
Se
co

nd
 E

di
tio

n
Ia

in
 F

ou
ld

s

LEARN AZURE
IN A MONTH
OF LUNCHES

}*

///////// #

Get help with
your project.

Talk to a
sales specialist >

startHere(Azure);

Dig into 21
Azure lessons

Get a solid foundation in Azure with
the lessons in this e book. Sign up for
an Azure free account and use your
$200 credit to complete the exercises.
Continue with your account and get
12 months of popular free services
and 25+ always free services.

Start free

Manning publishes high-quality books and videos for technology professionals like you. Use this special
discount code to save 40% on all eBooks, pBooks, MEAPs, and liveVideo courses at manning.com,
including these selected titles. Just enter azuremsft2 in the Promotional Code box when you check out.

Read Manning books FREE on liveBook

Manning’s liveBook platform offers a comfortable, flexible online reading experience. You get
FREE full access for five minutes a day to each Manning book. In liveBook you can

• Ask questions, share code and examples, and interact with other readers in the
liveBook forum.

• Full-text search across all Manning books—even books you don’t own.
• Register for a FREE liveBook account at livebook.manning.com.

You can use your FREE five minutes any way you want—start and stop the timer, hop between
books, and try out the interactive exercises. Just log in and explore risk free.

Learn Windows PowerShell in a Month of Lunches
by Don Jones and Jeffery Hicks
December 2016, 384 pages

Learn Docker in a Month of Lunches
Elton Stoneman

Summer 2020, 530 pages

SAVE 40% ON BOOKS AND VIDEOS FROM MANNING!

Books for Microsoft developers and IT Pros
Azure Data Engineering
Dependency Injection Principles,

Practices, and Patterns
Microservices in .NET Core
.NET Core in Action
Microservices Security in Action
Concurrency in .NET
Reactive Applications with

Akka.NET

ASP.NET Core in Action
Entity Framework Core in Action
C# in Depth, Fourth Edition
Functional Programming in C#
Kubernetes in Action
Knative in Action
Bootstrapping Microservices 

with Docker, Kubernetes, 
and Terraform

Core Kubernetes
GitOps and Kubernetes
Docker in Action, Second Edition
Docker in Practice, 

Second Edition
Docker in Motion
OpenShift in Action
Cloud Native Patterns

More In A Month of Lunches books
Learn Windows PowerShell in a Month of Lunches, Third Edition
Learn Docker in a Month of Lunches
Learn dbatools in a Month of Lunches
Learn PowerShell in a Month of Lunches, Linux and macOS Edition
Learn PowerShell Scripting in a Month of Lunches
Learn Linux in a Month of Lunches
Learn Amazon Web Services in a Month of Lunches
Learn Cisco Network Administration in a Month of Lunches

Praise for the first edition

From the first edition of Learn Azure in a Month of Lunches by Iain Foulds:

“An incredible information-packed book to learn core and advanced Azure concepts in a month!”
—Sushil Sharma, Galvanize

“Microsoft Azure is fast becoming a leader in the public cloud space. Following the exercises in this book
will quickly get you up to speed with this technology.”

—Michael Bright, Developer Advocate, freelance consultant

“Excellent introduction to Azure with many hands on examples. Covers a broad range of current
topics.”

—Sven Stumpf, ING-DiBa AG

“Azure is like an ocean. This book keeps you afloat by providing the best way to learn in a form of lunches
rich in practice and examples.”

—Roman Levchenko, Microsoft MVP

“All a busy developer needs to get running on Azure.”
—Rob Loranger, freelance developer

“A great way to understand the breadth of Azure offerings, by following a concise, activity focused
approach.”

—Dave Corun, Avanade

“The most comprehensive book on Azure I found to start developing my academic projects!”
—Marco Giuseppe Salafia, PhD student, Università degli Studi di Catania

“This is the go-to book for the Azure platform. It is well organized, thorough, and comprehensive. Starting
with the basics, it guides the reader through creating increasingly complex configurations with the Azure
platform to provide scalability, high performance, and redundancy for hosted applications and services.
This book will serve both as a tutorial for the beginner and a reference for the more experienced user.”

