the service in Kubernetes
without having to change the file on your file system. To start the edit, execute
the following command:

kubectl edit service frontend

6.	 This will open a vi environment. Use the down arrow key to navigate to the
line that says type: ClusterIP and change that to type: LoadBalancer, as
shown in Figure 4.3. To make that change, hit the I button, change type to
LoadBalancer, hit the Esc button, type :wq!, and then hit Enter to save the
changes:

Figure 4.3: Changing this line to type: LoadBalancer

Scaling your application | 99

7.	 Once the changes are saved, you can watch the service object until the public
IP becomes available. To do this, type the following:

kubectl get service -w

8.	 It will take a couple of minutes to show you the updated IP. Once you see the
correct public IP, you can exit the watch command by hitting Ctrl + C:

Figure 4.4: Output showing the front-end service getting a public IP

9.	 Type the IP address from the preceding output into your browser navigation
bar as follows: http://<EXTERNAL-IP>/. The result of this is shown in
Figure 4.5:

Figure 4.5: Browse to the guestbook application

The familiar guestbook sample should be visible. This shows that you have
successfully publicly accessed the guestbook.

Now that you have the guestbook application deployed, you can start scaling the
different components of the application.

100 | Building scalable applications

Scaling the guestbook front-end component

Kubernetes gives us the ability to scale each component of an application
dynamically. In this section, we will show you how to scale the front end of the
guestbook application. Right now, the front-end deployment is deployed with three
replicas. You can confirm by using the following command:

kubectl get pods

This should return an output as shown in Figure 4.6:

Figure 4.6: Confirming the three replicas in the front-end deployment

To scale the front-end deployment, you can execute the following command:

kubectl scale deployment/frontend --replicas=6

This will cause Kubernetes to add additional pods to the deployment. You can set
the number of replicas you want, and Kubernetes takes care of the rest. You can
even scale it down to zero (one of the tricks used to reload the configuration when
the application doesn't support the dynamic reload of configuration). To verify that
the overall scaling worked correctly, you can use the following command:

kubectl get pods

Scaling your application | 101

This should give you the output shown in Figure 4.7:

Figure 4.7: Different pods running in the guestbook application after scaling out

As you can see, the front-end service scaled to six pods. Kubernetes also spread
these pods across multiple nodes in the cluster. You can see the nodes that this is
running on with the following command:

kubectl get pods -o wide

This will generate the following output:

Figure 4.8: Showing which nodes the pods are running on

In this section, you have seen how easy it is to scale pods with Kubernetes. This
capability provides a very powerful tool for you to not only dynamically adjust
your application components but also provide resilient applications with failover
capabilities enabled by running multiple instances of components at the same time.
However, you won't always want to manually scale your application. In the next
section, you will learn how you can automatically scale your application in and out
by automatically adding and removing pods in a deployment.

102 | Building scalable applications

Using the HPA

Scaling manually is useful when you're working on your cluster. For example, if you
know your load is going to increase, you can manually scale out your application.
In most cases, however, you will want some sort of autoscaling to happen on your
application. In Kubernetes, you can configure autoscaling of your deployment using
an object called the Horizontal Pod Autoscaler (HPA).

HPA monitors Kubernetes metrics at regular intervals and, based on the rules you
define, it automatically scales your deployment. For example, you can configure the
HPA to add additional pods to your deployment once the CPU utilization of your
application is above 50%.

In this section, you will configure the HPA to scale the front-end of the application
automatically:

1.	 To start the configuration, let's first manually scale down our deployment to
one instance:

kubectl scale deployment/frontend --replicas=1

2.	 Next up, we'll create an HPA. Open up the code editor in Cloud Shell by typing
code hpa.yaml and enter the following code:

1 apiVersion: autoscaling/v1
2 kind: HorizontalPodAutoscaler
3 metadata:
4 name: frontend-scaler
5 spec:
6 scaleTargetRef:
7 apiVersion: apps/v1
8 kind: Deployment
9 name: frontend
10 minReplicas: 1
11 maxReplicas: 10
12 targetCPUUtilizationPercentage: 50

Scaling your application | 103

Let's investigate what is configured in this file:

•	 Line 2: Here, we define that we need HorizontalPodAutoscaler.

•	 Lines 6-9: These lines define the deployment that we want to autoscale.

•	 Lines 10-11: Here, we configure the minimum and maximum pods in our
deployment.

•	 Lines 12: Here, we define the target CPU utilization percentage for our
deployment.

3.	 Save this file, and create the HPA using the following command:

kubectl create -f hpa.yaml

This will create our autoscaler. You can see your autoscaler with the following
command:

kubectl get hpa

This will initially output something as shown in Figure 4.9:

Figure 4.9: The target unknown shows that the HPA isn't ready yet

It takes a couple of seconds for the HPA to read the metrics. Wait for the return
from the HPA to look something similar to the output shown in Figure 4.10:

Figure 4.10: Once the target shows a percentage, the HPA is ready

4.	 You will now go ahead and do two things: first, you will watch the pods to see
whether new pods are created. Then, you will create a new shell, and create
some load for the system. Let's start with the first task—watching our pods:

kubectl get pods -w

104 | Building scalable applications

This will continuously monitor the pods that get created or terminated.

Let's now create some load in a new shell. In Cloud Shell, hit the open new
session icon to open a new shell:

Figure 4.11: Use this button to open a new Cloud Shell

This will open a new tab in your browser with a new session in Cloud Shell. You
will generate load for the application from this tab.

5.	 Next, you will use a program called hey to generate this load. hey is a tiny
program that sends loads to a web application. You can install and run hey
using the following commands:

export GOPATH=~/go
export PATH=$GOPATH/bin:$PATH
go get -u github.com/rakyll/hey
hey -z 20m http://<external-ip>

The hey program will now try to create up to 20 million connections to the
front-end. This will generate CPU loads on the system, which will trigger the
HPA to start scaling the deployment. It will take a couple of minutes for this to
trigger a scale action, but at a certain point, you should see multiple pods being
created to handle the additional load, as shown in Figure 4.12:

Scaling your application | 105

Figure 4.12: New pods get started by the HPA

At this point, you can go ahead and kill the hey program by hitting Ctrl + C.

6.	 Let's have a closer look at what the HPA did by running the following command:

kubectl describe hpa

We can see a few interesting points in the describe operation, as shown in
Figure 4.13:

Figure 4.13: Detailed view of the HPA

106 | Building scalable applications

The annotations in Figure 4.13 are explained as follows:

•	 This shows you the current CPU utilization (384%) versus the desired
(50%). The current CPU utilization will likely be different in your
situation.

•	 This shows you that the current desired replica count is higher than
the actual maximum you had configured. This ensures that a single
deployment doesn't consume all resources in the cluster.

•	 This shows you the scaling actions that the HPA took. It first scaled to 4,
then to 8, and then to 10 pods in the deployment.

7.	 If you wait for a couple of minutes, the HPA should start to scale down. You can
track this scale-down operation using the following command:

kubectl get hpa -w

This will track the HPA and show you the gradual scaling down of the
deployment, as displayed in Figure 4.14:

Figure 4.14: Watching the HPA scale down

8.	 Before we move on to the next section, let's clean up the resources we created
in this section:

kubectl delete -f hpa.yaml
kubectl delete -f guestbook-all-in-one.yaml

In this section, you first manually and then automatically scaled an application.
However, the infrastructure supporting the application was static; you ran this
on a two-node cluster. In many cases, you might also run out of resources on the
cluster. In the next section, you will deal with this issue and learn how you can
scale the AKS cluster yourself.

Scaling your cluster | 107

Scaling your cluster

In the previous section, you dealt with scaling the application running on top
of a cluster. In this section, you'll learn how you can scale the actual cluster you
are running. First, you will manually scale your cluster to one node. Then, you'll
configure the cluster autoscaler. The cluster autoscaler will monitor your cluster
and scale out when there are pods that cannot be scheduled on the cluster.

Manually scaling your cluster

You can manually scale your AKS cluster by setting a static number of nodes for the
cluster. The scaling of your cluster can be done either via the Azure portal or the
command line.

In this section, you'll learn how you can manually scale your cluster by scaling
it down to one node. This will cause Azure to remove one of the nodes from
your cluster. First, the workload on the node that is about to be removed will be
rescheduled onto the other node. Once the workload is safely rescheduled, the node
will be removed from your cluster, and then the VM will be deleted from Azure.

To scale your cluster, follow these steps:

1.	 Open the Azure portal and go to your cluster. Once there, go to Node pools and
click on the number below Node count, as shown in Figure 4.15:

Figure 4.15: Manually scaling the cluster

108 | Building scalable applications

2.	 This will open a pop-up window that will give the option to scale your cluster.
For our example, we will scale down our cluster to one node, as shown in
Figure 4.16:

Figure 4.16: Pop-up window confirming the new cluster size

3.	 Hit the Apply button at the bottom of the screen to save these settings. This
will cause Azure to remove a node from your cluster. This process will take
about 5 minutes to complete. You can follow the progress by clicking on the
notification icon at the top of the Azure portal as follows:

Figure 4.17: Cluster scaling can be followed using the notifications in the Azure portal

Scaling your cluster | 109

Once this scale-down operation has completed, relaunch the guestbook
application on this small cluster:

kubectl create -f guestbook-all-in-one.yaml

In the next section, you will scale out the guestbook so that it can no longer run
on this small cluster. You will then configure the cluster autoscaler to scale out the
cluster.

Scaling your cluster using the cluster autoscaler

In this section, you will explore the cluster autoscaler. The cluster autoscaler
will monitor the deployments in your cluster and scale your cluster to meet your
application requirements. The cluster autoscaler watches the number of pods in
your cluster that cannot be scheduled due to insufficient resources. You will first
force your deployment to have pods that cannot be scheduled, and then configure
the cluster autoscaler to automatically scale your cluster.

To force your cluster to be out of resources, you will—manually—scale out the
redis-replica deployment. To do this, use the following command:

kubectl scale deployment redis-replica --replicas 5

You can verify that this command was successful by looking at the pods in our
cluster:

kubectl get pods

This should show you something similar to the output shown in Figure 4.18:

Figure 4.18: Four out of five pods are pending, meaning they cannot be scheduled

110 | Building scalable applications

As you can see, you now have two pods in a Pending state. The Pending state in
Kubernetes means that that pod cannot be scheduled onto a node. In this case, this
is due to the cluster being out of resources.

Note

If your cluster is running on a larger VM size than the DS2v2, you might not
notice pods in a Pending state now. In that case, increase the number of
replicas to a higher number until you see pods in a pending state.

You will now configure the cluster autoscaler to automatically scale the cluster.
Similar to manual scaling in the previous section, there are two ways you can
configure the cluster autoscaler. You can configure it either via the Azure portal—
similar to how we did the manual scaling—or you can configure it using the
command-line interface (CLI). In this example, you will use CLI to enable the
cluster autoscaler. The following command will configure the cluster autoscaler for
your cluster:

az aks nodepool update --enable-cluster-autoscaler \
 -g rg-handsonaks --cluster-name handsonaks \
 --name agentpool --min-count 1 --max-count 2

This command configures the cluster autoscaler on the node pool you have in the
cluster. It configures it to have a minimum of one node and a maximum of two
nodes. This will take a couple of minutes to configure.

Once the cluster autoscaler is configured, you can see it in action by using the
following command to watch the number of nodes in the cluster:

kubectl get nodes -w

It will take about 5 minutes for the new node to show up and become Ready in the
cluster. Once the new node is Ready, you can stop watching the nodes by hitting
Ctrl + C. You should see an output similar to what you see in Figure 4.19:

Scaling your cluster | 111

Figure 4.19: The new node joins the cluster

The new node should ensure that your cluster has sufficient resources to schedule
the scaled-out redis- replica deployment. To verify this, run the following
command to check the status of the pods:

kubectl get pods

This should show you all the pods in a Running state as follows:

Figure 4.20: All pods are now in a Running state

112 | Building scalable applications

Now clean up the resources you created, disable the cluster autoscaler, and ensure
that your cluster has two nodes for the next example. To do this, use the following
commands:

kubectl delete -f guestbook-all-in-one.yaml
az aks nodepool update --disable-cluster-autoscaler \
 -g rg-handsonaks --cluster-name handsonaks --name agentpool
az aks nodepool scale --node-count 2 -g rg-handsonaks \
 --cluster-name handsonaks --name agentpool

Note

The last command from the previous example will show you an error
message, The new node count is the same as the current node
count., if the cluster already has two nodes. You can safely ignore this error.

In this section, you first manually scaled down your cluster and then used the
cluster autoscaler to scale out your cluster. You used the Azure portal to scale
down the cluster manually and then used the Azure CLI to configure the cluster
autoscaler. In the next section, you will look into how you can upgrade applications
running on AKS.

Upgrading your application

Using deployments in Kubernetes makes upgrading an application a
straightforward operation. As with any upgrade, you should have good failbacks
in case something goes wrong. Most of the issues you will run into will happen
during upgrades. Cloud-native applications are supposed to make dealing with this
relatively easy, which is possible if you have a very strong development team that
embraces DevOps principles.

The State of DevOps report (https://puppet.com/resources/report/2020-state-
of-devops-report/) has reported for multiple years that companies that have
high software deployment frequency rates have higher availability and stability
in their applications as well. This might seem counterintuitive, as doing software
deployments heightens the risk of issues. However, by deploying more frequently
and deploying using automated DevOps practices, you can limit the impact of
software deployment.

https://puppet.com/resources/report/2020-state-of-devops-report/
https://puppet.com/resources/report/2020-state-of-devops-report/

Upgrading your application | 113

There are multiple ways you can make updates to applications running in a
Kubernetes cluster. In this section, you will explore the following ways to update
Kubernetes resources:

•	 Upgrading by changing YAML files: This method is useful when you have
access to the full YAML file required to make the update. This can be done
either from your command line or from an automated system.

•	 Upgrading using kubectl edit: This method is mostly used for minor
changes on a cluster. It is a quick way to update your configuration live on
a cluster.

•	 Upgrading using kubectl patch: This method is useful when you need to
script a particular small update to a Kubernetes but don't have access to the
full YAML file. It can be done either from a command line or an automated
system. If you have access to the original YAML files, it is typically better to
edit the YAML file and use kubectl apply to apply the updates.

•	 Upgrading using Helm: This method is used when your application is
deployed through Helm.

The methods described in the following sections work great if you have stateless
applications. If you have a state stored anywhere, make sure to back up that state
before you try upgrading your application.

Let's start this section by doing the first type of upgrade by changing YAML files.

Upgrading by changing YAML files

In order to upgrade a Kubernetes service or deployment, you can update the actual
YAML definition file and apply that to the currently deployed application. Typically,
we use kubectl create to create resources. Similarly, we can use kubectl apply
to make changes to the resources.

The deployment detects the changes (if any) and matches the running state to the
desired state. Let's see how this is done:

1.	 Start with our guestbook application to explore this example:

kubectl apply -f guestbook-all-in-one.yaml

114 | Building scalable applications

2.	 After a few minutes, all the pods should be running. Let's perform the first
upgrade by changing the service from ClusterIP to LoadBalancer, as you did
earlier in the chapter. However, now you will edit the YAML file rather than
using kubectl edit. Edit the YAML file using the following command:

code guestbook-all-in-one.yaml

Uncomment line 102 in this file to set the type to LoadBalancer, and save the
file, as shown in Figure 4.21:

Figure 4.21: Setting the type to LoadBalancer in the guestbook-all-in-one YAML file

3.	 Apply the change as shown in the following code:

kubectl apply -f guestbook-all-in-one.yaml

You should see an output similar to Figure 4.22:

Figure 4.22: The service's front-end is updated

As you can see in Figure 4.22, only the object that was updated in the YAML file,
which is the service in this case, was updated on Kubernetes, and the other
objects remained unchanged.

4.	 You can now get the public IP of the service using the following command:

kubectl get service

Upgrading your application | 115

Give it a few minutes, and you should be shown the IP, as displayed in Figure 4.23:

Figure 4.23: Output displaying a public IP

5.	 You will now make another change. You'll downgrade the front-end image
on line 127 from image: gcr.io/google-samples/gb-frontend:v4 to the
following:

image: gcr.io/google-samples/gb-frontend:v3

This change can be made by opening the guestbook application in the editor by
using this familiar command:

code guestbook-all-in-one.yaml

6.	 Run the following command to perform the update and watch the pods change:

kubectl apply -f guestbook-all-in-one.yaml && kubectl get pods -w

This will generate an output similar to Figure 4.24:

Figure 4.24: Pods from a new ReplicaSet are created

116 | Building scalable applications

What you can see here is that a new version of the pod gets created (based on
a new ReplicaSet). Once the new pod is running and ready, one of the old pods
is terminated. This create-terminate loop is repeated until only new pods are
running. In Chapter 5, Handling common failures in AKS, you'll see an example
of such an upgrade gone wrong and you'll see that Kubernetes will not continue
with the upgrade process until the new pods are healthy.

7.	 Running kubectl get events | grep ReplicaSet will show the rolling update
strategy that the deployment uses to update the front-end images:

Figure 4.25: Monitoring Kubernetes events and filtering to only see ReplicaSet-related events

Note

In the preceding example, you are making use of a pipe—shown by the |
sign—and the grep command. A pipe in Linux is used to send the output of
one command to the input of another command. In this case, you sent the
output of kubectl get events to the grep command. Linux uses the grep
command to filter text. In this case, you used the grep command to only
show lines that contain the word ReplicaSet.

You can see here that the new ReplicaSet gets scaled up, while the old one gets
scaled down. You will also see two ReplicaSets for the front-end, the new one
replacing the other one pod at a time:

kubectl get replicaset

This will display the output shown in Figure 4.26:

Figure 4.26: Two different ReplicaSets

Upgrading your application | 117

8.	 Kubernetes will also keep a history of your rollout. You can see the rollout
history using this command:

kubectl rollout history deployment frontend

This will generate the output shown in Figure 4.27:

Figure 4.27: Deployment history of the application

9.	 Since Kubernetes keeps a history of the rollout, this also enables rollback. Let's
do a rollback of your deployment:

kubectl rollout undo deployment frontend

This will trigger a rollback. This means that the new ReplicaSet will be scaled
down to zero instances, and the old one will be scaled up to three instances
again. You can verify this using the following command:

kubectl get replicaset

The resultant output is as shown in Figure 4.28:

Figure 4.28: The old ReplicaSet now has three pods, and the new one is scaled down to zero

This shows you, as expected, that the old ReplicaSet is scaled back to three
instances and the new one is scaled down to zero instances.

10.	Finally, let's clean up again by running the kubectl delete command:

kubectl delete -f guestbook-all-in-one.yaml

Congratulations! You have completed the upgrade of an application and a
rollback to a previous version.

118 | Building scalable applications

In this example, you have used kubectl apply to make changes to your
application. You can similarly also use kubectl edit to make changes, which will
be explored in the next section.

Upgrading an application using kubectl edit

You can also make changes to your application running on top of Kubernetes by
using kubectl edit. You used this previously in this chapter, in the Manually
scaling your application section. When running kubectl edit, the vi editor will be
opened for you, which will allow you to make changes directly against the object in
Kubernetes.

Let's redeploy the guestbook application without a public load balancer and use
kubectl to create the load balancer:

1.	 Undo the changes you made in the previous step. You can do this by using the
following command:

git reset --hard

2.	 You will then deploy the guestbook application:

kubectl create -f guestbook-all-in-one.yaml

3.	 To start the edit, execute the following command:

kubectl edit service frontend

4.	 This will open a vi environment. Navigate to the line that now says type:
ClusterIP (line 27) and change that to type: LoadBalancer, as shown in
Figure 4.29. To make that change, hit the I button, type your changes, hit the
Esc button, type :wq!, and then hit Enter to save the changes:

Upgrading your application | 119

Figure 4.29: Changing this line to type: LoadBalancer

5.	 Once the changes are saved, you can watch the service object until the public
IP becomes available. To do this, type the following:

kubectl get svc -w

6.	 It will take a couple of minutes to show you the updated IP. Once you see the
right public IP, you can exit the watch command by hitting Ctrl + C.

This is an example of using kubectl edit to make changes to a Kubernetes object.
This command will open up a text editor to interactively make changes. This means
that you need to interact with the text editor to make the changes. This will not
work in an automated environment. To make automated changes, you can use the
kubectl patch command.

Upgrading an application using kubectl patch

In the previous example, you used a text editor to make the changes to Kubernetes.
In this example, you will use the kubectl patch command to make changes to
resources on Kubernetes. The patch command is particularly useful in automated
systems when you don't have access to the original YAML file that is deployed on
a cluster. It can be used, for example, in a script or in a continuous integration/
continuous deployment system.

120 | Building scalable applications

There are two main ways in which to use kubectl patch: either by creating a file
containing your changes (called a patch file) or by providing the changes inline.
Both approaches will be explained here. First, in this example, you'll change the
image of the front-end from v4 to v3 using a patch file:

1.	 Start this example by creating a file called frontend-image-patch.yaml:

code frontend-image-patch.yaml

2.	 Use the following text as a patch in that file:

spec:
 template:
 spec:
 containers:
 - name: php-redis
 image: gcr.io/google-samples/gb-frontend:v3

This patch file uses the same YAML layout as a typical YAML file. The main
thing about a patch file is that it only has to contain the changes and doesn't
have to be capable of deploying the whole resource.

3.	 To apply the patch, use the following command:

kubectl patch deployment frontend \
 --patch "$(cat frontend-image-patch.yaml)"

This command does two things: first, it reads the frontend-image-patch.
yaml file using the cat command, and then it passes that to the kubectl patch
command to execute the change.

4.	 You can verify the changes by describing the front-end deployment and
looking for the Image section:

kubectl describe deployment frontend

Upgrading your application | 121

This will display an output as follows:

Figure 4.30: After the patch, we are running the old image

This was an example of using the patch command using a patch file. You can also
apply a patch directly on the command line without creating a YAML file. In this
case, you would describe the change in JSON rather than in YAML.

Let's run through an example in which we will revert the image change to v4:

5.	 Run the following command to patch the image back to v4:

kubectl patch deployment frontend \
--patch='
{
 "spec": {
 "template": {
 "spec": {
 "containers": [{
 "name": "php-redis",
 "image": "gcr.io/google-samples/gb-frontend:v4"
 }]
 }
 }
 }
}
'

122 | Building scalable applications

6.	 You can verify this change by describing the deployment and looking for the
Image section:

kubectl describe deployment frontend

This will display the output shown in Figure 4.31:

Figure 4.31: After another patch, we are running the new version again

Before moving on to the next example, let's remove the guestbook application from
the cluster:

kubectl delete -f guestbook-all-in-one.yaml

So far, you have explored three ways of upgrading Kubernetes applications. First,
you made changes to the actual YAML file and applied them using kubectl apply.
Afterward, you used kubectl edit and kubectl patch to make more changes. In
the final section of this chapter, you will use Helm to upgrade an application.

Upgrading applications using Helm

This section will explain how to perform upgrades using Helm operators:

1.	 Run the following command:

helm install wp bitnami/wordpress

You will force an update of the image of the MariaDB container. Let's first
check the version of the current image:

kubectl describe statefulset wp-mariadb | grep Image

Upgrading your application | 123

At the time of writing, the image version is 10.5.8-debian-10-r46 as follows:

Figure 4.32: Getting the current image of the StatefulSet

Let's look at the tags from https://hub.docker.com/r/bitnami/mariadb/tags
and select another tag. For example, you could select the 10.5.8-debian-
10-r44 tag to update your StatefulSet.

However, in order to update the MariaDB container image, you need to get
the root password for the server and the password for the database. This is
because the WordPress application is configured to use these passwords to
connect to the database. By default, the update using Helm on the WordPress
deployment would generate new passwords. In this case, you'll be providing the
existing passwords, to ensure the application remains functional.

The passwords are stored in a Kubernetes Secret object. Secrets will be
explained in more depth in Chapter 10, Storing secrets in AKS. You can get the
MariaDB passwords in the following way:

kubectl get secret wp-mariadb -o yaml

This will generate the output shown in Figure 4.33:

Figure 4.33: The encrypted secrets that MariaDB uses

https://hub.docker.com/r/bitnami/mariadb/tags

124 | Building scalable applications

In order to get the decoded password, use the following command:

echo "<password>" | base64 -d

This will show us the decoded root password and the decoded database
password, as shown in Figure 4.34:

Figure 4.34: The decoded root and database passwords

You also need the WordPress password. You can get that by getting the
wp-wordpress secret and using the same decoding process:

kubectl get secret wp-wordpress -o yaml
echo "<WordPress password>" | base64 -d

2.	 You can update the image tag with Helm and then watch the pods change using
the following command:

helm upgrade wp bitnami/wordpress \
--set mariadb.image.tag=10.5.8-debian-10-r44\
--set mariadb.auth.password="<decoded password>" \
--set mariadb.auth.rootPassword="<decoded password>" \
--set wordpressPassword="<decoded password>" \
&& kubectl get pods -w

This will update the image of MariaDB and make a new pod start. You should
see an output similar to Figure 4.35, where you can see the previous version of
the database pod being terminated, and a new one start:

Upgrading your application | 125

Figure 4.35: The previous MariaDB pod gets terminated and a new one starts

Running describe on the new pod and grepping for Image will show us the new
image version:

kubectl describe pod wp-mariadb-0 | grep Image

This will generate an output as shown in Figure 4.36:

Figure 4.36: Showing the new image

3.	 Finally, clean up by running the following command:

helm delete wp
kubectl delete pvc --all
kubectl delete pv --all

You have now learned how to upgrade an application using Helm. As you have seen
in this example, upgrading using Helm can be done by using the --set operator.
This makes performing upgrades and multiple deployments using Helm efficient.

126 | Building scalable applications

Summary

This a chapter covered a plethora of information on building scalable applications.
The goal was to show you how to scale deployments with Kubernetes, which was
achieved by creating multiple instances of your application.

We started the chapter by looking at how to define the use of a load balancer and
leverage the deployment scale feature in Kubernetes to achieve scalability. With
this type of scalability, you can also achieve failover by using a load balancer and
multiple instances of the software for stateless applications. We also looked into
using the HPA to automatically scale your deployment based on load.

After that, we looked at how you can scale the cluster itself. First, we manually
scaled the cluster, and afterward we used a cluster autoscaler to scale the cluster
based on application demand.

We finished the chapter by looking into different ways to upgrade a deployed
application: first, by exploring updating YAML files manually, and then by learning
two additional kubectl commands (edit and patch) that can be used to make
changes. Finally, we learned how Helm can be used to perform these upgrades.

In the next chapter, we will look at a couple of common failures that you may face
while deploying applications to AKS and how to fix them.

5
Handling common

failures in AKS
Kubernetes is a distributed system with many working parts. AKS abstracts
most of it for you, but it is still your responsibility to know where to look and
how to respond when bad things happen. Much of the failure handling is done
automatically by Kubernetes; however, you will encounter situations where manual
intervention is required.

There are two areas where things can go wrong in an application that is deployed
on top of AKS. Either the cluster itself has issues, or the application deployed on
top of the cluster has issues. This chapter focuses specifically on cluster issues.
There are several things that can go wrong with a cluster.

The first thing that can go wrong is a node in the cluster can become unavailable.
This can happen either due to an Azure infrastructure outage or due to an issue
with the virtual machine itself, such as an operating system crash. Either way,
Kubernetes monitors the cluster for node failures and will recover automatically.
You will see this process in action in this chapter.

128 | Handling common failures in AKS

A second common issue in a Kubernetes cluster is out-of-resource failures. This
means that the workload you are trying to deploy requires more resources than are
available on your cluster. You will learn how to monitor these signals and how you
can solve them.

Another common issue is problems with mounting storage, which happens when
a node becomes unavailable. When a node in Kubernetes becomes unavailable,
Kubernetes will not detach the disks attached to this failed node. This means that
those disks cannot be used by workloads on other nodes. You will see a practical
example of this and learn how to recover from this failure.

We will look into the following topics in depth in this chapter:

•	 Handling node failures

•	 Solving out-of-resource failures

•	 Handling storage mount issues

In this chapter, you will learn about common failure scenarios, as well as solutions
to those scenarios. To start, we will introduce node failures.

Note:

Refer to Kubernetes the Hard Way (https://github.com/kelseyhightower/
kubernetes-the-hard-way), an excellent tutorial, to get an idea about
the blocks on which Kubernetes is built. For the Azure version, refer
to Kubernetes the Hard Way – Azure Translation (https://github.com/
ivanfioravanti/kubernetes-the-hard-way-on-azure).

Handling node failures

Intentionally (to save costs) or unintentionally, nodes can go down. When that
happens, you don't want to get the proverbial 3 a.m. call that your system is down.
Kubernetes can handle moving workloads on failed nodes automatically for you
instead. In this exercise, you are going to deploy the guestbook application and
bring a node down in your cluster to see what Kubernetes does in response:

https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/ivanfioravanti/kubernetes-the-hard-way-on-azure
https://github.com/ivanfioravanti/kubernetes-the-hard-way-on-azure

Handling node failures | 129

1.	 Ensure that your cluster has at least two nodes:

kubectl get nodes

This should generate an output as shown in Figure 5.1:

Figure 5.1: List of nodes in the cluster

If you don't have two nodes in your cluster, look for your cluster in the Azure
portal, navigate to Node pools, select the pool you wish to scale, and click on
Scale. You can then scale Node count to 2 nodes as shown in Figure 5.2:

Figure 5.2: Scaling the cluster

2.	 As an example application in this section, deploy the guestbook application.
The YAML file to deploy this has been provided in the source code for this
chapter (guestbook-all-in-one.yaml). To deploy the guestbook application,
use the following command:

kubectl create -f guestbook-all-in-one.yaml

130 | Handling common failures in AKS

3.	 Watch the service object until the public IP becomes available. To do this, type
the following:

kubectl get service -w

Note

You can also get services in Kubernetes by using kubectl get svc rather
than the full kubectl get service.

4.	 This will take a couple of seconds to show you the updated external IP.
Figure 5.3 shows the service's public IP. Once you see the public IP appear
(20.72.244.113 in this case), you can exit the watch command by hitting Ctrl + C:

Figure 5.3: The external IP of the frontend service changes from <pending> to an actual IP address

5.	 Go to http://<EXTERNAL-IP> (http://20.72.244.113 in this case) as shown in
Figure 5.4:

Figure 5.4: Browsing to the guestbook application

6.	 Let's see where the pods are currently running using the following command:

kubectl get pods -o wide

Handling node failures | 131

This will generate an output as shown in Figure 5.5:

Figure 5.5: The pods are spread between node 0 and node 2

This shows you that you should have the workload spread between node 0 and
node 2.

Note

In the example shown in Figure 5.5, the workload is spread between nodes
0 and 2. You might notice that node 1 is missing here. If you followed the
example in Chapter 4, Building scalable applications, your cluster should be in a
similar state. The reason for this is that as Azure removes old nodes and adds
new nodes to a cluster (as you did in Chapter 4, Building scalable applications),
it keeps incrementing the node counter.

7.	 Before introducing the node failures, there are two optional steps you can
take to verify whether your application can continue to run. You can run the
following command to hit the guestbook front end every 5 seconds and get the
HTML. It's recommended to open this in a new Cloud Shell window:

while true; do
 curl -m 1 http://<EXTERNAl-IP>/;
 sleep 5;
done

Note

The preceding command will keep calling your application till you press
Ctrl + C. There might be intermittent times where you don't get a reply,
which is to be expected as Kubernetes takes a couple of minutes to rebalance
the system.

132 | Handling common failures in AKS

You can also add some guestbook entries to see what happens to them when
you cause the node to shut down. This will display an output as shown in
Figure 5.6:

Figure 5.6: Writing a couple of messages in the guestbook

8.	 In this example, you are exploring how Kubernetes handles a node failure. To
demonstrate this, shut down a node in the cluster. You can shut down either
node, although for maximum impact it is recommended you shut down the
node from step 6 that hosted the most pods. In the case of the example shown,
node 2 will be shut down.

To shut down this node, look for VMSS (virtual machine scale sets) in the
Azure search bar, and select the scale set used by your cluster, as shown in
Figure 5.7. If you have multiple scale sets in your subscription, select the one
whose name corresponds to the node names shown in Figure 5.5:

Handling node failures | 133

Figure 5.7: Looking for the scale set hosting your cluster

After navigating to the pane of the scale set, go to the Instances view, select
the instance you want to shut down, and then hit the Stop button, as shown in
Figure 5.8:

Figure 5.8: Shutting down node 2

134 | Handling common failures in AKS

This will shut down the node. To see how Kubernetes will react with your pods,
you can watch the pods in your cluster via the following command:

kubectl get pods -o wide -w

After a while, you should notice additional output, showing you that the pods
got rescheduled on the healthy host, as shown in Figure 5.9:

Figure 5.9: The pods from the failed node getting recreated on a healthy node

What you see here is the following:

•	 The Redis master pod running on node 2 got terminated as the host
became unhealthy.

•	 A new Redis master pod got created, on host 0. This went through the
stages Pending, ContainerCreating, and then Running.

Note

In the preceding example, Kubernetes picked up that the host was unhealthy
before it rescheduled the pods. If you were to do kubectl get nodes,
you would see node 2 is in a NotReady state. There is a configuration in
Kubernetes called pod-eviction-timeout that defines how long the system will
wait to reschedule pods on a healthy host. The default is 5 minutes.

Solving out-of-resource failures | 135

9.	 If you recorded a number of messages in the guestbook during step 7, browse
back to the guestbook application on its public IP. What you can see is that
all your precious messages are gone! This shows the importance of having
PersistentVolumeClaims (PVCs) for any data that you want to survive in the
case of a node failure, which is not the case in our application here. You will see
an example of this in the last section of this chapter.

In this section, you learned how Kubernetes automatically handles node failures by
recreating pods on healthy nodes. In the next section, you will learn how you can
diagnose and solve out-of-resource issues.

Solving out-of-resource failures

Another common issue that can come up with Kubernetes clusters is the cluster
running out of resources. When the cluster doesn't have enough CPU power or
memory to schedule additional pods, pods will become stuck in a Pending state.
You have seen this behavior in Chapter 4, Building scalable applications, as well.

Kubernetes uses requests to calculate how much CPU power or memory a
certain pod requires. The guestbook application has requests defined for all the
deployments. If you open the guestbook-all-in-one.yaml file in the folder
Chapter05, you'll see the following for the redis-replica deployment:

63 kind: Deployment
64 metadata:
65 name: redis-replica
...
83 resources:
84 requests:
85 cpu: 200m
86 memory: 100Mi

This section explains that every pod for the redis-replica deployment requires
200m of a CPU core (200 milli or 20%) and 100MiB (Mebibyte) of memory. In your 2
CPU clusters (with node 1 shut down), scaling this to 10 pods will cause issues with
the available resources. Let's look into this:

136 | Handling common failures in AKS

Note

In Kubernetes, you can use either the binary prefix notation or the base 10
notation to specify memory and storage. Binary prefix notation means using
KiB (kibibyte) to represent 1,024 bytes, MiB (mebibyte) to represent 1,024 KiB,
and Gib (gibibyte) to represent 1,024 MiB. Base 10 notation means using kB
(kilobyte) to represent 1,000 bytes, MB (megabyte) to represent 1,000 kB, and
GB (gigabyte) represents 1,000 MB.

1.	 Let's start by scaling the redis-replica deployment to 10 pods:

kubectl scale deployment/redis-replica --replicas=10

2.	 This will cause a couple of new pods to be created. We can check our pods
using the following:

kubectl get pods

This will generate an output as shown in Figure 5.10:

Figure 5.10: Some pods are in the Pending state

Highlighted here is one of the pods that are in the Pending state. This occurs if
the cluster is out of resources.

Solving out-of-resource failures | 137

3.	 We can get more information about these pending pods using the following
command:

kubectl describe pod redis-replica-<pod-id>

This will show you more details. At the bottom of the describe command, you
should see something like what's shown in Figure 5.11:

Figure 5.11: Kubernetes is unable to schedule this pod

It explains two things:

•	 One of the nodes is out of CPU resources.

•	 One of the nodes has a taint (node.kubernetes.io/unreachable) that
the pod didn't tolerate. This means that the node that is NotReady can't
accept pods.

4.	 We can solve this capacity issue by starting up node 2 as shown in Figure 5.12.
This can be done in a way similar to the shutdown process:

Figure 5.12: Start node 2 again

138 | Handling common failures in AKS

5.	 It will take a couple of minutes for the other node to become available again
in Kubernetes. You can monitor the progress on the pods by executing the
following command:

kubectl get pods -w

This will show you an output after a couple of minutes similar to Figure 5.13:

Figure 5.13: Pods move from a Pending state to ContainerCreating to Running

Here again, you see the container status change from Pending, to
ContainerCreating, to finally Running.

6.	 If you re-execute the describe command on the previous pod, you'll see an
output like what's shown in Figure 5.14:

Figure 5.14: When the node is available again, the Pending pods are assigned to that node

This shows that after node 2 became available, Kubernetes scheduled the pod
on that node, and then started the container.

Fixing storage mount issues | 139

In this section, you learned how to diagnose out-of-resource errors. You were able
to solve the error by adding another node to the cluster. Before moving on to the
final failure mode, clean up the guestbook deployment.

Note

In Chapter 4, Building scalable applications, the cluster autoscaler was
introduced. The cluster autoscaler will monitor out-of-resource errors and add
new nodes to the cluster automatically.

Let's clean up the guestbook deployment by running the following delete
command:

kubectl delete -f guestbook-all-in-one.yaml

It is now also safe to close the other Cloud Shell window you opened earlier.

So far, you have learned how to recover from two failure modes for nodes in a
Kubernetes cluster. First, you saw how Kubernetes handles a node going offline
and how the system reschedules pods to a working node. After that, you saw how
Kubernetes uses requests to manage the scheduling of pods on a node, and what
happens when a cluster is out of resources. In the next section, you'll learn about
another failure mode in Kubernetes, namely what happens when Kubernetes
encounters storage mounting issues.

Fixing storage mount issues

Earlier in this chapter, you noticed how the guestbook application lost data when
the Redis master was moved to another node. This happened because that sample
application didn't use any persistent storage. In this section, you'll see an example
of how PVCs can be used to prevent data loss when Kubernetes moves a pod to
another node. You will see a common error that occurs when Kubernetes moves
pods with PVCs attached, and you'll learn how to fix this.

For this, you will reuse the WordPress example from the previous chapter. Before
starting, let's make sure that the cluster is in a clean state:

kubectl get all

140 | Handling common failures in AKS

This should show you just the one Kubernetes service, as in Figure 5.15:

Figure 5.15: You should only have the one Kubernetes service running for now

Let's also ensure that both nodes are running and Ready:

kubectl get nodes

This should show us both nodes in a Ready state, as in Figure 5.16:

Figure 5.16: You should have two nodes available in your cluster

In the previous example, under the Handling node failures section, you saw that
the messages stored in redis-master are lost if the pod gets restarted. The reason
for this is that redis-master stores all data in its container, and whenever it is
restarted, it uses the clean image without the data. In order to survive reboots, the
data has to be stored outside. Kubernetes uses PVCs to abstract the underlying
storage provider to provide this external storage.

To start this example, set up the WordPress installation.

Starting the WordPress installation

Let's start by installing WordPress. We will demonstrate how it works and then
verify that storage is still present after a reboot.

If you have not done so yet in a previous chapter, add the Helm repository for
Bitnami:

helm repo add bitnami https://charts.bitnami.com/bitnami

Fixing storage mount issues | 141

Begin reinstallation by using the following command:

helm install wp bitnami/wordpress

This will take a couple of minutes to process. You can follow the status of this
installation by executing the following command:

kubectl get pods -w

After a couple of minutes, this should show you two pods with a status of Running
and with a ready status of 1/1 for both pods, as shown in Figure 5.17:

Figure 5.17: All pods will have the status of Running after a couple of minutes

You might notice that the wp-wordpress pod went through an Error status and was
restarted afterward. This is because the wp-mariadb pod was not ready in time,
and wp-wordpress went through a restart. You will learn more about readiness and
how this can influence pod restarts in Chapter 7, Monitoring the AKS cluster and the
application.

In this section, you saw how to install WordPress. Now, you will see how to avoid
data loss using persistent volumes.

142 | Handling common failures in AKS

Using persistent volumes to avoid data loss

A persistent volume (PV) is the way to store persistent data in the cluster with
Kubernetes. PVs were discussed in more detail in Chapter 3, Application deployment
on AKS. Let's explore the PVs created for the WordPress deployment:

1.	 You can get the PersistentVolumeClaims using the following command:

kubectl get pvc

This will generate an output as shown in Figure 5.18:

Figure 5.18: Two PVCs are created by the WordPress deployment

A PersistentVolumeClaim will result in the creation of a PersistentVolume. The
PersistentVolume is the link to the physical resource created, which is an Azure
disk in this case. The following command shows the actual PVs that are created:

kubectl get pv

This will show you the two PersistentVolumes:

Figure 5.19: Two PVs are created to store the data of the PVCs

You can get more details about the specific PersistentVolumes that were
created. Copy the name of one of the PVs, and run the following command:

kubectl describe pv <pv name>

Fixing storage mount issues | 143

This will show you the details of that volume, as in Figure 5.20:

Figure 5.20: The details of one of the PVs

Here, you can see which PVC has claimed this volume and what the DiskName
is in Azure.

2.	 Verify that your site is working:

kubectl get service

This will show us the public IP of our WordPress site, as seen in Figure 5.21:

Figure 5.21: Public IP of the WordPress site

144 | Handling common failures in AKS

3.	 If you remember from Chapter 3, Application deployment of AKS, Helm showed
you the commands you need to get the admin credentials for our WordPress
site. Let's grab those commands and execute them to log on to the site as
follows:

helm status wp
echo Username: user
echo Password: $(kubectl get secret --namespace default wp-wordpress
-o jsonpath="{.data.wordpress-password}" | base64 -d)

This will show you the username and password, as displayed in Figure 5.22:

Figure 5.22: Getting the username and password for the WordPress application

Fixing storage mount issues | 145

You can log in to our site via the following address: http://<external-ip>/admin.
Log in here with the credentials from the previous step. Then you can go ahead
and add a post to your website. Click the Write your first blog post button, and then
create a short post, as shown in Figure 5.23:

Figure 5.23: Writing your first blog post

Type some text now and hit the Publish button, as shown in Figure 5.24. The text
itself isn't important; you are writing this to verify that data is indeed persisted to
disk:

Figure 5.24: Publishing a post with random text

146 | Handling common failures in AKS

If you now head over to the main page of your website at http://<external-ip>,
you'll see your test post as shown in Figure 5.25:

Figure 5.25: The published blog post appears on the home page

In this section, you deployed a WordPress site, you logged in to your WordPress
site, and you created a post. You will verify whether this post survives a node
failure in the next section.

Handling pod failure with PVC involvement

The first test you'll do with the PVCs is to kill the pods and verify whether the data
has indeed persisted. To do this, let's do two things:

1.	 Watch the pods in your application: To do this, use the current Cloud Shell and
execute the following command:

kubectl get pods -w

2.	 Kill the two pods that have the PVC mounted: To do this, create a new Cloud
Shell window by clicking on the icon shown in Figure 5.26:

Figure 5.26: Opening a new Cloud Shell instance

Fixing storage mount issues | 147

Once you open a new Cloud Shell, execute the following command:

kubectl delete pod --all

In the original Cloud Shell, follow along with the watch command that you
executed earlier. You should see an output like what's shown in Figure 5.27:

Figure 5.27: After deleting the pods, Kubernetes will automatically recreate both pods

As you can see, the two original pods went into a Terminating state. Kubernetes
quickly started creating new pods to recover from the pod outage. The pods
went through a similar life cycle as the original ones, going from Pending to
ContainerCreating to Running.

3.	 If you head on over to your website, you should see that your demo post has
been persisted. This is how PVCs can help you prevent data loss, as they persist
data that would not have been persisted in the pod itself.

In this section, you've learned how PVCs can help when pods get recreated on the
same node. In the next section, you'll see how PVCs are used when a node has a
failure.

148 | Handling common failures in AKS

Handling node failure with PVC involvement

In the previous example, you saw how Kubernetes can handle pod failures when
those pods have a PV attached. In this example, you'll learn how Kubernetes
handles node failures when a volume is attached:

1.	 Let's first check which node is hosting your application, using the following
command:

kubectl get pods -o wide

In the example shown in Figure 5.28, node 2 was hosting MariaDB, and node 0
was hosting the WordPress site:

Figure 5.28: Check which node hosts the WordPress site

2.	 Introduce a failure and stop the node that is hosting the WordPress pod using
the Azure portal. You can do this in the same way as in the earlier example.
First, look for the scale set backing your cluster, as shown in Figure 5.29:

Figure 5.29: Looking for the scale set hosting your cluster

Fixing storage mount issues | 149

3.	 Then shut down the node, by clicking on Instances in the left-hand menu, then
selecting the node you need to shut down and clicking the Stop button, as
shown in Figure 5.30:

Figure 5.30: Shutting down the node

4.	 After this action, once again, watch the pods to see what is happening in the
cluster:

kubectl get pods -o wide -w

As in the previous example, it is going to take 5 minutes before Kubernetes
will start taking action against the failed node. You can see that happening in
Figure 5.31:

Figure 5.31: A pod in a ContainerCreating state

5.	 You are seeing a new issue here. The new pod is stuck in a ContainerCreating
state. Let's figure out what is happening here. First, describe that pod:

kubectl describe pods/wp-wordpress-<pod-id>

150 | Handling common failures in AKS

You will get an output as shown in Figure 5.32:

Figure 5.32: Output explaining why the pod is in a ContainerCreating state

This tells you that there is a problem with the volume. You see two errors
related to that volume: the FailedAttachVolume error explains that the volume
is already used by another pod, and FailedMount explains that the current pod
cannot mount the volume. You can solve this by manually forcefully removing
the old pod stuck in the Terminating state.