—Robert Walsh, Excalibur Solutions

MANN I NG
Shelter Island

Learn Azure in a
 Month of Lunches

Second Edition

IAIN FOULDS

	 Acquisitions editor:	 Mike Stephens
	 Development editor:	 Frances Lefkowitz
	Technical development editor:	 Karsten Strøbaek
	 Review editor:	 Aleksandar Dragosavljevic
	 Production editor:	 Anthony Calcara
	 Graphics editor:	 Jennifer Houle
	 Copy editor: 	 Kathy Simpson
	 Proofreader:	 Katie Tennant
	 Technical proofreader: 	 Karsten Strøbaek
	 Typesetter:	 Marija Tudor
	 Cover designer:	 Leslie Haimes

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

	 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

ISBN 9781617297625
Printed in the United States of America

To the ABCs of my life:
Abigail, Bethany, and Charlotte

vii

contents
preface  xv
acknowledgments  xvi
about this book  xvii
about the author  xxi

Part 1	 Azure core services..1

	 1	 Before you begin  3
	1.1	 Is this book for you?  3

	1.2	 How to use this book  4
The main chapters  4  ■  Try it now  5  ■  Hands-on labs  5
Source code and supplementary materials  5

	1.3	 Creating your lab environment  5
Creating a free Azure account  5  ■  Bonus lab exercise: Creating a
free GitHub account  7

	1.4	 A little helping hand  7

	1.5	 Understanding the Azure platform  8
Virtualization in Azure  10  ■  Management tools  11

	 2	 Creating a virtual machine  14
	2.1	 Virtual machine configuration basics  15

Regions and availability options  15  ■  VM images  16
VM sizes  17  ■  Azure storage  18  ■  Virtual networking  19

viii contents

	2.2	 Creating an SSH key pair for authentication  20

	2.3	 Creating a VM from your web browser  22

	2.4	 Connecting to the VM and installing the web server  24
Connecting to the VM with SSH  24  ■  Installing the web
server  26

	2.5	 Allowing web traffic to reach the VM  27
Creating a rule to allow web traffic  28  ■  Viewing the web
server in action  28

	2.6	 Lab: Creating a Windows VM  29

	2.7	 Cleaning up resources  30

	2.8	 Houston, we have a problem  31

	 3	 Azure Web Apps  33
	3.1	 Azure Web Apps overview and concepts  34

Supported languages and environments  34  ■  Staging different
versions with deployment slots  35  ■  App service plans  35

	3.2	 Creating a web app  37
Creating a basic web app  37  ■  Deploying a sample
HTML site  39

	3.3	 Viewing diagnostic logs  42

	3.4	 Lab: Creating and using a deployment slot  44

	 4	 Introduction to Azure Storage  47
	4.1	 Managed Disks  47

OS disks  48  ■  Temporary disks and data disks  49
Disk-caching options  50

	4.2	 Adding disks to a VM  50

	4.3	 Azure Storage  52
Table storage  53  ■  Queue storage  55  ■  Storage availability
and redundancy  56

	4.4	 Lab: Exploring Azure Storage  57
VM-focused  57  ■  Developer-focused  57

	 5	 Azure Networking basics  58
	5.1	 Virtual network components  58

Virtual networks and subnets  59  ■  Virtual network interface
cards  61  ■  Public IP address and DNS resolution  62

	 ixcontents

	5.2	 Securing and controlling traffic with network security
groups  64
Creating a network security group  64  ■  Associating a network
security group with a subnet  66  ■  Creating network security group
filtering rules  67

	5.3	 Building a sample web application with secure traffic  68
Creating remote access network connections  68  ■  Creating
VMs  69  ■  Using the SSH agent to connect to your VMs  70

	5.4	 Lab: Installing and testing the LAMP web server  72

Part 2	 High availability and scale..........................73

	 6	 Azure Resource Manager  75
	6.1	 The Azure Resource Manager approach  75

Designing around the application lifecycle  76  ■  Securing and
controlling resources  78  ■  Protecting resources with locks  79
Managing and grouping resources with tags  80

	6.2	 Azure Resource Manager templates  81
Creating and using templates  82  ■  Creating multiples of a resource
type  84  ■  Tools to build your own templates  85  ■  Storing and
using templates  87

	6.3	 Lab: Deploying Azure resources from a template  87

	 7	 High availability and redundancy  90
	7.1	 The need for redundancy  90

	7.2	 Infrastructure redundancy with Availability Zones  92
Creating network resources across an Availability Zone  94
Creating VMs in an Availability Zone  95

	7.3	 VM redundancy with Availability Sets  96
Fault domains  96  ■  Update domains  97  ■  Distributing VMs
across an Availability Set  98  ■  View distribution of VMs across an
Availability Set  101

	7.4	 Lab: Deploying highly available VMs from a template  102

	 8	 Load-balancing applications  106
	8.1	 Azure load-balancer components  106

Creating a frontend IP pool  108  ■  Creating and configuring
health probes  110  ■  Defining traffic distribution with

x contents

load-balancer rules  112  ■  Routing direct traffic with Network
Address Translation rules  114  ■  Assigning groups of VMs to
backend pools  116

	8.2	 Creating and configuring VMs with the load
balancer  119

	8.3	 Lab: Viewing templates of existing deployments  122

	 9	 Applications that scale  124
	9.1	 Why build scalable, reliable applications?  124

Scaling VMs vertically  125  ■  Scaling web apps vertically  127
Scaling resources horizontally  128

	9.2	 Virtual machine scale sets  129
Creating a virtual machine scale set  131  ■  Creating autoscale
rules  133

	9.3	 Scaling a web app  136

	9.4	 Lab: Installing applications on your scale set or
web app  139
Virtual machine scale sets  139  ■  Web apps  140

	 10	 Global databases with Cosmos DB  141
	10.1	 What is Cosmos DB?  141

Structured (SQL) databases  142  ■  Unstructured (NoSQL)
databases  142  ■  Scaling databases  143  ■  Bringing it all
together with Cosmos DB  144

	10.2	 Creating a Cosmos DB account and database  145
Creating and populating a Cosmos DB database  145
Adding global redundancy to a Cosmos DB database  149

	10.3	 Accessing globally distributed data  152

	10.4	 Lab: Deploying a web app that uses Cosmos DB  156

	 11	 Managing network traffic and routing  158
	11.1	 What is Azure DNS?  158

	11.2	 Delegating a real domain to Azure DNS  160

	11.3	 Global routing and resolution with Traffic Manager  162
Creating Traffic Manager profiles  164  ■  Globally distributing
traffic to the closest instance  167

	11.4	 Lab: Deploying web apps to see Traffic Manager in
action  174

	 xicontents

	 12	 Monitoring and troubleshooting  175
	12.1	 VM boot diagnostics  175

	12.2	 Performance metrics and alerts  178
Viewing performance metrics with the VM diagnostics
extension  178  ■  Creating alerts for performance conditions  181

	12.3	 Azure Network Watcher  182
Verifying IP flows  183  ■  Viewing effective NSG rules  184
Capturing network packets  186

	12.4	 Lab: Creating performance alerts  188

Part 3	 Secure by default... 189

	 13	 Backup, recovery, and replication  191
	13.1	 Azure Backup  191

Policies and retention  193  ■  Backup schedules  196
Restoring a VM  198

	13.2	 Azure Site Recovery  201

	13.3	 Lab: Configuring a VM for Site Recovery  204

	 14	 Data encryption  206
	14.1	 What is data encryption?  206

	14.2	 Encryption at rest  208

	14.3	 Storage Service Encryption  209

	14.4	 VM encryption  211
Storing encryption keys in Azure Key Vault  211  ■  Encrypting
an Azure VM  213

	14.5	 Lab: Encrypting a VM  214

	 15	 Securing information with Azure Key Vault  216
	15.1	 Securing information in the cloud  216

Software vaults and hardware security modules  217
Creating a key vault and secret  219

	15.2	 Managed identities for Azure resources  221

	15.3	 Obtaining a secret from within a VM with managed
identity  224

	15.4	 Creating and injecting certificates  229

	15.5	 Lab: Configuring a secure web server  232

xii contents

	 16	 Azure Security Center and updates  234
	16.1	 Azure Security Center  234

	16.2	 Just-in-time access  237

	16.3	 Azure Update Management  241
Combined Azure management services  243  ■  Reviewing and
applying updates  245

	16.4	 Lab: Enabling JIT and updates for a Windows VM  249

Part 4	 The cool stuff... 251

	 17	 Machine learning and artificial intelligence  253
	17.1	 Overview and relationship of AI and ML  254

Artificial intelligence  254  ■  Machine learning  255
Bringing AI and ML together  256  ■  Azure ML tools for
data scientists  257

	17.2	 Azure Cognitive Services  259

	17.3	 Building an intelligent bot to help with pizza orders  260
Creating an Azure web app bot  260  ■  Language and
understanding intent with LUIS  261  ■  Building and
running a web app bot with LUIS  264

	17.4	 Lab: Adding channels for bot communication  267

	 18	 Azure Automation  269
	18.1	 What is Azure Automation?  269

Creating an Azure Automation account  271  ■  Azure
Automation assets and runbooks  272