Note

The behavior of the pod stuck in the Terminating state is not a bug. This is
default Kubernetes behavior. The Kubernetes documentation states the
following: "Kubernetes (versions 1.5 or newer) will not delete pods just because
a Node is unreachable. The pods running on an unreachable Node enter the
Terminating or Unknown state after a timeout. Pods may also enter these states
when the user attempts the graceful deletion of a pod on an unreachable Node."
You can read more at https://kubernetes.io/docs/tasks/run-application/force-
delete-stateful-set-pod/.

6.	 To forcefully remove the terminating pod from the cluster, get the full pod
name using the following command:

kubectl get pods

This will show you an output similar to Figure 5.33:

Figure 5.33: Getting the name of the pod stuck in the Terminating state

https://kubernetes.io/docs/tasks/run-application/force-delete-stateful-set-pod/
https://kubernetes.io/docs/tasks/run-application/force-delete-stateful-set-pod/

Fixing storage mount issues | 151

7.	 Use the pod's name to force the deletion of this pod:

kubectl delete pod wordpress-wp-<pod-id> --force

8.	 After the pod has been deleted, it will take a couple of minutes for the other
pod to enter a Running state. You can monitor the state of the pod using the
following command:

kubectl get pods -w

This will return an output similar to Figure 5.34:

Figure 5.34: The new WordPress pod returning to a Running state

9.	 As you can see, this brought the new pod to a healthy state. It did take a couple
of minutes for the system to pick up the changes and then mount the volume
to the new pod. Let's get the details of the pod again using the following
command:

kubectl describe pod wp-wordpress-<pod-id>

This will generate an output as follows:

Figure 5.35: The new pod is now attaching the volume and pulling the container image

152 | Handling common failures in AKS

10.	This shows you that the new pod successfully got the volume attached and
that the container image got pulled. This also made your WordPress website
available again, which you can verify by browsing to the public IP. Before
continuing to the next chapter, clean up the application using the following
command:

helm delete wp
kubectl delete pvc --all
kubectl delete pv --all

11.	 Let's also start the node that was shut down: go back to the scale set pane in
the Azure portal, click Instances in the left-hand menu, select the node you
need to start, and click on the Start button, as shown in Figure 5.36:

Figure 5.36: Starting node 0 again

In this section, you learned how you can recover from a node failure when PVCs
aren't mounting to new pods. All you needed to do was forcefully delete the pod
that was stuck in the Terminating state.

Summary | 153

Summary

In this chapter, you learned about common Kubernetes failure modes and how you
can recover from them. This chapter started with an example of how Kubernetes
automatically detects node failures and how it will start new pods to recover the
workload. After that, you scaled out your workload and had your cluster run out of
resources. You recovered from that situation by starting the failed node again to
add new resources to the cluster.

Next, you saw how PVs are useful to store data outside of a pod. You deleted all
pods on the cluster and saw how the PV ensured that no data was lost in your
application. In the final example in this chapter, you saw how you can recover
from a node failure when PVs are attached. You were able to recover the workload
by forcefully deleting the terminating pod. This brought your workload back to a
healthy state.

This chapter has explained common failure modes in Kubernetes. In the next
chapter, we will introduce HTTPS support to our services and introduce
authentication with Azure Active Directory.

6
Securing your

application with
HTTPS

HTTPS has become a necessity for any public-facing website. Not only does it
improve the security of your website, but it is also becoming a requirement for
new browser functionalities. HTTPS is a secure version of the HTTP protocol.
HTTPS makes use of Transport Layer Security (TLS) certificates to encrypt traffic
between an end user and a server, or between two servers. TLS is the successor
to the Secure Sockets Layer (SSL). The terms TLS and SSL are often used
interchangeably.

In the past, you needed to buy certificates from a certificate authority (CA), then
set them up on your web server and renew them periodically. While that is still
possible today, the Let's Encrypt service and helpers in Kubernetes make it very
easy to set up verified TLS certificates in your cluster. Let's Encrypt is a non-profit
organization run by the Internet Security Research Group and backed by multiple
companies. It is a free service that offers verified TLS certificates in an automated
manner. Automation is a key benefit of the Let's Encrypt service.

156 | Securing your application with HTTPS

In terms of Kubernetes helpers, you will learn about a new object called an Ingress
and use a Kubernetes add-on called cert-manager. An ingress is an object within
Kubernetes that manages external access to services, commonly used for HTTP
services. An ingress adds additional functionality on top of the service object we
explained in Chapter 3, Application deployment on AKS. It can be configured to
handle HTTPS traffic. It can also be configured to route traffic to different back-
end services based on the hostname, which is assigned by the Domain Name
System (DNS) that is used to connect.

cert-manager is a Kubernetes add-on that helps in automating the creation of
TLS certificates. It also helps in the rotation of certificates when they are close
to expiring. cert-manager can interface with Let's Encrypt to request certificates
automatically.

In this chapter, you will see how to set up Azure Application Gateway as a
Kubernetes ingress, and cert-manager to interface with Let's Encrypt.

The following topics will be covered in this chapter:

•	 Setting up Azure Application Gateway as a Kubernetes ingress

•	 Setting up an ingress in front of a service

•	 Adding TLS support to an ingress

Let's start with setting up Azure Application Gateway as an ingress for AKS.

Setting up Azure Application Gateway as a
Kubernetes ingress

An ingress in Kubernetes is an object that is used to route HTTP and HTTPS traffic
from outside the cluster to services in a cluster. Exposing services using an ingress
rather than exposing them directly, as you've done up to this point—has a number
of advantages. These advantages include the ability to route multiple hostnames
to the same public IP address and offloading TLS termination from the actual
application to the ingress.

Setting up Azure Application Gateway as a Kubernetes ingress | 157

To create an ingress in Kubernetes, you need to install an ingress controller. An
ingress controller is software that can create, configure, and manage ingresses
in Kubernetes. Kubernetes does not come with a preinstalled ingress controller.
There are multiple implementations of ingress controllers, and a full list is available
at this URL: https://kubernetes.io/docs/concepts/services-networking/ingress-
controllers/

In Azure, application gateway is a Layer 7 load balancer, which can be used as
an ingress for Kubernetes by using the Application Gateway Ingress Controller
(AGIC). A layer 7 load balancer is a load balancer that works at the application layer,
which is the seventh and highest layer in the OSI networking reference model.
Azure Application Gateway has a number of advanced features such as autoscaling
and Web Application Firewall (WAF).

There are two ways of configuring the AGIC, either using Helm or as an Azure
Kubernetes Service (AKS) add-on. Installing AGIC using the AKS add-on
functionality will result in a Microsoft-supported configuration. Additionally,
the add-on method of deployment will be automatically updated by Microsoft,
ensuring that your environment is always up to date.

In this section, you will create a new application gateway instance, set up AGIC
using the add-on method, and finally, deploy an ingress resource to expose an
application. Later in this chapter, you will extend this setup to also include TSL
using a Let's Encrypt certificate.

Creating a new application gateway

In this section, you will use the Azure CLI to create a new application gateway. You
will then use this application gateway in the next section to integrate with AGIC.
The different steps in this section are summarized in the code samples for this
chapter in the setup-appgw.sh file that is part of the code samples that come with
this book.

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

158 | Securing your application with HTTPS

1.	 To organize the resources created in this chapter, it is recommended that you
create a new resource group. Make sure to create the new resource group in
the same location you deployed your AKS cluster in. You can do this using the
following command in the Azure CLI:

az group create -n agic -l westus2

2.	 Next, you will need to create the networking components required for your
application gateway. These are a public IP with a DNS name and a new virtual
network. You can do this using the following commands:

az network public-ip create -n agic-pip \
 -g agic --allocation-method Static --sku Standard \
 --dns-name "<your unique DNS name>"
az network vnet create -n agic-vnet -g agic \
 --address-prefix 192.168.0.0/24 --subnet-name agic-subnet \
 --subnet-prefix 192.168.0.0/24

Note

The az network public-ip create command might show you a warning
message [Coming breaking change] In the coming release, the default
behavior will be changed as follows when sku is Standard and zone is not
provided: For zonal regions, you will get a zone-redundant IP indicated
by zones:["1","2","3"]; For non-zonal regions, you will get a non zone-
redundant IP indicated by zones:[].

3.	 Finally, you can create the application gateway. This command will take a few
minutes to execute

az network application-gateway create -n agic -l westus2 \
 -g agic --sku Standard_v2 --public-ip-address agic-pip \
 --vnet-name agic-vnet --subnet agic-subnet

4.	 It will take a couple of minutes for the application gateway to deploy. Once it is
created, you can see the resource in the Azure portal. To find this, look for agic
(or the name you gave your application gateway) in the Azure search bar, and
select your application gateway.

Setting up Azure Application Gateway as a Kubernetes ingress | 159

Figure 6.1: Looking for the application gateway in the Azure search bar

5.	 This will show you your application gateway in the Azure portal, as shown in
Figure 6.2:

Figure 6.2: The application gateway in the Azure portal

160 | Securing your application with HTTPS

6.	 To verify that it has been created successfully, browse to the DNS name you
configured for the public IP address. This will show you an output similar to
Figure 6.3. Note that the error message shown is expected since you haven't
configured any applications yet behind the application gateway. You will
configure applications behind the application gateway using AGIC in the Adding
an ingress rule for the guestbook application section.

Figure 6.3: Verify that you can connect to the application gateway

Now that you've created a new application gateway and were able to connect
to it, we will move on to integrating this application gateway with your existing
Kubernetes cluster.

Setting up the AGIC

In this section, you will integrate the application gateway with your Kubernetes
cluster using the AGIC AKS add-on. You will also set up virtual network peering so
the application gateway can send traffic to your Kubernetes cluster.

1.	 To enable integration between your cluster and your application gateway, use
the following command:

appgwId=$(az network application-gateway \
 show -n agic -g agic -o tsv --query "id")
az aks enable-addons -n handsonaks \
 -g rg-handsonaks -a ingress-appgw \
 --appgw-id $appgwId

Setting up Azure Application Gateway as a Kubernetes ingress | 161

2.	 Next, you will need to peer the application gateway network with the AKS
network. To peer both networks, you can use the following code:

nodeResourceGroup=$(az aks show -n handsonaks \
 -g rg-handsonaks -o tsv --query "nodeResourceGroup")
aksVnetName=$(az network vnet list \
 -g $nodeResourceGroup -o tsv --query "[0].name")

aksVnetId=$(az network vnet show -n $aksVnetName \
 -g $nodeResourceGroup -o tsv --query "id")
az network vnet peering create \
 -n AppGWtoAKSVnetPeering -g agic \
 --vnet-name agic-vnet --remote-vnet $aksVnetId \
 --allow-vnet-access

appGWVnetId=$(az network vnet show -n agic-vnet \
 -g agic -o tsv --query "id")
az network vnet peering create \
 -n AKStoAppGWVnetPeering -g $nodeResourceGroup \
 --vnet-name $aksVnetName --remote-vnet $appGWVnetId --allow-vnet-
access

This concludes the integration between the application gateway and your AKS
cluster. You've enabled the AGIC add-on, and connected both the networks
together. In the next section, you will use this AGIC integration to create an ingress
for a demo application.

Adding an ingress rule for the guestbook application

Up to this point, you have created a new application gateway and integrated it with
your Kubernetes cluster. In this section, you will deploy the guestbook application
and then expose it using an ingress.

1.	 To launch the guestbook application, type in the following command:

kubectl create -f guestbook-all-in-one.yaml

162 | Securing your application with HTTPS

This will create the guestbook application you've used in the previous chapters.
You should see the objects being created as shown in Figure 6.4:

Figure 6.4: Creating the guestbook application

2.	 You can then use the following YAML file to expose the front-end service via
the ingress. This is provided as simple-frontend-ingress.yaml in the source
code for this chapter:

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: simple-frontend-ingress
5 annotations:
6 kubernetes.io/ingress.class: azure/application-gateway
7 spec:
8 rules:
9 - http:
10 paths:
11 - path: /
12 pathType: Prefix
13 backend:
14 service:
15 name: frontend
16 port:
17 number: 80

Setting up Azure Application Gateway as a Kubernetes ingress | 163

Let's have a look at what is defined in this YAML file:

•	 Line 1: You specify the Kubernetes API version for the object you are
creating.

•	 Line 2: You define that you are creating an Ingress object.

•	 Lines 5-6: Here, you're telling Kubernetes that you want to create an
ingress of the class azure/application-gateway.

The following lines define the actual ingress:

•	 Lines 8-12: Here, you define the path this ingress is listening on. In our
case, this is the top-level path. In more advanced cases, you can have
different paths pointing to different services.

•	 Lines 13-17: These lines define the actual service this traffic should be
pointed to.

You can use the following command to create this ingress:

kubectl apply -f simple-frontend-ingress.yaml

3.	 If you now go to http://dns-name/, which you created in the Creating a new
application gateway section, you should get an output as shown in Figure 6.5:

Figure 6.5: Accessing the guestbook application via the ingress

164 | Securing your application with HTTPS

Note

You didn't have to publicly expose the front-end service as you have done in
the preceding chapters. You have added the ingress as the exposed service,
and the front-end service remains private to the cluster.

Figure 6.6: Flowchart displaying publicly accessible ingress

4.	 You can verify this by running the following command:

kubectl get service

Adding TLS to an ingress | 165

5.	 This should show you that you have no public services, as seen by the lack of
EXTERNAL-IP in Figure 6.7:

Figure 6.7: Output shows that you have no public services

In this section, you launched an instance of the guestbook application. You then
exposed it publicly by creating an ingress, which in turn configured the application
gateway that you created earlier. Only the ingress was publicly accessible.

Next, you'll extend the functionality of AGIC and learn how to secure traffic using a
Certificate from Let's Encrypt.

Adding TLS to an ingress

You will now add HTTPS support to your application. To do this, you need a TLS
certificate. You will be using the cert-manager Kubernetes add-on to request a
certificate from Let's Encrypt.

Note

Although this section focuses on using an automated service such as Let's
Encrypt, you can still pursue the traditional path of buying a certificate
from an existing CA and importing it into Kubernetes. Please refer to the
Kubernetes documentation for more information on how to do this: https://
kubernetes.io/docs/concepts/services-networking/ingress/#tls

https://kubernetes.io/docs/concepts/services-networking/ingress/#tls
https://kubernetes.io/docs/concepts/services-networking/ingress/#tls

166 | Securing your application with HTTPS

There are a couple of steps involved. The process of adding HTTPS to the
application involves the following:

1.	 Install cert-manager, which interfaces with the Let's Encrypt API to request a
certificate for the domain name you specify.

2.	 Install the certificate issuer, which will get the certificate from Let's Encrypt.
3.	 Create an SSL certificate for a given Fully Qualified Domain Name (FQDN). An

FQDN is a fully qualified DNS record that includes the top-level domain name
(such as .org or .com). You created an FQDN linked to your public IP in step 2 in
the section Creating a new application gateway.

4.	 Secure the front-end service by creating an ingress to the service with the
certificate created in step 3. In the example in this section, you will not be
executing this step as an individual step. You will, however, reconfigure the
ingress to automatically pick up the certificate created in step 3.

Let's start with the first step by installing cert-manager in the cluster.

Installing cert-manager

cert-manager (https://github.com/jetstack/cert-manager) is a Kubernetes add-on
that automates the management and issuance of TLS certificates from various
issuing sources. It is responsible for renewing certificates and ensuring they are
updated periodically.

Note

The cert-manager project is not managed or maintained by Microsoft. It is
an open-source solution previously managed by the company Jetstack, which
recently donated it to the Cloud Native Computing Foundation.

The following commands install cert-manager in your cluster:

kubectl apply -f https://github.com/jetstack/cert-manager/releases/
download/v1.2.0/cert-manager.yaml

https://github.com/jetstack/cert-manager
https://github.com/jetstack/cert-manager/releases/download/v1.2.0/cert-manager.yaml
https://github.com/jetstack/cert-manager/releases/download/v1.2.0/cert-manager.yaml

Adding TLS to an ingress | 167

This will install a number of components in your cluster as shown in Figure 6.8.
A detailed explanation of these components can be found in the cert-manager
documentation at https://cert-manager.io/docs/installation/kubernetes/.

Figure 6.8: Installing cert-manager in your cluster

https://cert-manager.io/docs/installation/kubernetes/

168 | Securing your application with HTTPS

cert-manager makes use of a Kubernetes functionality called
CustomResourceDefinition (CRD). CRD is a functionality used to extend the
Kubernetes API server to create custom resources. In the case of cert-manager,
there are six CRDs that are created, some of which you will use later in this
chapter.

Now that you have installed cert-manager, you can move on to the next step:
setting up a certificate issuer.

Installing the certificate issuer

In this section, you will install the Let's Encrypt staging certificate issuer. A
certificate can be issued by multiple issuers. letsencrypt-staging, for example,
is for testing purposes. As you are building tests, you'll use the staging server.
The code for the certificate issuer has been provided in the source code for this
chapter in the certificate-issuer.yaml file. As usual, use kubectl create -f
certificate-issuer.yaml; the YAML file has the following contents:

1 apiVersion: cert-manager.io/v1
2 kind: Issuer
3 metadata:
4 name: letsencrypt-staging
5 spec:
6 acme:
7 server: https://acme-staging-v02.api.letsencrypt.org/directory
8 email: <your e-mail address>
9 privateKeySecretRef:
10 name: letsencrypt-staging
11 solvers:
12 - http01:
13 ingress:
14 class: azure/application-gateway

Adding TLS to an ingress | 169

Let's look at what we have defined here:

•	 Lines 1-2: Here, you point to one of the CRDs that cert-manager created.
In this case, specifically, you point to the Issuer object. An issuer is a
link between your Kubernetes cluster and the actual certificate authority
creating the certificate, which is Let's Encrypt in this case.

•	 Lines 6-10: Here you provide the configuration for Let's Encrypt and point
to the staging server.

•	 Lines 11-14: This is additional configuration for the ACME client to certify
domain ownership. You point Let's Encrypt to the Azure Application
Gateway ingress to verify that you own the domain you will request a
certificate for later.

With the certificate issuer installed, you can now move on to the next step:
creating the TLS certificate on the ingress.

Creating the TLS certificate and securing the ingress

In this section, you will create a TLS certificate. There are two ways you can
configure cert-manager to create certificates. You can either manually create a
certificate and link it to the ingress, or you can configure your ingress controller,
so cert-manager automatically creates the certificate.

In this example, you will configure your ingress using the latter method.

1.	 To start, edit the ingress to look like the following YAML code. This file is
present in the source code on GitHub as ingress-with-tls.yaml:

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: simple-frontend-ingress
5 annotations:
6 kubernetes.io/ingress.class: azure/application-gateway
7 cert-manager.io/issuer: letsencrypt-staging
8 cert-manager.io/acme-challenge-type: http01
9 spec:
10 rules:

170 | Securing your application with HTTPS

11 - http:
12 paths:
13 - path: /
14 pathType: Prefix
15 backend:
16 service:
17 name: frontend
18 port:
19 number: 80
20 host: <your dns-name>.<your azure region>.cloudapp.azure.com
21 tls:
22 - hosts:
23 - <your dns-name>.<your azure region>.cloudapp.azure.com
24 secretName: frontend-tls

You should make the following changes to the original ingress:

•	 Lines 7-8: You add two additional annotations to the ingress that points
to a certificate issuer and acme-challenge to prove domain ownership.

•	 Line 20: The domain name for the ingress is added here. This is required
because Let's Encrypt only issues certificates for domains.

•	 Line 21-24: This is the TLS configuration of the ingress. It contains the
hostname as well as the name of the secret that will be created to store
the certificate.

2.	 You can update the ingress you created earlier with the following command:

kubectl apply -f ingress-with-tls.yaml

It takes cert-manager about a minute to request a certificate and configure the
ingress to use that certificate. While you are waiting for that, let's have a look at
the intermediate resources that cert-manager created on your behalf.

3.	 First off, cert-manager created a certificate object for you. You can look at
the status of that object using the following:

kubectl get certificate

Adding TLS to an ingress | 171

This command will generate an output as shown in Figure 6.9:

Figure 6.9: The status of the certificate object

4.	 As you can see, the certificate isn't ready yet. There is another object
that cert-manager created to actually get the certificate. This object is
certificaterequest. You can get its status by using the following command:

kubectl get certificaterequest

This will generate the output shown in Figure 6.10:

Figure 6.10: The status of the certificaterequest obiect

You can also get more details about the request by issuing a describe
command against the certificaterequest object:

kubectl describe certificaterequest

While you're waiting for the certificate to be issued, the status will look similar
to Figure 6.11:

Figure 6.11: Using the kubectl describe command to obtain details of the certificaterequest object

172 | Securing your application with HTTPS

As you can see, the certificaterequest object shows you that the order has
been created and that it is pending.

5.	 After a couple of additional seconds, the describe command should return a
successful certificate creation message. Run the following command to get the
updated status:

kubectl describe certificaterequest

The output of this command is shown in Figure 6.12:

Figure 6.12: The issued certificate

This should now enable the front-end ingress to be served over HTTPS.

6.	 Let's try this out in a browser by browsing to the DNS name you created in
the Creating a new application gateway section. Depending on your browser's
cache, you might need to add https:// in front of the URL.

7.	 Once you reach the ingress, it will indicate an error in the browser, showing
you that the certificate isn't valid, similar to Figure 6.13. This is to be expected
since you are using the Let's Encrypt staging server:

Adding TLS to an ingress | 173

Figure 6.13: Using the Let's Encrypt staging server, the certificate isn't trusted by default

You can browse to your application by clicking Advanced and selecting
Continue.

In this section, you successfully added a TLS certificate to your ingress to secure
traffic to it. Since you were able to complete the test with the staging certificate,
you can now move on to a production system.

174 | Securing your application with HTTPS

Switching from staging to production

In this section, you will switch from a staging certificate to a production-level
certificate. To do this, you can redo the previous exercise by creating a new issuer
in your cluster, like the following (provided in certificate-issuer-prod.yaml as
part of the code samples with this book). Don't forget to change your email address
in the file. The following code is contained in that file:

1 apiVersion: cert-manager.io/v1alpha2
2 kind: Issuer
3 metadata:
4 name: letsencrypt-prod
5 spec:
6 acme:
7 server: https://acme-v02.api.letsencrypt.org/directory
8 email: <your e-mail>
9 privateKeySecretRef:
10 name: letsencrypt-prod
11 solvers:
12 - http01:
13 ingress:
14 class: azure/application-gateway

Then, replace the reference to the issuer in the ingress-with-tls.yaml file with
letsencrypt-prod as shown (provided in the ingress-with-tls-prod.yaml file):

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: simple-frontend-ingress
5 annotations:
6 kubernetes.io/ingress.class: azure/application-gateway
7 cert-manager.io/issuer: letsencrypt-prod
8 cert-manager.io/acme-challenge-type: http01
9 spec:
10 rules:
11 - http:
12 paths:
13 - path: /
14 pathType: Prefix
15 backend:
16 service:

Adding TLS to an ingress | 175

17 name: frontend
18 port:
19 number: 80
20 host: <your dns-name>.<your azure region>.cloudapp.azure.com
21 tls:
22 - hosts:
23 - <your dns-name>.<your azure region>.cloudapp.azure.com
24 secretName: frontend-prod-tls

To apply these changes, execute the following commands:

kubectl create -f certificate-issuer-prod.yaml
kubectl apply -f ingress-with-tls-prod.yaml

It will again take about a minute for the certificate to become active. Once the new
certificate is issued, you can browse to your DNS name again and shouldn't see any
more warnings regarding invalid certificates. If you click the padlock icon in the
browser, you should see that your connection is secure and uses a valid certificate:

Figure 6.14: The web page displaying a valid certificate

176 | Securing your application with HTTPS

In this section, you have learned how to add TLS support to an ingress. You did
this by installing the cert-manager Kubernetes add-on. cert-manager got a free
certificate from Let's Encrypt and added this to the existing ingress deployed on
the application gateway. The process that was described here is not specific to
Azure and Azure Application Gateway. This process of adding TLS to an ingress
works with other ingress controllers as well.

Let's delete the resources you created during this chapter:

kubectl delete -f https://github.com/jetstack/cert-manager/releases/
download/v1.1.0/cert-manager.yaml
az aks disable-addons -n handsonaks \
 -g rg-handsonaks -a ingress-appgw

Summary

In this chapter, you added HTTPS security to the guestbook application without
actually changing the source code. You started by setting up a new application
gateway and configured AGIC on AKS. This gives you the ability to create
Kubernetes ingresses that can be configured on the application gateway.

Then, you installed a certificate manager that interfaces with the Let's Encrypt
API to request a certificate for the domain name we subsequently specified. You
leveraged a certificate issuer to get the certificate from Let's Encrypt. You then
reconfigured the ingress to request a certificate from this issuer in the cluster.
Using these capabilities of both the certificate manager as well as the ingress, you
are now able to secure your websites using TLS.

In the next chapter, you will learn how to monitor your deployments and set up
alerts. You will also learn how to quickly identify root causes when errors do occur,
and how to debug applications running on AKS. At the same time, you'll learn how
to perform the correct fixes once you have identified the root causes.

https://github.com/jetstack/cert-manager/releases/download/v1.1.0/cert-manager.yaml
https://github.com/jetstack/cert-manager/releases/download/v1.1.0/cert-manager.yaml

7
Monitoring the AKS

cluster and the
application

Now that you know how to deploy applications on an AKS cluster, let's focus on
how you can ensure that your cluster and applications remain available. In this
chapter, you will learn how to monitor your cluster and the applications running
on it. You'll explore how Kubernetes makes sure that your applications are running
reliably using readiness and liveness probes.

You will also learn how AKS Diagnostics and Azure Monitor are used, and how
they are integrated within the Azure portal. You will see how you can use AKS
Diagnostics to monitor the status of the cluster itself, and how Azure Monitor helps
monitor the pods on the cluster and allows you to get access to the logs of the
pods at scale.

178 | Monitoring the AKS cluster and the application

In brief, the following topics will be covered in this chapter:

•	 Monitoring and debugging applications using kubectl
•	 Reviewing metrics reported by Kubernetes	

•	 Reviewing metrics from Azure Monitor

Let's start the chapter by reviewing some of the commands in kubectl that you can
use to monitor your applications.

Commands for monitoring applications

Monitoring the health of applications deployed on Kubernetes as well as the
Kubernetes infrastructure itself is essential for providing a reliable service to your
customers. There are two primary use cases for monitoring:

•	 Ongoing monitoring to get alerts if something is not behaving as expected

•	 Troubleshooting and debugging application errors

When observing an application running on top of a Kubernetes cluster, you'll need
to examine multiple things in parallel, including containers, pods, services, and
the nodes in the cluster. For ongoing monitoring, you'll need a monitoring system
such as Azure Monitor or Prometheus. Azure Monitor will be introduced later
in this chapter. Prometheus (https://prometheus.io/) is a popular open-source
solution within the Kubernetes ecosystem to monitor Kubernetes environments.
For troubleshooting, you'll need to interact with the live cluster. The most common
commands used for troubleshooting are as follows:

kubectl get <resource type> <resource name>
kubectl describe <resource type> <resource name>
kubectl logs <pod name>

Each of these commands will be described in detail later in this chapter.

To begin with the practical examples, recreate the guestbook example again using
the following command:

kubectl create -f guestbook-all-in-one.yaml

https://prometheus.io/

Commands for monitoring applications | 179

While the create command is running, you will watch its progress in the following
sections. Let's start by exploring the get command.

The kubectl get command

To see the overall picture of deployed applications, kubectl provides the get
command. The get command lists the resources that you specify. Resources can
be pods, ReplicaSets, ingresses, nodes, deployments, secrets, and so on. You have
already run this command in the previous chapters to verify that an application
was ready for use.

Perform the following steps:

1.	 Run the following get command, which will get us the resources and their
statuses:

kubectl get all

This will show you all the deployments, ReplicaSets, pods, and services in your
namespace:

Figure 7.1: All the resources running in the default namespace

180 | Monitoring the AKS cluster and the application

2.	 Focus your attention on the pods in your deployment. You can get the status of
the pods with the following command:

kubectl get pods

You will see that only the pods are shown, as seen in Figure 7.2. Let's investigate
this in detail:

Figure 7.2: All the pods in your namespace

The first column indicates the pod name, for example, frontend-766d4f77cb-
ds6gb. The second column indicates how many containers in the pod are ready
against the total number of containers in the pod. Readiness is defined via a
readiness probe in Kubernetes. There is a dedicated section called Readiness
and liveness probes later in this chapter.

The third column indicates the status, for example, Pending,
ContainerCreating, Running, and so on. The fourth column indicates the
number of restarts, while the fifth column indicates the age when the pod was
asked to be created.

3.	 If you need more information about your pod, you can add extra columns to
the output of a get command by adding -o wide to the command like this:

kubectl get pods -o wide

This will show you additional information, as shown in Figure 7.3:

Figure 7.3: Adding -o wide shows more details on the pods

Commands for monitoring applications | 181

The extra columns include the IP address of the pod, the node it is running
on, the nominated node, and readiness gates. A nominated node is only set
when a higher-priority pod preempts a lower-priority pod. The nominated
node field would then be set on the higher-priority pod. It signifies the node
that the higher-priority pod will be scheduled once the lower-priority pod has
terminated gracefully. A readiness gate is a way to introduce external system
components as the readiness for a pod.

Executing a get pods command only shows the state of the current pod. As we
will see next, things can fail at any of the states, and we need to use the kubectl
describe command to dig deeper.

The kubectl describe command

The kubectl describe command gives you a detailed view of the object you are
describing. It contains the details of the object itself, as well as any recent events
related to that object. While the kubectl get events command lists all the events
for the entire namespace, with the kubectl describe command, you would get
only the events for that specific object. If you are interested in just pods, you can
use the following command:

kubectl describe pods

The preceding command lists all the information pertaining to all pods. This is
typically too much information to contain in a typical shell.

If you want information on a particular pod, you can type the following:

kubectl describe pod/<pod-name>

Note

You can either use a slash or a space in between pod and <pod-name>.
The following two commands will have the same output:
kubectl describe pod/<pod-name>
kubectl describe pod <pod-name>

182 | Monitoring the AKS cluster and the application

You will get an output similar to Figure 7.4, which will be explained in detail later:

Figure 7.4: Describing an object shows the detailed output of that object

Commands for monitoring applications | 183

From the description, you can get the node on which the pod is running, how long
it has been running, its internal IP address, the Docker image name, the ports
exposed, the env variables, and the events (from within the past hour).

In the preceding example, the pod name is frontend-766d4f77cb-ds6gb. As
mentioned in Chapter 1, Introduction to containers and Kubernetes, it has the
<ReplicaSet name>-<random 5 chars> format. The replicaset name itself is
randomly generated from the deployment name front end: <deployment name>-
<random-string>.

Figure 7.5 shows the relationship between a deployment, a ReplicaSet, and pods:

Figure 7.5: Relationship between a deployment, a ReplicaSet, and pods

The namespace under which this pod runs is default. So far, you have just been
using the default namespace, appropriately named default.

Another section that is important from the preceding output is the node section:

Node: aks-agentpool-39838025-vmss000000/10.240.0.4

The node section lets you know which physical node/VM the pod is running on.
If the pod is repeatedly restarting or having issues running and everything else
seems OK, there might be an issue with the node itself. Having this information is
essential to perform advanced debugging.

The following is the time the pod was initially scheduled:

Start Time: Tue, 26 Jan 2021 02:10:33 +0000

This doesn't mean that the pod has been running since that time, so the time can
be misleading in that sense. If a health event occurs (for example, a container
crashes), the pod will reset automatically.

184 | Monitoring the AKS cluster and the application

You can add more information about a workload in Kubernetes using Labels, as
shown here:

Labels:app=guestbook
pod-template-hash=57d8c9fb45
tier=frontend

Labels are a commonly used functionality in Kubernetes. For example, this is how
links between objects, such as service to pod and deployment to ReplicaSet
to pod (Figure 7.5), are made. If you see that traffic is not being routed to a pod
from a service, this is the first thing you should check. Also, you'll notice that the
pod-template-hash label also occurs in the pod name. This is how the link between
the ReplicaSet and the pod is made. If the labels don't match, the resources won't
attach.

The following shows the internal IP of the pod and its status:

Status: Running
IP: 10.244.0.44
IPs:
 IP: 10.244.0.44

As mentioned in previous chapters, when building out your application, the pods
can be moved to different nodes and get a different IP, so you should avoid using
these IP addresses. However, when debugging application issues, having a direct IP
for a pod can help with troubleshooting. Instead of connecting to your application
through a service object, you can connect directly from one pod to another using
the other pod's IP address to test connectivity.

The containers running in the pod and the ports that are exposed are listed in the
following block:

Containers:
 php-redis:
 ...
 Image: gcr.io/google-samples/gb-frontend:v4
 ...
 Port: 80/TCP
 ...
 Requests:
 cpu: 10m

Commands for monitoring applications | 185

 memory: 10Mi
 Environment:
 GET_HOSTS_FROM: dns
 ...

In this case, you are getting the gb-frontend container with the v4 tag from the
gcr.io container registry, and the repository name is google-samples.

Port 80 is exposed to outside traffic. Since each pod has its own IP, the same port
can be exposed for multiple instances of the same pod even when running on the
same host. For instance, if you had two pods running a web server on the same
node, both could use port 80, since each pod has its own IP address. This is a huge
management advantage as you don't have to worry about port collisions on the
same node.

Any events that occurred in the previous hour show up here:

Events:

Using kubectl describe is very useful to get more context about the resources
you are running. The final section contains events related to the object you were
describing. You can get all events in your cluster using the kubectl get events
command.

To see the events for all resources in the system, run the following command:

kubectl get events

Note

Kubernetes maintains events for only 1 hour by default.

If everything goes well, you should have an output similar to Figure 7.6:

Figure 7.6: Getting the events shows all events from the past hour

186 | Monitoring the AKS cluster and the application

Figure 7.6 only shows the event for one pod, but as you can see in your output, the
output for this command contains the events for all resources that were recently
created, updated, or deleted.

In this section, you have learned about the commands you can use to inspect a
Kubernetes application. In the next section, you'll focus on debugging application
failures.

Debugging applications

Now that you have a basic understanding of how to inspect applications, you can
start seeing how you can debug issues with deployments.

In this section, common errors will be introduced, and you'll determine how to
debug and fix them.

If you haven't implemented the Guestbook application already, run the following
command:

kubectl create -f guestbook-all-in-one.yaml

After a couple of seconds, the application should be up and running.

Image pull errors

In this section, you are going to introduce image pull errors by setting the image
tag value to a non-existent one. An image pull error occurs when Kubernetes
cannot download the image for the container it needs to run.

1.	 Run the following command on Azure Cloud Shell:

kubectl edit deployment/frontend

Next, change the image tag from v4 to v_non_existent by executing the
following steps.

2.	 Type /gb-frontend and hit the Enter key to have your cursor brought to the
image definition.

Commands for monitoring applications | 187

Hit the I key to go into insert mode. Delete v4 and type v_non_existent as
shown in Figure 7.7:

Figure 7.7: Changing the image tag from v4 to v_non_existent

3.	 Now, close the editor by first hitting the Esc key, then type :wq! and hit Enter.
4.	 Run the following command to list all the pods in the current namespace:

kubectl get pods

The preceding command should indicate errors, as shown in Figure 7.8:

Figure 7.8: One of the pods has the status of either ErrImagePull or ImagePullBackOff

188 | Monitoring the AKS cluster and the application

You might see either a status called ErrImagePull or ImagePullBackOff. Both
errors refer to the fact that Kubernetes cannot pull the image from the registry.
The ErrImagePull error describes just this; ImagePullBackOff describes
that Kubernetes will back off (wait) before retrying to download the image.
This back-off has an exponential delay, going from 10 to 20 to 40 seconds and
beyond, up to 5 minutes.

5.	 Run the following command to get the full error details:

kubectl describe pods/<failed pod name>

A sample error output is shown in Figure 7.9. The key error message is
highlighted in red:

Figure 7.9: Using describe shows more details on the error

The events clearly show that the image does not exist. Errors such as passing
invalid credentials to private Docker repositories will also show up here.

6.	 Let's fix the error by setting the image tag back to v4. First, type the following
command in Cloud Shell to edit the deployment:

kubectl edit deployment/frontend

7.	 Type /gb-frontend and hit Enter to have your cursor brought to the image
definition.

8.	 Hit the I key to go into insert mode. Delete v_non_existent, and type v4.
9.	 Now, close the editor by first hitting the Esc key, then type :wq! and hit Enter.
10.	This should automatically fix the deployment. You can verify it by getting the

events for the pods again.

Commands for monitoring applications | 189

Note

Because Kubernetes did a rolling update, the front end was continuously
available with zero downtime. Kubernetes recognized a problem with the new
specification and stopped rolling out additional changes automatically.

Image pull errors can occur when images aren't available or when you don't have
access to the container registry. In the next section, you'll explore an error within
the application itself.

Application errors

You will now see how to debug an application error. The errors in this section will
be self- induced, similar to the last section. The method for debugging the issue is
the same as the one we used to debug errors on running applications.

1.	 To start, get the public IP of the front-end service:

kubectl get service

2.	 Connect to the service by pasting its public IP in a browser. Create a couple of
entries:

Figure 7.10: Make a couple of entries in the guestbook application

You now have an instance of the guestbook application running. To improve the
experience with the example, it's best to scale down the front end so there is only a
single replica running.

190 | Monitoring the AKS cluster and the application

Scaling down the front end

In Chapter 3, Application deployment on AKS, you learned how the deployment
of the front end has a configuration of replicas=3. This means that the requests
the application receives can be handled by any of the pods. To introduce the
application error and note the errors, you'll need to make changes in all three of
them.

But to make this example easier, set replicas to 1, so that you have to make
changes to only one pod:

kubectl scale --replicas=1 deployment/frontend

Having only one replica running will make introducing the error easier. Let's now
introduce this error.

Introducing an app error

In this case, you are going to make the Submit button fail to work. You will need to
modify the application code for this:

Note:

It is not advised to make production changes to your application by using
kubectl exec to execute commands in your pods. If you need to make
changes to your application, the preferred way is to create a new container
image and update your deployment.

1.	 You will use the kubectl exec command. This command lets you run
commands on the command line of that pod. With the -it option, it attaches
an interactive terminal to the pod and gives you a shell that you can run
commands on. The following command launches a Bash terminal on the pod:

kubectl exec -it <frontend-pod-name> -- bash

Commands for monitoring applications | 191

This will enter a Bash shell environment as shown in Figure 7.11:

Figure 7.11: Getting a pod's name and getting access to a shell inside the pod

2.	 Once you are in the container shell, run the following command:

apt update
apt install -y vim

The preceding code installs the vim editor so that we can edit the file to
introduce an error.

3.	 Now, use vim to open the guestbook.php file:

vim guestbook.php

4.	 Add the following code at line 17, below the line if ($_GET['cmd'] == 'set')
{. Remember, to edit a line in vim, you hit the I key. After you are done editing,
you can exit by hitting Esc, and then type :wq! and press Enter:

$host = 'localhost';
if(!defined('STDOUT')) define('STDOUT', fopen('php://stdout', 'w'));
fwrite(STDOUT, "hostname at the beginning of 'set' command ");
fwrite(STDOUT, $host);
fwrite(STDOUT, "\n");

192 | Monitoring the AKS cluster and the application

The file will look like Figure 7.12:

Figure 7.12: The updated code that introduced an error and additional logging

5.	 You have now introduced an error where reading messages will work, but not
writing them. You have done this by asking the front end to connect to the
Redis master at the non-existent localhost server. The writes should fail. At the
same time, to make this demo more visual, we added some additional logging
to this section of the code.

Commands for monitoring applications | 193

Open your guestbook application by browsing to its public IP, and you should
see the entries from earlier:

Figure 7.13: The entries from earlier are still present

6.	 Now, create a new message by typing a message and hitting the Submit button:

Figure 7.14: A new message was created

Submitting a new message makes it appear in the application. If you did not
know any better, you would have thought the entry was written successfully
to the database. However, if you refresh your browser, you will see that the
message is no longer there.

194 | Monitoring the AKS cluster and the application

7.	 To verify that the message has not been written to the database, hit the
Refresh button in your browser; you will see just the initial entries, and the
new entry has disappeared:

Figure 7.15: The new message has disappeared

As an app developer or operator, you'll probably get a ticket like this: After the
new deployment, new entries are not persisted. Fix it.

Using logs to identify the root cause

The first step toward resolution is to get the logs.

1.	 Exit out of the front-end pod for now and get the logs for this pod:

exit
kubectl logs <frontend-pod-name>

Note:

You can add the -f flag after kubectl logs to get a live log stream, as follows:
kubectl logs <pod-name> -f. This is useful during live debugging sessions.

Commands for monitoring applications | 195

2.	 You will see entries such as those seen in Figure 7.16:

Figure 7.16: The new message shows up as part of the application logs

3.	 Hence, you know that the error is somewhere when writing to the database
in the set section of the code. When you see the entry hostname at the
beginning of 'set' command localhost, you know that the error is between
this line and the start of the client, so the setting of $host = 'localhost'
must be the offending error. This error is not as uncommon as you would think
and, as you just saw, could have easily gone through QA unless there had been
a specific instruction to refresh the browser. It could have worked perfectly
well for the developer, as they could have a running Redis server on the local
machine.

Now that you have used logs in Kubernetes to root cause the issue, let's get to
resolving the error and getting our application back to a healthy state.

Solving the issue

There are two options to fix this bug you introduced: you can either navigate into
the pod and make the code changes, or you can ask Kubernetes to give us a healthy
new pod. It is not recommended to make manual changes to pods, so in the next
step, you will use the second approach. Let's fix this bug by deleting the faulty pod:

kubectl delete pod <podname>

As there is a ReplicaSet that controls the pods, you should immediately get a new
pod that has started from the correct image. Try to connect to the guestbook again
and verify that messages persist across browser refreshes.

196 | Monitoring the AKS cluster and the application

The following points summarize what was covered in this section on how to
identify an error and how to fix it:

•	 Errors can come in many shapes and forms.

•	 Most of the errors encountered by the deployment team are configuration
issues.

•	 Use logs to identify the root cause.

•	 Using kubectl exec on a container is a useful debugging strategy.

•	 Note that broadly allowing kubectl exec is a serious security risk, as it lets
the Kubernetes operator execute commands directly in the pods they have
access to. Make sure that only a subset of operators has the ability to use the
kubectl exec command. You can use role-based access control to manage
this access restriction, as you'll learn in Chapter 8, Role-based access control
in AKS.

•	 Anything printed to stdout and stderr shows up in the logs (independent of
the application/language/logging framework).

In this section, you introduced an application error to the guestbook application
and leveraged Kubernetes logs to pinpoint the issue in the code. In the next
section, you will learn about a powerful mechanism in Kubernetes called readiness
and liveness probes.

Readiness and liveness probes

Readiness and liveness probes were briefly touched upon in the previous section.
In this section, you'll explore them in more depth.

Readiness and liveness probes | 197

Kubernetes uses liveness and readiness probes to monitor the availability of your
applications. Each probe serves a different purpose:

•	 A liveness probe monitors the availability of an application while it is
running. If a liveness probe fails, Kubernetes will restart your pod. This could
be useful to catch deadlocks, infinite loops, or just a "stuck" application.

•	 A readiness probe monitors when your application becomes available. If a
readiness probe fails, Kubernetes will not send any traffic to the unready
pods. This is useful if your application has to go through some configuration
before it becomes available, or if your application has become overloaded
but is recovering from the additional load. By having a readiness probe fail,
your application will temporarily not get any more traffic, giving it the ability
to recover from the increased load.

Liveness and readiness probes don't need to be served from the same endpoint in
your application. If you have a smart application, that application could take itself
out of rotation (meaning no more traffic is sent to the application) while still being
healthy. To achieve this, it would have the readiness probe fail but have the liveness
probe remain active.

Let's build this out in an example. You will create two nginx deployments, each with
an index page and a health page. The index page will serve as the liveness probe.

Building two web containers

For this example, you'll use a couple of web pages that will be used to connect
to a readiness and a liveness probe. The files are present in the code files for this
chapter. Let's first create index1.html:

<!DOCTYPE html>
<html>
 <head>
 <title>Server 1</title>
 </head>
 <body>
 Server 1
 </body>
</html>

198 | Monitoring the AKS cluster and the application

After that, create index2.html:

<!DOCTYPE html>
<html>
 <head>
 <title>Server 2</title>
 </head>
 <body>
 Server 2
 </body>
</html>

Let's also create a health page, healthy.html:

<!DOCTYPE html>
<html>
 <head>
 <title>All is fine here</title>
 </head>
 <body>
 OK
 </body>
</html>

In the next step, you'll mount these files to your Kubernetes deployments. To do
this, you'll turn each of these into a configmap that you will connect to your pods.
You've already learned about configmaps in Chapter 3, Application deployment on
AKS. Use the following commands to create the configmap:

kubectl create configmap server1 --from-file=index1.html
kubectl create configmap server2 --from-file=index2.html
kubectl create configmap healthy --from-file=healthy.html

With that out of the way, you can go ahead and create your two web deployments.
Both will be very similar, with just the configmap changing. The first deployment
file (webdeploy1.yaml) looks like this:

Readiness and liveness probes | 199

1 apiVersion: apps/v1
2 kind: Deployment
...
17 spec:
18 containers:
19 - name: nginx-1
20 image: nginx:1.19.6-alpine
21 ports:
22 - containerPort: 80
23 livenessProbe:
24 httpGet:
25 path: /healthy.html
26 port: 80
27 initialDelaySeconds: 3
28 periodSeconds: 3
29 readinessProbe:
30 httpGet:
31 path: /index.html
32 port: 80
33 initialDelaySeconds: 3
34 periodSeconds: 3
35 volumeMounts:
36 - name: html
37 mountPath: /usr/share/nginx/html
38 - name: index
39 mountPath: /tmp/index1.html
40 subPath: index1.html
41 - name: healthy
42 mountPath: /tmp/healthy.html
43 subPath: healthy.html
44 command: ["/bin/sh", "-c"]
45 args: ["cp /tmp/index1.html /usr/share/nginx/html/index.
html; cp /tmp/healthy.html /usr/share/nginx/html/healthy.html; nginx;
sleep inf"]
46 volumes:
47 - name: index
48 configMap:
49 name: server1
50 - name: healthy
51 configMap:
52 name: healthy
53 - name: html
54 emptyDir: {}

200 | Monitoring the AKS cluster and the application

There are a few things to highlight in this deployment:

•	 Lines 23-28: This is the liveness probe. The liveness probe points to the
health page. Remember, if the health page fails, the container will restart.