	18.2	 Azure Automation sample runbook  274
Running and viewing output from a sample runbook  276

	18.3	 PowerShell Desired State Configuration (DSC)  278
Defining and using PowerShell DSC and an Azure Automation
pull server  280

	18.4	 Lab: Using DSC with Linux  282

	 19	 Azure containers  284
	19.1	 What are containers?  284

	19.2	 The microservices approach to applications  287

	19.3	 Azure Container Instances  289

	 xiii﻿

	19.4	 Azure Kubernetes Service  293
Creating a cluster with Azure Kubernetes Services  294
Running a basic website in Kubernetes  295

	19.5	 Lab: Scaling your Kubernetes deployments  298

	 20	 Azure and the Internet of Things  300
	20.1	 What is the Internet of Things?  300

	20.2	 Centrally managing devices with Azure IoT Hub  303

	20.3	 Creating a simulated Raspberry Pi device  306

	20.4	 Streaming Azure IoT hub data into Azure web apps  309

	20.5	 Azure IoT component review  315

	20.6	 Lab: Exploring use cases for IoT  316

	 21	 Serverless computing  317
	21.1	 What is serverless computing?  317

	21.2	 Azure messaging platforms  319
Azure Event Grid  320  ■  Azure Event Hubs and Service Bus  321
Creating a service bus and integrating it with an IoT hub  322

	21.3	 Creating an Azure logic app  325

	21.4	 Creating an Azure function app to analyze IoT
device data  328

	21.5	 Don’t stop learning  332
Additional learning materials  333  ■  GitHub resources  333
One final thought  333

	 index  335

contents

xv

preface
This second edition of Learn Azure in a Month of Lunches reminds me that things
change quickly and that you must always keep learning. Gone are the days when you
could take a week-long course in Windows Server and comfortably run it for years without
changing much. This doesn’t mean that the IT world is a scarier place, but you do need
to approach cloud computing with an open mind and be willing to adjust constantly.

When I started to work with Azure, the number of available services was almost
overwhelming. I knew that I should pay attention to security, performance, redun-
dancy, and scale, but I didn’t know how to adapt more than a decade of large-scale
server administration to the world of cloud computing. Over time, I began to learn
about the various Azure services that provide those key components. These services
rarely work in isolation, but I didn’t know the best way to integrate them or how to
decide which service to use for each task. This book is a way to explain to my past self,
and to many others following a similar path, how to quickly understand the core ser-
vices in Azure and make them work together.

This book is more than 350 pages long, yet it barely scratches the surface of what
you can do in Azure! To help give you a solid understanding of the concepts needed to
be successful as you build solutions in Azure, I had to choose which topics to write
about. The book doesn’t cover all 100 or more Azure services, and it doesn’t go into
exhaustive detail about the services that are included. Instead, it focuses on the core
areas of some of the primary services, and shows examples of how to connect every-
thing securely, and introduces the possibilities of what you can build in Azure.

Cloud computing is continually changing. There are no three- or four-year release
cycles and large update deployments. I think that today is a great time to be building
solutions and writing code; there’s always an opportunity to learn something new and
improve yourself. I hope that you learn to run great applications in Azure and enjoy
exploring all the available services.

xvi

 	 acknowledgments
Many people behind the scenes at Manning Publications helped publish this book.
Special thanks go to Mike Stephens for having the vision to get this project started. I
thank my publisher, Marjan Bace, and everyone on the editorial and production teams.
My thanks go to the technical peer reviewers led by Aleksandar Dragosav-
ljević—Ariel Gamino, Charles Lam, Ernesto Cardenas Cangahuala, George Onofrei,
Glen Thompson, Jose Apablaza, Juraj Borza, Michael Langdon, Michael Wall, Peter
Kreyenhop, Rick Oller, Rob Ruetsch, Robert Walsh, and Vishal Singh. And finally, on
the technical side, thanks go to Karsten Strøbaek, who served as both the book’s tech-
nical editor and proofreader.

For this second edition, I offer a big thanks to Phil Evans and Davanand Bahall for
their support and the freedom to update this book. This was an after-hours project
outside my Microsoft day job, but a lot of people were excited and affected by it. Con-
tinued thanks go to David Tolkov and Tim Teebken, who gave me opportunities to
develop into someone capable of writing this book. And look, Jean-Paul Connock,
we’ve won a Stanley Cup since the last time! Go Blues!

Thanks go to Rick Claus for supporting the need for strong technical documenta-
tion in Azure, and to Marsh Macy and Neil Peterson for their personal support and
guidance in writing the original version of this book. We still need to get started on
that school bus.

xvii

	 about this book
This book is designed to give you a solid foundation for success as an IT engineer or
developer in Azure. You’ll learn about both Infrastructure as a Service (IaaS) and Plat-
form as a Service (PaaS) solutions, as well as when to use each approach. As you work
through the chapters, you’ll learn how to plan appropriately for availability and scale,
keep security in mind, and consider cost and performance. By the end of the book,
you should be able to integrate upcoming technologies such as containers and Kuber-
netes, artificial intelligence and machine learning (AI + ML), and the Internet of
Things (IoT).

When it comes to building and running your applications and services, Azure lets
you choose the operating system, application tools, and platform you’re most com
fortable with. This book mostly discusses non-Microsoft technologies such as Linux,
Python, and Node.js. Command examples use the Azure CLI, not Azure PowerShell.
These were conscious decisions to show you that using Azure doesn’t mean you have to
use Windows Server, IIS, or ASP.NET.

As you work in the cloud, you often work across platforms and must learn new top-
ics, which is another reason for showing non-Microsoft technologies and platforms. I
wanted to introduce you to some of these new areas before you encounter them in the
real world. Throughout the book, I’ll teach you the concepts and steps needed to inte-
grate Azure services, so you can switch platforms or languages as you wish and have the
same knowledge apply.

Roadmap
The book is organized into 4 parts and 21 chapters:

¡	Part 1 covers some of the core Azure infrastructure and platform services: vir-
tual machines, web apps, storage, and networking.

xviii ﻿

¡	Part 2 dives into how to provide high availability and redundancy: templates,
availability sets and zones, load balancers, autoscaling, distributed databases,
and traffic routing. By the end of chapter 12, you should have a solid knowledge
of how to build high-performance distributed applications in Azure.

¡	Part 3 covers security aspects such as backup and recovery, encryption, digital key
management, and updates. By the time you’ve completed chapter 16, you’ll be
well on the way to creating secure, stable applications in Azure.

¡	To finish the book, part 4 introduces a little fun, exploring new areas of comput-
ing such as serverless computing and container-based applications. These chap-
ters introduce areas of Azure that give you a glimpse of what the future of
production applications could look like.

Except in part 4 (which is aptly named “The cool stuff”), you should try to work
through the book’s chapters in order. You won’t work on the same project over succes-
sive chapters, but each chapter builds on earlier theory and hands-on lab examples.

Chapter 1 guides you through creating a free trial account in Azure, which is
enough to complete the hands-on lab exercises in each chapter. I also provide a little
more background on Azure and how to find additional help along the way. I mention
this web page a few times in the book (maybe I’m a little biased!), but http://docs.
microsoft.com/azure is the best place to go for additional documentation and sup-
port on any areas of Azure that interest you.

About the examples and source code
This book contains many examples of source code, both in numbered listings and in-
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text.

In many cases, the original source code has been reformatted, with line breaks and
reworked indentation added to accommodate the available page space in the book. In
rare cases, even this was not enough, and listings include line-continuation markers
(➥). Additionally, comments in the source code are removed from the listings when
the code is described in the text. Code annotations accompany many of the listings,
highlighting important concepts.

This book’s source code, along with accompanying scripts, templates, and support-
ing resources, is available at https://www.manning.com/books/learn-azure-in-a-
month-of-lunches-second-edition and at the book’s GitHub repo (https://github.
com/fouldsy/azure-mol-samples-2nd-ed).

All the hands-on exercises can be completed in the Azure portal and with Azure
Cloud Shell, a browser-based interactive shell for both the Azure CLI and Azure Power-
Shell. There are no tools to install on your machine, and you can use any computer and
OS you wish, provided that it supports a modern web browser.

The Azure portal often implements minor changes. Part of the challenge of using
any cloud service is that things may be a little different than they were the day before.

about this book

	 xix﻿

This second edition of the book tries to minimize the number of portal screenshots,
but don’t worry if what you see is still a little different from what’s shown in the book.
The required parameters are usually the same; the layout may just be different. If there
are new options in the portal that I don’t specifically call out in an exercise or lab, it’s
usually safe to accept the defaults that are provided.