•	 Lines 29-32: This is the readiness probe. The readiness probe in our case
points to the index page. If this page fails, the pod will temporarily not be
sent any traffic but will remain running.

•	 Lines 44-45: These two lines contain a couple of commands that get
executed when the container starts. Instead of simply running the nginx
server, this copies the index and ready files in the right location, then starts
nginx, and then uses a sleep command (so the container keeps running).

You can create this deployment using the following command. You can also deploy
the second version for server 2, which is similar to server 1:

kubectl create -f webdeploy1.yaml
kubectl create -f webdeploy2.yaml

Finally, you can also create a service (webservice.yaml) that routes traffic to both
deployments:

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: web
5 spec:
6 selector:
7 app: web-server
8 ports:
9 - protocol: TCP
10 port: 80
11 targetPort: 80
12 type: LoadBalancer

You can create that service using the following:

kubectl create -f webservice.yaml

You now have the application up and running. In the next section, you'll introduce
some failures to verify the behavior of the liveness and readiness probes.

Readiness and liveness probes | 201

Experimenting with liveness and readiness probes

In the previous section, the functionality of the liveness and readiness probes was
explained, and you created a sample application. In this section, you will introduce
errors in this application and verify the behavior of the liveness and readiness
probes. You will see how a failure of the readiness probe will cause the pod to
remain running but no longer accept traffic. After that, you will see how a failure of
the liveness probe will cause the pod to be restarted.

Let's start by failing the readiness probe.

Failing the readiness probe causes traffic to temporarily stop

Now that you have a simple application up and running, you can experiment with
the behavior of the liveness and readiness probes. To start, let's get the service's
external IP to connect to our web server using the browser:

kubectl get service

If you hit the external IP in the browser, you should see a single line that either says
Server 1 or Server 2:

Figure 7.17: Our application is returning traffic from server 1

During the upcoming tests, you'll use a small script called testWeb.sh that has
been provided in the code samples for this chapter to connect to your web page
50 times, so you can monitor a good distribution of results between servers 1 and
2. You'll first need to make that script executable, and then you can run that script
while your deployment is fully healthy:

chmod +x testWeb.sh
./testWeb.sh <external-ip>

202 | Monitoring the AKS cluster and the application

During healthy operations, we can see that server 1 and server 2 are hit almost
equally, with 24 hits for server 1 and 26 for server 2:

Figure 7.18: While the application is healthy, traffic is load-balanced between server 1 and server 2

Let's now move ahead and fail the readiness probe in server 1. To do this, you will
use the kubectl exec command to move the index file to a different location:

kubectl get pods #note server1 pod name
kubectl exec <server1 pod name> -- \
 mv /usr/share/nginx/html/index.html \
 /usr/share/nginx/html/index1.html

Once this is executed, we can view the change in the pod status with the following
command:

kubectl get pods -w

You should see the readiness state of the server 1 pod change to 0/1, as shown in
Figure 7.19:

Figure 7.19: The failing readiness probes causes server 1 to not have any READY containers

This should direct no more traffic to the server 1 pod. Let's verify that:

./testWeb.sh <external-ip>

Readiness and liveness probes | 203

Traffic should be redirected to server 2:

Figure 7.20: All traffic is now served by server 2

You can now restore the state of server 1 by moving the file back to its rightful
place:

kubectl exec <server1 pod name> -- mv \
 /usr/share/nginx/html/index1.html \
 /usr/share/nginx/html/index.html

This will return the pod to a Ready state and should again split traffic equally:

./testWeb.sh <external-ip>

This will show an output similar to Figure 7.21:

Figure 7.21: Restoring the readiness probe causes traffic to be load-balanced again

A failing readiness probe will cause Kubernetes to no longer send traffic to the
failing pod. You have verified this by causing a readiness probe in your example
application to fail. In the next section, you'll explore the impact of a failing liveness
probe.

204 | Monitoring the AKS cluster and the application

A failing liveness probe restarts the pod

You can repeat the previous process with the liveness probe as well. When the
liveness probe fails, Kubernetes is expected to restart that pod. Let's try this by
deleting the health file:

kubectl exec <server 2 pod name> -- \
 rm /usr/share/nginx/html/healthy.html

Let's see what this does to the pod:

kubectl get pods -w

You should see that the pod restarts within a couple of seconds:

Figure 7.22: A failing liveness probe will cause the pod to be restarted

As you can see in Figure 7.22, the pod was successfully restarted, with limited
impact. You can inspect what was going on in the pod by running a describe
command:

kubectl describe pod <server2 pod name>

The preceding command will give you an output similar to Figure 7.23:

Figure 7.23: More details on the pod showing how the liveness probe failed

In the describe command, you can clearly see that the pod failed the liveness
probe. After three failures, the container was killed and restarted.

Metrics reported by Kubernetes | 205

This concludes the experiment with liveness and readiness probes. Remember that
both are useful for your application: a readiness probe can be used to temporarily
stop traffic to your pod, so it has to deal with less load. A liveness probe is used to
restart your pod if there is an actual failure in the pod.

Let's also make sure to clean up the deployments you just created:

kubectl delete deployment server1 server2
kubectl delete service web

Liveness and readiness probes are useful to ensure that only healthy pods will
receive traffic in your cluster. In the next section, you will explore different metrics
reported by Kubernetes that you can use to verify the state of your application.

Metrics reported by Kubernetes

Kubernetes reports multiple metrics. In this section, you'll first use a number of
kubectl commands to get these metrics. Afterward, you'll look into Azure Monitor
for containers to see how Azure helps with container monitoring.

Node status and consumption

The nodes in your Kubernetes are the servers running your application. Kubernetes
will schedule pods to different nodes in the cluster. You need to monitor the status
of your nodes to ensure that the nodes themselves are healthy and that the nodes
have enough resources to run new applications.

Run the following command to get information about the nodes on the cluster:

kubectl get nodes

The preceding command lists their name, status, and age:

Figure 7.24: There are two nodes in this cluster

206 | Monitoring the AKS cluster and the application

You can get more information by passing the -o wide option:

kubectl get -o wide nodes

The output lists the underlying OS-IMAGE and INTERNAL-IP, and other useful
information, which can be viewed in Figure 7.25:

Figure 7.25: Using -o wide adds more details about the nodes

You can find out which nodes are consuming the most resources by using the
following command:

kubectl top nodes

It shows the CPU and memory usage of the nodes:

Figure 7.26: CPU and memory utilization of the nodes

Note that this is the actual consumption at that point in time, not the number of
requests a certain node has. To get the requests, you can execute the following:

kubectl describe node <node name>

This will show you the requests and limits per pod, as well as the cumulative
amount for the whole node:

Metrics reported by Kubernetes | 207

Figure 7.27: Describing the nodes shows details on requests and limits

As you can see in Figure 7.27, the describe node command outputs the requests
and limits per pod, across namespaces. This is a good way for cluster operators to
verify how much load is being put on the cluster, across all namespaces.

You now know where you can find information about the utilization of your
nodes. In the next section, you will look into how you can get the same metrics for
individual pods.

Pod consumption

Pods consume CPU and memory resources from an AKS cluster. Requests and
limits are used to configure how much CPU and memory a pod can consume.
Requests are used to reserve a minimum amount of CPU and memory, while limits
are used to set a maximum amount of CPU and memory per pod.

In this section, you will learn how you can use kubectl to get information about
the CPU and memory utilization of pods.

208 | Monitoring the AKS cluster and the application

Let's start by exploring how you can see the requests and limits for a pod that you
currently have running:

1.	 For this example, you will use the pods running in the kube-system namespace.
Get all the pods in this namespace:

kubectl get pods -n kube-system

This should show something similar to Figure 7.28:

Figure 7.28: The pods running in the kube-system namespace

2.	 Let's get the requests and limits for one of the coredns pods. This can be done
using the describe command:

kubectl describe pod coredns-<pod id> -n kube-system

In the describe command, there should be a section similar to Figure 7.29:

Figure 7.29: Limits and requests for the CoreDNS pod

Metrics reported by Kubernetes | 209

This shows you that this pod has a memory limit of 170Mi, no CPU limit, and has
a request for 100 m CPU (which means 0.1 CPU) and 70Mi of memory. This means
that if this pod were to consume more than 170 MiB of memory, Kubernetes would
restart that pod. Kubernetes has also reserved 0.1 CPU core and 70 MiB of memory
for this pod.

Requests and limits are used to perform capacity management in a cluster. You
can also get the actual CPU and memory consumption of a pod. Run the following
command and you'll get the actual pod consumption in all namespaces:

kubectl top pods --all-namespaces

This should show you anoutput similar to Figure 7.30:

Figure 7.30: Seeing the CPU and memory consumption of pods

Using the kubectl top command shows the CPU and memory consumption at
the point in time when the command was run. In this case, you can see that the
coredns pods are using 3m CPU and 10Mi of memory.

In this section, you have used the kubectl command to get an insight into
the resource utilization of the nodes and pods in your cluster. This is useful
information, but it is limited to that specific point in time. In the next section,
you'll use the Azure portal to get more detailed information on the cluster and the
applications on top of the cluster. You'll start by exploring the AKS Diagnostics
pane.

210 | Monitoring the AKS cluster and the application

Using AKS Diagnostics

When you are experiencing issues in AKS, a good place to start your exploration
is the AKS Diagnostics pane. It provides you with tools that help investigate any
issues related to underlying infrastructure or system cluster components.

Note:

AKS Diagnostics is in preview at the time of writing this book. This means
functionality might be added or removed.

To access AKS Diagnostics, hit the Diagnose and solve problems option in the AKS
menu. This will open up Diagnostics, as shown in Figure 7.31:

Figure 7.31: Accessing AKS Diagnostics

Using AKS Diagnostics | 211

AKS Diagnostics gives you two tools to diagnose and explore issues. One is Cluster
Insights, and the other is Networking. Cluster Insights uses cluster logs and
configuration on your cluster to perform a health check and compare your cluster
against best practices. It contains useful information and relevant health indicators
in case anything is misconfigured in your cluster. An example output of Cluster
Insights is shown in Figure 7.32:

Figure 7.32: Example output from Cluster Insights

212 | Monitoring the AKS cluster and the application

The Networking section of AKS Diagnostics allows you to interactively troubleshoot
networking issues in your cluster. As you open the Networking view, you are
presented with several questions that will then trigger network health checks and
configuration reviews. Once you select one of those options, the interactive tool
will give you the output from those checks, as shown in Figure 7.33:

Figure 7.33: Diagnosing networking issues using AKS Diagnostics

Azure Monitor metrics and logs | 213

Using AKS Diagnostics is very useful when you are facing infrastructure issues
on your cluster. The tool does a scan of your environment and verifies whether
everything is running and configured well. However, it does not scan your
applications. That is where Azure Monitor comes in; it allows you to monitor your
application and access your application logs.

Azure Monitor metrics and logs

Previously in this chapter, you explored the status and metrics of nodes and pods
in your cluster using the kubectl command-line tool. In Azure, you can get more
metrics from nodes and pods and explore the logs from pods in your cluster. Let's
start by exploring AKS Insights in the Azure portal.

AKS Insights

The Insights section of the AKS pane provides most of the metrics you need to
know about your cluster. It also has the ability to drill down to the container level.
You can also see the logs of the container.

Note:

The Insights section of the AKS pane relies on Azure Monitor for containers. If
you created the cluster using the portal defaults, this is enabled by default.

Kubernetes makes metrics available but doesn't store them. Azure Monitor can be
used to store these metrics and make them available to query over time. To collect
the relevant metrics and logs into Insights, Azure connects to the Kubernetes API
to collect the metrics and logs to then store them in Azure Monitor.

Note:

Logs of a container could contain sensitive information. Therefore, the rights
to review logs should be controlled and audited.

Let's explore the Insights tab of the AKS pane, starting with the cluster metrics.

214 | Monitoring the AKS cluster and the application

Cluster metrics

Insights shows the cluster metrics. Figure 7.34 shows the CPU utilization and the
memory utilization of all the nodes in the cluster. You can optionally add additional
filters to filter to a particular namespace, node, or node pool. There also is a live
option, which gives you more real-time information on your cluster status:

Figure 7.34: The Cluster tab shows CPU and memory utilization for the cluster

Azure Monitor metrics and logs | 215

The cluster metrics also show the node count and the number of active pods. The
node count is important, as you can track whether you have any nodes that are in a
Not Ready state:

Figure 7.35: The Cluster tab shows the node count and the number of active pods

The Cluster tab can be used to monitor the status of the nodes in the cluster. Next,
you'll explore the Reports tab.

216 | Monitoring the AKS cluster and the application

Reports

The Reports tab in AKS Insights gives you access to a number of preconfigured
monitoring workbooks. These workbooks combine text, log queries, metrics, and
parameters together and give you rich interactive reports. You can drill down
into each individual report to get more information and prebuilt log queries. The
available reports are shown in Figure 7.36:

Note

The Reports functionality is in preview at the time of writing this book.

Figure 7.36: The Reports tab gives you access to preconfigured monitoring workbooks

Azure Monitor metrics and logs | 217

As an example, you can explore the Deployments workbook. This is shown in
Figure 7.37:

Figure 7.37: The Deployments workbook shows you the status of your deployments

This shows you all the deployments by default, their health, and up-to-date status.
As you can see, it shows you that server1 was temporarily unavailable when you
were doing the exploration with liveness and readiness probes earlier in this
chapter.

218 | Monitoring the AKS cluster and the application

You can drill down further into the status of the individual deployments. If you click
on the Log button highlighted in Figure 7.37, you get redirected to Log Analytics
with a prebuilt query. You can then modify this query and get deeper insights into
your workload, as shown in Figure 7.38.

Figure 7.38: Drilling down in Log Analytics to get more details on your deployments

Note:

The queries used in Log Analytics make use of the Kusto Query Language
(KQL). To learn more about KQL, please refer to the documentation: https://
docs.microsoft.com/azure/data-explorer/kusto/concepts/

The Reports tab in AKS Insights gives you a number of prebuilt monitoring
workbooks. The next tab is the Nodes tab.

https://docs.microsoft.com/azure/data-explorer/kusto/concepts/
https://docs.microsoft.com/azure/data-explorer/kusto/concepts/

Azure Monitor metrics and logs | 219

Nodes

The Nodes view shows you detailed metrics for your nodes. It also shows you
which pods are running on each node, as you can see in Figure 7.39:

Figure 7.39: Detailed metrics of the nodes in the Nodes pane

Note that different metrics can be viewed from the dropdown menu right next
to the search bar. If you need even more details, you can click through and get
Kubernetes event logs from your nodes as well:

220 | Monitoring the AKS cluster and the application

Figure 7.40: Click on View Kubernetes event logs to get the logs from a cluster

This will open Azure Log Analytics and will have pre-created a query for you that
shows the logs for your node. In the example in Figure 7.41, you can see that the
node was rebooted a couple of times and hit an InvalidDiskCapacity warning
as well:

Figure 7.41: Log Analytics showing the logs for the nodes

Azure Monitor metrics and logs | 221

This gives you information about the status of your nodes. Next, you'll explore the
Controllers tab.

Controllers

The Controllers tab shows you details on all the controllers (that is, ReplicaSets,
DaemonSets, and so on) on your cluster and the pods running in them. This shows
you a controller-centric view of running pods. For instance, you can find the
server1 ReplicaSet and see all the pods and containers running in it, as shown in
Figure 7.42:

Figure 7.42: The Controllers tab shows you all the pods running in a ReplicaSet

222 | Monitoring the AKS cluster and the application

The next tab is the Containers tab, which will show you the metrics, logs, and
environment variables for a container.

Container metrics, logs, and environment variables

Clicking on the Containers tab lists the container metrics, environment variables,
and access to its logs, as shown in Figure 7.43:

Figure 7.43: The Containers tab shows us all the individual containers

Note:

You might notice a couple of containers with an Unknown state. If a container
in the Insights pane has an unknown status, that is because Azure Monitor
has logs and information about that container, but the container is no longer
running on the cluster.

Azure Monitor metrics and logs | 223

You can get access to the container's logs from this view as well:

Figure 7.44: Access the container's logs

This will show you all the logs that Kubernetes logged from your application.
Earlier in the chapter, you used kubectl to get access to container logs. Using
this approach can be a lot more productive, as you can edit the log queries and
correlate logs from different pods and applications in a single view:

Figure 7.45: Logs are collected and can be queried

224 | Monitoring the AKS cluster and the application

Apart from the logs, this view also shows the environment variables that are set for
the container. To see the environment variables, scroll down in the right cell of the
Containers view:

Figure 7.46: The environment variables set for the container

The final tab in AKS Insights is the Deployments tab, which you'll explore next.

Deployments

The final tab is the Deployments tab. This tab gives you an overview of all
deployments in the cluster and allows you to get the definition of the deployment
by selecting it. As you can see in Figure 7.47, you can get this view either in
Describe (in text format) or in RAW (YAML format):

Azure Monitor metrics and logs | 225

Figure 7.47: The Deployments tab in AKS Insights

By using the Insights pane in AKS, you can get detailed information about your
cluster. You explored the different tabs in this section and learned how you
can drill down and get access to customizable log queries to get even more
information.

And that concludes this section. Let's make sure to clean up all the resources
created in this chapter by using the following command:

kubectl delete -f

In this section, you explored monitoring applications running on top of Kubernetes.
You used the AKS Insights tab in the Azure portal to get a detailed view of your
cluster and the containers running on the cluster.

226 | Monitoring the AKS cluster and the application

Summary

You started this chapter by learning how to use different kubectl commands to
monitor an application. Then, you explored how logs created in Kubernetes can be
used to debug that application. The logs contain all the information that is written
to stdout and stderr.

After that, you switched to the Azure portal and started using AKS Diagnostics to
explore infrastructure issues. Lastly, you explored the use of Azure Monitor and
AKS Insights to show the AKS metrics and environment variables, as well as logs
with log filtering.

In the next chapter, you will learn how to connect an AKS cluster to Azure PaaS
services. You will specifically focus on how you can connect an AKS cluster to a
MySQL database managed by Azure.

Section 3: Securing
your AKS cluster and

workloads
Loose lips sink ships is a phrase that describes how easy it can be to jeopardize
the security of a Kubernetes-managed cluster (Kubernetes, by the way, is Greek
for helmsman, as in the helmsman of a ship). If your cluster is left open with the
wrong ports or services exposed, or plain text is used for secrets in application
definitions, bad actors can take advantage of this negligent security and do pretty
much whatever they want in your cluster.

There are multiple items to consider when securing an Azure Kubernetes Service
(AKS) cluster and workloads running on top of it. In this section, you will learn
about four ways to secure your cluster and applications. You will learn about role-
based access control in Kubernetes and how this can be integrated with Azure
Active Directory (Azure AD). After that, you'll learn how to allow your pods to get
access to Azure resources such as Blob Storage or Key Vault using an Azure AD
pod identity. Subsequently, you'll learn about Kubernetes secrets and how to safely
integrate them with Key Vault. Finally, you'll learn about network security and how
to isolate your Kubernetes cluster.

In this chapter, you will be routinely deleting clusters and creating new clusters
with new functionalities enabled. The reason you will delete existing clusters is to
save costs and optimize the free trial, if you are using it.

228 | Section 3: Securing your AKS cluster and workloads

This section contains the following chapters:

•	 Chapter 8, Role-based access control in AKS

•	 Chapter 9, Azure Active Directory pod‑managed identities in AKS

•	 Chapter 10, Storing secrets in AKS

•	 Chapter 11, Network security in AKS

You will start this section with Chapter 8, Role-based access control in AKS, in which
you will configure role-based access control in Kubernetes and integrate this with
Azure AD.

8
Role-based access

control in AKS
Up to this point, you've been using a form of access to Azure Kubernetes
Service (AKS) that gave you permissions to create, read, update, and delete
all objects in your cluster. This has worked great for testing and development
but is not recommended on production clusters. On production clusters, the
recommendation is to leverage role-based access control (RBAC) in Kubernetes to
only grant a limited set of permissions to users.

In this chapter, you will explore Kubernetes RBAC in more depth. You will be
introduced to the concept of RBAC in Kubernetes. You will then configure RBAC in
Kubernetes and integrate it with Azure Active Directory (Azure AD).

The following topics will be covered in this chapter:

•	 RBAC in Kubernetes

•	 Enabling Azure AD integration in your AKS cluster

•	 Creating a user and a group in Azure AD

•	 Configuring RBAC in AKS

•	 Verifying RBAC for a user

230 | Role-based access control in AKS

Note	

To complete the example on RBAC, you need access to an Azure AD instance,
with global administrator permissions.

Let's start this chapter by explaining RBAC.

RBAC in Kubernetes explained

In production systems, you need to allow different users different levels of access
to certain resources; this is known as RBAC. The benefit of establishing RBAC
is that it not only acts as a guardrail against the accidental deletion of critical
resources but also is an important security feature that limits full access to the
cluster to roles that really need it. On an RBAC-enabled cluster, users can only
access and modify those resources for which they have permission.

Up until now, using Cloud Shell, you have been acting as root, which allowed
you to do anything and everything in the cluster. For production use cases, root
access is dangerous and should be restricted as much as possible. It is a generally
accepted best practice to use the principle of least privilege (PoLP) to sign in to
any computer system. This prevents both access to secure data and unintentional
downtime through the deletion of key resources. Anywhere between 22% and
29% of data loss is attributed to human error. You don't want to be a part of that
statistic.

Kubernetes developers realized this was a problem and added RBAC to Kubernetes
along with the concept of service roles to control access to clusters. Kubernetes
RBAC has three important concepts:

•	 Role: A role contains a set of permissions. A role defaults to no permissions,
and every permission needs to be specifically called out. Examples of
permissions include get, watch, and list. The role also contains which
resources these permissions are given to. Resources can be either all pods,
deployments, and so on, or can be a specific object (such as pod/mypod).

RBAC in Kubernetes explained | 231

•	 Subject: The subject is either a person or a service account that is assigned
a role. In AKS clusters integrated with Azure AD, these subjects can be Azure
AD users or groups.

•	 RoleBinding: A RoleBinding links a subject to a role in a certain namespace
or, in the case of a ClusterRoleBinding, the whole cluster.

An important concept to understand is that when interfacing with AKS, there are
two layers of RBAC: Azure RBAC and Kubernetes RBAC, as shown in Figure 8.1.
Azure RBAC deals with the roles given to people to make changes in Azure, such as
creating, modifying, and deleting clusters. Kubernetes RBAC deals with the access
rights to resources in a cluster. Both are independent control planes but can use
the same users and groups originating in Azure AD.

Figure 8.1: Two different RBAC planes, Azure and Kubernetes

RBAC in Kubernetes is an optional feature. The default in AKS is to create clusters
that have RBAC enabled. However, by default, the cluster is not integrated with
Azure AD. This means that by default you cannot grant Kubernetes permissions to
Azure AD users. In the coming section, you will enable Azure AD integration in your
cluster.

232 | Role-based access control in AKS

Enabling Azure AD integration in your AKS cluster

In this section, you will update your existing cluster to include Azure AD
integration. You will do this using the Azure portal:

Note

Once a cluster has been integrated with Azure AD, this functionality cannot be
disabled.

1.	 To start, you will need an Azure AD group. You will later give admin privileges
for your AKS cluster to this group. To create this group, search for azure
active directory in the Azure search bar:

Figure 8.2: Searching for azure active directory in the Azure search bar

Enabling Azure AD integration in your AKS cluster | 233

2.	 In the left pane, select Groups, which will bring you to the All groups screen.
Click + New Group, as shown in Figure 8.3:

Figure 8.3: Creating a new Azure AD group

3.	 On the resulting page, create a security group and give it a name and
description. Select your user as the owner and a member of this group. Click
the Create button on the screen:

Figure 8.4: Providing details for creating the Azure AD group

234 | Role-based access control in AKS

4.	 Now that this group is created, search for your Azure cluster in the Azure
search bar to open the AKS pane:

Figure 8.5: Searching for your cluster in the Azure search bar

5.	 In the AKS pane, select Cluster configuration under Settings. In this pane,
you will be able to turn on AKS-managed Azure Active Directory. Enable the
functionality and select the Azure AD group you created earlier to set as the
admin Azure AD group. Finally, hit the Save button in the command bar, as
shown in Figure 8.6:

Figure 8.6: Enabling AKS-managed Azure Active Directory and clicking the Save button

Creating a user and group in Azure AD | 235

This enables Azure AD–integrated RBAC on your AKS cluster. In the next section,
you will create a new user and a new group that will be used in the section
afterward to set up and test RBAC in Kubernetes.

Creating a user and group in Azure AD

In this section, you will create a new user and a new group in Azure AD. You will
use them later on in the chapter to assign them permissions to your AKS cluster:

Note

You need the User Administrator role in Azure AD to be able to create users
and groups.

1.	 To start with, search for azure active directory in the Azure search bar:

Figure 8.7: Searching for azure active directory in the search bar

236 | Role-based access control in AKS

2.	 Click on All users in the left pane. Then select + New user to create a new user:

Figure 8.8: Clicking on + New user to create a new user

3.	 Provide the information about the user, including the username. Make sure to
note down the password, as this will be required to sign in:

Figure 8.9: Providing the user details

Creating a user and group in Azure AD | 237

4.	 Once the user is created, go back to the Azure AD pane and select Groups.
Then click the + New group button to create a new group:

Figure 8.10: Clicking on + New group to create a new group

5.	 Create a new security group. Call the group handson aks users and add Tim as
a member of the group. Then hit the Create button at the bottom:

Figure 8.11: Providing the group type, group name, and group description

238 | Role-based access control in AKS

6.	 You have now created a new user and a new group. Next, you'll make that user
a cluster user in AKS RBAC. This enables them to use the Azure CLI to get
access to the cluster. To do that, search for your cluster in the Azure search
bar:

Figure 8.12: Searching for your cluster in the Azure search bar

7.	 In the cluster pane, click on Access control (IAM) and then click on the + Add
button to add a new role assignment. Select Azure Kubernetes Service Cluster
User Role and assign that to the new user you just created:

Figure 8.13: Assigning the cluster user role to the new user you created

Creating a user and group in Azure AD | 239

8.	 As you will also be using Cloud Shell with the new user, you will need to give
them contributor access to the Cloud Shell storage account. First, search for
storage in the Azure search bar:

Figure 8.14: Searching for storage in the Azure search bar

9.	 There should be a storage account under Resource group with a name that
starts with cloud-shell-storage. Click on the resource group:

Figure 8.15: Selecting the resource group

240 | Role-based access control in AKS

10.	Go to Access control (IAM) and click on the + Add button. Give the Storage
Account Contributor role to your newly created user:

Figure 8.16: Assigning Storage Account Contributor role to the new user

This has concluded the creation of a new user and a group and giving that user
access to AKS. In the next section, you will configure RBAC for that user and group
in your AKS cluster.

Configuring RBAC in AKS

To demonstrate RBAC in AKS, you will create two namespaces and deploy the
Azure voting application in each namespace. You will give the group cluster-wide
read-only access to pods, and you will give the user the ability to delete pods in
only one namespace. Practically, you will need to create the following objects in
Kubernetes:

•	 ClusterRole to give read-only access

•	 ClusterRoleBinding to grant the group access to this role

•	 Role to give delete permissions in the delete-access namespace

•	 RoleBinding to grant the user access to this role

Configuring RBAC in AKS | 241

Figure 8.17: The group getting read-only access to the whole cluster, and the user getting delete
permissions to the delete-access namespace

Let's set up the different roles on your cluster:

1.	 To start our example, you will need to retrieve the ID of the group. The
following commands will retrieve the group ID:

az ad group show -g 'handson aks users' \
 --query objectId -o tsv

This will show your group ID. Note this down because you'll need it in the next
steps:

Figure 8.18: Getting the group ID

2.	 In Kubernetes, you will create two namespaces for this example:

kubectl create ns no-access
kubectl create ns delete-access

3.	 You will also deploy the azure-vote application in both namespaces:

kubectl create -f azure-vote.yaml -n no-access
kubectl create -f azure-vote.yaml -n delete-access

242 | Role-based access control in AKS

4.	 Next, you will create the ClusterRole object. This is provided in the
clusterRole.yaml file:

1 apiVersion: rbac.authorization.k8s.io/v1
2 kind: ClusterRole
3 metadata:
4 name: readOnly
5 rules:
6 - apiGroups: [""]
7 resources: ["pods"]
8 verbs: ["get", "watch", "list"]

Let's have a closer look at this file:

•	 Line 2: Defines the creation of a ClusterRole instance

•	 Line 4: Gives a name to our ClusterRole instance

•	 Line 6: Gives access to all API groups

•	 Line 7: Gives access to all pods

•	 Line 8: Gives access to the actions get, watch, and list

We will create ClusterRole using the following command:

kubectl create -f clusterRole.yaml

5.	 The next step is to create a cluster role binding. The binding links the role to a
user or a group. This is provided in the clusterRoleBinding.yaml file:

1 apiVersion: rbac.authorization.k8s.io/v1
2 kind: ClusterRoleBinding
3 metadata:
4 name: readOnlyBinding
5 roleRef:
6 kind: ClusterRole
7 name: readOnly
8 apiGroup: rbac.authorization.k8s.io
9 subjects:
10 - kind: Group
11 apiGroup: rbac.authorization.k8s.io
12 name: "<group-id>"

Configuring RBAC in AKS | 243

Let's have a closer look at this file:

•	 Line 2: Defines that we are creating a ClusterRoleBinding instance.

•	 Line 4: Gives a name to ClusterRoleBinding.

•	 Lines 5–8: Refer to the ClusterRole object we created in the previous
step

•	 Lines 9–12: Refer to your group in Azure AD. Make sure to replace
<group-id> on line 12 with the group ID you got earlier.

We can create ClusterRoleBinding using the following command:

kubectl create -f clusterRoleBinding.yaml

6.	 Next, you'll create a role that is limited to the delete-access namespace. This
is provided in the role.yaml file:

1 apiVersion: rbac.authorization.k8s.io/v1
2 kind: Role
3 metadata:
4 name: deleteRole
5 namespace: delete-access
6 rules:
7 - apiGroups: [""]
8 resources: ["pods"]
9 verbs: ["delete"]

This file is similar to the ClusterRole object from earlier. There are two
meaningful differences:

•	 Line 2: Defines that you are creating a Role instance and not a
ClusterRole instance

•	 Line 5: Defines the namespace this role is created in

You can create Role using the following command:

kubectl create -f role.yaml

244 | Role-based access control in AKS

7.	 Finally, you will create a RoleBinding instance that links our user to the
namespace role. This is provided in the roleBinding.yaml file:

1 apiVersion: rbac.authorization.k8s.io/v1
2 kind: RoleBinding
3 metadata:
4 name: deleteBinding
5 namespace: delete-access
6 roleRef:
7 kind: Role
8 name: deleteRole
9 apiGroup: rbac.authorization.k8s.io
10 subjects:
11 - kind: User
12 apiGroup: rbac.authorization.k8s.io
13 name: "<user e-mail address>"

This file is similar to the ClusterRoleBinding object from earlier. There are a
couple of meaningful differences:

•	 Line 2: Defines the creation of a RoleBinding instance and not a
ClusterRoleBinding instance

•	 Line 5: Defines the namespace this RoleBinding instance is created in

•	 Line 7: Refers to a regular role and not a ClusterRole instance

•	 Lines 11–13: Defines a user instead of a group

You can create RoleBinding using the following command:

kubectl create -f roleBinding.yaml

This has concluded the requirements for RBAC. You have created two roles—
ClusterRole and one namespace-bound role, and set up two RoleBindings
objects—ClusterRoleBinding and the namespace-bound RoleBinding. In the next
section, you will explore the impact of RBAC by signing in to the cluster as the new
user.

Verifying RBAC for a user | 245

Verifying RBAC for a user

To verify that RBAC works as expected, you will sign in to the Azure portal using
the newly created user. Go to https://portal.azure.com in a new browser, or an
InPrivate window, and sign in with the newly created user. You will be prompted
immediately to change your password. This is a security feature in Azure AD to
ensure that only that user knows their password:

Figure 8.19: You will be asked to change your password

https://portal.azure.com

246 | Role-based access control in AKS

Once you have changed your password, you can start testing the different RBAC
roles:

1.	 You will start this experiment by setting up Cloud Shell for the new user.
Launch Cloud Shell and select Bash:

Figure 8.20: Selecting Bash in Cloud Shell

2.	 In the next dialog box, select Show advanced settings:

Figure 8.21: Selecting Show advanced settings

Verifying RBAC for a user | 247

3.	 Then, point Cloud Shell to the existing storage account and create a new file
share:

Figure 8.22: Pointing to the existing storage account and creating a new file share

4.	 Once Cloud Shell is available, get the credentials to connect to the AKS cluster:

az aks get-credentials -n handsonaks -g rg-handsonaks

Then, try a command in kubectl. Let's try to get the nodes in the cluster:

kubectl get nodes

Since this is the first command executed against an RBAC-enabled cluster, you
are asked to sign in again. Browse to https://microsoft.com/devicelogin and
provide the code Cloud Shell showed you (this code is highlighted in Figure
8.24). Make sure you sign in here with your new user credentials:

Figure 8.23: Copying and pasting the code Cloud Shell showed you in the prompt

https://microsoft.com/devicelogin

248 | Role-based access control in AKS

After you have signed in, you should get a Forbidden error message from
kubectl, informing you that you don't have permission to view the nodes in the
cluster. This was expected since the user is configured only to have access to
pods:

Figure 8.24: The prompt asking you to sign in and the Forbidden message

5.	 Now you can verify that your user has access to view pods in all namespaces
and that the user has permission to delete pods in the delete-access
namespace:

kubectl get pods -n no-access
kubectl get pods -n delete-access

This should succeed for both namespaces. This is due to the ClusterRole
object configured for the user's group:

Figure 8.25: The user has access to view pods in both namespaces

Verifying RBAC for a user | 249

6.	 Let's also verify the delete permissions:

kubectl delete pod --all -n no-access
kubectl delete pod --all -n delete-access

As expected, this is denied in the no-access namespace and allowed in the
delete-access namespace, as seen in Figure 8.26:

Figure 8.26: Deletes are denied in the no-access namespace and allowed in the delete-access
namespace

In this section, you have verified the functionality of RBAC on your Kubernetes
cluster. Since this is the last section of this chapter, let's make sure to clean up the
deployments and namespaces in the cluster. Make sure to execute these steps from
Cloud Shell with your main user, not the new user:

kubectl delete -f azure-vote.yaml -n no-access
kubectl delete -f azure-vote.yaml -n delete-access
kubectl delete -f .
kubectl delete ns no-access
kubectl delete ns delete-access

This concludes the overview of RBAC on AKS.

250 | Role-based access control in AKS

Summary

In this chapter, you learned about RBAC on AKS. You enabled Azure AD–integrated
RBAC in your cluster. After that, you created a new user and group and set up
different RBAC roles on your cluster. Finally, you signed in using that user and were
able to verify that the RBAC roles that were configured gave you limited access to
the cluster you were expecting.

This deals with how users can get access to your Kubernetes cluster. The pods
running on your cluster might also need an identity in Azure AD that they can
use to access resources in Azure services such as Blob Storage or Key Vault. You
will learn more about this use case and how to set this up using an Azure AD pod
identity in AKS in the next chapter.

9
Azure Active Directory

pod‑managed
identities in AKS

In the previous chapter, Chapter 8, Role-based access control in AKS, you integrated
your AKS cluster with Azure Active Directory (Azure AD). You then assigned
Kubernetes roles to users and groups in Azure AD. In this chapter, you will explore
how you can integrate your applications running on AKS with Azure AD, and you
will learn how you can give your pods an identity in Azure so they can interact with
other Azure resources.

In Azure, application identities use a functionality called service principals. A
service principal is the equivalent of a service account in the cloud. An application
can use a service principal to authenticate to Azure AD and get access to resources.
Those resources could be either Azure resources such as Azure Blob Storage
or Azure Key Vault, or they could be applications that you developed that are
integrated with Azure AD.

252 | Azure Active Directory pod‑managed identities in AKS

There are two ways to authenticate a service principal: you can either use a
password or a combination of a certificate and a private key. Although these are
secure ways to authenticate your applications, managing passwords or certificates
and the rotation associated with them can be cumbersome.

Managed identities in Azure are a functionality that makes authenticating to a
service principal easier. It works by assigning an identity to a compute resource in
Azure, such as a virtual machine or an Azure function. Those compute resources
can authenticate using that managed identity by calling an endpoint that only that
machine can reach. This is a secure type of authentication that does not require
you to manage passwords or certificates.

Azure AD pod-managed identities allow you to assign managed identities to pods
in Kubernetes. Since pods in Kubernetes run on virtual machines, by default, each
pod would be able to access the managed identity endpoint and authenticate
using that identity. Using Azure AD pod-managed identities, pods can no longer
reach the internal endpoint for the virtual machine, and rather only get access to
identities assigned to that specific pod.

In this chapter, you'll configure an Azure AD pod-managed identity on an AKS
cluster and use it to get access to Azure Blob Storage. In the next chapter, you will
then use these Azure AD pod-managed identities to get access to Azure Key Vault
and manage Kubernetes secrets.

The following topics will be covered briefly in this chapter:

•	 An overview of Azure AD pod-managed identities

•	 Setting up a new cluster with Azure AD pod-managed identities

•	 Linking an identity to your cluster

•	 Using a pod with managed identity

Let's start with an overview of Azure AD pod-managed identities.

An overview of Azure AD pod-managed identities | 253

An overview of Azure AD pod-managed identities

The goal of this section is to describe Azure managed identities and Azure AD
pod-managed identities.

As explained in the introduction, managed identities in Azure are a way to securely
authenticate applications running inside Azure. There are two types of managed
identities in Azure. The difference between them is how they are linked to
resources:

•	 System assigned: This type of managed identity is linked 1:1 to the resource
(such as a virtual machine) itself. This managed identity also shares the
lifecycle of the resource, meaning that once the resource is deleted, the
managed identity is also deleted.

•	 User assigned: User-assigned managed identities are standalone Azure
resources. A user-assigned managed identity can be linked to multiple
resources. When a resource is deleted, the managed identity is not deleted.

Both types of managed identities work the same way once they are created and
linked to a resource. This is how managed identities work from an application
perspective:

1.	 Your application running in Azure requests a token to the Instance Metadata
Service (IMDS). The IMDS is only available to that resource itself, at a
non-routable IP address (169.254.169.254).

2.	 The IMDS will request a token from Azure AD. It uses a certificate that is
configured for your managed identity and is only known by the IMDS.

3.	 Azure AD will return a token to the IMDS, which will, in turn, return that token
to your application.

4.	 Your application can use this token to authenticate to other resources, for
instance, Azure Blob Storage.

254 | Azure Active Directory pod‑managed identities in AKS

Figure 9.1: Managed identity in an Azure virtual machine

When running multiple pods on a single virtual machine in a Kubernetes cluster, by
default each pod can reach the IMDS endpoint. This means that each pod could get
access to the identities configured for that virtual machine.

The Azure AD pod-managed identities add-on for AKS configures your cluster in
such a way that pods can no longer access the IMDS endpoint directly to request
an access token. It configures your cluster in such a way that pods trying to access
to IMDS endpoint (1) will connect to a DaemonSet running on the cluster. This
DaemonSet is called the node managed identity (NMI). The NMI will verify which
identities that pod should have access to. If the pod is configured to have access
to the requested identity, then the DaemonSet will connect to the IMDS (2 to 5) to
get the token, and then deliver the token to the pod (6). The pods can then use this
token to access Azure resources (7).

An overview of Azure AD pod-managed identities | 255

Figure 9.2: Azure AD pod-managed identity

This way, you can control which pods on your cluster have access to certain
identities.

Azure AD pod-managed identities were initially developed as an open-source
project by Microsoft on GitHub. More recently, Microsoft has released Azure
AD pod-managed identities as an AKS add-on. The benefit of using Azure AD
pod-managed identities as an AKS add-on is that the functionality is supported by
Microsoft and the software will be updated automatically as part of regular cluster
operations.

Note

At the time of writing, the Azure AD pod-managed identities add-on is in
preview. Currently, it is also not supported for Windows containers. Using
preview functionality for product use cases is not recommended.

Now that you know how Azure AD pod-managed identities work, let's set it up on
an AKS cluster in the next section.

256 | Azure Active Directory pod‑managed identities in AKS

Setting up a new cluster with Azure AD pod-managed
identities

As mentioned in the previous section, there are two ways to set up Azure AD
pod-managed identities in AKS. It can either be done using the open-source
project on GitHub, or by setting it up as an AKS add-on. By using the add-on, you'll
get a supported configuration, which is why you'll set up a cluster using the add-on
in this section.

At the time of writing, it is not yet possible to enable the Azure AD pod-managed
identities add-on on an existing cluster, which is why in the following instructions
you'll delete your existing cluster and create a new one with the add-on installed.
By the time you are reading this, it might be possible to enable this add-on on an
existing cluster without recreating your cluster.

Also, because the functionality is in preview at the time of this writing, you'll have
to register for the preview. That'll be the first step in this section:

1.	 Start by opening Cloud Shell and registering for the preview of Azure AD
pod-managed identities:

az feature register --name EnablePodIdentityPreview \
 --namespace Microsoft.ContainerService

2.	 You'll also need a preview extension of the Azure CLI, which you can install
using the following command:

az extension add --name aks-preview

3.	 Now you can go ahead and delete your existing cluster. This is required to
ensure you have enough core quota available in Azure. You can do this using
the following command:

az aks delete -n handsonaks -g rg-handsonaks --yes

Setting up a new cluster with Azure AD pod-managed identities | 257

4.	 Once your previous cluster is deleted, you'll have to wait until the pod identity
preview is registered on your subscription. You can use the following command
to verify this status:

az feature show --name EnablePodIdentityPreview \
 --namespace Microsoft.ContainerService -o table

Wait until the status shows as registered, as shown in Figure 9.3:

Figure 9.3: Waiting for the feature to be registered

5.	 If the feature is registered and your old cluster is deleted, you need to refresh
the registration of the namespace before creating a new cluster. Let's first
refresh the registration of the namespace:

az provider register --namespace Microsoft.ContainerService

6.	 And now you can create a new cluster using the Azure AD pod-managed
identities add-on. You can use the following command to create a new cluster
with the add-on enabled:

az aks create -g rg-handsonaks -n handsonaks \
 --enable-managed-identity --enable-pod-identity \
 --network-plugin azure --node-vm-size Standard_DS2_v2 \
 --node-count 2 --generate-ssh-keys

7.	 This will take a couple of minutes to finish. Once the command finishes, obtain
the credentials to access your cluster and verify you can access your cluster
using the following commands:

az aks get-credentials -g rg-handsonaks \
 -n handsonaks --overwrite-existing
kubectl get nodes

258 | Azure Active Directory pod‑managed identities in AKS

This should return an output similar to Figure 9.4:

Figure 9.4: Getting cluster credentials and verifying access

Now you have a new AKS cluster with Azure AD pod-managed identities enabled. In
the next section, you will create a managed identity and link it to your cluster.

Linking an identity to your cluster

In the previous section, you created a new cluster with Azure AD pod-managed
identities enabled. Now you are ready to create a managed identity and link it to
your cluster. Let's get started:

1.	 To start, you will create a new managed identity using the Azure portal. In
the Azure portal, look for managed identity in the search bar, as shown in
Figure 9.5:

Figure 9.5: Navigating to Managed Identities in the Azure portal

Linking an identity to your cluster | 259

2.	 In the resulting pane, click the + New button at the top. To organize the
resources for this chapter together, it's recommended to create a new resource
group. In the resulting pane, click the Create new button to create a new
resource group. Call it aad-pod-id, as shown in Figure 9.6:

Figure 9.6: Creating a new resource group

3.	 Now, select the region you created your cluster in as the region for your
managed identity and give it a name (aad-pod-id in this example), as shown in
Figure 9.7. To finish, click the Review + create button and in the final window
click the Create button to create your managed identity:

260 | Azure Active Directory pod‑managed identities in AKS

Figure 9.7: Providing Instance details for the managed identity

4.	 Once the managed identity has been created, hit the Go to resource button
to go to the resource. Here, you will need to copy the client ID and the
resource ID. They will be used later in this chapter. Copy and paste the values
somewhere that you can access later. First, you will need the client ID of the
managed identity. You can find that in the Overview pane of the managed
identity, as shown in Figure 9.8:

Figure 9.8: Getting the client ID of the managed identity

Linking an identity to your cluster | 261

5.	 Finally, you will also need the resource ID of the managed identity. You can find
that in the Properties pane of the managed identity, as shown in Figure 9.9:

Figure 9.9: Getting the resource ID of the managed identity

6.	 Now you are ready to link the managed identity to your AKS cluster. To do this,
you will run a command in Cloud Shell, and afterward you will be able to verify
that the identity is available in your cluster. Let's start with linking the identity.
Make sure to replace <Managed identity resource ID> with the resource you
copied earlier:

az aks pod-identity add --resource-group rg-handsonaks \
 --cluster-name handsonaks --namespace default \
 --name access-blob-id \
 --identity-resource-id <Managed identity resource ID>

262 | Azure Active Directory pod‑managed identities in AKS

7.	 You can verify that your identity was successfully linked to your cluster by
running the following command:

kubectl get azureidentity

This should give you an output similar to Figure 9.10:

Figure 9.10: Verifying the availability of the identity in the cluster

This means that the identity is now available for you to use in your cluster. How
you do this will be explained in the next section.