If you work outside Azure Cloud Shell, take care with the command examples.
Windows-based shells such as PowerShell and CMD treat line breaks and continua-
tions differently from *nix-based shells such as Azure Cloud Shell. Many of the com-
mand examples run across multiple lines. Commands are shown with a backslash (\)
character to indicate that the command continues on the next line, as in the following
example:

az resource group create \
--name azuremol \
--location eastus

You don’t have to type those backslash characters, but doing so may make long com-
mands more readable on your screen. If you choose to work locally on your computer
with a Windows shell, you can use a backtick (`) instead of a backslash. In a Power-
Shell or CMD shell with Python for Windows installed, for example, change the previ-
ous command as follows:

az resource group create `
--name azuremol `
--location eastus

This convention may seem to be confusing at first, but I follow it in the book because
the official documentation at https://docs.microsoft.com/azure uses this format.
Azure CLI commands, which are mostly used in this book, assume a *nix-based shell
and therefore use a backslash character. Azure PowerShell commands assume a Win-
dowsbased shell and so use a backtick. This difference in behavior will make sense
quickly, and you’ll find that it’s easy to transition between shells. If you’re new to work-
ing across platforms, this difference can be a fun little gotcha!

I recommend that you check out the Windows Subsystem for Linux (WSL) if you run
Windows 10 and want to dive into the Azure CLI and *nix-based systems in gen-
eral; you can find details at https://docs.microsoft.com/windows/wsl. WSL, and the
latest improvements in WSL2 give you a native Linux kernel experience while run-
ning Windows. Don’t try to wrap your head around that idea too much! Just know that
you can run native Linux commands and applications without worrying about differ-
ent line breaks or variable definitions. To really blow your mind, PowerShell is avail-
able for .NET Core, which also runs on Linux. You can run PowerShell on Linux while
in Windows.

liveBook discussion forum
Purchase of Learn Azure in a Month of Lunches includes free access to a web forum run
by Manning Publications where you can make comments about the book, ask technical

about this book

xx ﻿

questions, and receive help from the author and from other users. To access the
forum, go to https://livebook.manning.com/book/learn-azure-in-a-month-of-lunches-
second-edition/discussion. You can also learn more about Manning’s forums and the
rules of conduct at https://livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest that you try asking him some challenging questions, lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

about this book

xxi

 	 about the author
IAIN FOULDS is a senior content developer at Microsoft, currently writing technical
documentation for Azure Active Directory. Previously, he was a premier field engineer
with Microsoft for virtualization technologies such as Azure, Hyper-V, and System Cen-
ter Virtual Machine Manager. With more than 15 years of experience in IT, most of it
in operations and services, he embraced virtualization early with VMware and has
helped build and teach others about cloud computing for years.

Originally from England, he has lived in the United States for more than a decade
and currently resides just outside Seattle with his wife and two young children, to
whom this book is dedicated. He is a fan of football (unfortunately called “soccer”
where he lives) and also enjoys ice hockey and almost any form of motor racing. Out-
side computing, his interests include performance and classic cars, aviation photogra-
phy, and claiming to play the guitar. He’s also a big model-train nerd, regularly
attending and volunteering at shows and events throughout the Pacific Northwest.

Part 1

Azure core services

To build the next great application, you need a solid understanding of the
basic resources in Azure. Things like storage and networking may not be the
coolest things to look at, but they’re central to much that you run in Azure.
Before you can start to get into redundant, multi-instance virtual machines or
Azure web apps, it helps to see the available options and management tasks for a
single instance. This approach lets you learn about the differences and similari-
ties between the IaaS approach of VMs and the PaaS approach of web apps.
Chapters 1–5 explore VMs, web apps, core storage, and virtual networking fea-
tures.

3

1Before you begin

Azure is one of the largest public cloud computing providers for services such as
virtual machines (VMs), containers, serverless computing, and machine learning.
We won’t dive into all 100 or more Azure services in this book, but you’re going to
learn about the core services and features that cover most of what you need to start
building and running solutions in Azure. We’ll look at a common example of how
to build and run a web application, and you’ll see how to use some of the core
infrastructure and platform services that can make your job easier.

With Azure, you don’t need a magic wand to predict how many servers or how
much storage you’ll need over the next three years. No more delays as you gain
budget approval; wait for new hardware to ship; and then rack, install, and config-
ure everything. You don’t need to worry about what software versions or libraries
are installed as you write your code.

Instead, select a button, and create whatever resources are needed. You pay only
for each minute those resources are running or for the amount of storage space or
network bandwidth used. When you don’t need the resources anymore, you can
power down or delete them. If you suddenly need to increase the amount of com-
pute power by a factor of 10, select a button, wait a couple of minutes, and it’s
there. And all this is managed by someone else, freeing you to focus on your applica-
tions and customers.

1.1	 Is this book for you?
The IT industry is in a bit of a transition period when it comes to job titles. You may
refer to yourself as an IT pro, a software developer, a system administrator, or a
DevOps engineer. Regardless of what you call yourself, if you want to learn the core

4 Chapter 1  Before you begin

skills needed to build and run secure, highly available applications in the cloud,
you’re in the right place. In generic terms, you probably fall on the IT operations or
development side of things. The truth is, there’s a lot of crossover, especially in cloud
computing. Whether you’re in development or operations, it’s important to under-
stand the core infrastructure and platform services to build and run applications that
best serve your customers.

This second edition of the book introduces some of these core concepts in Azure
and teaches you the skills you need to make informed decisions. Coming into this
book, you should have some experience with VMs and know the basics of networking
and storage. You should also be able to create a basic website, as well as understand
what an SSL certificate and a database are. After we cover the core processes, we’ll
take a quick look at new and upcoming technologies. You want to stay ahead of where
your job may take you, so you’ll learn about containers, the Internet of Things,
machine learning, artificial intelligence, and serverless computing. Both self-
described developers and IT pros should find some neat new areas to learn about!

1.2	 How to use this book
I like sandwiches, so lunch is a great time for me to play with cool new technology. You
may be a night owl who has some extra time in the evening, or you may be an early-
morning person (what’s wrong with you?!) who can work through a chapter at break-
fast. There’s no right or wrong time to learn, but if you can set aside about 45 minutes,
you should be able to read a chapter and complete its exercises. Each chapter covers
something new, so give yourself time to absorb each day’s lesson.

1.2.1	 The main chapters

The book is broken into four parts, which is convenient if you believe that there are
four weeks in a month:

¡	Part 1 (chapters 1–5) covers some of the core Azure resources. If nothing else,
try to follow these chapters in order to have a solid understanding. Then you
can focus on the other chapters that most excite you.

¡	Part 2 (chapters 6–12) covers availability and scale. You’ll learn how to automat
ically scale resources in and out, load-balance traffic, and handle maintenance
events without downtime. To learn about running highly available applications
on a global scale, this part is for you.

¡	Part 3 (chapters 13–16) is for the security geeks. It covers things like how to
encrypt VMs, store SSL certificates in a secure vault, and back up and restore
your data.

¡	Part 4 (chapters 17–21) covers a mix of cool areas to give you a taste of what
Azure can do for you and your customers. We’ll look at automation, containers,
the Internet of Things, and serverless computing. Pick something that interests
you, and have fun!

	 5Creating your lab environment

1.2.2	 Try it now

Do you just want to read, or do you want to roll up your sleeves and play with Azure?
Throughout the book are little tasks that let you quickly try something new. If you
have the time, try them. Most of the hands-on time comes in a lab exercise at the end
of the chapter, but there’s a lot of value in breaking up the reading by trying new con-
cepts along the way. Some of these exercises guide you through things step by step;
others are going to make you think a little harder and learn how to build solutions by
yourself like you would in the real world.

1.2.3	 Hands-on labs

Each chapter wraps up with a hands-on lab exercise. Some chapters, like this one,
have a lab exercise in the middle of the chapter. These lab exercises are where you
learn how all the pieces of Azure come together and start to build some mental mus-
cle memory. Grab your keyboard and mouse, and begin building something awesome!

1.2.4	 Source code and supplementary materials

This book’s source code, along with accompanying scripts, templates, and supporting
resources, can be found at https://www.manning.com/books/learn-azure-in-a-month-
of-lunches-second-edition and on the book’s GitHub repo at https://github.com/
fouldsy/azure-mol-samples-2nd-ed. In addition, you can participate in the book’s
forum at https://livebook.manning.com/book/learn-azure-in-a-month-of-lunches-
second-edition/discussion.

1.3	 Creating your lab environment
This book isn’t heavy on concepts and architecture; it’s more about hands-on time
with the Azure platform. To get this practice, you need an Azure account.

1.3.1	 Creating a free Azure account

Azure offers a free trial account that’s good for 30 days and provides up to $200 of free
credit. This credit should be enough for you to make it through all the chapters and
exercises, with room to explore a little and have fun along the way. Many Azure ser-
vices and features remain free even after your trial period ends.