Using a pod with managed identity

In the previous section, you created a managed identity and linked it to your
cluster. In this section, you will create a new blob storage account and give the
managed identity you created permission over this storage account. Then, you will
create a new pod in your cluster that can use that managed identity to interact
with that storage account. Let's get started by creating a new storage account:

1.	 To create a new storage account, look for storage accounts in the Azure
search bar, as shown in Figure 9.11:

Figure 9.11: Looking for storage accounts in the Azure search bar

In the resulting pane, click the + New button at the top of the screen as shown
in Figure 9.12:

Using a pod with managed identity | 263

Figure 9.12: Creating a new storage account

Select the aad-pod-id resource group you created earlier, give the account a
unique name, and select the same region as your cluster. To optimize costs, it
is recommended that you select the Standard performance, StorageV2 as the
Account kind, and Locally-redundant storage (LRS) for Replication, as shown in
Figure 9.13:

Figure 9.13: Configuring your new storage account

264 | Azure Active Directory pod‑managed identities in AKS

2.	 After you have provided all the values, click Review + create and then the Create
button on the resulting screen. This will take about a minute to create. Once
the storage account is created, click the Go to resource button to move on to
the next step.

3.	 First, you will give the managed identity access to the storage account. To do
this, click Access Control (IAM) in the left-hand navigation bar, click + Add and
Add role assignment. Then select the Storage Blob Data Contributor role, select
User assigned managed identity in the Assign access to dropdown, and select
the access-blob-id managed identity you created, as shown in Figure 9.14. Finally,
hit the Save button at the bottom of the screen:

Figure 9.14: Providing access to the storage account for the managed identity

Using a pod with managed identity | 265

4.	 Next, you will upload a random file to this storage account. Later, you will try
to access this file from within a Kubernetes pod to verify you have access to
the storage account. To do this, go back to the Overview pane of the storage
account. There, click on Containers, as shown in Figure 9.15:

Figure 9.15: Clicking on Containers in the overview pane

266 | Azure Active Directory pod‑managed identities in AKS

5.	 Then hit the + Container button at the top of the screen. Give the container a
name, such as uploadedfiles. Make sure to set Public access level to Private
(no anonymous access), and then click the Create button at the bottom of the
screen, as shown in Figure 9.16:

Figure 9.16: Creating a new blob storage container

6.	 Finally, upload a random file into this storage container. To do this, click
on the container name, and then click the Upload button at the top of the
screen. Select a random file from your computer and click Upload as shown in
Figure 9.17:

Figure 9.17: Uploading a new file to blob storage

Using a pod with managed identity | 267

7.	 Now that you have a file in blob storage, and your managed identity has
access to this storage account, you can go ahead and try connecting to it from
Kubernetes. To do this, you will create a new deployment using the Azure CLI
container image. This deployment will contain a link to the managed identity
that was created earlier. The deployment file is provided in the code files for
this chapter as deployment‑with‑identity.yaml:

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: access-blob
5 spec:
6 selector:
7 matchLabels:
8 app: access-blob
9 template:
10 metadata:
11 labels:
12 app: access-blob
13 aadpodidbinding: access-blob-id
14 spec:
15 containers:
16 - name: azure-cli
17 image: mcr.microsoft.com/azure-cli
18 command: ["/bin/bash", "-c", "sleep inf"]

There are a few things to draw attention to in the definition of this deployment:

•	 Line 13: This is where you link the pod (created by the deployment) with
the managed identity. Any pod with that label will be able to access the
managed identity.

•	 Line 16-18: Here, you define which container will be created in this pod.
As you can see, the image (mcr.microsoft.com/azure-cli) is referring
to the Azure CLI, and you're running a sleep command in this container
to make sure the container doesn't continuously restart.

8.	 You can create this deployment using the following command:

kubectl create -f deployment-with-identity.yaml

268 | Azure Active Directory pod‑managed identities in AKS

9.	 Watch the pods until the access-blob pod is in the Running state. Then copy
and paste the name of the access-blob pod and exec into it using the following
command:

kubectl exec -it <access-blob pod name> -- sh

10.	Once you are connected to the pod, you can authenticate to the Azure API
using the following command. Replace <client ID of managed identity>
with the client ID you copied earlier:

az login --identity -u <client ID of managed identity> \
 --allow-no-subscription -o table

This should return you an output similar to Figure 9.18:

Figure 9.18: Logging in to the Azure CLI using the Azure AD pod-managed identity

11.	 Now, you can try accessing the blob storage account and download the file. You
can do this by executing the following command:

az storage blob download --account-name <storage account name> \
 --container-name <container name> --auth-mode login \
 --file <filename> --name <filename> -o table

This should return you an output similar to Figure 9.19:

Figure 9.19: Downloading a blob file using the managed identity

12.	 You can now exit the container using the exit command.

Using a pod with managed identity | 269

13.	 If you would like to verify that pods that don't have a managed identity
configured and cannot download the file, you can use the file called
deployment‑without‑identity.yaml:

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: no-access-blob
5 spec:
6 selector:
7 matchLabels:
8 app: no-access-blob
9 template:
10 metadata:
11 labels:
12 app: no-access-blob
13 spec:
14 containers:
15 - name: azure-cli
16 image: mcr.microsoft.com/azure-cli
17 command: ["/bin/bash", "-c", "sleep inf"]

As you can see, this deployment isn't similar to the deployment you created
earlier in the chapter. The difference here is that the pod definition doesn't
contain the label with the Azure AD pod-managed identity. This means that this
pod won't be able to log in to Azure using any managed identity. You can create
this deployment using the following:

kubectl create -f deployment-without-identity.yaml

14.	Watch the pods until the no-access-blob pod is in the Running state. Then
copy and paste the name of the access-blob pod and exec into it using the
following command:

kubectl exec -it <no-access-blob pod name> -- sh

270 | Azure Active Directory pod‑managed identities in AKS

15.	Once you are connected to the pod, you can try to authenticate to the Azure
API using the following command, which should fail:

az login --identity -u <client ID of managed identity> \
 --allow-no-subscription -o table

This should return an output similar to Figure 9.20:

Figure 9.20: The new pod cannot authenticate using the managed identity

16.	Finally, you can exit the container using the exit command.

This has successfully shown you how to use Azure AD pod-managed identities to
connect to blob storage from within your Kubernetes cluster. A deployment with
an identity label could log in to the Azure CLI and then access blob storage. A
deployment without this identity label didn't get permission to log in to the Azure
CLI, and hence was also not able to access blob storage.

This has concluded this chapter. Let's make sure to delete the resources you
created for this chapter:

az aks pod-identity delete --resource-group rg-handsonaks \
 --cluster-name handsonaks --namespace default \
 --name access-blob-id
az group delete -n aad-pod-id --yes
kubectl delete -f

You can keep the cluster you created in this chapter since in the next chapter you
will use Azure AD pod-managed identities to access Key Vault secrets.

Summary | 271

Summary

In this chapter, you've continued your exploration of security in AKS. Whereas
Chapter 8, Role-based access control in AKS, focused on identities for users,
this chapter focused on identities for pods and applications running in pods.
You learned about managed identities in Azure and how you can use Azure AD
pod-managed identities in Azure to assign those managed identities to pods.

You created a new cluster with the Azure AD pod-managed identities add-on
enabled. You then created a new managed identity and linked that to your cluster.
In the final section, you gave this identity permissions over a blob storage account
and finally verified that pods with the managed identity were able to log in to Azure
and download files, but pods without the managed identity couldn't log in to Azure.

In the next chapter, you'll learn more about Kubernetes secrets. You'll learn about
the built-in secrets and then also learn how you can securely connect Kubernetes
to Azure Key Vault, and even use Azure AD pod-managed identities to do this.

10
Storing secrets

in AKS
All production applications require some sensitive information to function, such as
passwords or connection strings. Kubernetes has a pluggable back end to manage
these secrets. Kubernetes also provides multiple ways of using the secrets in your
deployment. The ability to manage secrets and use them properly will make your
applications more secure.

You have already used secrets previously in this book. You used them when
connecting to the WordPress site to create blog posts in Chapter 3, Application
deployment on AKS, and Chapter 4, Building scalable applications. You also used
secrets in Chapter 6, Securing your application with HTTPS, when you were
configuring the Application Gateway Ingress Controller with TLS.

Kubernetes has a built-in secret system that stores secrets in a semi-encrypted
fashion in the default Kubernetes database. This system works well but isn't the
most secure way to deal with secrets in Kubernetes. In AKS, you can make use of a
project called Azure Key Vault provider for Secrets Store CSI driver (CSI driver),
which is a more secure way of working with Secrets in Kubernetes. This project
allows you to store and retrieve secrets in/from Azure Key Vault.

274 | Storing secrets in AKS

In this chapter, you will learn about the various built-in secret types in Kubernetes
and the different ways in which you can create these Secrets. After that, you will
install the CSI driver on your cluster, and use it to retrieve Secrets.

Specifically, you will cover the following topics in this chapter:

•	 Different types of secret in Kubernetes

•	 Creating and using secrets in Kubernetes

•	 Installing the Azure Key Vault provider for secrets Store CSI driver

•	 Using the Azure Key Vault provider for secrets Store CSI driver

Let's start with exploring the different secret types in Kubernetes.

Different secret types in Kubernetes

As mentioned in the introduction to this chapter, Kubernetes comes with a default
secrets implementation. This default implementation will store secrets in the etcd
database that Kubernetes uses to store all object metadata. When Kubernetes
stores secrets in etcd, it will store them in base64-encoded format. Base64 is a
way to encode data in an obfuscated manner but is not a secure way of doing
encryption. Anybody with access to base64-encoded data can easily decode it. AKS
adds a layer of security on top of this by encrypting all data at rest within the Azure
platform.

The default secret implementation in Kubernetes allows you to store multiple types
of Secrets:

•	 Opaque secrets: These can contain any arbitrary user-defined secret or
data.

•	 Service account tokens: These are used by Kubernetes pods for built-in
cluster RBAC.

•	 Docker config secrets: These are used to store Docker registry credentials
for Docker command-line configuration.

•	 Basic authentication secrets: These are used for storing authentication
information in the form of a username and password.

•	 SSH authentication secrets: These are used to store SSH private keys.

Creating secrets in Kubernetes | 275

•	 TLS certificates: These are used to store TLS/SSL certificates.

•	 Bootstrap token Secrets: These are used to store bearer tokens that are
used when creating new clusters or joining new nodes to an existing cluster.

As a user of Kubernetes, you most typically will work with opaque secrets and TLS
certificates. You've already worked with TLS secrets in Chapter 6, Securing your
application with HTTPS. In this chapter, you will focus on opaque secrets.

Kubernetes provides three ways of creating secrets, as follows:

•	 Creating secrets from files

•	 Creating secrets from YAML or JSON definitions

•	 Creating secrets from the command line

Using any of the preceding methods, you can create any type of secret.

Kubernetes gives you two ways of consuming secrets:

•	 Using secrets as an environment variable

•	 Mounting secrets as a file in a pod

In the next section, you will create secrets using the three ways mentioned here,
and you will later consume them using both the methods listed here.

Creating secrets in Kubernetes

In Kubernetes, there are three different ways to create secrets: from files, from
YAML or JSON definitions, or directly from the command line. Let's start the
exploration of how to create secrets by creating them from files.

Creating Secrets from files

The first way to create secrets in Kubernetes is to create them from a file. In this
way, the contents of the file will become the value of the secret, and the filename
will be the identifier of each value within the secret.

276 | Storing secrets in AKS

Let's say that you need to store a URL and a secure token for accessing an API.
To achieve this, follow these steps:

1.	 Store the URL in secreturl.txt, as follows:

echo https://my-url-location.topsecret.com \
 > secreturl.txt

2.	 Store the token in another file, as follows:

echo 'superSecretToken' > secrettoken.txt

3.	 Let Kubernetes create the secret from the files, as follows:

kubectl create secret generic myapi-url-token \
 --from-file=./secreturl.txt --from-file=./secrettoken.txt

Please note that you are creating a single secret object in Kubernetes, referring
to both text files. In this command, you are creating an opaque secret by using
the generic keyword.

The command should return an output similar to Figure 10.1:

Figure 10.1: Creating an opaque secret

4.	 You can check whether the secrets were created in the same way as any other
Kubernetes resource by using the get command:

kubectl get secrets

This command will return an output similar to Figure 10.2:

Figure 10.2: List of the created secrets

Creating secrets in Kubernetes | 277

Here, you will see the secret you just created, and any other secrets that are
present in the default namespace. The secret is of the Opaque type, which
means that, from Kubernetes' perspective, the schema of the contents is
unknown. It is an arbitrary key-value pair with no constraints, as opposed to,
for example, SSH auth or TLS secrets, which have a schema that will be verified
as having the required details.

5.	 For more details about the secret, you can also run the describe command:

kubectl describe secrets myapi-url-token

You will get an output similar to Figure 10.3:

Figure 10.3: Description of the created secret

As you can see, neither of the preceding commands displayed the actual
secret values.

6.	 To see the secret's value, you can run the following command:

kubectl get -o yaml secrets/myapi-url-token

You will get an output similar to Figure 10.4:

278 | Storing secrets in AKS

Figure 10.4: Using the -o yaml switch in kubectl get secret fetches the encoded value of the secret

The data is stored as key-value pairs, with the filename as the key and the
base64‑encoded contents of the file as the value.

7.	 The preceding values are base64-encoded. Base64 encoding isn't secure. It
obfuscates the secret so it isn't easily readable by an operator, but any bad
actor can easily decode a base64-encoded secret. To get the actual values, you
can run the following command:

echo 'c3VwZXJTZWNyZXRUb2tlbgo=' | base64 -d
echo 'aHR0cHM6Ly9teS1zZWNyZXQtdXJsLWxvY2F0aW9uLnRvcHNlY3JldC5jb20K'|
base64 -d

You will get the values of the secrets that were originally created:

Figure 10.5: Base64-encoded secrets can easily be decoded

Creating secrets in Kubernetes | 279

This shows you that the secrets are not securely encrypted in the default
Kubernetes secret store.

In this section, you were able to create a secret containing an example URL with a
secure token using files as the source. You were also able to get the actual secret
values back by decoding the base64-encoded secrets.

Let's move on and explore the second method of creating Kubernetes secrets,
creating secrets from YAML definitions.

Creating secrets manually using YAML files

In the previous section, you created a secret from a text file. In this section, you
will create the same secret using YAML files by following these steps:

1.	 First, you need to encode the secret to base64, as follows:

echo 'superSecretToken' | base64

You will get the following value:

c3VwZXJTZWNyZXRUb2tlbgo=

You might notice that this is the same value that was present when you got the
yaml definition of the secret in the previous section.

2.	 Similarly, for the url value, you can get the base64-encoded value, as shown in
the following code block:

echo 'https://my-secret-url-location.topsecret.com' | base64

This will give you the base64-encoded URL:

aHR0cHM6Ly9teS1zZWNyZXQtdXJsLWxvY2F0aW9uLnRvcHNlY3JldC5jb20K

280 | Storing secrets in AKS

3.	 You can now create the secret definition manually; then, save the file. This file
has been provided in the code bundle as myfirstsecret.yaml:

1 apiVersion: v1
2 kind: Secret
3 metadata:
4 name: myapiurltoken-yaml
5 type: Opaque
6 data:
7 url:
aHR0cHM6Ly9teS1zZWNyZXQtdXJsLWxvY2F0aW9uLnRvcHNlY3JldC5jb20K
8 token: c3VwZXJTZWNyZXRUb2tlbgo=

Let's investigate this file:

•	 Line 2: This specifies that you are creating a secret.

•	 Line 5: This specifies that you are creating an Opaque secret, meaning
that from Kubernetes' perspective, values are unconstrained key-value
pairs.

•	 Lines 7-8: These are the base64-encoded values of the secret.

You might notice that this YAML is very similar to the return you got in the
previous section. This is because the object you use to create the secret in
Kubernetes is stored with a bit more metadata on the Kubernetes API.

4.	 Now you can create the secret in the same way as any other Kubernetes
resource by using the create command:

kubectl create -f myfirstsecret.yaml

This will return an output similar to Figure 10.6:

Figure 10.6: The secret was successfully created from a YAML file

5.	 You can verify whether the secret was successfully created using this:

kubectl get secrets

Creating secrets in Kubernetes | 281

This will show you an output similar to Figure 10.7:

Figure 10.7: List of the created secrets

6.	 You can double-check that the secrets are the same by using kubectl get -o
yaml secrets myapiurltoken-yaml in the same way that was described in the
previous section.

This described a second way of creating secrets in Kubernetes. In the next section,
you will learn the final way to create secrets, using literals in kubectl.

Creating generic secrets using literals in kubectl

The third method of creating secrets is by using the literal method, which
means you pass the value in kubectl on the command line. As you have seen in
the previous examples, a single secret in Kubernetes can contain multiple values.
In the command to create a secret using the literal method, you use the syntax
--from‑literal=<key>=<value> to identify the different values in a secret:

1.	 To create a secret using the literal method, run the following command:

kubectl create secret generic myapiurltoken-literal \
 --from-literal=token='superSecretToken' \
 --from-literal=url=https://my-secret-url-location.topsecret.com

This will return an output similar to Figure 10.8:

Figure 10.8: The secret was successfully created using a literal value in kubectl

2.	 You can verify that the secret was created by running the following command:

kubectl get secrets

282 | Storing secrets in AKS

This will give us a similar output to Figure 10.9:

Figure 10.9: Verifying the secret created using the literal method

Thus, you have created secrets using literal values in addition to the preceding two
methods.

In this section, you've created Kubernetes secrets using three methods. In the
next section, you'll explore two methods of using those secrets in your pods and
applications.

Using your secrets

Once secrets have been created, they need to be linked to the application. This
means that Kubernetes needs to pass the value of the secret to the running pods in
some way. Kubernetes offers two ways to link your secrets to your application:

•	 Using secrets as environment variables

•	 Mounting secrets as files

Mounting secrets as files is the best way to consume secrets in your application. In
this section, we will explain both methods, and also show why it's best to use the
second method. Let's start by accessing secrets as environment variables.

Using your secrets | 283

Secrets as environment variables

You can use a secret in Kubernetes by referencing it as an environment variable.
secrets can then be referenced in the pod definition under the containers and env
sections. You will use the secrets that you previously created in a pod and learn
how to use them in an application:

1.	 You can configure a pod with environment variable secrets like the definition
provided in pod-with-env-secrets.yaml:

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: secret-using-env
5 spec:
6 containers:
7 - name: nginx
8 image: nginx
9 env:
10 - name: SECRET_URL
11 valueFrom:
12 secretKeyRef:
13 name: myapi-url-token
14 key: secreturl.txt
15 - name: SECRET_TOKEN
16 valueFrom:
17 secretKeyRef:
18 name: myapi-url-token
19 key: secrettoken.txt
20 restartPolicy: Never

Let's inspect this file:

•	 Line 9: Here, you are setting the environment variables.

•	 Lines 11-14: Here, you refer to the secreturl.txt file in the
myapi‑url‑token secret.

•	 Lines 16-19: Here, you refer to the secrettoken.txt file in the
myapi‑url‑token secret.

284 | Storing secrets in AKS

When Kubernetes creates a pod on a node that needs to use a secret, it will
store that secret on that host in tmpfs, a temporary file system that is not
written to disk. When the last pod referencing that secret is no longer running
on that node, the secret is deleted from the node's tmpfs. If a node is shut
down or rebooted, tmpfs is always erased.

2.	 Let's now create the pod and see whether you can access the secrets:

kubectl create -f pod-with-env-secrets.yaml

3.	 Check whether the environment variables are set correctly:

kubectl exec -it secret-using-env -- sh
echo $SECRET_URL
echo $SECRET_TOKEN

This should show you a result similar to Figure 10.10:

Figure 10.10: You can get the secrets inside the pod

4.	 You can now exit out of the shell to the container using the exit command.

There are a couple of things to note in this example. First, note that when you
access the environment variables, you get the actual value of the secret back, not
the base64-encoded value. This is as expected, since the base64 encoding is only
applied at the Kubernetes API level, not at the application level.

The second thing to note is that you were able to access the secret by opening a
shell into that running container and echoing the secret. It is important to apply
the right level of RBAC to pods in Kubernetes, so that not every cluster user is able
to run the exec command and open a shell.

Also note that both the application, in the form of the container image, and the pod
definition had no hardcoded secrets. The secrets were provided by the dynamic
configuration in Kubernetes.

Using your secrets | 285

The final thing to note is that any application can use the secret values by
referencing the appropriate env variables. There is no way to limit which processes
in a container can access which environment variables.

An important thing to know about secrets that are used as environment variables
is that the value of the environment variable will not be updated when the secret
itself is updated. This might cause you to end up in a state where pods that are
created after a secret is updated have a different environment variable value
compared to the pods created before the secret was updated.

In this section, you explored how to access secrets from within a running pod using
environment variables. In the next section, you will explore how to achieve this
using files.

Secrets as files

Let's take a look at how to mount the same secrets as files rather than environment
variables:

1.	 You will use the following pod definition to demonstrate how this can be done.
It is provided in the pod-with-vol-secrets.yaml file:

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: secret-using-volume
5 spec:
6 containers:
7 - name: nginx
8 image: nginx
9 volumeMounts:
10 - name: secretvolume
11 mountPath: "/etc/secrets"
12 readOnly: true
13 volumes:
14 - name: secretvolume
15 secret:
16 secretName: myapi-url-token

286 | Storing secrets in AKS

Let's have a closer look at this file:

•	 Lines 9-12: Here, you provide the mount details. You mount the secret
in the /etc/secrets directory as read-only.

•	 Lines 13-16: Here, you refer to the secret. Please note that both values
in the secret will be mounted in the container. You can optionally –
although not shown here – specify which parts of a secret should be
mounted in a volume.

Note that this is more succinct than the env definition, as you don't have to
define a name for each secret. However, applications need to have special code
to read the contents of the file in order to load it properly.

2.	 Let's see whether the secrets made it through. Create the pod using the
following command:

kubectl create -f pod-with-vol-secret.yaml

3.	 Echo the contents of the files in the mounted volume:

kubectl exec -it secret-using-volume -- sh
cd /etc/secrets/
cat secreturl.txt
cat secrettoken.txt

As you can see in Figure 10.11, the secrets are present in the pod:

Figure 10.11: The secrets are available as files in our pod

4.	 You can now exit out of the shell to the container using the exit command.

There are a couple of things to note here as well. First, note that the secrets again
are available in plain text and not in base64.

Using your secrets | 287

Second, since the secrets are mounted as a file, file system permissions apply to
these secrets. This means that you can limit which processes can get access to the
contents of these files.

Finally, Secrets mounted as files will be dynamically updated as the secrets are
updated.

You have now learned two ways in which secrets can be passed to a running
container. In the next section, it will be explained why it's best practice to use the
file method.

Why secrets as files is the best method

Although it is a common practice to use secrets as environment variables, it is
more secure to mount secrets as files. Kubernetes treats secrets as environment
variables securely, but the container runtime doesn't treat them securely. To verify
this, you can run the following commands to see the secret in plain text in the
Docker runtime:

1.	 Start by getting the node that the pod using environment variables from the
earlier example is running on with the following command:

kubectl describe pod secret-using-env | grep Node

This should show you the instance ID, as seen in Figure 10.12:

Figure 10.12: Getting the instance ID

2.	 Next, get the Docker ID of the running pod:

kubectl describe pod secret-using-env | grep 'Container ID'

This should give you the container ID:

Figure 10.13: Getting the Docker ID

288 | Storing secrets in AKS

3.	 Finally, you will execute a command on the node running your container to
show the secret that was passed as an environment variable. First, let's set a
couple of variables you'll use later:

INSTANCE=<provide instance number>
DOCKERID=<provide Docker ID>
VMSS=$(az vmss list --query '[].name' -o tsv)
RGNAME=$(az vmss list --query '[].resourceGroup' -o tsv)

Note

The previous command assumes you have a single AKS cluster with one node
pool in your subscription. If this is not the case, please change the values
of VMSS and RGNAME to the name of the value of the scale set and resource
group running your cluster.

4.	 Depending on your node version, you will run either of the following
commands. For clusters running on Kubernetes version 1.18.x or earlier, run the
following command:

az vmss run-command invoke -g $RGNAME -n $VMSS --command-id \
RunShellScript --instance-id $INSTANCE --scripts \
"docker inspect -f '{{ .Config.Env }}' $DOCKERID" \
-o yaml | grep SECRET

This should return an output similar to Figure 10.14:

Figure 10.14: The Secrets are decoded in the Docker runtime

For clusters running version 1.19 or later, run the following command:

az vmss run-command invoke -g $RGNAME -n $VMSS --command-id \
RunShellScript --instance-id $INSTANCE --scripts \
"crictl inspect --output yaml $DOCKERID" \
-o yaml | grep SECRET

Installing the Azure Key Vault provider for Secrets Store CSI driver | 289

This will show you an output similar to Figure 10.15:

Figure 10.15: The secrets are decoded in the containerd runtime

This shows you both secrets in plain text in the container runtime, whether
Docker (AKS version before 1.19) or containerd (AKS versions 1.19 and above).

As you can see, the secrets are decoded in the container runtime command.
This means that most logging systems will log these sensitive secrets. Hence, it's
advised to use secrets as files, since they are not passed in plain text except to the
pod and the application.

Let's make sure to clean up the resources we created in this example:

kubectl delete pod --all
kubectl delete secret myapi-url-token \
myapiurltoken-literal myapiurltoken-yaml

Now that you have explored secrets in Kubernetes using the default secrets
mechanism, let's go ahead and use a more secure option, namely Azure Key Vault.

Installing the Azure Key Vault provider for Secrets Store
CSI driver

In the previous section, you explored secrets that were stored natively in
Kubernetes. This means they were base64-encoded on the Kubernetes API server.
You saw in the previous section that base64-encoded secrets are not secure at all.
For highly secure environments, you will want to use a better secret store.

Azure offers an industry-compliant key and secret storage solution called Azure
Key Vault. It is a managed service that makes creating, storing, and retrieving keys
and secrets easy, and offers auditing of access to your keys and secrets.

290 | Storing secrets in AKS

The Kubernetes community maintains a project called the Kubernetes Secrets
Store CSI driver (https://github.com/kubernetes-sigs/secrets-store-csi-
driver). This project allows you to integrate external secret stores with volumes
in Kubernetes through the CSI driver. The Container Storage Interface is a
standardized way in Kubernetes to interface with storage systems. There are
multiple implementations of the Secret Store CSI driver. At the time of writing, the
current implementations are Hashicorp Vault, Google Cloud Platform, and Azure
Key Vault.

Microsoft maintains the Key Vault implementation of the Secret Store CSI driver,
named Azure Key Vault provider for Secrets Store CSI driver. This implementation
allows you as a user to access Key Vault secrets from within Kubernetes. It is
also integrated with pod identities to restrict access to secrets. Optionally, this
implementation can also sync Key Vault secrets with Kubernetes secrets so you can
use them as an environment variable if needed.

Note

For brevity, we'll refer to Azure Key Vault provider for Secrets Store CSI driver
as the CSI driver for Key Vault.

At the time of writing, the CSI driver for Key Vault is only available as an open-
source project that you can install on your cluster. It is worth noting that this
solution might be introduced as a managed add-on to AKS in the future. For more
up-to-date details, please refer to this issue on GitHub at https://github.com/
Azure/AKS/issues/1876.

To work with the CSI driver for Key Vault, there are two things you need to
do. First, you need to set up the driver itself on your cluster. That is the goal
of this section. Secondly, you'll need to create an object in Kubernetes called a
SecretProviderClass for each secret from Key Vault you need to access. You will
learn more about this in the next section.

https://github.com/kubernetes-sigs/secrets-store-csi-driver
https://github.com/kubernetes-sigs/secrets-store-csi-driver
https://github.com/Azure/AKS/issues/1876
https://github.com/Azure/AKS/issues/1876

Installing the Azure Key Vault provider for Secrets Store CSI driver | 291

In this section, you will set up the CSI driver for Key Vault. First, you will create a
new user-assigned managed identity. After that, you'll create a new key vault and
give the user-assigned managed identity permissions to that key vault. Finally,
you'll set up the CSI driver for Key Vault on your cluster.

Let's start by creating a new managed identity.

Creating a managed identity

The CSI driver for Key Vault supports different ways of getting data out of Key
Vault. It is recommended that you use a managed identity to link your Kubernetes
cluster to Key Vault. For this, you can use the AAD pod-managed identity add-on
that you set up in the previous chapter. In this section, you'll create a new managed
identity in Azure to later use with Key Vault:

1.	 Let's create a new managed identity. You will use the Azure portal to do this.
To start, look for managed identity in the Azure search bar, as shown in
Figure 10.16:

Figure 10.16: Looking for managed identity in the Azure search bar

2.	 In the resulting pane, click the + New button at the top. To organize the
resources for this chapter together, it's recommended to create a new resource
group. In the resulting pane, click the Create new button to create a new
resource group. Call it csi-key-vault, as shown in Figure 10.17:

292 | Storing secrets in AKS

Figure 10.17: Creating a new resource group

3.	 Now, select the region you created your cluster in as the region for your
managed identity and give it a name, csi-key-vault if you follow the example,
as shown in Figure 10.18. To finish, click the Review + create button and in the
final window, click the Create button to create your managed identity:

Figure 10.18: Providing Instance details

Installing the Azure Key Vault provider for Secrets Store CSI driver | 293

4.	 Once the managed identity has been created, hit the Go to resource button
to go to the resource. Here, you will need to copy the resource ID that will
be used later in the next step. You can find that in the Properties pane of the
managed identity, as shown in Figure 10.19:

Figure 10.19: Getting the Resource ID of the managed identity

5.	 Now you are ready to link the managed identity to your AKS cluster. To do
this, you will run a command in cloud shell as you did in the previous chapter.
Afterward, you will verify that the identity is available in your cluster. Let's start
with linking the identity:

az aks pod-identity add --resource-group rg-handsonaks \
 --cluster-name handsonaks --namespace default \
 --name csi-to-key-vault \
 --identity-resource-id <Managed identity resource ID>

294 | Storing secrets in AKS

6.	 You can verify that your identity was successfully linked to your cluster by
running the following command:

kubectl get azureidentity

This should produce an output similar to Figure 10.20:

Figure 10.20: Verifying the availability of the identity in the cluster

In this section, you created a new managed identity and linked that to your
Kubernetes cluster using the AAD Pod-managed identity add-on. In the next
section, you'll create a key vault and give the new identity you created access to
the secrets. Finally, you'll create a secret in Key Vault that you try to access later
from your cluster.

Creating a key vault

In the previous section, you set up the managed identity that the CSI driver for Key
Vault will use. In this section, you'll create the key vault that will be used:

1.	 To start the creation process, look for Key vaults in the Azure search bar:

Figure 10.21: Navigating to Key vaults through the Azure portal

Installing the Azure Key Vault provider for Secrets Store CSI driver | 295

2.	 Click the + New button to start the creation process:

Figure 10.22: Click the Add button to start creating a key vault

3.	 Provide the details to create the key vault. Create the key vault in the resource
group you created in the previous step. The key vault's name has to be globally
unique, so consider adding your initials to the name. It is recommended that
you create the key vault in the same region as your cluster:

Figure 10.23: Providing the details to create the key vault

296 | Storing secrets in AKS

4.	 After you have provided the details for your key vault, click the Next: Access
policy > button to give the managed identity access to secrets. Click on the +
Add Access Policy to give permission to your managed identity, as shown in
Figure 10.24:

Figure 10.24: Adding an Access policy

Installing the Azure Key Vault provider for Secrets Store CSI driver | 297

In the resulting pane, select the Secret Management template, click on the
None Selected button underneath Select principal, and in the resulting pane
look for the csi-to-key-vault you created earlier. Finally, click on Select at the
bottom of the screen and then on Add, as shown in Figure 10.25:

Figure 10.25: Assigning the Secret Management template to your managed identity

5.	 Once you have provided permissions to this managed identity, hit the Review
+ create button to review and create your key vault. Hit the Create button to
finish the creation process.

298 | Storing secrets in AKS

6.	 It will take a couple of seconds to create your key vault. Once the vault is
created, click on the Go to resource button, go to Secrets, and hit the Generate/
Import button to create a new secret as shown in Figure 10.26:

Figure 10.26: Creating a new secret

7.	 In the secret creation wizard, provide the details about your secret. To make
this demonstration easier to follow, use the name k8s-secret-demo. Give the
secret a memorable value, such as secret-coming-from-key-vault. Click the
Create button at the bottom of the screen to create the secret:

Installing the Azure Key Vault provider for Secrets Store CSI driver | 299

Figure 10.27: Providing the details for your new secret

Now that you have a secret in Key Vault, you can move ahead and install the actual
CSI driver for Key Vault in your cluster.

300 | Storing secrets in AKS

Installing the CSI driver for Key Vault

In this section, you will set up the CSI driver for Key Vault in your cluster. This will
allow you, in the next section, to retrieve secrets from Key Vault. The installation is
a short process, as you will see here:

1.	 The easiest way to install the CSI driver for Key Vault is to use Helm, as you've
done before. Note that this feature may be available as an add-on after the
release of this book. To do this, add the repo for the CSI driver for Key Vault:

helm repo add csi-secrets-store-provider-azure \
 https://raw.githubusercontent.com/Azure/secrets-store-csi-driver-
provider-azure/master/charts

2.	 Once the repo has been added, you can install the actual CSI driver for Key
Vault using the following command:

helm install csi-secrets \
 csi-secrets-store-provider-azure/csi-secrets-store-provider-azure

3.	 To verify that the installation succeeded, you can verify that the
SecretProviderClass CRD has been added to your cluster via the following
command:

kubectl get crd

This should show you an output that contains the SecretProviderClass CRD as
shown in Figure 10.28:

Figure 10.28: The SecretProviderClass CRD has been added to the cluster

This concludes the setup of the CSI driver for Key Vault. In this section, you first
created a managed identity, then created a key vault with a secret in it, and then
finally set up the CSI driver for Key Vault on your cluster.

https://raw.githubusercontent.com/Azure/secrets-store-csi-driver-provider-azure/master/charts
https://raw.githubusercontent.com/Azure/secrets-store-csi-driver-provider-azure/master/charts

Using the Azure Key Vault provider for Secrets Store CSI driver | 301

You are now ready to use the CSI driver for Key Vault, which you'll do in the next
section.

Using the Azure Key Vault provider for Secrets Store
CSI driver

Now that the CSI driver for Key Vault has been set up on your cluster, you are
ready to start using it. In this section, you'll run through two examples of using
the CSI driver for Key Vault. First, you will use it to mount a secret as a file in
Kubernetes. Afterward, you will also use it to sync Key Vault secrets to Kubernetes
secrets and use them as an environment variable.

Let's get started with the first example, how to mount Key Vault secrets as a file.

Mounting a Key Vault secret as a file

In this first example, you will create a new SecretProviderClass in your cluster. This
object will allow you to link a secret in Key Vault to a pod in Kubernetes. After that,
you'll create a pod that uses that SecretProviderClass and mounts the secrets in
that pod. Let's get started:

1.	 The SecretProviderClass requires you to know your Azure Active Directory
tenant ID. To get this, run the following command:

az account show --query tenantId

This will show you an output similar to Figure 10.29. Copy-paste this value and
store it in a file you can refer to later:

Figure 10.29: Getting your tenant ID

302 | Storing secrets in AKS

Next, you'll create the SecretProviderClass. An example has been provided in
the code files for this chapter, in the secretproviderclass-file.yaml file:

1 apiVersion: secrets-store.csi.x-k8s.io/v1alpha1
2 kind: SecretProviderClass
3 metadata:
4 name: key-vault-secret-file
5 spec:
6 provider: azure
7 parameters:
8 usePodIdentity: "true"
9 keyvaultName: "<key vault name>"
10 objects: |
11 array:
12 - |
13 objectName: k8s-secret-demo
14 objectType: secret
15 tenantId: "<your tenant ID>"

Let's investigate this file:

•	 Line 2: Here, you define you are creating a SecretProviderClass.

•	 Line 6: Here, you create an Azure secret. As mentioned in
the introduction, the secret-store project supports multiple
implementations.

•	 Line 8: You configure this secret to use pod identities for
authentication. You will link a pod identity to your pod later on.

•	 Line 9: The name of the key vault.

•	 Line 10-14: Here, you refer to the secrets that need to be accessed. In
this example, you're only accessing a single secret, but you could access
multiple secrets in a single SecretProviderClass.

•	 Line 15: The AAD tenant ID of your AAD tenant.

Make sure to edit this with the values for your environment.

2.	 You can create this SecretProviderClass using the following command:

kubectl create -f secretproviderclass-file.yaml

Using the Azure Key Vault provider for Secrets Store CSI driver | 303

3.	 Once the SecretProviderClass has been created, you can go ahead and create a
pod that references that SecretProviderClass. An example has been provided in
the pod-keyvault-file.yaml file:

1 kind: Pod
2 apiVersion: v1
3 metadata:
4 name: csi-demo-file
5 labels:
6 aadpodidbinding: "csi-to-key-vault"
7 spec:
8 containers:
9 - name: nginx
10 image: nginx
11 volumeMounts:
12 - name: keyvault
13 mountPath: "/mnt/secrets-store"
14 readOnly: true
15 volumes:
16 - name: keyvault
17 csi:
18 driver: secrets-store.csi.k8s.io
19 readOnly: true
20 volumeAttributes:
21 secretProviderClass: "key-vault-secret-file"

Let's have a look at the key parts of this file:

•	 Line 5-6: This is where you link this pod to the managed identity you
created earlier.

•	 Line 11-14: Here, you define where you want to mount the secrets.

•	 Line 15-21: Here, you define the actual Volume and the link to Key Vault.
On line 21, you refer to the SecretProviderClass you created earlier.

4.	 You can create this pod using the following command:

kubectl create -f pod-keyvault-file.yaml

304 | Storing secrets in AKS

5.	 Monitor the Pod's creation using the following command:

kubectl get pods -w

This should return an output similar to Figure 10.30:

Figure 10.30: Status of the csi-demo-file pod changes to Running

6.	 Once the pod is created and running, you can open a shell in the pod using the
kubectl exec command and verify that the secret is present:

kubectl exec -it csi-demo-file -- sh
cd /mnt/secrets-store
cat k8s-secret-demo

This should output the secret you created in Key Vault, as seen in Figure 10.31:

Figure 10.31: The secret you configured in Key Vault is mounted in the pod as a file

And as expected, you are able to get the secret you configured in Key Vault to
show up in Kubernetes.

7.	 You can now exit out of the shell to the container using the exit command.

As you can see, you successfully used the CSI driver for Key Vault to get a secret
from Key Vault to show up as a file in a pod.

It is also possible to sync secrets in Key Vault to secrets in Kubernetes and then use
them as an environment variable in running pods. That's what you'll explore in the
next and final section of this chapter.

Using the Azure Key Vault provider for Secrets Store CSI driver | 305

Using a Key Vault secret as an environment variable

In the previous section, you saw how to access Key Vault secrets as a file in a pod.
As you learned earlier in this chapter, it is recommended that you use Kubernetes
secrets as a file.

However, there are situations where you cannot modify an application to use
secrets as a file and you need to use them as environment variables. This can be
done using the CSI driver for Key Vault, and you will configure the driver that
way in this section. Please note that in order for the CSI driver to sync secrets in
Key Vault to Secrets in Kubernetes, you need to mount the secret as a Volume in
Kubernetes; you cannot only rely on the secret syncing.

Let's configure all of this:

1.	 First, you'll create the SecretProviderClass. An example has been provided in
the code files for this chapter, in the secretproviderclass-env.yaml file:

1 apiVersion: secrets-store.csi.x-k8s.io/v1alpha1
2 kind: SecretProviderClass
3 metadata:
4 name: key-vault-secret-env
5 spec:
6 provider: azure
7 parameters:
8 usePodIdentity: "true"
9 keyvaultName: "<key vault name>"
10 objects: |
11 array:
12 - |
13 objectName: k8s-secret-demo
14 objectType: secret
15 tenantId: "<tenant ID>"
16 secretObjects:
17 - secretName: key-vault-secret
18 type: Opaque
19 data:
20 - objectName: k8s-secret-demo
21 key: secret-content

306 | Storing secrets in AKS

Let's investigate what's different in this file versus the previous one you
created:

•	 Line 16-21: This is where you link the Key Vault secret to a Kubernetes
secret. The names used here are important since they provide critical
information about the different objects:

•	 Line 17 secretName: This refers to the name of the secret in Kubernetes
that will be created.

•	 Line 20 objectName: This refers to the objectName on line 13, which is
the name of the secret in Key Vault.

•	 Line 21 key: This is the name of the key in the secret in Kubernetes. As
was explained earlier in this chapter, a single secret in Kubernetes can
contain multiple keys.

The remaining sections of this file are similar to the earlier SecretProviderClass
you created.

2.	 You can create this SecretProviderClass using the following command:

kubectl create -f secretproviderclass-env.yaml

3.	 Once the SecretProviderClass has been created, you can go ahead and create
a pod that references that SecretProviderClass. You cannot rely solely on the
syncing of the secrets, the SecretProviderClass has to be mounted in order
for the CSI driver to sync the secrets. An example has been provided in the
pod-keyvault-env.yaml file:

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: csi-demo-env
5 labels:
6 aadpodidbinding: "csi-to-key-vault"
7 spec:
8 containers:
9 - name: nginx
10 image: nginx

Using the Azure Key Vault provider for Secrets Store CSI driver | 307

11 env:
12 - name: KEYVAULT_SECRET
13 valueFrom:
14 secretKeyRef:
15 name: key-vault-secret
16 key: secret-content
17 volumeMounts:
18 - name: keyvault
19 mountPath: "/mnt/secrets-store"
20 readOnly: true
21 volumes:
22 - name: keyvault
23 csi:
24 driver: secrets-store.csi.k8s.io
25 readOnly: true
26 volumeAttributes:
27 secretProviderClass: "key-vault-secret-env"

The difference between this pod and the previous one you created is on lines 11
to 16. This should seem familiar, as this is the typical way to use a secret as an
environment variable.

4.	 You can create this pod using the following command:

kubectl create -f pod-keyvault-env.yaml

5.	 Monitor the Pod's creation using the following command:

kubectl get pods -w

This should return an output similar to Figure 10.32:

Figure 10.32: Waiting for the csi-demo-env pod to run

308 | Storing secrets in AKS

6.	 Once the pod is created and running, you can open a shell in the pod using the
kubectl exec command and verify that the secret is present:

kubectl exec -it csi-demo-env -- sh
echo $KEYVAULT_SECRET

This should output the secret you created in Key Vault, as seen in Figure 10.33:

Figure 10.33: The secret you configured in Key Vault is used as an environment variable

7.	 You can now exit out of the shell to the container using the exit command.
8.	 Finally, you can also verify that the secret was created in Kubernetes by

running the following command:

kubectl get secret

This should show you an output similar to Figure 10.34:

Figure 10.34: The key-vault-secret secret in Kubernetes is synced with the Key Vault secret

9.	 This secret will disappear once no more pods that mount the secret are
present. You can verify this with the following commands:

kubectl delete -f pod-keyvault-env.yaml
kubectl get secret

Using the Azure Key Vault provider for Secrets Store CSI driver | 309

This should show you an output similar to Figure 10.35:

Figure 10.35: Deleting the pod automatically deletes the secret as well

This shows you that although you have a SecretProviderClass that tries to sync
a Key Vault secret to a Kubernetes secret, that syncing only happens once a
pod references that SecretProviderClass and mounts the secret.

In this section, you've been able to sync a secret in Key Vault to a secret in
Kubernetes. You were able to access that secret's value in a pod using environment
variables.

This also concludes this chapter on secrets in Kubernetes. Let's make sure to clean
up all the objects that we created:

kubectl delete -f .
helm delete csi-secrets
az aks pod-identity delete --resource-group rg-handsonaks \
 --cluster-name handsonaks --namespace default \
 --name csi-to-key-vault
az group delete -n csi-key-vault --yes

Once the resources are deleted, you are ready to move on to the next chapter
about network security in AKS.

310 | Storing secrets in AKS

Summary

In this chapter, you learned about secrets in Kubernetes. You worked with both
the default secret mechanism in Kubernetes as well as with the Azure Key Vault
provider for Secrets Store CSI driver.

This chapter started by explaining different secret types in Kubernetes. After that,
you used different mechanisms in Kubernetes to create secrets. You then used
two methods of accessing those secrets, using them as files or as environment
variables.

After that, you created a managed identity and a key vault to experiment with
the CSI driver for Key Vault. You installed that on your cluster and used two
mechanisms to access secrets in Key Vault: either using files or using environment
variables.

In the next chapter, you'll learn more about network security in AKS.

11
Network security

in AKS
Securing a network is a critical activity in the protection of an application. The goal
of a secure network is, on the one hand, to allow your users to connect to your
applications and use all the functionalities you offer. On the other hand, you also
need to protect your network from attackers. This means making sure that they
cannot get access to critical parts of your network, and that even if they were to
gain access, this would be limited.

When it comes to network security in AKS, there are two different layers to
secure the network. The first is the control plane. The control plane refers to the
managed Kubernetes master servers that host the Kubernetes API. By default, the
control plane is exposed to the internet. You can secure the control plane either by
limiting which public IP addresses can access it using a feature called Authorized
IP ranges, or by deploying a private cluster, which means only the machines
connected to your virtual network can access the control plane.

312 | Network security in AKS

The second network layer to secure is the workload running on your cluster.
There are multiple ways to secure the workload. The first way is by using Azure
networking functionalities, such as the Azure Firewall or Network Security
Groups (NSGs). The second way to protect the workload is by using a Kubernetes
functionality called network policies.

In this chapter, you will explore the different ways to secure the network of an AKS
cluster. Specifically, this chapter contains the following sections:

•	 Networking and network security in AKS

•	 Control plane network security

•	 Workload network security

Since most networking configurations of an AKS cluster are only configurable
during cluster creation, you will create and destroy multiple clusters throughout
this chapter.

Let's start this chapter by exploring the concepts of networking and network
security in AKS.

Networking and network security in AKS

This section serves as an introduction to the concepts of networking and security
in AKS. You'll first cover the control plane, then workload networking, and then
network security.

Control plane networking

The control plane of a Kubernetes cluster is the infrastructure that hosts the
Kubernetes API server for your cluster, manages the scheduler, and stores the
cluster state. When you interact with a Kubernetes cluster, for instance, by using
kubectl, you are sending commands to the Kubernetes API server. In AKS, this
control plane is managed by Microsoft and provided to you as a service.

Networking and network security in AKS | 313

By default, the control plane is exposed over the internet and is accessible to
everybody that is connected to the internet. This doesn't mean that the control
plane is not secure though. Even if an attacker had network access to your control
plane, they would still need to have cluster credentials to execute commands
against the control plane.

Frequently, though, organizations still want to limit network access to the control
plane of their AKS clusters. There are two functionalities in AKS that enable you to
limit network access to the control plane of a cluster.

The first functionality is called authorized IP address ranges. By configuring
authorized IP address ranges on your AKS, you configure which IP addresses
are allowed to access your API server. This means that IP addresses that are not
allowed to access your API server cannot interact with your API server. This is
explained in Figure 11.1:

Figure 11.1: Authorized IP ranges explained

314 | Network security in AKS

Another way to limit network access to your control plane is by using a feature
called private clusters. By configuring private clusters, you do not give your
control plane a publicly reachable address. The cluster is only reachable from
a private network. To connect to the control plane, you would need to use a
machine that is connected to an Azure Virtual Network (VNet). This machine
would communicate to the control plane using an Azure functionality called Azure
Private Link.

Private Link is an Azure feature that allows you to connect to managed services
using a private IP address in your VNet. When using Private Link, a Private Link
endpoint is created in your VNet. To connect to this Private Link endpoint, you
would have to connect from either a VM hosted in the same VNet, in a peered
VNet, or through a VPN or Azure ExpressRoute that is connected to that VNet. In
Figure 11.2, you see an example of how this works using a VM hosted in the same
VNet. You can see that the node pools (1) that host your workloads as well as
VMs (2) connected to the same VNet can connect to the control plane, but a user
connecting over the internet (3) cannot:

Figure 11.2: Private clusters explained

Networking and network security in AKS | 315

It is important to understand that both authorized IP address ranges and private
clusters only provide network security to the Kubernetes control plane; they do
not influence the workload network. Workload networking will be covered in the
next section.

Workload networking

Your workloads in AKS are deployed on a cluster that is deployed in a VNet. There
are many ways to configure and secure networking in a VNet. In this section,
we will introduce several important configuration options for network security
of the workload deployed in a VNet. This is, however, only an introduction to
these concepts. Before deploying a production cluster, please refer to the AKS
documentation for a more in-depth review of the different configuration options:
https://docs.microsoft.com/azure/aks/concepts-network.

You'll first need to choose the networking model with which you'll deploy your
cluster. This configuration has a limited impact on security, but it is important to
understand from a networking perspective. There are two options:

•	 Kubenet networking (default): By using kubenet networking, cluster nodes
get an IP address from a subnet in a VNet. The pods running on those nodes
get an IP address from an overlay network, which uses a different address
space from the nodes. Pod-to-pod networking is enabled by Network
Address Translation (NAT). The benefit of kubenet is that only nodes
consume an IP address from the cluster subnet.

•	 Azure Container Network Interface (CNI) networking (advanced): With
Azure CNI, the pods and the nodes all get an IP address from the subnet
that the cluster is created in. This has the benefit that pods can be accessed
directly by resources outside the cluster. It has the disadvantage that you
need to execute careful IP address planning, since each pod requires an IP
address in the cluster subnet.

In both networking models, you can create the cluster in an existing VNet or have
AKS create a new VNet on your behalf.

https://docs.microsoft.com/azure/aks/concepts-network

316 | Network security in AKS

The second network security configuration to consider is the routing of inbound
and outbound traffic through an external firewall. This could either be an Azure
Firewall or a third-party network virtual appliance (NVA). By routing traffic
through an external firewall, you can apply centralized security rules, do traffic
inspection, and log traffic access patterns. To configure this, you would configure a
user-defined route (UDR) on the cluster subnet, to route traffic from your cluster
through the external firewall. If you wish to explore this further, please refer to the
documentation: https://docs.microsoft.com/azure/aks/limit-egress-traffic.

Another network security option is the use of NSGs in Azure to limit inbound and
outbound traffic. By default, when you create a service of the LoadBalancer type
in AKS, AKS will also configure an NSG to allow traffic from everywhere to that
service. You can tune the configuration of this NSG in AKS, to limit which IPs can
access those services.

Finally, you can limit traffic in your cluster by using a Kubernetes feature called
network policies. A network policy is a Kubernetes object that allows you to
configure which traffic is allowed on certain pods. With network policies, you can
secure pod-to-pod traffic, external to pod traffic, and pod to external traffic. It is
recommended that you use network policies mainly for pod-to-pod traffic (also
called east-west traffic), and to use an external firewall or NSGs for external-to-
pod or pod-to-external traffic (also called north-south traffic).

AKS supports two options in terms of configuring network policies on your cluster.
You can either use Azure network policies or Calico network policies. Azure
network policies are developed, maintained, and supported by Microsoft, whereas
Calico network policies are developed as an open-source project, with optional
commercial support by a company called Tigera (http://tigera.io/).

In the section on workload network security, you will configure network security
groups and network policies on your cluster. Configuring an external firewall
is beyond the scope of this book; please refer to the documentation mentioned
earlier to learn more about this setup.

https://docs.microsoft.com/azure/aks/limit-egress-traffic
http://tigera.io/

Control plane network security | 317

Control plane network security

In this section, you will explore two ways in which to protect the control plane of
your AKS cluster: Authorized IP ranges and private clusters. You'll start by updating
your existing cluster to use authorized IP ranges.

Securing the control plane using authorized IP ranges

Configuring authorized IP ranges on AKS will limit which public IP addresses can
access the control plane of your AKS cluster. In this section, you will configure
authorized IP ranges on your existing cluster. You will limit traffic to a random
public IP address to verify that traffic blocking works. You will then configure the
IP address from the Azure Cloud Shell to be authorized and will see how that then
allows traffic.

1.	 To start, browse to the Azure portal and open the pane for your AKS cluster.
Select Networking in the left-hand navigation. Then, select the checkbox next
to Set authorized IP ranges, and fill in the IP address, 10.0.0.0, in the box
below, as shown in Figure 11.3. You are not using this IP; this configuration is
only to verify that you will no longer be able to connect to your Kubernetes
control plane if your IP address is not authorized. Finally, hit the Save button at
the top of the screen.

318 | Network security in AKS

Figure 11.3: Configuring an authorized IP

2.	 Now, open the Azure Cloud Shell. In the Cloud Shell, execute the following
command:

Watch kubectl get nodes

Initially, this might still return the list of nodes as shown in Figure 11.4. This is
because it takes a couple of minutes for the authorized IP ranges to become
configured on AKS.

Figure 11.4: The command might initially still show the list of nodes

Control plane network security | 319

After a couple of minutes, however, the output of this command should return
an error, as shown in Figure 11.5. This is as expected, since you limited the
access to the control plane.

Figure 11.5: An error showing that you can no longer connect to the control plane

3.	 You can stop the watch command by pressing Ctrl + C. You will now get the IP
address used by your current Cloud Shell session, and will then configure this
as an authorized IP. To get the IP address used by your current Cloud Shell
session, you can connect to icanhazip.com, which is a simple website that will
return your public IP. To do this, execute the following command:

curl icanhazip.com

This will return an output similar to Figure 11.6:

Figure 11.6: Getting the IP address used by Cloud Shell

4.	 You can now configure this IP address as an authorized IP address in AKS. You
can do this in the Networking section of the AKS pane as you did in step 1. This
is shown in Figure 11.7. Make sure to click the Save button at the top of the
screen.

http://icanhazip.com

320 | Network security in AKS

Figure 11.7: Configuring the IP address of Cloud Shell as an authorized IP in AKS

5.	 Now, execute the same command as before to get the list of nodes in your AKS
cluster.

watch kubectl get nodes

Initially, this might still return the error you saw earlier, as shown in Figure
11.8. This is because it takes a couple of minutes for the authorized IP ranges to
become configured on AKS.

Control plane network security | 321

Figure 11.8: The command initially still gives an error

After a couple of minutes, however, the output of this command should return
a list of nodes, as shown in Figure 11.9. This shows you that you successfully
configured authorized IP ranges.

Figure 11.9: By configuring an authorized IP, you can now connect to the API server

By configuring authorized IP ranges, you were able to confirm that when the IP
address of Cloud Shell was not allowed access to the Kubernetes control plane,
the connection is timed out. By configuring the IP address of Cloud Shell as an
authorized IP, you were able to connect to the control plane.

In a typical production scenario, you wouldn't configure IP addresses from Cloud
Shell as the authorized IP on an AKS cluster, but you would rather configure well-
known IP addresses or ranges of either of your Kubernetes administrators, your
datacenter, or known IPs of tools you use. The Cloud Shell was used here just as an
example to show functionality.

There is a second way to secure the control plane, that is, by deploying a private
cluster. You will do this in the next section.

Securing the control plane using a private cluster

By configuring authorized IP ranges in AKS, you were able to limit which public IP
addresses can access your cluster. You can also completely limit any public traffic
to your cluster by deploying a private cluster. A private cluster is only reachable
through a private connection, established using Azure Private Link.

322 | Network security in AKS

Let's start by configuring a private cluster and trying to access it:

1.	 The private cluster feature can only be enabled at cluster creation time. This
means that you will have to create a new cluster. To do this on the free trial
subscription, you will have to delete the existing cluster. You can do this using
the following command on Cloud Shell:

az aks delete -n handsonaks -g rg-handsonaks -y

This command will take a couple of minutes to complete. Please wait for it to
successfully delete your previous cluster.

2.	 You are now ready to create a new cluster. Because you will, in later steps, also
create a new VM to access the cluster (as shown in Figure 11.2), you will create
a new VNet instead of letting AKS create the VNet for you. To create the VNet,
use the following command:

az network vnet create -o table \
 --resource-group rg-handsonaks \
 --name vnet-handsonaks \
 --address-prefixes 192.168.0.0/16 \
 --subnet-name akssubnet \
 --subnet-prefix 192.168.0.0/24

3.	 You will require the ID of the subnet that was created in the VNet. To get that
ID, use the following command:

VNET_SUBNET_ID='az network vnet subnet show \
 --resource-group rg-handsonaks \
 --vnet-name vnet-handsonaks \
 --name akssubnet --query id -o tsv'

4.	 You will also need a managed identity that has permission to create resources
in the subnet you just created. To create the managed identity and give it
access to your subnet, use the following commands:

az identity create --name handsonaks-mi \
 --resource-group rg-handsonaks
IDENTITY_CLIENTID='az identity show --name handsonaks-mi \
 --resource-group rg-handsonaks \
 --query clientId -o tsv'

Control plane network security | 323

az role assignment create --assignee $IDENTITY_CLIENTID \
 --scope $VNET_SUBNET_ID --role Contributor
IDENTITY_ID='az identity show --name handsonaks-mi \
 --resource-group rg-handsonaks \
 --query id -o tsv'

The preceding code will first create the managed identity. Afterward, it gets the
client ID of the managed identity and grants that access to the subnet. In the
final command, it is getting the resource ID of the managed identity.

5.	 Finally, you can go ahead and create the private AKS cluster using the following
command. As you might notice, you are creating a smaller cluster using only
one node. This is to conserve the core quota under the free trial subscription:

az aks create \
 --resource-group rg-handsonaks \
 --name handsonaks \
 --vnet-subnet-id $VNET_SUBNET_ID \
 --enable-managed-identity \
 --assign-identity $IDENTITY_ID \
 --enable-private-cluster \
 --node-count 1 \
 --node-vm-size Standard_DS2_v2 \
 --generate-ssh-keys

The command creates a new AKS cluster with a number of special
configurations that haven't been covered previously in the book. The first new
configuration is --vnet-subnet-id. This allows you to create an AKS cluster
in an existing subnet in an existing VNet. The --enable-managed-identity
parameter enables the cluster to use a managed identity, and the --assign-
identity parameter configures which managed identity to use. The final new
configuration option you see here is --enable-private-cluster, which will
create a private cluster with a private endpoint.

6.	 The preceding command will take a couple of minutes to complete. Once it's
complete, you can try to access your cluster using the Azure Cloud Shell. This
will fail, however, because the Azure Cloud Shell isn't deployed in your VNet.
Let's explore this. First, get the cluster credentials:

az aks get-credentials -n handsonaks -g rg-handsonaks

324 | Network security in AKS

This will ask you whether it may overwrite the existing kubeconfig files twice.
Confirm this by pressing the y key, as shown in Figure 11.10:

Figure 11.10: Getting cluster credentials

Now, try to get the nodes in the cluster with the following command:

kubectl get nodes

This will return an error, as shown in Figure 11.11. This error is as expected,
since you have no private connection from Cloud Shell to the Private Link
endpoint.

Figure 11.11: Error showing that you can no longer access the control plane from the Cloud Shell

Note

In the previous command, you noticed that your Cloud Shell couldn't reach
the Kubernetes API server. It is possible to connect Azure Cloud Shell to a
VNet in Azure and connect to your Kubernetes API server that way. You will
not do so in the next steps of this example, but if you are interested in this
approach, please refer to the documentation: https://docs.microsoft.com/
azure/cloud-shell/private-vnet.

7.	 As mentioned in the introduction, when you create a private AKS cluster, AKS
will use a service called Private Link to connect the control plane to your VNet.
You can actually see this endpoint in your subscription in the Azure portal. To
see the private endpoint, look for Private Link in the Azure search bar, as shown
in Figure 11.12:

https://docs.microsoft.com/azure/cloud-shell/private-vnet
https://docs.microsoft.com/azure/cloud-shell/private-vnet

Control plane network security | 325

Figure 11.12: Searching for Private Link in the Azure search bar

In the resulting pane, click on Private endpoints to see your current Private
Link endpoints. You should see a private endpoint by the name of kube-
apiserver here, as shown in Figure 11.13. Here you see the link to the cluster and
to the subnet where the private endpoint is created.

Figure 11.13: The private endpoints in your subscription

Private Link makes use of an Azure DNS private zone to link the DNS name
of the cluster to the private IP of the private endpoint. To see the Azure DNS
private zone, look for Private DNS zones via the Azure search bar, as shown in
Figure 11.14:

Figure 11.14: Navigating to Private DNS zones through the Azure portal

326 | Network security in AKS

In the resulting pane, you should see one private DNS zone. If you click on that
zone, you will see more details from the DNS zone, as shown in Figure 11.15. You
see here that a DNS record got created for your cluster DNS name, pointing to
a private IP address in your VNet.

Figure 11.15: The DNS record in the Azure DNS private zone that got created by AKS

8.	 To establish a private connection to the control plane, you will now create a
new VM and use it to connect to the control plane. For organization purposes,
you'll create this VM in a new resource group. This will make it easier to delete
the VM later. Use the following commands to create a new subnet in your VNet
and to create a VM in that subnet:

az network vnet subnet create \
 --resource-group rg-handsonaks \
 --vnet-name vnet-handsonaks \
 --name vmsubnet \
 --address-prefix 192.168.1.0/24
VM_SUBNET_ID='az network vnet subnet show \
 --resource-group rg-handsonaks \

Control plane network security | 327

 --vnet-name vnet-handsonaks \
 --name vmsubnet --query id -o tsv'
az group create -l <your Azure location> \
 --name rg-handsonaks-vm
az vm create --name vm-handsonaks \
 --resource-group rg-handsonaks-vm \
 --image UbuntuLTS \
 --admin-username azureuser \
 --ssh-key-values ~/.ssh/id_rsa.pub \
 --subnet $VM_SUBNET_ID \
 --size Standard_D2_v2

It will take about a minute for the VM to be created. Once it is created, you
should get an output similar to Figure 11.16. Copy the public IP address in your
output:

Figure 11.16: Creating a new VM and getting its public IP address

9.	 Now that the VM is created, you will move your Kubernetes config file
containing the cluster credentials to that VM. This avoids you having to install
the Azure CLI on the target machine to get the Kubernetes credentials. Make
sure to replace <public IP> with the outcome from the previous step.

scp ~/.kube/config azureuser@<public IP>:~

328 | Network security in AKS

You will be prompted if you trust this host. Confirm this by typing yes. This will
create an output similar to Figure 11.17:

Figure 11.17: Copying the Kubernetes credentials to the target machine

10.	You can now access the remote machine using the following command:

ssh azureuser@<public IP>

11.	 Now that you're connected to the remote machine, you'll need to use kubectl.
Download it, make it executable, and move it into the binaries folder using the
following command:

curl -LO https://dl.k8s.io/release/v1.20.0/bin/linux/amd64/kubectl
chmod +x kubectl
sudo mv ./kubectl /usr/local/bin/kubectl

12.	 To have kubectl recognize the config file you uploaded, you have to move it
into the kube directory. You can do so using the following command:

mkdir .kube
mv config .kube/config

13.	Now that you have this VM configured to connect to your cluster, you can
verify that you can connect to this cluster by applying the following command:

kubectl get nodes

This should generate an output similar to Figure 11.18:

Figure 11.18: Accessing the private AKS cluster from a VM in the same VNet

https://dl.k8s.io/release/v1.20.0/bin/linux/amd64/kubectl

Control plane network security | 329

14.	You can also verify the DNS record that your VM is using to connect to the
cluster. To do this, first get the fully qualified domain name (FQDN) cluster
(refer to the highlighted section in Figure 11.19 to see which output is the FQDN)
and then use the nslookup command to get the DNS record. You can use the
following commands to do this:

kubectl cluster-info
nslookup <cluster FQDN>

This should produce an output similar to Figure 11.19:

Figure 11.19: Getting the cluster's FQDN and looking up its IP address using nslookup

As you can see in Figure 11.19, the address that you are getting back from the
nslookup command is a private IP address. This means that only machines
connected to that VNet will be able to connect to the Kubernetes control plane.

330 | Network security in AKS

You have now successfully created an AKS private cluster and verified that only
machines connected to the AKS VNet can connect to the control plane. You
couldn't connect to the control plane from within the Azure Cloud Shell, but you
could connect to it from a VM in the same VNet. Since you now have a private
cluster deployed, don't delete the VM you are using just yet. You will use it in the
next example. You will delete this private cluster and the VM in the final example in
this chapter.

This also concludes this section on control plane security. You have learned about
authorized IP ranges and private clusters. In the next section, you'll learn more
about how you can secure your workload.

Workload network security

You have now learned about how to protect the network of your control plane of
your AKS cluster. This, however, hasn't influenced the network security of your
workloads. In this section, you will explore three ways in which you can protect
your workloads. First, you will create a Kubernetes service using an Azure internal
load balancer. Then, you'll secure traffic to a service in Kubernetes using NSGs.
Finally, you will use network policies to secure pod-to-pod traffic.

Securing the workload network using an internal load balancer

Kubernetes has multiple types of services, as you learned in Chapter 3, Application
Deployment on AKS. You have used the service type load balancer multiple times
before to have AKS create an Azure load balancer. These have always been public
load balancers. You can also configure AKS in such a way that it will create an
internal load balancer. This is useful in cases where you are creating a service
that only needs to be accessible from within a VNet or networks connected to
that VNet.

Workload network security | 331

You will create such a service in this section:

1.	 If you are no longer connected to the VM you created in the previous example,
reconnect to it. You can get the VM's public IP address using the following
command:

az vm show -n vm-handsonaks \
 -g rg-handsonaks-vm -d --query publicIps

And you can connect to the VM using the following command:

ssh azureuser@<public IP>

2.	 Once connected to this VM, you will need to retrieve the git repository linked
with this book. You can get this using the following command:

git clone https://github.com/PacktPublishing/Hands-on-Kubernetes-on-
Azure-Third-Edition

Once the repository is cloned, navigate into the samples for this chapter using
the following command:

cd Hands-On-Kubernetes-on-Azure-Third-Edition/Chapter11

3.	 As the example application in this section, you will use the guestbook
application you've already used in the first half of this book. However, the
all-in-one YAML file you used before has been broken up into two files:
guestbook-without-service.yaml and front-end-service-internal.yaml.
The reason for this is to make it easier for you to explore the service-specific
configuration.

332 | Network security in AKS

The front-end-service-internal.yaml file contains the configuration
to create a Kubernetes service using an Azure internal load balancer. The
following code is part of that example:

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: frontend
5 annotations:
6 service.beta.kubernetes.io/azure-load-balancer-internal:
"true"
7 labels:
8 app: guestbook
9 tier: frontend
10 spec:
11 type: LoadBalancer
12 ports:
13 - port: 80
14 selector:
15 app: guestbook
16 tier: frontend

You are using annotations in the YAML code to instruct AKS to create an Azure
internal load balancer. You can see on lines 5-6 of the preceding code example
that you are setting the service.beta.kubernetes.io/azure-load-balancer-
internal annotation to true.

You can create the guestbook application and the service using the internal
load balancer by applying the following commands:

kubectl create -f guestbook-without-service.yaml
kubectl create -f front-end-service-internal.yaml

You can then get the service and wait for it to get an external IP using the
following command:

kubectl get service -w

Workload network security | 333

This will return an output similar to Figure 11.20:

Figure 11.20: Getting the service's external IP

4.	 As you can see, the service has a private IP as an external IP. You can only
access this IP from the VNet that the cluster is deployed into, or from other
networks connected to that VNet.

Note

You may ask yourself the question: "Each service gets a cluster IP as well,
which is a private IP. Why can't that be used instead of the internal load
balancer?"
The answer to that question is that a cluster IP is only reachable from within
the cluster, not from outside the cluster. You can, however, create services of
the NodePort type to make a service exposed to calls from outside the cluster.
This would expose the service on the IP of the node, on a certain port. The
downside of NodePort services is that they expose the service on the same
port on each node, so you can't expose two services on the same port in your
cluster. The internal private load balancer does have the ability to expose the
same port on multiple services for the same cluster.

You can try accessing the service using the following command:

curl <external IP>

334 | Network security in AKS

This will return a result similar to Figure 11.21:

Figure 11.21: Accessing the service exposed through the internal load balancer

5.	 AKS created an internal load balancer to expose this service. You can see this
load balancer in the Azure portal as well. To see this internal load balancer,
start by searching for load balancer in the Azure search bar, as shown in
Figure 11.22:

Figure 11.22: Navigating to Load balancers through the Azure portal

6.	 In the resulting pane, you should see two load balancers, as shown in
Figure 11.23:

Workload network security | 335

Figure 11.23: List of load balancers in the default directory

7.	 Click on the kubernetes-internal load balancer. This will take you to a pane
similar to Figure 11.24:

Figure 11.24: Details of the internal load balancer

336 | Network security in AKS

Here, you can see the details of this internal load balancer. As you can see in
the highlight in the screenshot, the same IP that you saw as the output of the
kubectl command is configured on the load balancer.

8.	 This concludes the example of using an internal load balancer. You can now
delete the service using the internal load balancer by applying the following
command:

kubectl delete -f front-end-service-internal.yaml
kubectl delete -f guestbook-without-service.yaml

This will delete the guestbook application and the service. When deleting the
service, both the service in Kubernetes, as well as the internal load balancer in
Azure, will be deleted. This is because once there are no more services in your
cluster requiring an internal load balancer, AKS will delete that internal load
balancer.

In this section, you deployed a Kubernetes service using an internal load balancer.
This gives you the ability to create services that are not exposed to the internet.
There are, however, cases where you need to expose a service to the internet, but
need to ensure that only trusted parties can connect to it. In the next section,
you'll learn how you can create a service in AKS that uses a network security group
to limit inbound traffic.

Securing the workload network using network security groups

Up to this point in the book, you have exposed multiple services in Kubernetes.
You've exposed them both using the service object in Kubernetes, as well as using
an ingress. However, you never restricted access to your application, except in
the previous section, by deploying an internal load balancer. This means that the
application was always publicly accessible. In the following example, you will create
a service on your Kubernetes cluster that will have a public IP, but you will restrict
access to it using an NSG that is configured by AKS.

1.	 As the example application in this section, you will again use the guestbook
application. As in the previous section, the front-end service configuration has
been moved to a separate file. For this example, you'll start by using the front-
end-service.yaml file to create the service, and later update that using the
front-end-service-secured.yaml file.

Workload network security | 337

Let's start by deploying the application as-is, without any NSG configuration,
by applying the following command:

kubectl apply -f guestbook-without-service.yaml
kubectl apply -f front-end-service.yaml

Then, get the front-end service's IP address using the following command:

kubectl get service -w

This will create an output similar to Figure 11.25. Once you get the public IP, you
can exit out of the command by pressing Ctrl + C:

Figure 11.25: Getting the front-end service's IP address

You are now able to connect to this service using both your browser as well as
using the VM itself. If you connect using your browser, you should expect an
output similar to Figure 11.26:

Figure 11.26: Accessing the guestbook application through a web browser

338 | Network security in AKS

2.	 You can also connect to this application using the command line. To do this,
use the following command:

curl <public IP>

This should return an output similar to Figure 11.27:

Figure 11.27: Connecting to the guestbook application using the command line

3.	 Let's now configure additional security on the front-end service by only
allowing your browser to connect to the application. For this, you will require
the public IP address you are using right now. If you don't know this, you can
browse to https://www.whatismyip.com/ to get your IP address, as shown in
Figure 11.28:

https://www.whatismyip.com/

Workload network security | 339

Figure 11.28: Getting your own public IP address

To secure the front-end service, you will edit the front-end-service-
secured.yaml file. This is the code in that particular file:

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: frontend
5 labels:
6 app: guestbook
7 tier: frontend
8 spec:
9 type: LoadBalancer
10 ports:
11 - port: 80
12 selector:
13 app: guestbook
14 tier: frontend
15 loadBalancerSourceRanges:
16 - <your public IP address>

340 | Network security in AKS

This file is very similar to the services you created earlier in this book. However,
on lines 15 and 16, you now see loadBalancerSourceRanges and the option to
add your own public IP address. You can provide multiple public IP addresses
or ranges here; each address or range would be prepended with a dash. If you
wish to enter an individual IP address rather than a range, append /32 to that
IP address. You need to do this since Kubernetes expects IP ranges, and a range
of /32 equals a single IP address.

To edit or add your own IP address in this file, use the following command:

vi front-end-service-secured.yaml

In the resulting application, use the arrow keys to navigate to the bottom line,
hit the i button to enter insert mode, remove the placeholder, add in your IP
address, and then append that with /32. To close and save the file, hit the Esc
key, type :wq! to write and close the file, and finally hit Enter. An example is
shown in Figure 11.29:

Figure 11.29: An example of the front-end-service-secured.yaml file with an IP address

Workload network security | 341

4.	 You can update the exiting service that was deployed before using the following
command:

kubectl apply -f front-end-service-secured.yaml

This will cause AKS to update the NSG linked to this cluster to only allow traffic
from your public IP address. You can confirm this by browsing to the IP address
of the service again, and you should see the guestbook application. However, if
you retry the command from earlier from the VM, you should see it eventually
time out:

curl <public IP>

This will time out after 2 minutes, with an output similar to Figure 11.30:

Figure 11.30: The connection from within the VM times out

5.	 You can verify the NSG configuration in Azure itself as well. To verify this, look
for Network security groups via the Azure search bar, as shown in Figure 11.31:

Figure 11.31: Navigating to Network security groups through the Azure portal

342 | Network security in AKS

6.	 In the resulting pane, you should see two NSGs. Select the one whose name
starts with aks-agentpool, as shown in Figure 11.32:

Figure 11.32: Selecting the aks-agentpool NSG

7.	 In the resulting detailed view of that NSG, you should see a rule that allows
traffic from your IP address to the service's public IP address, as you can see in
Figure 11.33:

Figure 11.33: The NSG contains a rule that allows traffic only from the public IP defined earlier

Notice how this rule was created and is managed by AKS; you didn't have to
create this yourself.

Workload network security | 343

8.	 Here, we've concluded this example. Let's clean up the deployment, the VM,
and the private cluster. From within the VM, delete the application using the
following command:

kubectl delete -f guestbook-without-service.yaml
kubectl delete -f front-end-service-secured.yaml

Then, exit out of the VM using the exit command. This will return you to Cloud
Shell. Here, you can go ahead and delete the private cluster and the VM you
used to connect to it:

az group delete -n rg-handsonaks-vm -y
az aks delete -g rg-handsonaks -n handsonaks -y

By adding additional configuration to a Kubernetes service, you were able to limit
who was able to connect to your service. You were able to confirm that only the
public IP that was allowed to connect to the service was able to connect to it. A
connection not coming from this public IP address timed out.

This is an example of protecting what is called north-south traffic, meaning traffic
coming from the outside to your cluster. You can also add additional protections
to east-west traffic, meaning traffic inside your cluster. To do this, you will use a
feature called network policies in Kubernetes. You will do that in the next section.

Securing the workload network using network policies

In the previous section, you let Kubernetes configure an NSG in Azure to protect
north-south traffic. This is a good practice for limiting the network traffic coming
to your public services. In most scenarios, you will also need to protect the east-
west traffic, meaning the traffic between your pods. That way, you can ensure that
if a potential attacker were to get access to part of your application, they'd have
limited ability to connect to other parts of the application or different applications.
This is also known as protecting from lateral movement.

To protect the traffic between pods, Kubernetes has a functionality called network
policies. Network policies can be used to protect traffic from the outside to your
pods, and from your pods to the outside, as well as traffic between pods. Since
you have already learned about one way to protect traffic from the outside to your
pods, in this section, you will learn how to use network policies to protect pod-to-
pod traffic.

344 | Network security in AKS

In AKS, network policies are something you need to configure on your cluster at
cluster creation time (it is this way at the time of this writing). If your cluster has
network policies enabled, you can create new network policy objects on your
cluster. When there is no network policy selecting a certain pod, all traffic to and
from that pod is allowed. When you apply a network policy to a pod, depending
on the configuration, all traffic to and/or from that pod is blocked, except for the
traffic allowed by that network policy.

Let's try this out:

1.	 Start by creating a new cluster with network policies enabled. In this example,
you'll create a cluster with Azure network policies enabled. You can create this
new cluster using the following command:

az aks create \
 --resource-group rg-handsonaks \
 --name handsonaks \
 --enable-managed-identity \
 --node-count 2 \
 --node-vm-size Standard_DS2_v2 \
 --generate-ssh-keys \
 --network-plugin azure \
 --network-policy azure

2.	 Once the cluster is created, make sure to refresh the credentials to get access
to the cluster. You can do this using the following command:

az aks get-credentials -g rg-handsonaks -n handsonaks

This will prompt you to overwrite the existing credentials. You can confirm this
by typing y in the two prompts, as shown in Figure 11.34:

Figure 11.34: Getting credentials for the new cluster

Workload network security | 345

3.	 For this example, you will test connections between two web servers in a pod
running nginx. The code for these has been provided in the web-server-a.
yaml and web-server-b.yaml files. This is the code for web-server-a.yaml:

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: web-server-a
5 labels:
6 app: web-server
7 env: A
8 spec:
9 containers:
10 - name: webserver
11 image: nginx:1.19.6-alpine

This is the code for web-server-b.yaml:

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: web-server-b
5 labels:
6 app: web-server
7 env: B
8 spec:
9 containers:
10 - name: webserver
11 image: nginx:1.19.6-alpine

As you can see in the code for each of the pods, each pod has a label app,
web-server, and another label called env, with the value of each server (A for
web-server-a and B for web-server-b). You will use these labels later in this
example to selectively allow traffic between these pods.

To create both pods, use the following command:

kubectl create -f web-server-a.yaml
kubectl create -f web-server-b.yaml

346 | Network security in AKS

Verify that the pods are running before moving forward by running the
following command:

kubectl get pods -w

This should return an output similar to Figure 11.35:

Figure 11.35: Both pods are running

4.	 For this example, we'll use the pod's IP addresses to test the connection. Get
the IP address for web-server-b using the following command:

kubectl get pods -o wide

This should return an output similar to Figure 11.36, in which you'll see the IP
address highlighted:

Figure 11.36: Getting the IP address of web-server-b

5.	 Now, try to connect from web-server-a to web-server-b. You can test this
connection using the following command:

kubectl exec -it web-server-a -- \
 wget -qO- -T 2 http://<web-server-b IP>

Workload network security | 347

This should return an output similar to Figure 11.37:

Figure 11.37: Verifying that web-server-a can connect to web-server-b

6.	 Let's now create a new NetworkPolicy object that will limit all traffic to and
from the pods with the label app web-server. This policy has been provided in
the deny-all.yaml file:

1 kind: NetworkPolicy
2 apiVersion: networking.k8s.io/v1
3 metadata:
4 name: deny-all
5 spec:
6 podSelector:
7 matchLabels:
8 app: web-server
9 ingress: []
10 egress: []

348 | Network security in AKS

Let's explore what's contained in this code:

•	 Line 1: Here, you define that you are creating a NetworkPolicy object.

•	 Lines 6-8: Here, you define which pods this network policy will apply to.
In this case, you are applying this network policy to all pods that have
the label app: web-server.

•	 Lines 9-10: Here, you define the allow rules. As you can see, you are not
defining any allow rules, which will mean that all traffic will be blocked.

Later in this example, you will add more specific ingress and egress rules to
selectively allow traffic to flow.

7.	 Let's now create this network policy. You can do this using the following
command:

kubectl create -f deny-all.yaml

This will return an output similar to Figure 11.38:

Figure 11.38: Creating the network policy

8.	 Let's now test the connection between web-server-a and web-server-b again.
You can test this using the following command.

kubectl exec -it web-server-a -- \
 wget -qO- -T 2 http://<web-server-b IP>

This should return an output similar to Figure 11.39:

Figure 11.39: Traffic is no longer flowing between web-server-a and web-server-b

Workload network security | 349

9.	 You will now create another network policy that will selectively allow traffic
from web-server-a to web-server-b. This policy is included in the allow-a-
to-b.yaml file:

1 kind: NetworkPolicy
2 apiVersion: networking.k8s.io/v1
3 metadata:
4 name: allow-a-to-b
5 spec:
6 podSelector:
7 matchLabels:
8 app: web-server
9 ingress:
10 - from:
11 - podSelector:
12 matchLabels:
13 env: A
14 egress:
15 - to:
16 - podSelector:
17 matchLabels:
18 env: B

Let's explore the difference in this file versus the earlier network policy in more
depth:

•	 Lines 9-13: Here, you are defining which ingress traffic is allowed.
Specifically, you are allowing traffic from pods with the label env: A.

•	 Lines 14-18: Here, you are defining which egress traffic is allowed. In
this case, you are allowing egress traffic to pods with the label env: B.

Also, note that you are creating this network policy with a new name. This
means you will have two network policies active on your cluster selecting the
pods with the label app: web-server. Both the deny-all and allow-a-to-b
network policies will be present on your cluster, and both apply to pods with
the label app: web-server. Network policies, by design, are additive, meaning
that if any one of the policies allows the traffic, the traffic will be allowed.

350 | Network security in AKS

10.	Let's create this policy using the following command:

kubectl create -f allow-a-to-b.yaml

This will return an output similar to Figure 11.40:

Figure 11.40: Creating a new network policy to allow traffic from web-server-a to web-server-b

11.	 Let's test the connection between web-server-a and web-server-b again. You
can test this by applying the following command:

kubectl exec -it web-server-a -- \
 wget -qO- -T 2 http://<web-server-b IP>

This should return an output similar to Figure 11.41:

Figure 11.41: Traffic is again allowed from web-server-a to web-server-b

Workload network security | 351

12.	 You have now allowed traffic from web-server-a to web-server-b. You have,
however, not allowed the traffic to pass the other way, meaning traffic from
web-server-b to web-server-a is blocked. Let's test this as well. To test this,
get the IP address of web-server-a using the following command:

kubectl get pods -o wide

This will return an output similar to Figure 11.42, where the IP address of
web-server-a has been highlighted:

Figure 11.42: Getting the IP address of web-server-a

You can now test the traffic path from web-server-b to web-server-a:

kubectl exec -it web-server-b -- \
 wget -qO- -T 2 http://<web-server-a IP>

This should return an output similar to Figure 11.43:

Figure 11.43: Traffic from web-server-b to web-server-a is not allowed, as expected

As you can see in Figure 11.43, the traffic from web-server-b to web-server-a
times out, showing you that the traffic is blocked.

13.	This concludes the example regarding network policies in Azure. In the next
chapter, you will create a new cluster again, so to conclude this chapter, it is
safe to delete this cluster with network policies enabled, using the following
command:

az aks delete -n handsonaks -g rg-handsonaks -y

You have now used network policies to protect traffic between pods. You saw how
a default policy will deny all traffic, and how you can add new policies to selectively
allow traffic. You also saw that if you allow traffic from one pod to another, that the
inverse is not automatically allowed.

352 | Network security in AKS

Summary

This chapter introduced you to multiple network security options in AKS. You
explored both securing the control plane and the workload in the cluster.

To secure the control plane, you first used authorized IP ranges to verify that only
allowed public IP addresses can access the control plane of your cluster. After
that, you created a new private cluster, which was only reachable using a private
connection. You connected to that private cluster using Azure Private Link.

After that, you also explored workload network security. Initially, you deployed a
public service, which was available for all users. You then had AKS configure Azure
NSGs to secure that service only to an allowed connection. You verified that you
could connect to the service from your machine, but not from a VM in Azure, as
expected. Finally, you also configured Kubernetes network policies in a new cluster.
You used those to protect pod-to-pod traffic and were able to secure traffic
between different pods on your cluster.

In the next chapter, you will learn how you can use AKS to create Azure resources,
such as an Azure Database for MySQL, using the Azure Service Operator.

Section 4: Integrating
with Azure managed

services
So far in the book, you have run multiple applications on top of Azure Kubernetes
Service (AKS). The applications were always self-contained, meaning the full
application was able to run in its entirety on top of AKS. There are certain
advantages of running a full application on top of AKS. You gain application
portability since you can move that application to any other Kubernetes cluster
with little friction. You also have full control over the end-to-end application.

With great control comes great responsibility. There are certain advantages to
offloading parts of your application to one of the PaaS services that Azure offers.
For example, by offloading your database to a managed PaaS service, you no longer
need to take care of updating the database service, backups are automatically
performed for you, and a lot of logging and monitoring is done out of the box.

In the coming chapters, you will learn more about multiple advanced integrations
and the advantages that come with them. Having read this section, you should
be able to securely access other Azure services, such as Azure SQL Database and
Azure Functions, and perform continuous integration and continuous delivery
(CI/CD) using GitHub Actions.

354 | Section 4: Integrating with Azure managed services

This section contains the following chapters:

•	 Chapter 12, Connecting an application to an Azure database

•	 Chapter 13, Azure Security Center for Kubernetes

•	 Chapter 14, Serverless functions

•	 Chapter 15, Continuous integration and continuous deployment for AKS

You will start this section with Chapter 12, Connecting an application to an Azure
database, in which you will connect an application to Azure Database for MySQL.

12
Connecting an

application to an
Azure database

In previous chapters, you stored the state of your application in your cluster, either
on a Redis cluster or on MariaDB. You might remember that both had some issues
when it came to high availability. This chapter will take you through the process of
connecting to a MySQL database managed by Azure.

We will discuss the benefits of using a hosted database rather than
running StatefulSets on Kubernetes. To create this hosted and managed database,
you will make use of Azure Service Operator (ASO). ASO is a way to create Azure
resources, such as a managed MySQL database, from within a Kubernetes cluster.
In this chapter, you will learn more details about the ASO project, and you will set
up and configure ASO on your cluster.

356 | Connecting an application to an Azure database

You will then make use of ASO to create a MySQL database in Azure. You will use
this managed database as part of a WordPress application. This will show you how
you can connect an application to a managed database. This chapter is broken
down into the following topics:

•	 Azure Service Operator

•	 Installing ASO on your cluster

•	 Creating a MySQL database using ASO

•	 Creating an application using the MySQL database

Let's start by exploring ASO.

Azure Service Operator

In this section, you will learn more about ASO. We will start by exploring the
benefits of using a hosted database versus running StatefulSets on Kubernetes
itself, and then learn more details about ASO.

All the examples that you have gone through so far have been self-contained; that
is, everything ran inside the Kubernetes cluster. Almost any production application
has a state, which is generally stored in a database. While there is a great advantage
to being mostly cloud-agnostic, this has a huge disadvantage when it comes to
managing a stateful workload such as a database.

When you are running your own database on top of a Kubernetes cluster, you
need to take care of scalability, security, high availability, DR, and backup. Managed
database services offered by cloud providers can offload you or your team from
having to execute these tasks. For example, Azure Database for MySQL comes with
enterprise-grade security and compliance, built-in high availability, and automated
backups. The service scales within seconds. Finally, you also have the option to
configure DR to a secondary region.

It is a lot simpler to consume a production-grade database from Azure than it is to
set up and manage your own on Kubernetes. In the next section, you will explore a
way that Kubernetes can be used to create these databases on Azure.

Azure Service Operator | 357

What is ASO?

As with most applications these days, much of the hard work has already been
done for us by the open-source community (including those who work for
Microsoft). Microsoft has realized that many users would like to use their managed
services from Kubernetes and that they require an easier way of using the same
methodologies that are used for Kubernetes deployment. The ASO project was
created to solve this problem.

ASO is a new project started in 2020 that succeeds the Open Service Broker for
Azure (OSBA) project. OSBA was Microsoft's original implementation that allowed
you to create Azure resources from within Kubernetes, but this project is no longer
maintained and has been deprecated. ASO serves the same purpose and is actively
maintained and developed.

There are two parts to ASO: a set of CustomResourceDefinitions (CRDs) and a
controller that manages those CRDs. The CRDs are a set of API extensions for
Kubernetes that allow you to specify which Azure resources you want to create.
There are CRDs for resource groups, virtual machines, MySQL databases, and
more.

Most APIs in ASO are still in either the alpha or beta stage, meaning they might
change in the future. Please refer to the documentation at https://github.com/
Azure/azure-service-operator for an up-to-date resource definition, as the
definitions used in this chapter might have changed.

The controller is a pod that runs on your cluster and monitors the Kubernetes
API for any objects that are created using these CRDs. It's this controller that will
interface with the Azure API and create the resource you create using ASO.

ASO depends on two other projects that you have already learned about in this
book, namely Azure Active Directory (Azure AD) pod-managed identities and cert-
manager. ASO uses Azure AD pod-managed identities to link a managed identity to
the ASO pod. This also means that this managed identity needs to have permissions
to create those resources. ASO uses cert-manager to get access to a certificate for
the ASO pod to use.

https://github.com/Azure/azure-service-operator
https://github.com/Azure/azure-service-operator

358 | Connecting an application to an Azure database

By default, ASO will store secrets such as connection strings in Kubernetes secrets.
As you have learned in the preceding chapters, it's better to store secrets in Key
Vault rather than in Kubernetes. ASO has the option to store secrets in Key Vault as
well, and during the setup, you will configure ASO to store secrets in Key Vault.

For a user perspective using ASO, Figure 12.1 describes what happens when you
create a resource:

1.	 As a user, you submit a YAML definition for an Azure resource to the
Kubernetes API. The Azure resources are defined in a CRD.

2.	 The ASO pod is monitoring the Kubernetes API for changes to the Azure CRD
objects.

3.	 When changes are detected, ASO will create the resources in Azure.
4.	 If a connection string was created as part of the resource creation, this

connection string will be stored either as a Kubernetes secret (default) or in
Key Vault (if configured).

Figure 12.1: High-level process diagram of resource creation using ASO

In this section, you've learned the basics of the ASO project. In the next section,
you will go ahead and install ASO on your cluster.

Installing ASO on your cluster | 359

Installing ASO on your cluster

To install ASO on your cluster, you will need a cluster. At the end of the previous
chapter, you deleted your cluster, so you will create a new one here. After that, you
will need to create a managed identity and Key Vault. Both are best practices when
setting up ASO, which is why this chapter will explain how to set up ASO this way.
After the creation of these resources, you need to ensure that cert-manager is set
up in your cluster. Once that is confirmed, you can install ASO using a Helm chart.

Let's start with the first step, creating a new AKS cluster.

Creating a new AKS cluster

Since you deleted your cluster at the end of the previous chapter, let's start by
creating a new cluster. You can do all these steps using Cloud Shell. Let's get
started:

1.	 First, you will create a new cluster. Since you will be making use of pod
identities for the authorization of ASO, you will also enable the pod identity
add-on on this new cluster. At the time of this writing, the pod identity add-on
is in preview.

If you haven't registered for your subscription for this preview as explained in
Chapter 9, Azure Active Directory pod-managed identities in AKS, please do so
now using the following commands:

az feature register --name EnablePodIdentityPreview \
 --namespace Microsoft.ContainerService

You will also need a preview extension of the Azure CLI, which you can install
using the following command:

az extension add --name aks-preview

You will have to wait until the pod identity preview is registered on your
subscription. You can use the following command to verify this status:

az feature show --name EnablePodIdentityPreview \
 --namespace Microsoft.ContainerService -o table

360 | Connecting an application to an Azure database

Wait until the status shows as registered, as shown in Figure 12.2:

Figure 12.2: Waiting for the feature to be registered

Once the feature is registered, you need to refresh the registration of the
namespace before creating a new cluster. Let's first refresh the registration of
the namespace:

az provider register --namespace Microsoft.ContainerService

2.	 Once you registered the preview provider, or if you had already done so as part
of Chapter 9, Azure Active Directory pod-managed identities in AKS, you can
create a new cluster using the following command:

az aks create -g rg-handsonaks -n handsonaks \
 --enable-managed-identity --enable-pod-identity \
 --network-plugin azure --node-vm-size Standard_DS2_v2 \
 --node-count 2 --generate-ssh-keys

3.	 Once the command is finished, get the credentials to get access to your cluster
using the following command:

az aks get-credentials -g rg-handsonaks \
 -n handsonaks --overwrite-existing

You now have a new Kubernetes cluster with pod identities enabled. To continue
the setup of ASO, let's now create a managed identity.

Installing ASO on your cluster | 361

Creating a managed identity

In this section, you will use the Azure portal to create a managed identity. You will
then give permission to your AKS cluster to manage this managed identity and
give the managed identity access to your subscription to create the resources.
Let's start:

1.	 In the Azure search bar, look for Managed Identities, as shown in Figure 12.3:

Figure 12.3: Searching for Managed Identities

2.	 In the resulting screen, click on + New to create a new managed identity, as
shown in Figure 12.4:

Figure 12.4: Creating a new managed identity

362 | Connecting an application to an Azure database

3.	 To organize the resources for this chapter together, create a new resource
group called ASO, as shown in Figure 12.5:

Figure 12.5: Creating a new resource group

4.	 Provide the location and a name for your managed identity; use the name
aso-mi as shown in Figure 12.6 if you wish to follow the example here. Make
sure to select the same region as the region of your cluster:

Figure 12.6: Providing Project and Instance details for creating the managed identity

Installing ASO on your cluster | 363

5.	 Click Review + create at the bottom of the screen and create the managed
identity.

6.	 Once the managed identity is created, you need to capture the client ID and
resource ID for later use. Copy and paste this information in a location where
you can access it later. You can get the client ID in the Overview pane, as shown
in Figure 12.7:

Figure 12.7: Getting the client ID from the managed identity

364 | Connecting an application to an Azure database

You can get the resource ID in the Properties pane, as shown in Figure 12.8:

Figure 12.8: Getting the resource ID of the managed identity

Installing ASO on your cluster | 365

7.	 The next thing to do on the managed identity is to give our AKS cluster
permissions to it. To do this, click on Access control (IAM) in the left pane, click
on the + Add button at the top of the screen, click Add role assignment from
the dropdown menu, select the Managed Identity Operator role, select User
assigned managed identity from the Assign access to dropdown menu, and
select the handsonaks-agentpool identity and save. This process is shown in
Figure 12.9:

Figure 12.9: Giving AKS access to the managed identity

8.	 You will now give Managed Identities permission to create resources on your
subscription. To do this, look for Subscriptions in the Azure search bar, as
shown in Figure 12.10, and then select your subscription:

366 | Connecting an application to an Azure database

Figure 12.10: Looking for subscriptions in the Azure search bar

9.	 In the Subscription pane, click on Access control (IAM), click on the + Add button
at the top of the screen, click Add role assignment, select the Contributor role,
select User assigned managed identity from the Assign access to dropdown
menu, and select the aso-mi identity and save. This process is shown in
Figure 12.11:

Figure 12.11: Giving the aso-mi permissions to your subscription

Installing ASO on your cluster | 367

This completes the setup of the managed identity. In the next section, you will
create a key vault and allow the managed identity you just created to create and
read secrets.

Creating a key vault

In this section, you will create the key vault that ASO will use to store connection
strings and secrets. This is optional in the ASO setup process but recommended.

1.	 To start, look for key vaults in the Azure search bar, as shown in Figure 12.12:

Figure 12.12: Looking for key vaults in the Azure search bar

2.	 Click the + New button at the top of the screen to create a new key vault. Select
the ASO resource group you created earlier and give your key vault a name.
Please note that your key vault name has to be unique, so consider adding
extra characters to the name if it is not unique. Also, make sure to create the
key vault in the same region as your AKS cluster. The resulting configuration is
shown in Figure 12.13:

368 | Connecting an application to an Azure database

Figure 12.13: Key vault configuration

3.	 Now select Next: Access policy > to configure a new access policy. Here you
will give the aso-mi managed identity you created in the previous section
permission to do secret management in this key vault. To do this, start by
clicking the + Add Access Policy button, as shown in Figure 12.14:

Figure 12.14: Clicking the + Add Access Policy button

Installing ASO on your cluster | 369

4.	 In the resulting popup, select the Secret Management template, then click on
None selected to select your managed identity. In the resulting popup, look for
the aso-mi managed identity, select it, and then click Select followed by clicking
on Add, as shown in Figure 12.15:

Figure 12.15: Adding the secret management permissions to the managed identity

5.	 This has configured the access policy in Key Vault. Now click the Review +
create button, and in the last window hit Create to create the key vault. This
should take a couple of minutes to complete.

Once your key vault has been deployed, you are ready to start installing ASO, which
will be explained in the next section.

370 | Connecting an application to an Azure database

Setting up ASO on your cluster

Now that you have the required managed identity and Key Vault, you are ready to
start deploying ASO on your cluster. You can do all these steps using Cloud Shell.
Let's get started:

1.	 You created a new cluster in the Creating a new AKS cluster section. You will
need to link the managed identity you created earlier to the cluster. The ASO
components will be created in their own namespace, so you will also create a
new namespace for this:

kubectl create namespace azureoperator-system
az aks pod-identity add --resource-group rg-handsonaks \
 --cluster-name handsonaks --namespace azureoperator-system \
 --name aso-identity-binding \
 --identity-resource-id <resource ID of managed identity>

2.	 Now you can install cert-manager on your cluster. You've done this once
before in Chapter 6, Securing your application with HTTPS, but at the end of
the chapter you were asked to remove this component. You can install it again
using the following command:

kubectl apply -f https://github.com/jetstack/cert-manager/releases/
download/v1.1.0/cert-manager.yaml

3.	 Track the deployment status of cert-manager using the following command:

kubectl rollout status \
 -n cert-manager deploy cert-manager-webhook

Wait until the rollout shows that it's successfully rolled out, as shown in
Figure 12.16:

Figure 12.16: Checking the rollout status of cert-manager

https://github.com/jetstack/cert-manager/releases/download/v1.1.0/cert-manager.yaml
https://github.com/jetstack/cert-manager/releases/download/v1.1.0/cert-manager.yaml

Installing ASO on your cluster | 371

4.	 Once cert-manager has fully rolled out, you can start the ASO installation. Start
by adding the Helm repo for ASO using the following command:

helm repo add azureserviceoperator \
https://raw.githubusercontent.com/Azure/azure-service-operator/
master/charts

5.	 Next, you need to provide configuration values for your ASO installation.
Open the values.yaml file that is part of the code sample that comes with this
chapter using the following command:

code values.yaml

Fill in all the required values in that file, as shown here:

1 azureTenantID: "<tenant ID>"
2 azureSubscriptionID: "<subscription ID>"
3 azureOperatorKeyvault: "<key vault name>"
4 azureClientID: "<client ID>"
5 cloudEnvironment: AzurePublicCloud
6 azureUseMI: true
7 image:
8 repository: mcr.microsoft.com/k8s/azureserviceoperator:0.1.16800
9 installAadPodIdentity: true
10 aad-pod-identity:
11 azureIdentityBinding:
12 name: aso-identity-binding
13 selector: aso_manager_binding
14 azureIdentity:
15 enabled: True
16 name: aso-identity
17 type: 0
18 resourceID: "<resource ID>"
19 clientID: "<client ID>"

As shown in the previous code sample, you will need to provide your tenant
ID, subscription ID, key vault name, client ID of the managed identity (twice),
and resource ID of the managed identity. You can find the tenant ID and
subscription ID with the following command:

az account show

https://raw.githubusercontent.com/Azure/azure-service-operator/master/charts
https://raw.githubusercontent.com/Azure/azure-service-operator/master/charts

372 | Connecting an application to an Azure database

This will return an output similar to Figure 12.17, in which the tenant ID and
subscription ID have been highlighted:

Figure 12.17: Getting the subscription ID and tenant ID

6.	 Once you have the values filled in, you can install ASO using the following
command:

helm upgrade --install aso \
 azureserviceoperator/azure-service-operator \
 -n azureoperator-system --create-namespace \
 -f values.yaml

7.	 The installation process takes a couple of minutes. Wait until the following
command returns a successful rollout:

kubectl rollout status deploy \
 -n azureoperator-system azureoperator-controller-manager

The output should look similar to Figure 12.18:

Figure 12.18: Checking the status of the deployments for ASO

Deploying Azure Database for MySQL using ASO | 373

8.	 At the time of writing, there was an issue with the aadpodidbinding label on
the deployment of azureoperator-controller-manager. This can, however, be
fixed by applying a patch, to apply a new label to that deployment. The patch
has been provided in the files for the chapter, specifically in the patch.yaml
file:

spec:
 template:
 metadata:
 labels:
 aadpodidbinding: aso-identity-binding

As you can see, the patch itself applies a new label to the pods in the
deployment. You can apply the patch using the following command:

kubectl patch deployment \
 azureoperator-controller-manager \
 -n azureoperator-system \
 --patch "$(cat patch.yaml)"

This will ensure that you can use ASO in the next section.

Now that ASO has been deployed on your cluster, you are ready to start deploying
Azure resources using Kubernetes and ASO. You will do that in the next section.

Deploying Azure Database for MySQL using ASO

In the previous section, you deployed ASO on your Kubernetes cluster. This
means that now you can use the Kubernetes API to deploy Azure resources. In
this section, you will create a MySQL database running on the Azure Database for
MySQL service using YAML files that you will submit to Kubernetes using kubectl.
Let's get started:

374 | Connecting an application to an Azure database

1.	 First, you need to create a resource group. The code for the resource group
definition is also available in the code samples with this chapter. Create this file
and save it as rg.yaml:

apiVersion: azure.microsoft.com/v1alpha1
kind: ResourceGroup
metadata:
 name: aso-resources
spec:
 location: <cluster location>

As you can see in the code for the resource, apiVersion refers to
azure.microsoft.com and kind is ResourceGroup. Furthermore, you provide
the details for the resource group, being its name and its location. Make sure to
change location to the location of your cluster.

You can create this resource group using the following command:

kubectl create -f rg.yaml

To monitor the process of the resource group creation, you can use the
following command:

kubectl get resourcegroup -w

This returns an output similar to Figure 12.19:

Figure 12.19: Monitoring the creation of a new resource group

2.	 Let's also verify that the resource group was created in Azure. To do so, look
for the resource group name (aso-resources, in this example) in the Azure
search bar, as shown in Figure 12.20:

Deploying Azure Database for MySQL using ASO | 375

Figure 12.20: Searching for the resource group in the Azure portal

As you can see, the resource group is returned in the search results, meaning
the resource group was successfully created.

3.	 Now you can create the MySQL server. You won't create a virtual machine to
run MySQL, but rather create a managed MySQL server on Azure. To create
this, you can use the mysql-server.yaml file that is provided for you:

1 apiVersion: azure.microsoft.com/v1alpha1
2 kind: MySQLServer
3 metadata:
4 name: <mysql-server-name>
5 spec:
6 location: <cluster location>
7 resourceGroup: aso-resources
8 serverVersion: "8.0"
9 sslEnforcement: Disabled
10 createMode: Default
11 sku:
12 name: B_Gen5_1
13 tier: Basic
14 family: Gen5
15 size: "5120"
16 capacity: 1

376 | Connecting an application to an Azure database

This file contains specific configurations for the MySQL server. A number of
elements are worth pointing out:

•	 Line 2: Here you define that you will create a MySQLServer instance.

•	 Line 4: Here you give the server a name. This name has to be globally
unique, so consider appending your initials to the server name.

•	 Line 6: The location of the MySQL server you will create. Make sure to
change location to the location of your cluster.

•	 Line 9: sslEnforcement is disabled for this demo. This has been done to
make the demo easier to follow. If you create a production cluster, it is
highly recommended to enable sslEnforcement.

•	 Line 11-16: Here you define the size of the MySQL server. In this case,
you are creating a basic server with 5 GB of capacity. If you plan to use
this for production use cases, you will likely need a larger server.

You can create the MySQL server using the following command:

kubectl create -f mysql-server.yaml

This will take a couple of minutes to complete. You can follow the progress
using the following command:

kubectl get mysqlserver -w

This will return an output similar to Figure 12.21:

Figure 12.21: Monitoring the creation of the MySQL server

If you were to run into errors when creating the MySQL server, please refer
to the ASO documentation at https://github.com/Azure/azure-service-
operator/blob/master/docs/troubleshooting.md.

https://github.com/Azure/azure-service-operator/blob/master/docs/troubleshooting.md
https://github.com/Azure/azure-service-operator/blob/master/docs/troubleshooting.md

Deploying Azure Database for MySQL using ASO | 377

Once you get the message that the server has successfully been provisioned,
you can exit out of this command by pressing Ctrl + C.

4.	 After the MySQL server, you can create the MySQL database. The definition of
the MySQL database has been provided in the mysql-database.yaml file:

1 apiVersion: azure.microsoft.com/v1alpha1
2 kind: MySQLDatabase
3 metadata:
4 name: wordpress-db
5 spec:
6 resourceGroup: aso-resources
7 server: <mysql-server-name>

The definition of the database is providing a name and referring to the
server you created earlier. To create the database, you can use the following
command:

kubectl create -f mysql-database.yaml

This will take a couple of seconds to complete. You can follow the progress
using the following command:

kubectl get mysqldatabase -w

This will return an output similar to Figure 12.22:

Figure 12.22: Monitoring the creation of the MySQL database

Once you get the message that the database has successfully been provisioned,
you can exit out of this command by pressing Ctrl + C.

378 | Connecting an application to an Azure database

5.	 You can create a firewall rule that will allow traffic to your database. In this
example, you will create a rule that will allow traffic from all sources. In a
production environment, this is not recommended. For the recommended
networking configurations for Azure Database for MySQL, please refer to the
documentation: https://docs.microsoft.com/azure/mysql/flexible-server/
concepts-networking.
The configuration for the firewall rule has been provided in the mysql-
firewall.yaml file:

1 apiVersion: azure.microsoft.com/v1alpha1
2 kind: MySQLFirewallRule
3 metadata:
4 name: allow-all-mysql
5 spec:
6 resourceGroup: aso-resources
7 server: <mysql-server-name>
8 startIpAddress: 0.0.0.0
9 endIpAddress: 255.255.255.255

As you can see, we refer to the MySQL server that was created earlier and allow
traffic from all IP addresses (meaning from 0.0.0.0 to 255.255.255.255).

To create the firewall rule, you can use the following command:

kubectl create -f mysql-firewall.yaml

This will take a couple of seconds to complete. You can follow the progress
using the following command:

kubectl get mysqlfirewallrule -w

This will return an output similar to Figure 12.23:

Figure 12.23: Monitoring the creation of the MySQL firewall rule

Once you get the message that the firewall rule has successfully been
provisioned, you can exit out of this command by pressing Ctrl + C.

https://docs.microsoft.com/azure/mysql/flexible-server/concepts-networking
https://docs.microsoft.com/azure/mysql/flexible-server/concepts-networking

Deploying Azure Database for MySQL using ASO | 379

6.	 Let's verify that all of this was successfully created in the Azure portal. To
do so, start by searching for the MySQL server name (wp-helm-mysql in this
example) in the Azure search bar as shown in Figure 12.24. Click on the server
to go to the details:

Figure 12.24: Searching for the MySQL server in the Azure portal

7.	 This will take you to the Overview pane of the MySQL server. Scroll down in
this pane and expand the Available resources section. Here you should see that
wordpress-db was created, as shown in Figure 12.25:

Figure 12.25: The database created through ASO is shown in the Azure portal

380 | Connecting an application to an Azure database

8.	 From the MySQL server pane, click on Connection security in the left-hand
navigation to verify the firewall rule. You should see the firewall rule you
created through ASO on this pane, as shown in Figure 12.26:

Figure 12.26: The firewall rule created through ASO is set on the MySQL server

This verifies that you were able to create a MySQL server with a database in
Azure and configure its firewall settings.

In this section, you've used ASO to create a MySQL server, as well as a database on
that server, and then finally configured its firewall. You were able to do all of this
using Kubernetes YAML files. ASO translated those YAML files to Azure and created
the resources for you. Finally, you were able to confirm everything was created and
configured in the Azure portal.

In the next and final section, you will use this database to support the WordPress
application.

Creating an application using the MySQL database

You now have a MySQL database. To showcase that you can use this database to
configure an application, you will use the WordPress application. You can install
this using Helm and provide the connection information to your database in the
Helm configuration:

Creating an application using the MySQL database | 381

1.	 To start, you will need the connection information to your database server.
When you installed ASO on your cluster, you configured it to use Key Vault as
a secret store rather than Kubernetes secrets. You will need this connection
information to connect WordPress to your Azure MySQL database.

Search for Key Vaults in the Azure search bar, as shown in Figure 12.27, click
on Key vaults, and then select the key vault you created earlier in the chapter:

Figure 12.27: Searching for key vaults in the Azure portal

2.	 In the resulting pane, click on Secrets in the left-hand navigation and then click
on the secret, as shown in Figure 12.28. The name of this secret follows the
naming convention <object type>-<Kubernetes namesapce>-<object name>.

Figure 12.28: The MySQL secret in the Azure portal

382 | Connecting an application to an Azure database

3.	 You will then get a view with multiple versions of your secret; click the current
version as shown in Figure 12.29:

Figure 12.29: Different secret versions in your key vault

Creating an application using the MySQL database | 383

Now, copy the value of the secret, as shown in Figure 12.30:

Figure 12.30: Copying the value of the secret to clipboard

384 | Connecting an application to an Azure database

4.	 The secret contains several pieces of information related to your database
connection that you will need for the Helm installation. It contains the fully
qualified server name, the username, and the password. The values in the
secret are Base64 encoded. To make working with this secret easier, a shell
script has been provided that will give you the required decoded values. To run
this script, use the following command:

sh decode-secret.sh <secret value>

An example is shown in Figure 12.31:

Figure 12.31: Decoding the secret

5.	 You can use the values outputted by the previous step to configure Helm to
use your Azure MySQL database. The following Helm command will set up
WordPress on your cluster, but use an external database:

helm repo add bitnami https://charts.bitnami.com/bitnami
helm install wp bitnami/wordpress \
 --set mariadb.enabled=false \
 --set externalDatabase.host='<decoded host value>' \
 --set externalDatabase.user='<decoded user value>' \
 --set externalDatabase.password='<decoded password value>' \
 --set externalDatabase.database='wordpress-db' \
 --set externalDatabase.port='3306'

As you can see, with this command, you disabled the MariaDB installation by
setting the mariadb.enabled value to false and then provided the connection
information to the external database.

Creating an application using the MySQL database | 385

To monitor the setup of WordPress, you can use the following command:

kubectl get pods -w

This will take a couple of minutes to fully set up, and finally, you should see the
WordPress pod in a running state and ready, as shown in Figure 12.32:

Figure 12.32: WordPress pod in a running state

Once the pod is running and ready, you can stop this command by pressing
Ctrl + C. If you remember the WordPress deployment in Chapter 3, Application
deployment on AKS, there was a second pod present in the WordPress
installation hosting a MariaDB database. This pod is no longer there since we
replaced it with an Azure MySQL database.

6.	 Let's now finally connect to this WordPress application. You can get the public
IP address of the WordPress website using the following command:

kubectl get service

This will show you the public IP, as shown in Figure 12.33:

Figure 12.33: Getting the public IP of the WordPress website

386 | Connecting an application to an Azure database

Enter this IP address in your web browser's address bar and hit Enter. You
should be able to see the WordPress landing page with the default demo post,
as shown in Figure 12.34:

 Figure 12.34: Browsing to the WordPress website

You now have a fully functional WordPress website hosted on Kubernetes, with
the database being backed by Azure Database for MySQL.

7.	 This concluded the examples from this chapter. You created a number of
resources and installed a number of cluster components. Let's also clean them
up from the cluster using the following commands:

helm uninstall wp
kubectl delete -f mysql-firewall.yaml
kubectl delete -f mysql-database.yaml
kubectl delete -f mysql-server.yaml
kubectl delete -f rg.yaml
helm uninstall aso -n azureoperator-system
az aks pod-identity delete --resource-group rg-handsonaks \
 --cluster-name handsonaks --namespace azureoperator-system \
 --name aso-identity-binding
kubectl delete namespace azureoperator-system
kubectl delete -f https://github.com/jetstack/cert-manager/releases/
download/v1.1.0/cert-manager.yaml
az group delete -n aso --yes

https://github.com/jetstack/cert-manager/releases/download/v1.1.0/cert-manager.yaml
https://github.com/jetstack/cert-manager/releases/download/v1.1.0/cert-manager.yaml

Summary | 387

You've been able to connect an application on Kubernetes to an Azure-managed
MySQL database. You used the WordPress Helm chart and provided custom values
to configure this Helm chart to make it connect to the managed database.

Summary

This chapter introduced Azure Service Operator (ASO). ASO is an open-source
project that makes it possible to create Azure services using Kubernetes. This
allows you as the user to not have to switch between the Azure portal or CLI and
Kubernetes resource definitions.

In this chapter, you created a new AKS cluster and then installed ASO on this
cluster. You then created a MySQL database on Azure using ASO. You verified that
this database was available in Azure using the Azure portal.

Finally, you created a WordPress application on your Kubernetes cluster that
connected to the external database. You verified that the application was running
and available as you've seen in previous chapters.

In the next chapter, you will learn about other Azure integrations with AKS, namely
Azure Security Center and Azure Defender for Kubernetes, which are used to
monitor the security configuration of your cluster and mitigate threats.

13
Azure Security

Center for
Kubernetes

Kubernetes is a very powerful platform with a lot of configuration options.
Configuring your workload the right way and making sure you follow best
practices can be difficult. There are industry benchmarks that you can follow to
get guidelines for how to deploy your workloads securely, such as the Center for
Internet Security (CIS) Benchmarks for Kubernetes: https://www.cisecurity.org/
benchmark/kubernetes/.

Azure Security Center is a unified infrastructure security management platform. It
provides continuous security monitoring and alerting for resources in Azure as well
as for hybrid workloads. It offers protection for many Azure resources, including
Kubernetes clusters. This will allow you to ensure your workloads are configured
securely and protected.

https://www.cisecurity.org/benchmark/kubernetes/
https://www.cisecurity.org/benchmark/kubernetes/

390 | Azure Security Center for Kubernetes

Azure Security Center offers two types of protection. First, it monitors your
resource configuration and compares it to security best practices, and then gives
you actionable recommendations to improve your security posture. Second, it
also does threat protection by assessing your workloads and raising alerts when
a potential threat is identified. This threat detection capability is part of a feature
called Azure Defender within Azure Security Center.

When it comes to monitoring Kubernetes workloads, Azure Security Center
can monitor both your cluster configuration as well as the configuration of the
workloads running in your cluster. To monitor the configuration of the workloads
in your cluster, Azure Security Center uses Microsoft Azure Policy for Kubernetes.
This free add-on for Azure Kubernetes Service (AKS) will enable Azure Security
Center to compare the configuration of your workloads against known best
practices.

Azure Defender also has specific threat detection capabilities for Kubernetes. It
monitors a combination of Kubernetes audit logs, node logs, as well as cluster and
workload configuration to identify potential threats. Examples of threats that can
be discovered are crypto-miners, the creation of high-privileged roles, or exposing
the Kubernetes dashboard.

In this chapter, you'll enable Azure Security Center, Azure Policy for Kubernetes,
and Azure Defender for Kubernetes and monitor several sample applications
against threats.

In this chapter, we will cover the following topics:

•	 Azure Security Center for Kubernetes

•	 Azure Defender for Kubernetes

•	 Deploying offending workloads

•	 Analyzing configuration using Azure Secure Score

•	 Neutralizing threats using Azure Defender

Let's start by setting up Azure Security Center for Kubernetes.

Setting up Azure Security Center for Kubernetes | 391

Setting up Azure Security Center for Kubernetes

We'll start this chapter by setting up Azure Security Center for Kubernetes. To
enable Azure Security Center for Kubernetes, you need to enable Azure Policy
for AKS on your cluster. This will enable Azure Security to monitor your workload
configuration. To benefit from Azure Defender's threat protection, you will also
need to enable Azure Defender for Kubernetes on your subscription.

Let's get started.

1.	 Search for your AKS cluster in the Azure search bar, as shown in Figure 13.1:

Figure 13.1: Looking for your cluster in the Azure search bar

2.	 You will now enable Azure Policy for AKS. To enable this, click the Policies
button on the left-hand side and on the resulting pane, click on Enable add-on,
as shown in Figure 13.2:

392 | Azure Security Center for Kubernetes

Figure 13.2: Enabling Azure Policy for AKS

Enabling the add-on will take a couple of minutes to complete. After a while,
you should see a message saying that the service is now enabled, as shown in
Figure 13.3:

Figure 13.3: Azure Policy for AKS is now enabled

Setting up Azure Security Center for Kubernetes | 393

3.	 This has enabled Azure Policy for AKS. Next, you will enable Azure Defender to
get the threat prevention ability from Azure Security Center. To do so, look up
security center in the Azure portal's search bar, as shown in Figure 13.4:

Figure 13.4: Searching for security center in the Azure portal search bar

4.	 If this is the first time you are accessing Azure Security Center in your
subscription, you'll be greeted with a message as shown in Figure 13.5. To
enable Azure Defender, click on Upgrade at the bottom of the screen:

Figure 13.5: Upgrading to Azure Defender

394 | Azure Security Center for Kubernetes

If you're not accessing Azure Security Center in your subscription for the first
time, you might not be greeted with this message to enable Azure Defender.
To enable it, click on Pricing & settings on the left-hand side and select your
subscription, as shown in Figure 13.6:

Figure 13.6: Manually upgrading to Azure Defender

Setting up Azure Security Center for Kubernetes | 395

In the resulting pane, select the right box with the title Azure Defender on
and click the Save button at the top of the screen to enable Azure Defender.
Optionally, you could tune which service you want to enable/disable Azure
Defender for, as shown in Figure 13.7:

Figure 13.7: Turning on Azure Defender for your subscription

396 | Azure Security Center for Kubernetes

Now that you have enabled Azure Security Center and Azure Defender, it will
take up to 30 minutes for the system to configure the default policy and start
detections.

While you are waiting for this configuration to become effective, you will deploy
several offending workloads on your cluster, which will trigger alerts in Azure
Defender.

Deploying offending workloads

To trigger recommendations and threat alerts in Azure Security Center, you will
need to have offending workloads deployed on your cluster. In this section, you
will deploy a number of workloads to your cluster that are either not configured
according to best practices or even contain potentially malicious software such as
crypto-miners. Let's have a look at the examples of offending workloads you can
find in the code samples for this chapter:

•	 crypto-miner.yaml: This file contains a deployment that will create a
crypto-miner on your cluster.

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: crypto-miner
5 labels:
6 app: mining
7 spec:
8 replicas: 1
9 selector:
10 matchLabels:
11 app: mining
12 template:
13 metadata:
14 labels:
15 app: mining
16 spec:
17 containers:
18 - name: mining
19 image: kannix/monero-miner:latest

Deploying offending workloads | 397

This file is a regular deployment in Kubernetes. As you can see on line 19, the
container image for this deployment will be a crypto-miner.

Note

Make sure to stop running the crypto-miner as soon as you are done with
this chapter, as explained in the Neutralizing threats using Azure Defender
section. There is no point in running the crypto-miner any longer than this
example requires.

•	 escalation.yaml: This file contains a deployment that allows privilege
escalations in the container. This means that a process in the container
can get access to the host operating system. There are cases where this is
desired behavior, but typically you don't want this configuration.

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: escalation
5 labels:
6 app: nginx-escalation
7 spec:
8 replicas: 1
9 selector:
10 matchLabels:
11 app: nginx-escalation
12 template:
13 metadata:
14 labels:
15 app: nginx-escalation
16 spec:
17 containers:
18 - name: nginx-escalation
19 image: nginx:alpine
20 securityContext:
21 allowPrivilegeEscalation: true

398 | Azure Security Center for Kubernetes

As you can see in the preceding code sample, on lines 20–21, you configure the
security context of the container with securityContext. You allow privilege
escalation on line 21.

•	 host-volume.yaml: This file contains a deployment with a directory on the
host mounted in the container. This is not recommended because this way,
the container can get access to the host.

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: host-volume
5 labels:
6 app: nginx-host-volume
7 spec:
8 replicas: 1
9 selector:
10 matchLabels:
11 app: nginx-host-volume
12 template:
13 metadata:
14 labels:
15 app: nginx-host-volume
16 spec:
17 containers:
18 - name: nginx-host-volume
19 image: nginx:alpine
20 volumeMounts:
21 - mountPath: /test-pd
22 name: test-volume
23 readOnly: true
24 volumes:
25 - name: test-volume
26 hostPath:
27 # Directory on host
28 path: /tmp

Deploying offending workloads | 399

This code sample contains a volumeMount field and a volume. As you can see in
lines 24–28, the volume is using hostPath, meaning it mounts a volume on the
node running the container.

•	 role.yaml: A role with very broad permissions. It is recommended to
approach roles in Kubernetes with the principle of least privilege to ensure
permissions are tightly controlled. A role with broad permissions is first and
foremost a bad configuration, but worse, could be a sign of compromise on
your cluster.

1 apiVersion: rbac.authorization.k8s.io/v1
2 kind: ClusterRole
3 metadata:
4 name: super-admin
5 rules:
6 - apiGroups: ["*"]
7 resources: ["*"]
8 verbs: ["*"]

This instance of ClusterRole gives very broad permissions, as you can see
in lines 6–8. This configuration gives anybody who gets assigned this role all
permissions on all resources on all APIs in Kubernetes.

None of the deployments in these code samples contain resource requests and
limits. As explained in Chapter 3, Application deployment on AKS, it is recommended
to configure resource requests and limits, as these can prevent a workload from
consuming too many resources.

Finally, you will also deploy the Kubernetes dashboard on a public service. This is
also highly discouraged, as this might inadvertently give attackers access to your
cluster. You will see how Azure Defender detects this.

Let's start deploying these files.

1.	 Open Cloud Shell in the Azure portal and navigating to the code samples for
this chapter.

400 | Azure Security Center for Kubernetes

2.	 Once there, execute the following commands to create the offending
workloads.

kubectl create -f crypto-miner.yaml
kubectl create -f escalation.yaml
kubectl create -f host-volume.yaml
kubectl create -f role.yaml

This will create an output similar to Figure 13.8:

Figure 13.8: Creating the offending workload

3.	 Now, deploy the Kubernetes dashboard using the following command:

kubectl apply -f https://raw.githubusercontent.com/kubernetes/
dashboard/v2.0.0/aio/deploy/recommended.yaml

This will create an output similar to Figure 13.9:

Figure 13.9: Creating the Kubernetes dashboard

https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.0/aio/deploy/recommended.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.0/aio/deploy/recommended.yaml

Deploying offending workloads | 401

4.	 By default, the Kubernetes dashboard is not exposed through a load balancer.
This is also the recommended configuration, because the dashboard gives
broad access to your cluster. In this chapter, however, you will create this
discouraged configuration to trigger a security alert in Azure Defender. To add
a load balancer to the Kubernetes dashboard, use the following command:

kubectl patch service \
 kubernetes-dashboard -n kubernetes-dashboard \
 -p '{"spec": {"type": "LoadBalancer"}}'

This will patch the service and turn it into a service of the LoadBalancer type.
Verify that this was patched successfully and get the public IP address of the
service using the following command:

kubectl get service -n kubernetes-dashboard

This will generate an output similar to Figure 13.10:

Figure 13.10: Getting the public IP of the kubernetes-dashboard service

5.	 Verify that you can access this service by browsing to https://<public IP>.
Depending on your browser configuration, you might get a certificate error,
which you can bypass by selecting Continue to <public IP> (unsafe), as shown in
Figure 13.11:

402 | Azure Security Center for Kubernetes

Figure 13.11: Security warning about the certificate on the Kubernetes dashboard service

Once you have continued to the dashboard, you should get a sign-in screen as
shown in Figure 13.12:

Figure 13.12: The exposed Kubernetes dashboard

You won't sign in to the dashboard here, but if you wish to explore its
capabilities, please refer to the Kubernetes documentation at https://
kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/.

You now have five offending workloads running on your cluster. Some of these will
cause configuration warnings in Azure Security Center; some others will even trigger
a security alert. You will explore those in the next two sections of this chapter.

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

Analyzing configuration using Azure Secure Score | 403

Analyzing configuration using Azure Secure Score

In the previous section, you created several workloads that are purposefully
misconfigured. In this section, you'll review the recommendations in Azure
Security Center related to these workloads.

Note

It can take up to 30 minutes after the workloads have been created for
recommendations and alerts to show up.

1.	 After you have created the offending workloads, you will get security
recommendations in Azure Security Center. To start, click on Secure Score in
the left-hand navigation within Azure Security Center. This will show you a
pane similar to Figure 13.13:

Figure 13.13: Secure Score in Azure Security Center

404 | Azure Security Center for Kubernetes

What you see here is a summary of the security posture of your environment.
In the example shown in Figure 13.13, you see that the overall secure score was
32%. If you manage multiple Azure subscriptions, this view can give you a quick
bird's-eye view of the security configuration of your environment.

2.	 Let's drill down into the configuration of the Kubernetes cluster by clicking
on the Azure subscription 1 subscription at the bottom of Figure 13.13. This will
bring you to a pane similar to Figure 13.14:

Figure 13.14: Secure Score details for the subscription

This view contains more details about the secure score for this subscription. It
again shows you the secure score, as well as the recommendation status and
resource health. The bottom of the screen contains more details about the
specific recommendations.

Analyzing configuration using Azure Secure Score | 405

3.	 Tune this screen to get more insight into the Kubernetes recommendations.
To do this, disable the Group by controls option on the right-hand side of
the screen, and set the Resource type filter to managed cluster, as shown in
Figure 13.15:

Figure 13.15: Kubernetes recommendations in Azure Security Center

You are now looking at a list of Kubernetes security recommendations
recommended by Azure Security Center. The list is too exhaustive to cover
completely in this chapter, but if you want to see more details about each
recommendation, please refer to the AKS documentation for more detailed
descriptions: https://docs.microsoft.com/azure/aks/policy-reference.

https://docs.microsoft.com/azure/aks/policy-reference

406 | Azure Security Center for Kubernetes

4.	 Let's, however, explore a number of the recommendations that were caused
by the offending workloads you created earlier. Start by clicking on the
recommendation called Container with privilege escalation should be avoided.
This will bring you to a view similar to Figure 13.16:

Figure 13.16: Details of the Container with privilege escalation should be avoided recommendation

As you can see, this recommendation contains a description of the
recommendation itself, as well as a number of remediation steps to follow this
recommendation. It also shows you the affected resource, which in this case is
an AKS cluster. If you click on the cluster, you will even get more details about
the offending workload, as shown in Figure 13.17:

Analyzing configuration using Azure Secure Score | 407

Figure 13.17: Pods affected by the privilege escalation recommendation

In this case, each of the pods you created triggered this recommendation,
not just the one where privilege escalation was allowed. This shows you
that Kubernetes allows this privilege escalation by default and you should
implement the safeguard in all your deployments. This shows you the benefit
of a security monitoring solution such as Azure Security Center, to monitor
against potential side effects of the default configuration.

5.	 Let's apply the suggested remediation to this issue. To solve the privilege
escalation, you will need to configure the security context of the container
to no longer allow privilege escalation. This can be done by updating each
deployment using the following commands:

kubectl patch deployment crypto-miner -p '
 {
 "spec": {
 "template": {
 "spec": {
 "containers": [
 {
 "name": "mining",
 "securityContext": {
 "allowPrivilegeEscalation": false
 }
 }
]
 }
 }
 }

408 | Azure Security Center for Kubernetes

 }
 '
kubectl patch deployment escalation -p '
 {
 "spec": {
 "template": {
 "spec": {
 "containers": [
 {
 "name": "nginx-escalation",
 "securityContext": {
 "allowPrivilegeEscalation": false
 }
 }
]
 }
 }
 }
 }
 '
kubectl patch deployment host-volume -p '
 {
 "spec": {
 "template": {
 "spec": {
 "containers": [
 {
 "name": "nginx-host-volume",
 "securityContext": {
 "allowPrivilegeEscalation": false
 }
 }
]
 }
 }
 }
 }
 '

Analyzing configuration using Azure Secure Score | 409

As you can see in the command, you are patching each deployment. In
each patch, you are configuring the securityContext field and setting the
allowPrivilegeEscalation field to false.

After you have applied the patch, it will take Azure Security Center up to 30
minutes to refresh the security recommendation. After that time passes, your
cluster should show up as a healthy resource for this recommendation, as
shown in Figure 13.18:

Figure 13.18: Cluster is now healthy for the privilege escalation recommendation

410 | Azure Security Center for Kubernetes

6.	 Let's investigate another recommendation, namely the one called Usage of pod
HostPath volume mounts should be restricted to a known list to restrict node
access from compromised containers. Click on this recommendation to be
shown more details, as shown in Figure 13.19:

Figure 13.19: More details about the HostPath recommendation

This recommendation shows you similar information to the previous one.
However, the policy that triggered this recommendation can be tuned to allow
certain HostPath to be accessed. Let's explore how to edit the policy to allow this.

Analyzing configuration using Azure Secure Score | 411

7.	 Go back to the Azure Security Center main pane and click on Security policy on
the left-hand side. In the resulting pane, click on your subscription and then
click on the ASC Default assignment shown in Figure 13.20:

Figure 13.20: ASC default policy assignment

8.	 In the resulting pane, click on Parameters at the top of the screen. Look for
Allowed host paths in the list of parameters and change that parameter to the
following:

{ "paths": ["/tmp"]}

The result is shown in Figure 13.21:

Figure 13.21: Adding a path to the allowed host paths

To apply the changes, click Review + save at the bottom of the screen and then
click Save on the final screen:

412 | Azure Security Center for Kubernetes

Figure 13.22: Clicking Save to confirm the policy change

It will now take about 30 minutes for the recommendation to be refreshed.
After 30 minutes, this recommendation will no longer be active, since you
configured the /tmp path to be allowed.

9.	 There's one final recommendation worth highlighting in this list. That is
Kubernetes Services Management API server should be configured with
restricted access. If you remember, in Chapter 11, Network security in AKS, you
configured authorized IP ranges on your cluster. This is recommended by
Microsoft, and also shows up as an Azure Security Center recommendation.
Click on that recommendation to get more details, as shown in Figure 13.23:

Analyzing configuration using Azure Secure Score | 413

Figure 13.23: Details explaining that authorized IP ranges should be enabled

As you can see, again you get a description of the recommendation and
remediation steps. The reason this recommendation is worth highlighting is
that it contains a quick fix remediation within Azure Security Center. To quickly
remediate this recommendation, select your AKS cluster and click Remediate at
the bottom of the screen, as shown in Figure 13.24:

414 | Azure Security Center for Kubernetes

Figure 13.24: Remediating the authorized IP recommendation

This will show you a view similar to Figure 13.25 where you could input the IP
ranges you need to authorize access from.

Figure 13.25: Setting up authorized IP ranges through Azure Security Center

Neutralizing threats using Azure Defender | 415

You could configure this configuration from within Azure Security Center.
Since you'll be using Cloud Shell in the next steps and next chapters and
Cloud Shell does not have a fixed IP, it's not recommended to apply the
remediation while working through this book. It is, however, worthwhile to
show that Azure Security Center allows you to remediate certain configuration
recommendations directly from within Security Center.

You have now explored the recommendations and the secure score in Azure
Security Center. If you want to learn more about this, please refer to the Azure
documentation, which contains a YAML deployment example fully configured with
all the recommendations: https://docs.microsoft.com/azure/security-center/
kubernetes-workload-protections.

Neutralizing threats using Azure Defender

Now that you've explored the configuration best practices using Azure Security
Center and Secure Score, you will explore how to investigate and deal with security
alerts and active threats. Some of the workloads you created should have triggered
security alerts by now, which you can investigate in Azure Defender.

Specifically, in the Deploying offending workloads section, you created three
workloads that trigger security alerts in Azure Defender:

•	 crypto-miner.yaml: By deploying this file, you created a crypto-miner
on your cluster. This crypto-miner will generate two security alerts in
Azure Defender as you will see in this section. One alert will be generated
by monitoring the Kubernetes cluster itself, while another alert will be
generated based on DNS traffic.

•	 role.yaml: This file contained a cluster-wide role with very broad
permissions. This will generate a security alert in Azure Defender notifying
you of the risk.

•	 Kubernetes dashboard: You also created the Kubernetes dashboard and
exposed this publicly. Azure Defender will also generate a security alert
based on this.

https://docs.microsoft.com/azure/security-center/kubernetes-workload-protections
https://docs.microsoft.com/azure/security-center/kubernetes-workload-protections

416 | Azure Security Center for Kubernetes

Let's explore each of these security alerts in details:

1.	 To start, in Azure Security Center, click on Azure Defender in the left-hand
navigation bar. This will open the Azure Defender pane in Azure Security
Center. This shows you your coverage, your security alerts, and the advanced
protection options, as shown in Figure 13.26. In this section, you will focus on
the four security alerts that were generated.

Figure 13.26: Azure Defender - Overview pane

2.	 To get more details about the security alerts, click anywhere on the Security
alerts bar chart in the middle of the screen. That will take you to a new pane, as
shown in Figure 13.27:

Neutralizing threats using Azure Defender | 417

 Figure 13.27: Security alerts in Azure Defender

As you can see in Figure 13.27, four security alerts have been triggered: one for
the exposed Kubernetes dashboard, two for the crypto-miner, and one for the
high-privileged roles. Let's explore each one in more detail.

3.	 Let's start by exploring the Exposed Kubernetes dashboard detected alert. Click
on the alert title to get more details. To see all the details, click on View full
details in the resulting pane, as shown in Figure 13.28:

Figure 13.28: Getting full details of the alert

418 | Azure Security Center for Kubernetes

This will take you to a new pane, as shown in Figure 13.29:

Figure 13.29: Details of the Exposed Kubernetes dashboard detected alert

This shows you a couple of information points. First, it classifies this alert as
high severity, marks it as active, and also marks when it was first encountered.
Next, you get a description of the alert, which in this case explains that the
dashboard should not be exposed publicly. It also shows you the affected
resource. Finally, you see which stage of the MITRE ATT&CK® tactics
framework this attack targets. The MITRE ATT&CK® tactics framework is a
framework describing multiple stages in a cyber-attack. For more information
on MITRE ATT&CK® tactics, please refer to https://attack.mitre.org/versions/
v7/.

On the right-hand side of the screen, you get more details about the alert. This
contains the service name, the namespace, the port of the service, the target
port exposed on the backend pods, and the affected Azure resource ID and
subscription ID. If you click the Next: Take Action >> button at the bottom of
the screen, you'll be taken to a new pane, as shown in Figure 13.30:

https://attack.mitre.org/versions/v7/
https://attack.mitre.org/versions/v7/

Neutralizing threats using Azure Defender | 419

Figure 13.30: Security recommendations on the dashboard alert

In the Take action pane, you get information on how to mitigate the threat and
how to prevent future attacks like this. Notice how the Prevent future attacks
section contains a link to the security recommendations you reviewed in the
previous section.

4.	 Let's take the suggested action and update the Kubernetes dashboard service
so it is no longer of the LoadBalancer type using the following command. This
command will remove the nodePort that Kubernetes set up to expose the
service through the load balancer and change the type of the service back to
the ClusterIP type, which is only available from within the cluster.

kubectl patch service \

420 | Azure Security Center for Kubernetes

 kubernetes-dashboard -n kubernetes-dashboard \
 -p '{
 "spec": {
 "ports": [
 {
 "nodePort": null,
 "port": 443
 }
],
 "type": "ClusterIP"
 }
 }'

Finally, you see that you can optionally trigger automated responses or
suppress similar alerts in the future in case this alert is a false positive.

5.	 Now that you have mitigated the threat, you can dismiss the alert. That way,
others using the same subscription don't see this same alert. To dismiss the
alert, click on the status on the left-hand side of the screen, select Dismissed,
and click OK, as shown in Figure 13.31:

Figure 13.31: Dismissing the dashboard alert

Neutralizing threats using Azure Defender | 421

6.	 Let's move on to the next alert. Close the detail panes for the dashboard alert
by pressing the X at the top of the screen. Let's now focus on the first Digital
currency mining container detected alert. Select that alert and click on View full
details as you did with the previous alert. This will take you to a pane similar to
Figure 13.32:

Figure 13.32: Details of the Digital currency mining container detected alert

This view contains similar details to the previous alert. As you can see,
this alert is part of the Execution phase of the MITRE ATT&CK® tactics
framework. On the right-hand side of the pane, you now see the name of the
offending container, the image it's using, its namespace, and the name of the
offending pod.

422 | Azure Security Center for Kubernetes

If you press the Next: Take Action >> button at the bottom of the screen, you'll
be taken to the Take action view on this alert, as shown in Figure 13.33:

Figure 13.33: Security recommendations on the Digital currency mining container detected alert

Here, again, you see similar details to the previous alert. In the Mitigate the
threat section, you get a different description of how to mitigate this ongoing
threat. Don't take any mitigating action yet, since you'll need to explore one
more alert related to the crypto-miner.

Neutralizing threats using Azure Defender | 423

7.	 To explore that alert, close the detailed pane for the first crypto-miner
alert by pressing the X at the top of the screen. Now select the second alert,
which is called Digital currency mining activity (Preview). This is actually not a
Kubernetes alert, but an alert based on DNS, as you can see in Figure 13.34:

Note

This alert will only show up if you enabled Azure Defender for DNS. If you did
not enable this, you will not get this alert.

Figure 13.34: Details of the Digital currency mining activity alert

This alert was generated by Azure Defender for DNS. It shows you a number of
details about the attack itself. On the right-hand side of the pane, you see more
details about the attack, showing you the domain name and the IP addresses
used. If you have a look at the Take action pane, you get more information
about potential next steps for this attack, as shown in Figure 13.35:

424 | Azure Security Center for Kubernetes

Figure 13.35: Security recommendations on the curreny mining alert

Since this is a DNS-based alert, there are limited specifics here on which
processes to inspect. However, Azure still provides you with a number of steps
to run through to mitigate this threat. As you already know the process that
is running this crypto-miner, you can mitigate the threat using the following
command:

kubectl delete -f crypto-miner.yaml

8.	 This will resolve the alert. To actually mark it as resolved, you can dismiss the
alert in the Azure portal. To do this, click on the status on the left-hand side of
the screen, select the Dismissed status, and click OK, as shown in Figure 13.36:

Neutralizing threats using Azure Defender | 425

Figure 13.36: Dismissing the digital currency DNS alert

9.	 From the Security alerts pane, click on the last alert, which is called New high
privileges role detected, and click on View full details in the resulting pane. This
will bring you to a pane similar to Figure 13.37:

Figure 13.37: New high privileges role detected alert

426 | Azure Security Center for Kubernetes

This is a low-severity alert. As with the previous alerts, you get the description,
the affected resource, and the phase in the MITRE ATT&CK® tactics
framework, which is persistence in this case. This means that this potential
attack is used by attackers to gain persistent access to your environment.

On the right-hand side, you also get the alert details, with the role name, the
namespace (which in this case is the whole cluster since it is a ClusterRole),
and the rules this role gives access to. If you click the Next: Take Action >>
button, you'll get more information about the mitigation as well, as shown in
Figure 13.38:

Figure 13.38: Security recommendations on the new high privileges alert

Neutralizing threats using Azure Defender | 427

As you can see here, Azure recommends you review the role in the alerts and
check any role bindings linked to this role. It is also recommended to grant
more restricted privileges than the open permissions as provided in this role.
Let's also remove this threat from the cluster using the following command:

kubectl delete -f role.yaml

This will delete the role from the cluster. You can also dismiss this alert,
by clicking on the status on the left-hand side of the screen, selecting the
Dismissed state, and clicking OK, as shown in Figure 13.39:

Figure 13.39: Dismissing the New high privileges alert

This covers all the alerts that were generated by the resources you created earlier
in this chapter. The resources linked to the alerts were already deleted as part of
the remediation, but let's also delete the other resources that were created in this
chapter:

kubectl delete -f escalation.yaml
kubectl delete -f host-volume.yaml
kubectl delete -f https://raw.githubusercontent.com/kubernetes/
dashboard/v2.0.0/aio/deploy/recommended.yaml

And that concludes this chapter.

https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.0/aio/deploy/recommended.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.0/aio/deploy/recommended.yaml

428 | Azure Security Center for Kubernetes

Summary

In this chapter, you explored Azure Security Center and Azure Defender. Azure
Security Center is an infrastructure security monitoring platform. It provides both
monitoring of security configuration as well as monitoring of any potential ongoing
threats. To monitor workloads in a Kubernetes cluster, Azure Security Center
makes use of Azure Policy for AKS.

To start, you enabled Azure Policy for AKS. You then enabled Azure Security Center
and Azure Defender on your subscription.

You then created five harmful workloads on your cluster. Some of those caused
configuration recommendations in Azure Security Center. Some others even
caused security alerts to be triggered in Azure Defender. You explored four
security alerts and followed the mitigation steps recommended to resolve these
alerts.

14
Serverless functions

Serverless computing and serverless functions have gained tremendous traction
over the past few years due to scalability and reduced management overhead.
Cloud services such as Azure Functions, AWS Lambda, and GCP Cloud Run have
made it very easy for users to run their code as serverless functions.

The word serverless refers to any solution where you don't need to manage
servers. Serverless functions refer to a subset of serverless computing where you
can run your code as a function on-demand. This means that your code in the
function will only run and be executed when there is a demand. This architectural
style is called event-driven architecture. In an event-driven architecture, the
event consumers are triggered when there is an event. In the case of serverless
functions, the event consumers will be these serverless functions. An event can be
anything from a message in a queue to a new object uploaded to storage, or even
an HTTP call.

430 | Serverless functions

Serverless functions are frequently used for backend processing. A common
example of serverless functions is creating thumbnails of a picture that is uploaded
to storage, as shown in Figure 14.1. Since you cannot predict how many pictures
will be uploaded and when they will be uploaded, it is hard to plan traditional
infrastructure and how many servers you should have available for this process. If
you implement the creation of that thumbnail as a serverless function, this function
will be called on each picture that is uploaded. You don't have to plan the number
of functions since each new picture will trigger a new function to be executed.

Figure 14.1: Example architecture of a serverless function to generate thumbnails of images

As you saw in the previous example, functions will automatically scale to
meet increased or decreased demand. Additionally, each function can scale
independently from other functions. However, this automatic scaling is just one
benefit of using serverless functions. Another benefit of serverless functions is
the ease of development. Using serverless functions, you can focus on writing
the code and don't have to deal with the underlying infrastructure. Serverless
functions allow code to be deployed without worrying about managing servers and
middleware. Finally, in public cloud serverless functions, you pay per execution of
the function. This means that you pay each time your functions are run, and you
are charged nothing for the idle time when your functions are not run.

The popularity of public cloud serverless function platforms has caused multiple
open-source frameworks to be created to enable users to create serverless
functions on top of Kubernetes. In this chapter, you will learn how to deploy
serverless functions on Azure Kubernetes Service (AKS) directly using the
open-source version of Azure Functions. You will start by running a simple
function that is triggered based on an HTTP message. Afterward, you will install a
function autoscaler feature on your cluster. You will also integrate AKS-deployed
applications with Azure storage queues. We will be covering the following topics:

Various functions platforms | 431

•	 Overview of different functions platforms

•	 Deploying an HTTP-triggered function

•	 Deploying a queue-triggered function

Let's start this chapter by exploring the various functions platforms that are
available for Kubernetes.

Various functions platforms

Functions platforms, such as Azure Functions, AWS Lambda, and Google Cloud
Functions, have gained tremendous popularity. The ability to run code without the
need to manage servers and having virtually limitless scale is very popular. The
downside of using the functions implementation of a cloud provider is that you
are locked into the cloud provider's infrastructure and their programming model.
Also, you can only run your functions in the public cloud and not in your own
datacenter.

A number of open-source functions frameworks have been launched to solve
these downsides. There are a number of popular frameworks that can be run on
Kubernetes:

•	 Knative (https://cloud.google.com/knative/): Knative is a serverless
platform written in the Go language and developed by Google. You can run
Knative functions either fully managed on Google Cloud or on your own
Kubernetes cluster.

•	 OpenFaaS (https://www.openfaas.com/): OpenFaaS is a serverless
framework that is Kubernetes-native. It can run on either managed
Kubernetes environments such as AKS or on a self-hosted cluster. OpenFaaS
is also available as a managed cloud service using OpenFaaSCloud. The
platform is written in the Go language.

•	 Serverless (https://serverless.com/): This is a Node.js-based serverless
application framework that can deploy and manage functions on multiple
cloud providers, including Azure. Kubernetes support is provided via
Kubeless.

•	 Fission.io (https://fission.io/): Fission is a serverless framework backed by
the company Platform9. It is written in the Go language and is Kubernetes-
native. It can run on any Kubernetes cluster.

https://cloud.google.com/knative/
https://www.openfaas.com/
https://serverless.com/
https://fission.io/

432 | Serverless functions

•	 Apache OpenWhisk (https://openwhisk.apache.org/): OpenWhisk is an
open-source, distributed serverless platform maintained by the Apache
organization. It can be run on Kubernetes, Mesos, or Docker Compose. It is
primarily written in the Scala language.

Microsoft has taken an interesting strategy with its functions platform. Microsoft
operates Azure Functions as a managed service on Azure and has open-sourced
the complete solution and made it available to run on any system
(https://github.com/Azure/azure-functions-host). This also makes the Azure
Functions programming model available on top of Kubernetes.

Microsoft has also released an additional open-source project in partnership with
Red Hat called Kubernetes Event-driven Autoscaling (KEDA) to make scaling
functions on top of Kubernetes easier. KEDA is a custom autoscaler that can allow
deployments on Kubernetes to scale down to and up from zero pods, which is
not possible using the default Horizontal Pod Autoscaler (HPA) in Kubernetes.
The ability to scale from zero to one pod is important so that your application can
start processing events, but scaling down to zero instances is useful for preserving
resources in your cluster. KEDA also makes additional metrics available to the
Kubernetes HPA to make scaling decisions based on metrics from outside the
cluster (for example, the number of messages in a queue).

Note

We introduced and explained the HPA in Chapter 4, Building scalable
applications.

In this chapter, you will deploy Azure Functions to Kubernetes with two examples:

•	 An HTTP-triggered function (without KEDA)

•	 A queue-triggered function (with KEDA)

Before starting with these functions, the next section will consider the necessary
prerequisites for these deployments.

https://openwhisk.apache.org/
https://github.com/Azure/azure-functions-host

Setting up the prerequisites | 433

Setting up the prerequisites

In this section, you will set up the prerequisites needed to build and run functions
on your Kubernetes cluster. You need to set up an Azure container registry (ACR)
and a virtual machine (VM) in Azure that will be used to develop the functions.
The ACR will be used to store custom container images that contain the functions
you will develop. You will also use a VM to build the functions and create Docker
images, since you cannot do this from Azure Cloud Shell.

Container images and a container registry were introduced in Chapter 1,
Introduction to containers and Kubernetes, in the section on Container images.
A container image contains all the software required to start an actual running
container. In this chapter, you will build custom container images that contain your
functions. You need a place to store these images so that Kubernetes can pull them
and run the containers at scale. You will use ACR for this. ACR is a private container
registry that is fully managed by Azure.

Up to now in this book, you have run all the examples on Azure Cloud Shell. For the
example in this chapter, you will need a separate VM because Azure Cloud Shell
doesn't allow you to build container images. You will create a new VM in Azure to
do these tasks.

Let's begin by creating an ACR.

Azure Container Registry

Azure Functions on Kubernetes needs an image registry to store its container
images. In this section, you will create an ACR and configure your Kubernetes
cluster to have access to this cluster:

434 | Serverless functions

1.	 In the Azure search bar, search for container registry and click on Container
registries, as shown in Figure 14.2:

Figure 14.2: Navigating to Container registry services through the Azure portal

2.	 Click the Add button at the top to create a new registry. To organize the
resources in this chapter together, create a new resource group. To do this,
click on Create new under the Resource group field to create a new resource
group, and call it Functions-KEDA, as shown in Figure 14.3:

Figure 14.3: Creating a new resource group

Setting up the prerequisites | 435

Provide the details to create the registry. The registry name needs to be
globally unique, so consider adding your initials to the registry name. It is
recommended to create the registry in the same location as your cluster. To
reduce spending for the demo, you can change SKU to Basic. Select the Review
+ create button at the bottom to create the registry, as shown in Figure 14.4:

Figure 14.4: Providing details to create the registry

In the resulting pane, click the Create button to create the registry.

436 | Serverless functions

3.	 Once your registry is created, open Cloud Shell so that you can configure
your AKS cluster to get access to your container registry. Use the following
command to give AKS permissions to your registry:

az aks update -n handsonaks \
-g rg-handsonaks --attach-acr <acrName>

This will return an output similar to Figure 14.5. The figure has been cropped to
show only the top part of the output:

Figure 14.5: Allowing AKS cluster to access the container registry

You now have an ACR that is integrated with AKS. In the next section, you will
create a VM that will be used to build the Azure functions.

Creating a VM

In this section, you will create a VM and install the tools necessary to run Azure
Functions on this machine:

•	 The Docker runtime

•	 The Azure CLI

•	 Azure Functions

•	 Kubectl

Note

To ensure a consistent experience, you will be creating a VM on Azure that
will be used for development. If you prefer to run the sample on your local
machine, you can install all the required tools locally.

Setting up the prerequisites | 437

Let's get started with creating the VM:

1.	 To ensure this example works with the Azure trial subscription, you will need
to scale down your cluster to one node. You can do this using the following
command:

az aks scale -n handsonaks -g rg-handsonaks --node-count 1

2.	 To authenticate to the VM you are going to create, you'll need a set of SSH keys.
If you followed the example in Chapter 9, Azure Active Directory pod‑managed
identities in AKS in the Setting up a new cluster with AAD pod-managed identity
section, you will already have a set of SSH keys. To verify that you have SSH
keys, run the following command:

ls ~/.ssh

This should show you the presence of an SSH private key (id_rsa) and a public
key (id_rsa.pub), as shown in Figure 14.6:

Figure 14.6: Verifying SSH keys are present

If you do not have these keys already available, you will need to generate a set
of SSH keys using the following command:

ssh-keygen

You will be prompted for a location and a passphrase. Keep the default location
and input an empty passphrase.

3.	 You will now create the VM. You will create an Ubuntu VM using the following
command:

az vm create -g Functions-KEDA -n devMachine \
 --image UbuntuLTS --ssh-key-value ~/.ssh/id_rsa.pub \
 --admin-username handsonaks --size Standard_D1_v2

4.	 This will take a couple of minutes to complete. Once the VM is created, Cloud

438 | Serverless functions

Shell should show you its public IP, as displayed in Figure 14.7:

Figure 14.7: Creating the development VM

Connect to the VM using the following command:

ssh handsonaks@<public IP>

You will be prompted about whether you trust the machine's identity. Type yes
to confirm.

5.	 You're now connected to a new VM on Azure. On this machine, we will begin by
installing Docker:

sudo apt-get update
sudo apt-get install docker.io -y
sudo systemctl enable docker
sudo systemctl start docker

6.	 To make the operation smoother, add the user to the Docker group. This will
ensure you can run Docker commands without sudo:

sudo usermod -aG docker handsonaks
newgrp docker

You should now be able to run the hello-world command:

docker run hello-world

Setting up the prerequisites | 439

This will show you an output similar to Figure 14.8:

Figure 14.8: Verifying Docker runs on the VM

7.	 Next, you will install the Azure CLI on this VM. You can install the CLI using the
following command:

curl -sL https://aka.ms/InstallAzureCLIDeb | sudo bash

8.	 Verify that the CLI was installed successfully by signing in:

az login

440 | Serverless functions

This will display a login code that you need to enter at https://microsoft.com/
devicelogin:

Figure 14.9: Signing in to the Azure CLI

Browse to that website and paste in the login code that was provided to you to
enable you to sign in to Cloud Shell. Make sure to do this in a browser you are
signed in to with the user who has access to your Azure subscription.

You can now use the CLI to authenticate your machine to ACR. This can be
done using the following command:

az acr login -n <registryname>

The credentials to ACR expire after 3 hours. If you run into the following error
during this demonstration, you can sign in to ACR again using the following
command:

Figure 14.10: Potential authentication error in the future

9.	 Next, you'll install kubectl on your machine. The Azure CLI has a shortcut to
install the CLI, which you can use to install it:

sudo az aks install-cli

https://microsoft.com/devicelogin
https://microsoft.com/devicelogin

Setting up the prerequisites | 441

Let's verify that kubectl can connect to our cluster. For this, we'll first get the
credentials and then execute a kubectl command:

az aks get-credentials -n handsonaks -g rg-handsonaks
kubectl get nodes

10.	Now, you can install the Azure Functions tools on this machine. To do this, run
the following commands:

wget -q https://packages.microsoft.com/config/ubuntu/18.04/packages-
microsoft-prod.deb
sudo dpkg -i packages-microsoft-prod.deb
sudo apt-get update
sudo apt-get install azure-functions-core-tools-3 -y

This will return an output similar to Figure 14.11:

Figure 14.11: Installing Functions core tools

442 | Serverless functions

Note

If you are running a newer version of Ubuntu than 18.04, please make sure
that you download the correct dpkg package by changing the URL in the first
line to reflect your Ubuntu version.

You now have the prerequisites to start working with functions on Kubernetes. You
created an ACR to store custom container images, and you have a VM that will be
used to create and build Azure functions. In the next section, you will build your
first function, which is HTTP-triggered.

Creating an HTTP-triggered Azure function

In this first example, you will create an HTTP-triggered Azure function. This means
that you can browse to the page hosting the actual function:

1.	 To begin, create a new directory and navigate to that directory:

mkdir http
cd http

2.	 Now, you will initialize a function using the following command:

func init --docker

The ––docker parameter specifies that you will build the function as a Docker
container. This will result in a Dockerfile being created. Select the Python
language, which is option 3 in the following screenshot:

Creating an HTTP-triggered Azure function | 443

Figure 14.12: Creating a Python function

This will create the required files for your function to work.

3.	 Next, you will create the actual function. Enter the following command:

func new

This should result in an output like the following. Select the eighth option, HTTP
trigger, and name the function python-http:

444 | Serverless functions

Figure 14.13: Creating an HTTP-triggered function

4.	 The code of the function is stored in the directory called python-http. You are
not going to make code changes to this function. If you want to check out the
source code of the function, you can run the following command:

cat python-http/__init__.py

5.	 You will need to make one change to the function's configuration file. By
default, functions require an authenticated request. You will change this to
anonymous for this demo. Make the change using the vi command by executing
the following command:

vi python-http/function.json

Replace authLevel on line 5 with anonymous. To make that change, press I to go
into insert mode, then remove function and replace it with anonymous:

Creating an HTTP-triggered Azure function | 445

Figure 14.14: Changing the authLevel function to anonymous

Hit Esc, type :wq!, and then hit Enter to save and quit vi.

Note

You changed the authentication requirement for your function to anonymous.
This will make the demo easier to execute. If you plan to release functions to
production, you need to carefully consider this setting, since this controls who
has access to your function.

6.	 You are now ready to deploy your function to AKS. You can deploy the function
using the following command:

func kubernetes deploy --name python-http \
--registry <registry name>.azurecr.io

446 | Serverless functions

This will cause the functions runtime to do a couple of steps. First, it will build
a container image, then it will push that image to the registry, and finally, it will
deploy the function to Kubernetes:

Figure 14.15: Deploying the function to AKS

You can click the Invoke url URL that is shown to get access to your function.
Before doing so, however, let's explore what was created on the cluster.

7.	 To create the function, a regular deployment on top of Kubernetes was used.
To check the deployment, you can run the following command:

kubectl get deployment

This will show you the deployment, as in Figure 14.16:

Figure 14.16: Deployment details

8.	 This process also created a service on top of your Kubernetes cluster. You can
get the public IP of the service that was deployed and connect to it:

kubectl get service

This will show you the service and its public IP, as shown in Figure 14.17. Notice
how this public IP is the same as the one shown in the output of Step 4.

Creating a queue-triggered function | 447

Figure 14.17: Getting the service's public IP

Open a web browser and browse to http://<external-ip>/api/python-
http?name=handsonaks. You should see a web page showing you Hello,
handsonaks. This HTTP triggered function executed successfully. This is shown in
Figure 14.18:

Figure 14.18: Output of the HTTP triggered function

You have now created a function with an HTTP trigger. Using an HTTP-triggered
function is useful in scenarios where you are providing an HTTP API with
unpredictable load patterns. Let's clean up this deployment before moving on to
the next section:

kubectl delete deployment python-http-http
kubectl delete service python-http-http
kubectl delete secret python-http

In this section, you created a sample function using an HTTP trigger. Let's take that
one step further and integrate a new function with storage queues and set up the
KEDA autoscaler in the next section.

Creating a queue-triggered function

In the previous section, you created a sample HTTP function. In this section, you'll
build another sample using a queue-triggered function. Queues are often used to
pass messages between different components of an application. A function can be
triggered based on messages in a queue to then perform additional processing on
these messages.

448 | Serverless functions

In this section, you'll create a function that is integrated with Azure storage queues
to consume events. You will also configure KEDA to allow scaling to/from zero
pods in the case of low traffic.

Let's start by creating a queue in Azure.

Creating a queue

In this section, you will create a new storage account and a new queue in that
storage account. You will connect functions to that queue in the next section,
Creating a queue-triggered function.

1.	 To begin, create a new storage account. Search for storage accounts in the
Azure search bar and select Storage accounts:

Figure 14.19: Navigating to Storage accounts service through the Azure portal

2.	 Click the + New button at the top to create a new storage account. Provide
the details to create the storage account. The storage account name has to be
globally unique, so consider adding your initials. It is recommended to create
the storage account in the same region as your AKS cluster. Finally, to save on
costs, you are recommended to downgrade the replication setting to Locally-
redundant storage (LRS) as shown in Figure 14.20:

Creating a queue-triggered function | 449

Figure 14.20: Providing the details to create the storage account

Once you're ready, click the Review + create button at the bottom. On the
resulting screen, select Create to start the creation process.

450 | Serverless functions

3.	 It will take about a minute to create the storage account. Once it is created,
open the account by clicking on the Go to resource button. In the Storage
account pane, select Access keys in the left-hand navigation, click on Show
keys, and copy the primary connection string, as shown in Figure 14.21. Note
down this string for now:

Figure 14.21: Copying the primary connection string

Note

For production use cases, it is not recommended to connect to Azure Storage
using the access key. Any user with that access key has full access to the
storage account and can read and delete all files on it. It is recommended
to either generate a shared access signatures (SAS) token to connect to
storage or to use Azure AD-integrated security. To learn more about SAS
token authentication to storage, refer to https://docs.microsoft.com/rest/api/
storageservices/delegate-access-with-shared-access-signature. To learn more
about Azure AD authentication to Azure Storage, please refer to https://docs.
microsoft.com/rest/api/storageservices/authorize-with-azure-active-directory.

https://docs.microsoft.com/rest/api/storageservices/delegate-access-with-shared-access-signature
https://docs.microsoft.com/rest/api/storageservices/delegate-access-with-shared-access-signature
https://docs.microsoft.com/rest/api/storageservices/authorize-with-azure-active-directory
https://docs.microsoft.com/rest/api/storageservices/authorize-with-azure-active-directory

Creating a queue-triggered function | 451

4.	 The final step is to create our queue in the storage account. Look for queue
in the left-hand navigation, click the + Queue button to add a queue, and
provide it with a name. To follow along with this demo, use function as the
queue name:

Figure 14.22: Creating a new queue

You have now created a storage account in Azure and have its connection string.
You created a queue in this storage account. In the next section, you will create a
function that will consume messages from the queue.

Creating a queue-triggered function

In the previous section, you created a queue in Azure. In this section, you will
create a new function that will monitor this queue and remove messages from the
queue. You will need to configure this function with the connection string to this
queue:

1.	 From within the VM, begin by creating a new directory and navigating to it:

cd ..
mkdir js-queue
cd js-queue

2.	 Now we can create the function. We will start with the initialization:

func init --docker

452 | Serverless functions

This will ask you two questions now. For the runtime, select node (option 2),
and for the language, select JavaScript (option 1). This should result in the
output shown in Figure 14.23:

Figure 14.23: Initializing a new function

Following the initialization, you can create the actual function:

func new

Creating a queue-triggered function | 453

This will ask you for a trigger. Select Azure Queue Storage trigger (option 10).
Give the name js-queue to the new function. This should result in the output
shown in Figure 14.24:

Figure 14.24: Creating a queue-triggered function

3.	 You will now need to make a couple of configuration changes. You need to
provide the function you created the connection string on to Azure Storage
and provide the queue name. First, open the local.settings.json file to
configure the connection strings for storage:

vi local.settings.json

To make the changes, follow these instructions:

•	 Hit I to go into insert mode.

•	 Replace the connection string for AzureWebJobsStorage with the
connection string you copied earlier. Add a comma to the end of this
line.

•	 Add a new line and then add the following text on that line:

"QueueConnString": "<your connection string>"

454 | Serverless functions

The result should look like Figure 14.25:

Figure 14.25: Editing the local.settings.json file

•	 Save and close the file by hitting the Esc key, type :wq!, and then press
Enter.

4.	 The next file you need to edit is the function configuration itself. Here, you will
refer to the connection string from earlier, and provide the queue name we
chose in the Creating a queue section. To do that, use the following command:

vi js-queue/function.json

To make the changes, follow these instructions:

•	 Hit I to go into insert mode.

•	 Change the queue name to the name of the queue you created
(function).

•	 Next, add QueueConnString to the connection field.

Creating a queue-triggered function | 455

Your configuration should now look like Figure 14.26:

Figure 14.26: Editing the js-queue/function.json file

•	 Save and close the file by hitting the Esc key, type :wq!, and then
press Enter.

5.	 You are now ready to publish your function to Kubernetes. You will start by
setting up KEDA on your Kubernetes cluster:

kubectl create ns keda
func kubernetes install --keda --namespace keda

This should return an output similar to Figure 14.27:

Figure 14.27: Installing KEDA on Kubernetes

456 | Serverless functions

This will set up KEDA on your cluster. The installation doesn't take long. To
verify that the installation was successful, make sure that the KEDA pod is
running in the keda namespace:

kubectl get pod -n keda

This should return an output similar to Figure 14.28:

Figure 14.28: Verifying the KEDA installation succeeded

6.	 You can now deploy the function to Kubernetes. You will configure KEDA to
look at the number of queue messages every 5 seconds (polling-interval=5)
to have a maximum of 15 replicas (max-replicas=15), and to wait 15 seconds
before removing pods (cooldown-period=15). To deploy and configure KEDA in
this way, use the following command:

func kubernetes deploy --name js-queue \
--registry <registry name>.azurecr.io \
--polling-interval=5 --max-replicas=15 --cooldown-period=15

This will return an output similar to Figure 14.29:

Figure 14.29: Deploying the queue-triggered function

To verify that the setup completed successfully, you can run the following
command:

kubectl get all

Creating a queue-triggered function | 457

This will show you all the resources that were deployed. As you can see in
Figure 14.30, this setup created a deployment, ReplicaSet, and an HPA. In the
HPA, you should see that there are no replicas currently running:

Figure 14.30: Verifying the objects created by the setup

7.	 Now you will create a message in the queue to trigger KEDA and create a pod.
To see the scaling event, run the following command:

kubectl get hpa -w

8.	 To create a message in the queue, we are going to use the Azure portal. To
create a new message, open the queue in the storage that you created earlier.
Click on the + Add message button at the top of your screen, create a test
message, and click on OK. This is shown in Figure 14.31:

Figure 14.31: Adding a message to the queue

458 | Serverless functions

After creating this message, have a look at the output of the previous command
you issued. It might take a couple of seconds, but soon enough, your HPA
should scale to one replica. Afterward, it should also scale back down to zero
replicas:

Figure 14.32: KEDA scaling from 0 to 1 and back to 0 replicas

This has shown you that KEDA enabled the Kubernetes HPA to scale from zero
to one pod when there are messages in the queue, and also from one to zero
pods when those messages are processed.

You have now created a function that is triggered by messages being added to a
queue. You were able to verify that KEDA scaled the pods from 0 to 1 when you
created a message in the queue, and back down to 0 when there were no messages
left. In the next section, you will execute a scale test, and you will create multiple
messages in the queue and see how the functions react.

Scale testing functions

In the previous section, you saw how functions reacted when there was a single
message in the queue. In this example, you are going to send 1,000 messages into
the queue and see how KEDA will first scale out the function, and then scale back
in, and eventually scale back down to zero:

1.	 In the current Cloud Shell, watch the HPA using the following command:

kubectl get hpa -w

2.	 To start pushing the messages, you are going to open a new Cloud Shell
session. To open a new session, select the Open new session button in Cloud
Shell:

Figure 14.33: Opening a new Cloud Shell instance

Creating a queue-triggered function | 459

To send the 1,000 messages into the queue, a Python script has been provided
called sendMessages.py in Chapter 15 of the code examples in the GitHub repo
accompanying this book. To make the script work, you'll need to install azure-
storage-queue package using pip:

pip install azure-storage-queue==12.1.5

Once that is installed, you will need to provide this script with your storage
account connection string. To do this, open the file using:

code sendMessages.py

Edit the storage connection string on line 8 to your connection string:

Figure 14.34: Pasting in your connection string for your storage account on line 8

3.	 Once you have pasted in your connection string, you can execute the Python
script and send 1,000 messages to your queue:

python sendMessages.py

While the messages are being sent, switch back to the previous Cloud Shell
instance and watch KEDA scale from 0 to 1, and then watch the HPA scale
to the number of replicas. The HPA uses metrics provided by KEDA to make
scaling decisions. Kubernetes, by default, doesn't know about the number of
messages in an Azure storage queue that KEDA provides to the HPA.

460 | Serverless functions

Note

Depending on how quickly KEDA in your cluster scales up the application, your
deployment might not scale to the 15 replicas that are shown in Figure 14.29.

Once the queue is empty, KEDA will scale back down to zero replicas:

Figure 14.35: KEDA will scale from 0 to 1, and the HPA will scale to 15 pods

As you can see in the output of this command, the deployment was scaled first
from zero to one replica, and then gradually got scaled out to a maximum of
15 replicas. When there were no more messages in the queue, the deployment
was scaled down again to zero replicas.

This concludes the examples of running serverless functions on top of Kubernetes.
Let's make sure to clean up the objects that were created. Run the following
command from within the VM you created (the final step will delete this VM; if you
want to keep the VM, don't run the final step):

kubectl delete secret js-queue
kubectl delete scaledobject js-queue
kubectl delete deployment js-queue
func kubernetes remove --namespace keda
az group delete -n Functions-KEDA --yes

In this section, you ran a function that was triggered by messages in a storage
queue on top of Kubernetes. You used a component called KEDA to achieve scaling
based on the number of queue messages. You saw how KEDA can scale from 0 to 1
and back down to 0. You also saw how the HPA can use metrics provided by KEDA
to scale out a deployment.

Summary | 461

Summary

In this chapter, you deployed serverless functions on top of your Kubernetes
cluster. To achieve this, you first created a VM and an ACR.

You started the functions deployments by deploying a function that used an HTTP
trigger. The Azure Functions core tools were used to create that function and to
deploy it to Kubernetes.

Afterward, you installed an additional component on your Kubernetes cluster
called KEDA. KEDA allows serverless scaling in Kubernetes. It allows deployments
to and from zero pods, and it also provides additional metrics to the HPA. You used
a function that was triggered on messages in an Azure storage queue.

In the next – and final – chapter of this book, you'll learn how to integrate
containers and Kubernetes in a continuous integration and continuous delivery
(CI/CD) pipeline using GitHub Actions.

15
Continuous

integration and
continuous

deployment for AKS
DevOps is the union of people, processes, and tools to deliver software faster,
more frequently, and more reliably. Within the DevOps culture are the practices
of continuous integration and continuous deployment (CI/CD). CI/CD is a set of
practices, implemented through one or more tools, to automatically test, build, and
deliver software.

The CI phase refers to the practice of continuously testing and building software.
The outcome of the CI phase is a deployable artifact. That artifact could be many
things; for instance, for a Java application it would be a JAR file, and in the case of a
container-based application it would be a container image.

464 | Continuous integration and continuous deployment for AKS

The CD phase refers to the practice of continuously releasing software. During
the CD phase, the artifact that was generated during CI is deployed to multiple
environments, typically going from test to QA to staging to production.

Multiple tools exist to implement CI/CD. GitHub Actions is one such tool. GitHub
Actions is a workflow automation system built into GitHub. With GitHub Actions,
you can build, test, and deploy applications written in any language to a variety of
platforms. It also allows you to build container images and deploy applications to a
Kubernetes cluster, which you'll do in this chapter.

Specifically, this chapter will cover the following topics:

•	 CI/CD process for containers and Kubernetes

•	 Setting up Azure and GitHub

•	 Setting up a CI pipeline

•	 Setting up a CD pipeline

Let's start by exploring the CI/CD lifecycle for containers and Kubernetes.

CI/CD process for containers and Kubernetes

Before you start building a pipeline, it's good to understand the typical CI/CD
process for containers and Kubernetes. In this section, the high-level process
shown in Figure 15.1 will be explored in more depth. For a more detailed exploration
on CI/CD and DevOps for Kubernetes, you are encouraged to explore the following
free online eBook by Microsoft: https://docs.microsoft.com/dotnet/architecture/
containerized-lifecycle/.

Figure 15.1: Container and Kubernetes CI/CD process

https://docs.microsoft.com/dotnet/architecture/containerized-lifecycle/
https://docs.microsoft.com/dotnet/architecture/containerized-lifecycle/

CI/CD process for containers and Kubernetes | 465

The process starts with somebody making code changes. Code changes could
mean application code changes, changes to the Dockerfile used to build the
container, or changes to the Kubernetes YAML files used to deploy the application
on a cluster.

Once code changes are complete, those changes are committed to a source control
system. Typically, this is a Git repository, but other systems, such as Subversion
(SVN), also exist. In a Git repository, you would usually have multiple branches of
your code. Branches enable multiple individuals and teams to work on the same
code base in parallel without interfering with each other. Once the work done on a
branch is complete, it is merged with the main (or master) branch. Once a branch is
merged, the changes from that branch are shared with others using that code base.

Note

Branches are a powerful functionality of the Git source control system. There
are multiple ways to manage how you use branches in a code base. Please
refer to the chapter on branches in Scott Chacon and Ben Straub's Pro Git
(Apress, 2014) for a more in-depth exploration of this topic: https://git-scm.
com/book/en/v2/Git-Branching-Branches-in-a-Nutshell.

After code is pushed into source control, either in the main branch or a feature
branch, a CI pipeline can be triggered. In a container-based application, this means
that the code is built into a container image, that image is tested, and if tests
succeed, it is pushed to a container registry. Depending on the branch, you could
include different steps and different tests. For example, on feature branches you
might only build and test the container to verify the code works but not push it to a
registry, while on the main branch you might build and test the container and push
it to a container registry.

Finally, a CD pipeline can be triggered to deploy or update your application on
Kubernetes. Typically, in a CD pipeline, the deployment moves through different
stages. You can deploy your updated application first to a staging environment,
where you can run both automated and manual tests on the application before
moving it to production.

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

466 | Continuous integration and continuous deployment for AKS

Now that you've got an understanding of the CI/CD process for containers and
Kubernetes, you can start building the example part of this chapter. Let's start with
setting up Azure and GitHub to do this.

Setting up Azure and GitHub

In this section, you'll set up the basic infrastructure you'll use to create and run the
pipeline that you will build. To host your container images, you need a container
registry. You could use a number of container registries, but here you'll create
an Azure Container Registry instance because it is well integrated with Azure
Kubernetes Service (AKS). After creating the container registry, you will need to
link that container registry to your AKS cluster and create a new service principal,
and then you'll need to set up a GitHub repository to run the example part of this
chapter. Execute the following seven steps to complete this activity:

1.	 To start, create a new container registry. In the Azure search bar, look
for container registry and click on Container registries, as shown in
Figure 15.2:

Figure 15.2: Navigating to the Container registry service through the Azure portal

Setting up Azure and GitHub | 467

2.	 Click the Create button at the top to create a new registry. To organize the
resources in this chapter together, create a new resource group. To do this,
click on Create new to create a new resource group and call it rg-pipelines,
as shown in Figure 15.3:

Figure 15.3: Creating a new resource group

Provide the details required to create the registry. The registry name needs
to be globally unique, so consider adding your initials to the registry name.
It is recommended to create the registry in the same location as your cluster.
To optimize the spend for the demo, you can change the SKU to Basic. Select
the Review + Create button at the bottom to create the registry, as shown in
Figure 15.4:

468 | Continuous integration and continuous deployment for AKS

Figure 15.4: Creating a new container registry

In the resulting pane, click the Create button to create the registry.

3.	 When your registry is created, open Cloud Shell so that you can configure
your AKS cluster to get access to your container registry. Use the following
command to give AKS permissions on your registry:

az aks update -n handsonaks \
-g rg-handsonaks --attach-acr <acrName>

This will return an output similar to Figure 15.5, which has been cropped to
show only the top part of the output:

Setting up Azure and GitHub | 469

Figure 15.5: Allowing AKS cluster to access the container registry

4.	 Next, you'll need to create a service principal that will be used by GitHub
Actions to connect to your subscription. You can create this service principal
using the following command:

az ad sp create-for-rbac --name "cicd-pipeline" \
--sdk-auth --role contributor

You will need the full output JSON of this command, as highlighted in
Figure 15.6, later in GitHub. Copy this output:

Figure 15.6: Creating a new service principal

470 | Continuous integration and continuous deployment for AKS

5.	 This completes the Azure part of the setup. Next, you'll need to log in to
GitHub, fork the repo that comes with this book, and configure a secret in this
repo. If you do not yet have a GitHub account, please create one via https://
github.com/join. If you already have an account, please sign in using https://
github.com/login.

6.	 Once you are logged in to GitHub, browse to the repository associated with
this book at https://github.com/PacktPublishing/Hands-On-Kubernetes-on-
Azure-third-edition. Create a fork of this repo in your account by clicking on
the Fork button in the top-right corner of the screen, as shown in Figure 15.7:

Figure 15.7: Forking the GitHub repository

Forking the repo will create a copy of the repository in your own GitHub
account. This will allow you to make changes to the repository, as you will do as
you build the pipeline in this chapter.

7.	 Forking the repository takes a couple of seconds. Once you have the fork
in your own account, you'll need to configure the Azure secret in this repo.
Start by clicking on Settings in the top-right corner of your repo, as shown in
Figure 15.8:

Figure 15.8: Clicking on settings in the GitHub repository

https://github.com/join
https://github.com/join
https://github.com/login
https://github.com/login
https://github.com/PacktPublishing/Hands-On-Kubernetes-on-Azure-third-edition
https://github.com/PacktPublishing/Hands-On-Kubernetes-on-Azure-third-edition

Setting up Azure and GitHub | 471

This will take you to the setting of your repo. On the left-hand side, click on
Secrets, and on the resulting screen click on the New repository secret button
at the top, as shown in Figure 15.9:

Figure 15.9: Creating a new repository secret

472 | Continuous integration and continuous deployment for AKS

This will take you to the screen to create the new secret. Call this secret AZURE_
CREDENTIALS, and as the value for the secret, paste in the output from the CLI
command you issued in step 4 of this section, as shown in Figure 15.10:

Figure 15.10: Setting of the value of the new secret

Finally, click on Add secret at the bottom of this screen to save the secret.

Now you have set up Azure and GitHub to start building your pipeline. You have
created a service principal that GitHub will use to interact with Azure, and you
created a container registry that your CI pipeline can push images to and that AKS
can pull images from. Let's now build a CI pipeline.

Setting up a CI pipeline | 473

Setting up a CI pipeline

You are now ready to build a CI pipeline. As part of the demonstration in this
section, you will build an nginx container with a small custom webpage loaded in
it. After the container is built, you will push the nginx container to the container
registry you created in the previous section. You will build the CI pipeline gradually
over the next 13 steps:

1.	 To start, open the forked GitHub repo and open the folder for Chapter 15. In
that folder, you will find a couple of files, including Dockerfile and index.
html. These files are used to build the custom container. Throughout the
example, you will make changes to index.html to trigger changes in the
GitHub action. Let's have a look at the contents of index.html:

1 <html>
2 <head>
3 <title>Version 1</title>
4 </head>
5 <body>
6 <h1>Version 1</h1>
7 </body>
8 </html>

This is a simple HTML file, with a title and a header both saying Version 1. In
the Setting up a CD pipeline section, you'll be asked to increment the version.

Next, you were also provided with a Dockerfile. The contents of that file are as
follows:

1 FROM nginx:1.19.7-alpine
2 COPY index.html /usr/share/nginx/html/index.html

This Dockerfile starts from an nginx-alpine base image. Nginx is a popular
open-source web server, and Alpine is a lightweight operating system often
used for container images. In the second line, you copy the local index.html
file into the container, into the location where nginx loads webpages from.

474 | Continuous integration and continuous deployment for AKS

Now that you have an understanding of the application itself, you're ready to
start building the CI pipeline. For your reference, the full definition of the CI
pipeline is provided as pipeline-ci.yaml in the code files with this chapter,
but you'll be instructed to build this pipeline step by step in what follows.

2.	 Let's start by creating a GitHub Actions workflow. At the top of the screen in
GitHub, click on Actions and then click on the set up a workflow yourself link, as
shown in Figure 15.11:

Figure 15.11: Creating a new GitHub action

3.	 This will take you to a code editor that is part of GitHub. First, change the
name of the pipeline file to pipeline.yaml and change the name on line 3 to
pipeline, as shown in Figure 15.12:

Figure 15.12: Changing the name of the pipeline

Setting up a CI pipeline | 475

4.	 Next, you'll focus on the triggers of the workflow. In this demonstration, you'll
only work with the main branch. However, you do not want the workflow to
run for every code change. You only want it to run when changes are made to
either the pipeline definition or the code in the Chapter 15 folder. To achieve
this, you can set up the following code to control the workflow trigger:

4 # Controls when the action will run.
5 on:
6 # Triggers the workflow on push or pull request events but only
for the main branch
7 push:
8 branches: [main]
9 paths:
10 - Chapter15/**
11 - .github/workflows/pipeline.yaml
12 # Allows you to run this workflow manually from the Actions tab
13 workflow_dispatch:

What this code configures is the following:

•	 Line 8: Configures which branches will trigger this workflow.
Specifically, in this case, this indicates that the workflow is triggered by
pushing code to the main branch.

•	 Line 9-11: This configures a path filter. Any changes in the Chapter15
directory as well as changes to the pipeline.yaml file in the .github/
workflows/ directory will trigger the workflow to run.

•	 Line 13: This configures the workflow in such a way that it can be
triggered manually as well. This means that you can trigger the
workflow to run without making a code change.

You can also configure reusable variables in a GitHub Actions workflow. The
following code block configures the container registry name you will use in
multiple steps in the GitHub action:

14 # Env to set reusable variables
15 env:
16 ACRNAME: <acr-name>

476 | Continuous integration and continuous deployment for AKS

Here, you are setting the ACRNAME variable to the name of the container registry
you created. By using variables, you avoid having to configure the same value in
multiple places.

That explains how the pipeline is triggered and how you can configure
variables; let's now look at what will run in the pipeline.

5.	 Before we define the commands that are executed in the pipeline, let's explore
the structure of a GitHub Actions workflow, as shown in Figure 15.13:

Figure 15.13: GitHub Actions workflow

A GitHub Actions workflow is made up of multiple jobs. A job can then have
multiple steps in it. Jobs run in parallel by default but can be configured to
run sequentially. The steps in a job will be run sequentially. A step in a job
will contain the actual commands that will be run as part of the pipeline. An
example of a step would be building a container image. There are multiple ways
to run commands in a workflow: you can either run direct shell commands
as you would on a regular terminal, or you can run prebuilt actions from the
GitHub community.

The jobs and steps are run on what is called a runner. By default, workflows are
run on hosted runners. These hosted runners run on infrastructure set up and
managed by GitHub. Optionally, you can run the jobs and steps on a self-hosted
runner. This gives you the ability to have more configuration capabilities on

Setting up a CI pipeline | 477

the runner, for instance, to allow you to use special hardware or have specific
software installed. Self-hosted runners can be physical, virtual, in a container,
on-premises, or in a cloud.

In this section, you will run workflow steps from the community as
well as shell commands. For an overview of actions available from the
community, please refer to the GitHub marketplace at https://github.com/
marketplace?type=actions.

In the CI pipeline you are building, you'll need to execute the following steps:
1.	 Get the GitHub repo on the action runner, also called a check-out of

your repository.

2.	 Log in to the Azure CLI.

3.	 Log in to Azure Container Registry.

4.	 Build a container image and push this container image to Azure
Container Registry.

Let's build the pipeline step by step.

6.	 Before you build the actual steps in the pipeline, you'll need to configure the
jobs and the configuration of your job. Specifically, for this example, you can
use the following configuration:

18 jobs:
19 # This workflow contains a single job called "CI"
20 CI:
21 # The type of runner that the job will run on
22 runs-on: ubuntu-latest

You are configuring the following:

•	 Line 20: You are creating a single job called CI for now. You'll add the
CD job later.

•	 Line 22: This indicates that you'll run this job on a machine of type
ubuntu-latest.

This configures the GitHub runner for the steps. Let's now start building the
individual steps.

https://github.com/marketplace?type=actions
https://github.com/marketplace?type=actions

478 | Continuous integration and continuous deployment for AKS

7.	 The first step will be checking out the Git repo. This means that the code in the
repo gets loaded by the runner. This can be achieved using the following lines
of code:

25 steps:
26 # Checks-out your repository under $GITHUB_WORKSPACE, so
your job can access it
27 - name: Git checkout
28 uses: actions/checkout@v2

The first line represented here (line 25) is what opens the steps block and all
the following steps. The first step is called Git checkout (line 27) and simply
refers to a prebuilt action called actions/checkout@v2. The @v2 means that
you are using the second version of this action.

8.	 Next, you will need to log in to the Azure CLI and then use the Azure CLI to log
in to the Azure Container Registry. To do so, you'll make use of an action from
the marketplace. You can find items in the marketplace by using the search bar
at the right side of your screen, as shown in Figure 15.14:

Figure 15.14: Searching for the Azure Login action

Setting up a CI pipeline | 479

For this demonstration, you will use the Azure Login action. Click on the Azure
Login action to get a screen with more information, as shown in Figure 15.15:

Figure 15.15: More details about the Azure Login action

This shows you more information on how to use that action and gives you
sample code that you can copy and paste into the workflow editor.

480 | Continuous integration and continuous deployment for AKS

To log in to the Azure CLI and Azure Container Registry, you can use the
following code:

30 - name: az CLI login
31 uses: azure/login@v1
32 with:
33 creds: ${{ secrets.AZURE_CREDENTIALS }}
34
35 - name: ACR login
36 run: az acr login -n $ACRNAME

The first step logs in to the Azure CLI on the GitHub Actions runner. To log
in to the Azure CLI, it uses the secret you configured in the previous section.
The second job executes an Azure CLI command to log in to Azure Container
Registry. It uses the variable you configured on lines 14-15. It executes the
login command as a regular shell command. In the next step, you'll push the
image to this container registry.

9.	 Next, you build the container image. There are multiple ways to do this, and
you'll use docker/build-push-action in this example:

39 - name: Build and push image
40 uses: docker/build-push-action@v2
41 with:
42 context: ./Chapter15
43 push: true
44 tags: ${{ env.ACRNAME }}.azurecr.io/website/website:${{
github.run_number }}

This step will build your container image and push it to the registry. You
configure the context to run within the Chapter15 folder, so the reference in
the Dockerfile to the index.html page remains valid. It will tag that image with
the name of your container registry, and as a version number for the container
image, it will use the run number of the GitHub action. To get the run number
of the workflow, you are using one of the default environment variables that
GitHub configures. For a full list, please refer to the GitHub documentation:
https://docs.github.com/actions/reference/environment-variables.

https://docs.github.com/actions/reference/environment-variables

Setting up a CI pipeline | 481

Note

In this example, you are using the workflow run number as the version for
your container image. Tagging container images is important since the tag
version indicates the version of the container. There are multiple other
strategies as well to version your container images.
One strategy that is discouraged is to tag container images with the latest
tag and use that tag in your Kubernetes deployments. The latest tag is the
default tag that Docker will add to images if no tag is supplied. The problem
with the latest tag is that if the image with the latest tag in your container
registry changes, Kubernetes will not pick up this change directly. On nodes
that have a local copy of the image with the latest tag, Kubernetes will not
pull the new image until a timeout expires; however, nodes that don't have a
copy of the image will pull the updated version when they need to run a pod
with this image. This can cause you to have different versions running in a
single deployment, which should be avoided.

10.	You are now ready to save and run this GitHub Actions workflow. You can save
the workflow configuration file by clicking on the Start Commit button and
then confirming by clicking Commit new file, as shown in Figure 15.16:

Figure 15.16: Saving the action configuration file

482 | Continuous integration and continuous deployment for AKS

11.	 Once the file has been saved, the workflow will be triggered to run. To follow
the logs of the workflow run, you can click on Actions at the top of the screen.
This should show you a screen similar to Figure 15.17:

Figure 15.17: Getting the actions run history

Click on the top entry to get more details of your workflow run. This will bring
you to a screen similar to Figure 15.18:

Figure 15.18: Detail screen of the action run

Setting up a CI pipeline | 483

This shows you your workflow detail and shows you that you had a single job
in your workflow. Click on CI to get the logs of that job. This will show you a
screen similar to Figure 15.19:

Figure 15.19: Logs of the CI job

On this screen, you can see the output logs of each step in your workflow.
You can expand the logs of each step by clicking on the arrow icon in front of
that step.

484 | Continuous integration and continuous deployment for AKS

12.	 In this example, you built a container image and pushed that to a container
registry on Azure. Let's verify this image was indeed pushed to the registry.
For this, go back to the Azure portal and, in the search bar, look for container
registry, as shown in Figure 15.20:

Figure 15.20: Navigating to the Container registries service through the Azure portal

In the resulting screen, click on the registry you created earlier. Now, click
on Repositories on the left-hand side, which should show you the website/
website repository, as shown in Figure 15.21:

Figure 15.21: Showing the website/website repository in the container registry

Setting up a CD pipeline | 485

13.	 If you click on the website/website repository link, you should see the image
tags for your container image, as shown in Figure 15.22:

Figure 15.22: Image tags for the container image

If you compare the output of Figure 15.18 and Figure 15.22, you will see that the
run number of the action is also the tag on the image. In your case, that run
number and tag will likely be 1.

You have now built a rudimentary CI pipeline. When the code in the Chapter 15
folder is changed, the pipeline will run and build a new container image that will be
pushed to the container registry. In the next section, you will add a CD job to your
pipeline to also deploy the image to a deployment in Kubernetes.

Setting up a CD pipeline

You already have a pipeline with a CI job that will build a new container image.
In this section, you'll add a CD job to that pipeline that will deploy the updated
container image to a deployment in Kubernetes.

486 | Continuous integration and continuous deployment for AKS

To simplify the application deployment, a Helm Chart for the application has
been provided in the website folder inside Chapter 15. You can deploy the
application by deploying the Helm Chart. By deploying using a Helm Chart, you can
override the Helm values using the command line. You've done this in Chapter 12,
Connecting an app to an Azure database, when you configured WordPress to use an
external database.

In this CD job you will need to execute the following steps:

1.	 Check out the code.
2.	 Get AKS credentials.
3.	 Set up the application.
4.	 (Optional) Get the service's public IP.

Let's start building the CD pipeline. For your reference, the full CI and CD pipeline
has been provided in the pipeline-cicd.yaml file:

1.	 To add the CD job to the pipeline, you'll need to edit the pipeline.yaml file.
To do this, from within your forked repository, click on Code at the top of the
screen and go to the .github/workflows folder. In that folder, click on the
pipeline.yaml file. Once that file is open, click on the pen icon in the top right,
as highlighted in Figure 15.23:

Figure 15.23: Editing the pipeline.yaml file

Setting up a CD pipeline | 487

2.	 In the file, at the bottom, start by adding the following lines to define the CD
job:

46 CD:
47 runs-on: ubuntu-latest
48 needs: CI
49 steps:

In this code block, you are creating the CD job. This will again run on an
ubuntu-latest runner. On line 48, you are defining that this job has a
dependency on the CI job. This means that this job will only start after the CI
job finishes, and it will only run if the CI job finishes successfully. Finally, line 49
opens the steps block, which you will fill in next.

3.	 The first step will be a Git checkout. This will use the same step you use in the
CI job as well:

50 - name: Git checkout
51 uses: actions/checkout@v2

4.	 Next, you'll need to log in to the Azure CLI and get the AKS credentials. You
could do this by using the same approach as you did in the CI job, meaning
you could do an Azure CLI login and then run the az aks get-credentials
command on the runner. However, there is a single GitHub action that can
achieve this for AKS:

53 - name: Azure Kubernetes set context
54 uses: Azure/aks-set-context@v1
55 with:
56 creds: ${{ secrets.AZURE_CREDENTIALS }}
57 resource-group: rg-handsonaks
58 cluster-name: handsonaks

This step uses the Azure/aks-set-context action from Microsoft. You
configure it with the Azure credentials secrets you created, and then define
the resource group and cluster name you want to use. This will configure the
GitHub action runner to use those AKS credentials.

488 | Continuous integration and continuous deployment for AKS

5.	 You can now create the application on the cluster. As mentioned in the
introduction of this section, you will deploy the application using the Helm
Chart created in the website folder for this chapter. To deploy this Helm Chart
on your cluster, you can use the following code:

60 - name: Helm upgrade
61 run: |
62 helm upgrade website Chapter15/website --install \
63 --set image.repository=$ACRNAME.azurecr.io/website/
website \
64 --set image.tag=${{ github.run_number }}

This code block executes a Helm upgrade command. The first argument
(website) refers to the name of the Helm release. The second argument
(Chapter15/website) refers to the location of the Helm Chart. The --install
parameter configures Helm in such a way that if the chart isn't installed yet, it
will be installed. This will be the case the first time you run this action.

In the following two lines, you set Helm values. You set the image repository to
the website/website repo in your container registry, and you set the tag to the
run number of the action. This is the same value you are using in the CI step to
tag the image.

6.	 Finally, there is one optional step you can include in your workflow. This is
getting the public IP address of the service that will be created to serve your
website. This is optional because you could get this IP address using kubectl in
Azure Cloud Shell, but it has been provided for your convenience:

66 - name: Get service IP
67 run: |
68 PUBLICIP=""
69 while [-z $PUBLICIP]; do
70 echo "Waiting for public IP..."
71 PUBLICIP=$(kubectl get service website -o
jsonpath='{.status.loadBalancer.ingress[0].ip}')
72 [-z "$PUBLICIP"] && sleep 10
73 done
74 echo $PUBLICIP

Setting up a CD pipeline | 489

This code block will run a small Bash script. While the public IP hasn't been
set, it will keep getting the public IP from the service using kubectl. Once the
public IP has been set, the public IP will be shown in the GitHub Actions log.

7.	 You are now ready to save the updated pipeline and run it for the first time. To
save the pipeline, click on the Start commit button at the top right of the screen
and click on Commit changes in the pop-up window, as shown in Figure 15.24:

Figure 15.24: Pipeline workflow

8.	 Once you have committed the changes to GitHub, the workflow will be
triggered to run. To follow the deployment, click on Actions at the top of the
screen. Click on the top entry here to see the details of the run. Initially, the
output will look similar to Figure 15.25:

490 | Continuous integration and continuous deployment for AKS

Figure 15.25: Detailed output of the action run while the action is running

As you can see, you now have access to two jobs in this workflow run, the
CI job and the CD job. While the CI job is running, the CD job's logs won't be
available. Once the CI job finishes successfully, you'll be able to access the logs
of the CD job. Wait for a couple of seconds until the screen looks like Figure
15.26, which indicates that the workflow successfully finished:

Figure 15.26: Detailed output of the action run after both jobs finished

9.	 Now, click on the CD job to see the logs of this job. Click on the arrow next to
Get service IP to see the public IP of the service that got created, as shown in
Figure 15.27:

Setting up a CD pipeline | 491

Figure 15.27: Logs of the CD job showing the public IP address of the service

Open a new tab in your web browser to visit your website. You should see an
output similar to Figure 15.28:

Figure 15.28: Website running version 1

10.	Let's now test the end-to-end pipeline by making a change to the index.
html file. To do this, in GitHub, click on Code at the top of the screen, open
Chapter15, and click on the index.html file. In the resulting window, click on
the pen icon in the top right, as shown in Figure 15.29:

492 | Continuous integration and continuous deployment for AKS

Figure 15.29: Clicking on the pen icon to edit the index.html file

11.	 You can now edit the file. Change the version of the website to version 2 (or
any other changes you might want to make), and then scroll to the bottom of
the screen to save the changes. Click on the Commit changes button to commit
the changes to GitHub, as shown in Figure 15.30:

Figure 15.30: Saving the changes to the index.html file

Setting up a CD pipeline | 493

12.	 This will trigger the workflow to be run. It will run through both the CI and CD
jobs. This means that a new container will be built, with an updated index.
html file. You can follow the status of the workflow run as you've done before,
by clicking on Actions at the top of the screen and clicking on the top run. Wait
until the job has finished, as shown in Figure 15.31:

Figure 15.31: Action run after updating index.html

13.	 If you now browse back to the IP address you got as an output of step 9,
you should see the updated webpage showing you Version 2, as shown in
Figure 15.32:

Figure 15.32: The web page has been updated to version 2

494 | Continuous integration and continuous deployment for AKS

This has shown you that the pipeline executed successfully and has brought your
code changes to production.

Note

In this example, you updated the production version of your website directly,
without any approvals. GitHub Actions also allows you to configure manual
approvals in case you want to test changes before promoting them to
production. To configure manual approvals, you can use the environments
functionality in GitHub Actions. For more information, please refer to https://
docs.github.com/en/actions/reference/environments.

This concludes this example of CI and CD using GitHub Actions. Let's make sure
to clean up the resource you created for this chapter. In Cloud Shell, execute the
following commands:

helm uninstall website
az group delete -n rg-pipelines --yes

Since this also marks the end of the examples in this book, you can now also delete
the cluster itself if you do not need it anymore. If you wish to do so, you can use
the following command to delete the cluster:

az group delete -n rg-handsonaks --yes

This way, you ensure you aren't paying for the resources if you're no longer using
them after you've finished the examples in this book.

Summary

You have now successfully created a CI/CD pipeline for your Kubernetes cluster.
CI is the process of frequently building and testing software, whereas CD is the
practice of regularly deploying software.

In this chapter, you used GitHub Actions as a platform to build a CI/CD pipeline.
You started by building the CI pipeline. In that pipeline, you built a container image
and pushed it to the container registry.

https://docs.github.com/en/actions/reference/environments
https://docs.github.com/en/actions/reference/environments

Final thoughts | 495

Finally, you also added a CD pipeline to deploy that container image to your
Kubernetes cluster. You were able to verify that by making code changes to a
webpage, the pipeline was triggered and code changes were pushed to your
cluster.

The CI/CD pipeline you built in this chapter is a starter pipeline that lays
the foundation for a more robust CI/CD pipeline that you can use to deploy
applications to production. You should consider adding more tests to the pipeline
and also integrate it with different branches before using it in production.

Final thoughts

This chapter also concludes this book. During the course of this book, you've
learned how to work with AKS through a series of hands-on examples.

The book started by covering the basics; you learned about containers and
Kubernetes and you created an AKS cluster.

The next section focused on application deployment on AKS. You learned different
ways of deploying applications to AKS, how to scale applications, how to debug
failures, and how to secure services using HTTPS.

The next sections focused on security in AKS. You learned about role-based access
control in Kubernetes and how you can integrate AKS with Azure Active Directory.
Then, you learned about pod identities, and pod identities were used in a couple of
follow-up chapters. After that, you learned how to securely store secrets in AKS,
and then we focused on network security.

The final section of this book focused on a number of advanced integrations of
AKS with other services. You deployed an Azure database through the Kubernetes
API and integrated it with a WordPress application on your cluster. You then
explored how to monitor configuration and remediate threats on your cluster using
Azure Security Center. You then deployed Azure functions on your cluster and
scaled them using KEDA. In this final chapter, you configured a CI/CD pipeline to
automatically deploy an application to Kubernetes based on code changes.

If you've successfully completed all the examples provided in this book, you should
now be ready to build and run applications at scale on top of AKS.

By developers,
for developers
Microsoft.Source newsletter

Get technical articles, sample
code, and information on
upcoming events in
Microsoft.Source, the
curated monthly developer
community newsletter.

● Keep up on the latest
 technologies
● Connect with your peers
 at community events
● Learn with
 hands-on resources

Sign upSign up

http://aka.ms/msftsource
http://aka.ms/msftsource

>
Index

About

All major keywords used in this book are captured alphabetically in this section. Each one
is accompanied by the page number of where they appear.

A
access: 16, 25, 38, 42-44,

49, 52, 86, 89, 93,
113, 119, 156, 177, 189,
191, 196, 210, 213, 216,
222-223, 225, 229-231,
238-242, 248, 250-252,
254-255, 257-258,
260, 264-267, 270-271,
274, 284-285, 287,
289-290, 294, 296,
302, 305, 309-311,
313-314, 316-317, 319,
321-324, 328, 333,
336, 343-344, 352,
357, 360-361, 363,
365-366, 368-369,
397-399, 401, 410, 412,
414, 426, 433, 436,
440, 445-446, 450,
468-469, 478, 490, 495

accessmodes: 89
acrname: 436, 468,

475-476, 480, 488
action: 56, 74, 84, 104,

110, 127, 149, 418-419,
422-423, 426,
473-475, 477-482, 485,
487-488, 490, 493

add-on: 156-157, 160-161,
165-166, 176, 254-257,
271, 290-291, 294,
300, 359, 390-392

address: 23, 38, 49, 56,
72, 74, 84, 99, 130,
145, 156, 160, 168,
174, 181, 183-185, 244,
253, 313-315, 317,

319-321, 326-327,
329, 331, 337-343,
346, 351, 385-386,
401, 488, 491, 494

admin: 144-145, 232, 234
agentpool: 110, 112
agic: 157-158, 160-161,

165, 176
agile: 13
alert: 401-402,

415, 417-427
algorithm: 11
amazon: 8, 27
analytics: 218, 220
annotations: 106, 162,

169-170, 174, 332
apache: 432
apigroup: 242, 244
apiversion: 44-46, 59,

66-67, 72, 76, 78, 82,
88, 102, 162, 168-169,
174, 199-200, 242-244,
267, 269, 280, 283,
285, 302-303,
305-306, 332, 339,
345, 347, 349, 374-375,
377-378, 396-399

architecture: 10-11,
15, 429-430, 464

artifact: 463-464
attack: 418, 423, 426
attacker: 313, 343
auditing: 289
authenticate: 251-253,

268, 270, 437, 440
authority: 155, 169
autoscale: 96, 103
autoscaler: 96, 102-103,

107, 109-110, 112, 126,
139, 430, 432, 447

azure: 8, 14-15, 22-25,
27-29, 34, 36-38, 40,
42-43, 49-52, 55, 58,
62, 65, 81-84, 88-91,
94, 96-97, 107-108, 110,
112, 127-129, 131-132,
142-143, 148, 152-153,
156-159, 162-163,
168-170, 174-178, 186,
205, 209, 213, 218, 220,
222, 225-226, 229-235,
237-240, 243, 245,
250-258, 262, 267-271,
273-274, 289-291, 294,
300-302, 305, 310, 312,
314-318, 321, 323-327,
330, 332, 334, 336,
341, 343-344, 351-352,
355-361, 365-367,
371, 373-381, 384-387,
389-397, 399, 401-405,
407, 409, 411-418,
423-424, 427-434,
436-442, 448, 450-451,
453, 457, 459, 461, 464,
466, 470, 472, 477-480,
484, 486-488, 495-496

B
backend: 59-60, 67-68,

72-73, 76, 162, 170,
174, 418, 430

backup: 356
balancer: 24, 49, 81-84,

118, 126, 157, 330,

332-336, 401, 419
base: 18, 124, 136, 144,

274, 278-280, 284, 286,
289, 384, 465, 473

binary: 136
blob: 88-89, 250-253,

262, 264, 266-268,
270-271, 376

bootstrap: 275
browser: 27, 49, 84, 99,

104, 155, 172, 175,
189, 193-195, 201,
245, 337-338, 386,
401, 440, 447, 491

built-in: 271, 273-274, 356

C
cache: 57, 172
centralized: 316
certificate: 155, 157,

165-166, 168-176,
252-253, 357, 401-402

cert-manager: 156,
165-171, 174, 176, 357,
359, 370-371, 386

cgroups: 14
chart: 85-88, 92, 359,

387, 416, 486, 488
checkout: 478, 487
circuit: 12
client: 9, 15, 86, 169,

195, 260, 268, 270,
323, 363, 371

client-side: 15, 86
cloud: 7-8, 27-28, 40-42,

44, 46, 52, 58, 62, 65,
75, 87, 91, 97, 102, 104,

131, 139, 146-147, 166,
186, 188, 230, 239,
246-247, 249, 251,
256, 261, 290, 293,
317-324, 330, 343,
356, 359, 370, 399,
415, 429-431, 433,
436-437, 440, 458-459,
468, 477, 488, 494

cloud-native: 71,
84, 95, 112

cloud-shell: 324
cluster: 7, 23-25, 27-36,

38-40, 42-44, 50-52,
56-57, 61, 72-74, 77,
79-80, 82, 84-86,
88, 90, 94, 96-97,
101-102, 106-113, 119,
122, 126-129, 131-136,
139-142, 148-150, 153,
155-156, 158, 160-161,
164, 166-167, 169, 174,
176-178, 185, 205, 207,
209-215, 220-222,
224-226, 229-232,
234-235, 238, 240-242,
244, 247-252, 254-259,
261-263, 270-271,
274-275, 284, 288,
290-295, 299-301,
310-317, 320-330, 333,
336, 341, 343-344, 349,
351-352, 355-362, 365,
367, 370, 373-376, 381,
384, 386-387, 390-391,
396, 399, 401-402,
404-406, 409, 412-413,
415, 419, 426-428,

430-433, 435-437, 441,
446, 448, 455-456,
460-461, 464-469,
487-488, 494-496

code: 13, 19, 28, 44, 46,
59-60, 62, 65, 67-69,
73, 78, 82, 88-89, 102,
114-115, 120, 129, 157,
161-162, 168-169, 174,
176, 190-192, 195-197,
201, 247, 267, 279-280,
286, 302, 305, 323,
332, 339, 345, 348,
371, 374, 396, 398-399,
429-431, 440, 444, 459,
465, 474-475, 478-480,
485-489, 492, 494-496

command: 16, 18-19,
43-44, 47-49, 59,
62-69, 71-75, 77-78,
82, 85-88, 90-91,
93, 97-101, 103,
105-107, 109-122,
124-125, 129-131,
134, 137-139, 141-142,
146-148, 150-152,
158, 160-161, 163-164,
170-172, 178-181,
185-188, 190-191,
195-196, 199-200,
202, 204-209, 225,
234, 242-244, 247,
256-257, 261-262,
267-270, 275-278,
280-281, 284, 286-289,
293-294, 300-304,
306-308, 318-324,
328-329, 331-333,

336-338, 340-341,
343-346, 348, 350-351,
359-360, 370-374,
376-378, 384-385,
400-401, 409, 419,
424, 427, 436-446,
454, 456-458, 460,
468-469, 472, 480,
486-488, 494

commit: 481, 489, 492
compute: 8, 87, 96, 252
computing: 166, 429
config: 42, 68-71, 274,

288, 327-328, 441
configmap: 56,

64-71, 198-199
connectivity: 72, 184
container: 7-8, 10, 14-16,

18-21, 56, 60-61, 64,
69, 71, 122-123, 138,
140, 151-152, 183,
185-186, 189-191, 196,
200, 204-205, 213,
222-224, 266-268, 270,
284-290, 304, 308,
315, 397-399, 406-407,
421-422, 433-434, 436,
442, 446, 463-466,
468-469, 472-473,
475-478, 480-481,
484-485, 488, 493, 495

controller: 157,
169, 273, 357

crds: 168-169, 357
credentials: 42-43,

144-145, 188, 247,
257-258, 274, 313,
323-324, 327-328,

344, 360, 440-441,
472, 480, 486-487

crypto-miner:
396-397, 400, 407,
415, 417, 422-424

curl: 131, 319, 328, 333,
338, 341, 439

currency: 421-423, 425

D
daemon: 15, 19
daemonset: 254
dashboard: 36, 390,

399-402, 415,
417-421, 427

data: 9, 39, 57, 64, 66-67,
69, 71, 88-89, 94,
135, 139-142, 144-147,
153, 230, 264, 274,
278, 280, 291, 305

database: 22-23, 57,
87, 123-124, 193-195,
226, 273-274, 352,
355-356, 373, 377-381,
384-387, 486, 496

datacenter: 7, 321, 431
debugging: 178, 183-184,

186, 189, 194, 196
decoding: 124, 279, 384
defender: 387, 390-391,

393-397, 399, 401,
415-417, 423, 428

deploy: 8, 11, 25, 28,
43-44, 52, 55-59, 61,
65, 71, 74, 77, 85, 118,
128-129, 157-158, 161,
177, 200, 240-241, 315,

370, 372-373, 389,
396, 399-400, 427,
430-432, 445-446,
456, 461, 464-465,
485-486, 488, 495-496

deployment: 11, 13,
21-22, 25, 28-29, 35,
40, 44-45, 48, 50-52,
55-56, 58-64, 67-68,
70-71, 73, 75-76, 78-79,
85, 87-89, 91-92, 94,
96, 100-104, 106,
109, 111-113, 116-117,
119-123, 126, 135-136,
139, 142, 144, 156-157,
180, 183-184, 186, 188,
190, 194, 196, 198-201,
205, 224, 267, 269-270,
273, 330, 343, 357, 370,
373, 385, 396-399,
407-409, 415, 446-447,
457, 460, 463, 465, 481,
485-486, 489, 495

deprecated: 21, 357
describe: 62, 65-66,

105, 120-122, 125,
137-138, 142, 149, 151,
171-172, 178, 181, 185,
188, 204, 206-208,
224, 253, 277, 287

developer: 14, 194-195
devops: 9, 12-14,

112, 463-464
disks: 94, 128
dns-based: 424
docker: 7-9, 14-21, 61, 69,

72, 123, 183, 188, 274,
287-289, 432-433, 436,

438-439, 442, 480-481
dockerfile: 18-19, 442,

465, 473, 480
dockerid: 288
dotnet: 464
downgrade: 115, 448
downtime: 12-13, 189, 230
driver: 273-274, 289-291,

294, 299-301,
303-307, 310

E
ecosystem: 178
encode: 274, 279
encryption: 274
endpoint: 23, 56, 197, 252,

254, 314, 323-325
ephemeral: 22-23,

71-72, 87
executable: 201, 328
extension: 19, 256, 359

F
failure: 127-128, 132,

135, 139, 146-148,
152-153, 201, 205

fault: 12
feature: 13, 126, 230-231,

245, 256-257, 300,
311, 314, 316, 322,
343, 359-360,
390, 430, 465

file: 19, 21-22, 42, 44,
46-47, 51, 59, 61,
64-69, 72, 76, 85,
88, 98, 103, 113-114,

119-122, 129, 135, 157,
162-163, 168-169, 174,
191-192, 198, 202-204,
242-244, 247, 265-269,
275-276, 278-280,
283-287, 301-306,
327-328, 331-332, 336,
339-340, 347, 349, 371,
373-378, 396-398, 415,
444, 453-455, 459,
463, 473-475, 481-482,
486-487, 492-493

filename: 268, 275, 278
filesystem: 89
filter: 83, 116, 214,

405, 475
firewall: 157, 312,

316, 378, 380
flowchart: 164
fork: 470
framework: 11, 196,

418, 421, 426, 431
frequency: 112
frontend: 78-79, 82, 85,

98, 100, 102, 117-118,
120-122, 130, 162,
170, 175, 184, 186,
188, 190, 332, 339

function: 9-10, 252, 273,
429-432, 442-448,
451-456, 458, 460-461

G
gateway: 24, 156-161,

163, 165-166, 169,
172, 176, 273

gigabyte: 136

github: 14, 44, 59, 86-87,
97, 104, 128, 166, 169,
176, 255-256, 290,
331, 357, 370, 376,
386, 432, 459, 461,
464, 466, 469-470,
472-478, 480-481,
486-489, 492, 494-495

guestbook: 56-58, 71,
78-79, 82, 84, 87, 94,
96-97, 99-101, 109, 113,
115, 118, 122, 128-132,
135, 139, 160-163,
165, 176, 178, 184, 186,
189, 191, 193, 195-196,
331-332, 336-339, 341

H
hardware: 477
helm: 56, 85-88, 91-94,

113, 122-126, 140-141,
144, 152, 157, 300, 309,
359, 371-372, 380, 384,
386-387, 486, 488, 494

hostname: 77, 156,
170, 191, 195

hostpath: 398-399, 410
hosts: 24, 72, 76-77, 79,

148, 170, 175, 185, 312
host-volume: 398,

400, 408, 427
html: 131, 197-199,

202-204, 473,
480, 492-493

http: 10, 21, 99, 104,
130-131, 145-146,
155-156, 162-163,

168-170, 174, 316, 346,
348, 350-351, 429-430,
442-443, 447, 461

I
identity: 250-255,

257-262, 264, 267-271,
291-294, 296-297, 300,
302-303, 310, 322-323,
357, 359-371, 437-438

ingress: 24, 156-157,
160-166, 168-170,
172-174, 176, 273,
336, 347-349, 488

instance: 38, 60, 89, 102,
133, 146, 157, 165, 185,
189, 221, 230, 242-244,
253, 260, 287-288,
292, 312, 362, 376, 399,
458-459, 463, 466, 477

integration: 13, 24-25,
38, 119, 160-161, 229,
231-232, 461, 463

interface: 28, 42, 110,
156, 290, 315, 357

interfaces: 166, 176
internet: 155, 311,

313-314, 336, 389
isolation: 11

J
java: 463
javascript: 11, 452
jenkins: 14
jobs: 476-477, 490, 493
json: 55, 67, 121, 275,

444, 453-455, 469

K
kanban: 13
keda: 432, 447-448,

455-461, 496
keys: 274, 289, 306,

340, 437, 450
keyvault: 303, 307-308
keyword: 29, 276
kind: 44-46, 59, 66-67,

72, 76, 78, 82, 88, 102,
135, 162, 168-169, 174,
199-200, 242-244,
263, 267, 269, 280,
283, 285, 302-303,
305-306, 332, 339,
345, 347, 349, 374-375,
377-378, 396-399

kube: 42, 327-328
kubectl: 42-43, 47-49,

51, 59, 62-63, 65-67,
70-75, 77-78, 82-83,
85, 87-88, 90, 92,
94, 96-103, 105-106,
109-126, 129-130,
134, 136-144, 146-152,
161, 163-164, 166,
168, 170-172, 175-176,
178-181, 185-190,
194-196, 198, 200-209,
213, 223, 225-226,
241-244, 247-249,
257, 262, 267-270,
276-278, 280-281,
284, 286-287, 289,
294, 300, 302-304,

306-309, 312, 318,
320, 324, 328-329,
332, 336-337, 341, 343,
345-346, 348, 350-351,
370, 372-374, 376-378,
385-386, 400-401,
407-408, 419, 424, 427,
436, 440-441, 446-447,
455-458, 460, 488-489

kubeless: 431
kubenet: 315
kubernetes: 7-10, 14,

20-25, 27-31, 38-39,
42, 44, 48-51, 55-57,
60-61, 64, 69, 71-73,
79-81, 83-91, 94,
96, 98, 100-102,
110, 112-114, 116-119,
122-123, 126-128,
130-132, 134-140, 142,
147-150, 153, 155-157,
160-163, 165-169,
174, 176-178, 180,
183-186, 188-189,
195-198, 203-205,
209, 213, 219-220,
223, 225-226, 229-231,
235, 238, 240-241,
249-252, 254, 265,
267, 270-271, 273-277,
279-284, 287-291,
294, 301, 304-306,
308-312, 315-317, 321,
324, 327-330, 332,
336, 340, 343, 352,
355-358, 360, 373,
380-381, 386-387,
389-391, 397, 399-402,

404-405, 407, 412,
415, 417-419, 423,
427-428, 430-433, 442,
445-446, 455-456,
458-461, 464-466, 481,
485, 487, 495-496

kusto: 218

L
label: 60, 77, 184,

267, 269-270, 345,
347-349, 373

layer: 21-22, 155,
157, 274, 312

level: 8, 13, 213, 266, 284
lifecycle: 253, 464
linux: 8, 14, 16, 19,

40, 47, 116, 328
load: 23-24, 49, 70-72,

81-84, 87, 95, 102-104,
118, 126, 157, 197,
205, 207, 286, 330,
332-336, 401, 419, 447

loadbalancer: 46, 50,
81-82, 98, 114, 118-119,
200, 316, 332, 339,
401, 419, 488

localhost: 21, 191-192, 195
logging: 12, 192,

196, 268, 289

M
management: 25, 29,

166, 185, 209, 297,
368-369, 389, 412, 429

manager: 28, 56,

85, 94, 176, 371
mariadb: 87-89,

91, 122-125, 148,
355, 384-385

master: 23-24, 58-61,
63-64, 67-69, 71-75,
77, 86-87, 134, 139, 192,
300, 311, 371, 376, 465

master-slave: 75
maxmemory:

64-66, 69-70
maxreplicas: 102
memory: 45-46,

60-61, 68, 76, 79,
87, 96, 135-136, 185,
206-207, 209, 214

message: 34, 41, 112, 158,
160, 172, 188, 193-195,
248, 377-378, 392-394,
429-430, 457-458

microservice: 11
microsoft: 8, 14, 22, 25,

28-29, 46, 157, 166,
218, 247, 255-257, 267,
269, 290, 312, 315-316,
324, 357, 359-360,
371, 374-375, 377-378,
390, 405, 412, 415, 432,
440-441, 450, 464, 487

minor: 78, 113
mkdir: 328, 442, 451
model: 9-10, 55, 157,

315, 431-432
monitor: 25, 29, 39, 96,

104, 107, 109, 128,
138-139, 151, 176-178,
197, 201, 205, 213, 215,
222, 226, 304, 307,

374, 385, 387, 390-391,
407, 428, 451, 496

mount: 41, 69, 89, 92,
128, 139, 150-151,
198, 285-287, 301,
303, 305, 308

multi-tier: 57, 84
mysql: 85, 226, 352,

355-357, 373,
375-381, 384-387

N
namespace: 21, 74, 94,

179-181, 183, 187, 208,
214, 231, 240-241,
243-244, 248-249, 257,
277, 360, 370, 386,
418, 421, 426, 456

network: 10, 21, 24, 72,
85, 87-88, 158, 160-161,
212, 309-317, 322, 326,
330, 336, 341, 343-344,
348-352, 412, 495

newgrp: 438
nginx: 197, 199-200,

202-204, 283, 285,
303, 306, 345,
397-398, 473

node: 22-24, 32, 36, 38,
72, 80, 88, 107-108,
110-112, 127-129,
131-135, 137-140,
146-150, 152-153, 181,
183, 185, 205-207,
214-215, 219-220, 254,
284, 287-288, 314,
323, 333, 390, 399,

410, 431, 437, 452
nodepool: 110, 112
nodeport: 80, 333,

419-420
nsgs: 312, 316, 330,

342, 352
nslookup: 74, 329

O
objectname: 302,

305-306
openfaas: 431
open-source: 8, 14, 28,

166, 178, 255-256,
290, 316, 357, 387,
430-432, 473

orchestrator: 8, 10, 20

P
paas: 226
parameters: 60-61, 85,

216, 302, 305, 411
password: 123-124,

144, 236, 245-246,
252, 274, 384

patch: 113, 119-122, 126,
373, 401, 407-409, 419

path: 68-69, 89, 104,
162-163, 165, 170,
174, 199, 351, 398,
411-412, 475

permissions: 229-231,
235, 240-241, 249,
271, 287, 291, 297, 357,
365-366, 369, 399,
415, 427, 436, 468

php-redis: 78,
120-121, 184

platform: 7-8, 14, 20,
27, 274, 290, 389,
428, 431-432, 495

pod-id: 70, 74,
137, 149, 151

pod-identity: 261, 270,
293, 309, 370, 386

pod-managed: 251-258,
268-271, 291, 294,
357, 359-360, 437

podselector: 347, 349
policies: 312, 316,

330, 343-344, 349,
351-352, 391

powershell: 28, 40
private: 15-16, 18, 23,

164, 188, 252, 266,
274, 311, 314-315, 317,
321-326, 328-330, 333,
343, 352, 433, 437

probes: 177, 180, 196-197,
200-202, 205, 217

prometheus: 178
provider: 87, 91,

140, 257, 273-274,
289-290, 301-302,
305, 310, 360, 431

pvcs: 90-91, 94,
135, 139-140, 142,
146-147, 152

python: 11, 442-443, 459

Q
queries: 216, 218, 223, 225
quota: 36, 256, 323

R
rbac: 25, 38, 229-231,

235, 238, 240, 242-246,
249-250, 274, 284, 399

readiness: 141, 177,
180-181, 196-197,
200-203, 205, 217

recover: 127-128, 139,
147, 152-153, 197

redis: 45-46, 57-61,
63-64, 67-77, 79, 85,
134, 139, 192, 195, 355

redis-config:
64-66, 68-69

redis-master: 59-60,
62-64, 67-70,
72-74, 77, 85, 140

redis-server: 68-69
region: 31, 170, 175,

259, 263, 292, 295,
356, 362, 367, 448

registry: 15-16, 18,
185, 188-189, 274,
433-436, 445-446,
456, 465-469, 472-473,
475-478, 480-481,
484-485, 488, 495

replica: 22, 60,
76-77, 79, 106, 111,
189-190, 458, 460

replicaset: 22, 56, 62,
64, 115-117, 183-184,
195, 221, 457

repo: 44, 86, 140, 300,
371, 384, 459, 470-471,
473, 477-478, 488

repository: 16, 18, 44,
59, 140, 185, 331, 371,

465-466, 470-471,
477-478, 484-486, 488

requirements: 109, 244
role-based: 25, 38, 196,

229, 251, 271, 495
root: 123-124, 176,

194-196, 230

S
scalable: 8, 11, 94-95, 126,

131, 135, 139, 273, 432
script: 28, 113, 119, 201,

384, 459, 489
secret: 64, 123-124, 144,

170, 273-290, 294,
297-302, 304-310, 358,
368-369, 381-384, 447,
460, 470-472, 480

secure: 8, 155, 165-166,
173, 175-176, 230,
252, 273-274, 276,
278-279, 287, 289,
311-313, 315-316, 321,
330, 339, 352, 390,
403-404, 415, 495

security: 21, 155, 176, 196,
230, 233, 237, 245, 271,
274, 309-312, 315-317,
330, 336, 338, 341,
352, 356, 380, 387,
389-391, 393-394,
396, 398, 401-405,
407, 409, 411-417,
419, 422, 424-426,
428, 450, 495-496

self-hosted: 431, 476-477
server: 7, 9, 16, 23,

38-39, 73-74, 123, 155,
168-169, 172-174, 185,
192, 195, 197-205, 217,
221, 289, 312-313, 321,
324, 345, 375-381,
384, 412, 473

serverless: 429-432,
460-461

sidecar: 22
smartwhale: 19
source: 7, 9, 18, 67-68,

129, 162, 168-169,
176, 279, 444, 465

spec: 44-46, 59, 67-68,
72, 76, 78, 82, 89, 102,
120-121, 162, 168-169,
174, 199-200, 267, 269,
283, 285, 302-303,
305-306, 332, 339,
345, 347, 349, 373-375,
377-378, 396-398,
401, 407-408, 420

ssh-keygen: 437
statefulset: 87-90,

122-123
statefulsets: 87-88,

355-356
static: 56, 80, 85,

106-107, 158
strategy: 116, 196,

432, 481
subnet: 315-316,

322-323, 325-327
subscription: 24, 29, 132,

257, 288, 322-325,
359, 361, 365-366,
371-372, 391, 393-395,
404, 411, 418, 420,

428, 437, 440, 469
summary: 25, 52, 94,

126, 153, 176, 226, 250,
271, 310, 352, 387,
404, 428, 461, 495

sync: 290, 301,
304-306, 309

syntax: 58, 61, 281

T
tags: 123, 480, 485
target: 103, 327-328, 418
targetport: 72, 200
template: 28, 45, 59, 67,

76, 78, 91, 120-121, 267,
269, 297, 369, 373,
396-398, 407-408

tenant: 301-302,
305, 371-372

tenantid: 301-302, 305
third-party: 316
threat: 390-391, 393, 396,

419-420, 422, 424, 427
tier: 59-60, 67-68,

72-73, 76, 78-79, 82,
184, 332, 339, 375

token: 253-254, 275-276,
279-281, 283-284, 450

tools: 9, 12, 14, 28, 44,
210-211, 321, 436,
441, 461, 463-464

tracing: 12
traffic: 11, 21, 23-24,

72-75, 77, 82-83, 85,
94, 155-156, 160, 163,
165, 173, 184-185, 197,
200-203, 205, 316-317,

321, 330, 336, 341-345,
347-352, 378, 415, 448

trigger: 104, 117, 212, 396,
401-402, 415, 420,
430, 443, 447, 453,
457, 461, 473, 475, 493

troubleshoot: 8, 212

U
ubuntu: 437, 441-442
unavailable: 127-128, 217
update: 18, 60, 85,

110, 112-113, 115-116,
122-124, 170, 189-191,
229, 232, 336, 341, 419,
436, 438, 441, 465, 468

upgrade: 11, 21-22, 25,
38-39, 95-96, 112-114,
116-117, 122, 124-126,
372, 393, 488

user: 8, 16, 18, 28, 88,
144, 150, 155, 229, 233,
235-242, 244-250, 253,
264, 275, 284, 290, 314,
358, 365-366, 384,
387, 438, 440, 450

V
valid: 16, 172, 175, 480
variables: 69, 183, 222,

224, 226, 282-285,
287-288, 305, 309-310,
475-476, 480

vault: 250-252,
270-271, 273-274,
289-291, 294-306,

308-310, 358-359,
367-371, 381-382

verifying: 70, 78, 229, 245,
258, 262, 282, 294,
347, 437, 439, 456-457

version: 11, 13, 21-22, 31,
38-39, 63, 116-117,
122-125, 128, 155, 163,
200, 288-289, 382,
430, 442, 473, 478,
480-481, 491-492, 494

virtual: 23-24, 38, 84-85,
95, 127, 132, 158, 160,
252-254, 311, 314, 316,
357, 375, 433, 477

vmware: 8
vnet: 158, 161, 314-315,

322-324, 326,
328-330, 333

W
warning: 158, 220, 402
web-based: 29
web-server: 200,

345, 347-349
whalesay: 16, 18
whatismyip: 338
window: 108, 131, 139,

146, 245, 259, 292,
369, 489, 492

wordpress: 56,
86-88, 91, 93-94,
122-124, 139-144,
146, 148, 151-152,
273, 356, 380-381,
384-387, 486, 496

workflow: 14, 464,

474-477, 479-483,
488-490, 493

workload: 21, 23, 95,
107, 128, 131, 153, 184,
218, 312, 315-316, 330,
336, 343, 352, 356,
389-391, 399-400, 406

wp-mariadb: 122-123, 141

Z
zones: 31, 158, 325

	Cover
	FM
	Table of Contents
	Preface
	Foreword
	Section 1:The Basics
	Chapter 1: Introduction to containers and Kubernetes
	The software evolution that brought us here
	Microservices
	Advantages of running microservices
	Disadvantages of running microservices
	DevOps
	Fundamentals of containers
	Container images

	Kubernetes as a container orchestration platform
	Pods in Kubernetes
	Deployments in Kubernetes
	Services in Kubernetes
	Azure Kubernetes Service

	Summary

	Chapter 2: Getting started with Azure Kubernetes Service
	Different ways to create an AKS cluster
	Getting started with the Azure portal
	Creating your first AKS cluster
	A quick overview of your cluster in the Azure portal
	Accessing your cluster using Azure Cloud Shell
	Deploying and inspecting your first demo application
	Deploying the demo application

	Summary

	Section 2: Deploying on AKS
	Chapter 3: Application deployment on AKS
	Deploying the sample guestbook application step by step
	Introducing the application
	Deploying the Redis master
	Examining the deployment
	Redis master with a ConfigMap

	Complete deployment of the sample guestbook application
	Exposing the Redis master service
	Deploying the Redis replicas
	Deploying and exposing the front end
	The guestbook application in action

	Installing complex Kubernetes applications using Helm
	Installing WordPress using Helm

	Summary

	Chapter 4: Building scalable applications
	Scaling your application
	Manually scaling your application
	Scaling the guestbook front-end component
	Using the HPA

	Scaling your cluster
	Manually scaling your cluster
	Scaling your cluster using the cluster autoscaler

	Upgrading your application
	Upgrading by changing YAML files
	Upgrading an application using kubectl edit
	Upgrading an application using kubectl patch
	Upgrading applications using Helm

	Summary

	Chapter 5: Handling common failures in AKS
	Handling node failures
	Solving out-of-resource failures
	Fixing storage mount issues
	Starting the WordPress installation
	Using persistent volumes to avoid data loss

	Summary

	Chapter 6: Securing your application with HTTPS
	Setting up Azure Application Gateway as a Kubernetes ingress
	Creating a new application gateway
	Setting up the AGIC
	Adding an ingress rule for the guestbook application

	Adding TLS to an ingress
	Installing cert-manager
	Installing the certificate issuer
	Creating the TLS certificate and securing the ingress

	Summary

	Chapter 7: Monitoring the AKS cluster and the application
	Commands for monitoring applications
	The kubectl get command
	The kubectl describe command
	Debugging applications

	Readiness and liveness probes
	Building two web containers
	Experimenting with liveness and readiness probes

	Metrics reported by Kubernetes
	Node status and consumption
	Pod consumption

	Using AKS Diagnostics
	Azure Monitor metrics and logs
	AKS Insights

	Summary

	Section 3: Securing your AKS cluster and workloads
	Chapter 8: Role-based access control in AKS
	RBAC in Kubernetes explained
	Enabling Azure AD integration in your AKS cluster
	Creating a user and group in Azure AD
	Configuring RBAC in AKS
	Verifying RBAC for a user
	Summary

	Chapter 9: Azure Active Directory pod‑managed identities in AKS
	An overview of Azure AD pod-managed identities
	Setting up a new cluster with Azure AD pod-managed identities
	Linking an identity to your cluster
	Using a pod with managed identity
	Summary

	Chapter 10: Storing secrets in AKS
	Different secret types in Kubernetes
	Creating secrets in Kubernetes
	Creating Secrets from files
	Creating secrets manually using YAML files
	Creating generic secrets using literals in kubectl

	Using your secrets
	Secrets as environment variables
	Secrets as files

	Installing the Azure Key Vault provider for Secrets Store CSI driver
	Creating a managed identity
	Creating a key vault
	Installing the CSI driver for Key Vault

	Using the Azure Key Vault provider for Secrets Store CSI driver
	Mounting a Key Vault secret as a file
	Using a Key Vault secret as an environment variable

	Summary

	Chapter 11: Network security in AKS
	Networking and network security in AKS
	Control plane networking
	Workload networking

	Control plane network security
	Securing the control plane using authorized IP ranges
	Securing the control plane using a private cluster

	Workload network security
	Securing the workload network using an internal load balancer
	Securing the workload network using network security groups
	Securing the workload network using network policies

	Summary

	Section 4: Integrating with Azure managed services
	Chapter 12: Connecting an application to an Azure database
	Azure Service Operator
	What is ASO?

	Installing ASO on your cluster
	Creating a new AKS cluster
	Creating a managed identity
	Creating a key vault
	Setting up ASO on your cluster

	Deploying Azure Database for MySQL using ASO
	Creating an application using the MySQL database
	Summary

	Chapter 13: Azure Security Center for Kubernetes
	Setting up Azure Security Center for Kubernetes
	Deploying offending workloads
	Analyzing configuration using Azure Secure Score
	Neutralizing threats using Azure Defender
	Summary

	Chapter 14: Serverless functions
	Various functions platforms
	Setting up the prerequisites
	Azure Container Registry
	Creating a VM

	Creating an HTTP-triggered Azure function
	Creating a queue-triggered function
	Creating a queue
	Creating a queue-triggered function
	Scale testing functions

	Summary

	Chapter 15: Continuous integration and continuous deployment for AKS
	CI/CD process for containers and Kubernetes
	Setting up Azure and GitHub
	Setting up a CI pipeline
	Setting up a CD pipeline
	Summary
	Final thoughts

	Index