Try it now
Follow along with the steps in this section to create your free Azure account:

1	 Open your web browser to https://azure.microsoft.com/free, and choose the
option to get started with a free Azure account.

2	 When prompted, sign in to your Microsoft account. If you need a Microsoft
account or want to create a new one, choose the Create a New Microsoft
Account link.

6 Chapter 1  Before you begin

3	 When you’re signed in to a Microsoft account, complete the prompts to create
a free Azure account:

¡	Enter your personal details as requested.

¡	To help minimize abuse and fraud, provide a phone number to verify your
identity by text message or phone call.

¡	A credit card is also required for identity verification, but there’s no catch
here. Your account doesn’t start billing you until after 30 days or when you
use up your $200 credit. You won’t automatically transition to a pay-as-you-go
subscription at the end of your trial. You may see a small $1 (or equivalent
local currency) verification hold that’s refunded in a few days.

4	 Review and accept the Azure subscription agreement and privacy policy, and then
select Sign Up. It may take a few minutes to get your Azure subscription ready.

5	 When the sign-up process finishes, and the Azure portal loads, take the quick
tour to learn how to move around.

Your dashboard—the home page of the portal—looks empty right now. But in chapter
2, you’ll dive into creating your first VM, and it will start to look like figure 1.1!

Figure 1.1  The Azure portal, ready for you to create your own applications and solutions

	 7A little helping hand

Is free truly free?
Azure has a Marketplace that contains hundreds of prebuilt images (the basis of
VMs) and solutions you can deploy. We’ll use some of these Marketplace offerings
throughout the book; they’re great ways to deploy an entire application suite quickly.

Not all of these Azure Marketplace offerings are free; some third-party publishers
combine licensing or support costs into the solution you deploy. A VM that you deploy
from Red Hat, for example, may incur an additional fee that covers the Red Hat sup-
port agreement and license. These charges aren’t covered by your free trial credit;
only the base VM use is covered.

The exercises in this book use only resources that remain within the free trial. But if
you go off exploring other cool Marketplace offerings in Azure, pay attention to what
you build. Any solution that includes additional fees should clearly spell those fees
out before you deploy!

1.3.2	 Bonus lab exercise: Creating a free GitHub account

GitHub is a free web service that many organizations and individuals use to manage
projects such as code, templates, and documentation. Azure has hundreds of free
templates and script examples that you can use and contribute to. This is one of the
strengths of the open source community—sharing and giving back to others.

Some of the exercises in this book use resources from GitHub. You don’t need a
GitHub account to do any of this, but if you don’t have an account, you won’t be able
to save any modifications and begin to build your own collection of templates and
scripts. Creating a GitHub account is an optional, but highly recommended, part of
building your lab environment:

1	 Open your web browser to https://github.com.

2	 To create a free GitHub account, provide a username, email address, and pass-
word. You’ll receive a validation message from GitHub.

3	 Select the link in the validation email to activate your account.

4	 Check out some of the Azure repositories that provide sample resources:

¡	Azure quick-start templates—https://github.com/Azure/azure-quickstart​
-templates

¡	Azure CLI—https://github.com/Azure/azure-cli

¡	Azure DevOps utilities—https://github.com/Azure/azure-devops-utils

¡	Learn Azure in a Month of Lunches book resources—https://github.com/
fouldsy/azure-mol-samples-2nd-ed

1.4	 A little helping hand
This book can’t cover everything Azure offers. Even if I tried, by the time you read this
chapter, I bet there will be something new in Azure! Cloud computing moves quickly,
and new services and features are always being released. I may be a little biased, but as

8 Chapter 1  Before you begin

you start to explore Azure and want to learn about additional services, the excellent
https://docs.microsoft.com/azure site is the best place to start. Every Azure service is
documented with quick-start examples, tutorials, code samples, developer references,
and architecture guides. You can also access both free and paid support options if you
need help along the way.

1.5	 Understanding the Azure platform
Before you get into the rest of this book, let’s take a step back and cover what Azure is
and the services that are available. As I mentioned earlier, Azure is a cloud computing
provider on a global scale. At the time of writing, there are 54 Azure regions. Each
region contains one or more data centers. By comparison, the two other major cloud
providers operate in 23 regions (Amazon Web Services [AWS]) and 20 regions
(Google Cloud).

Cloud computing provides more than just compute resources. Azure has more than
100 services, grouped in families of related services such as compute, web + mobile, con
tainers, and identity. With all these services, Azure covers many service models. Let’s
grab a slice of pizza for lunch to understand what this means (figure 1.2).

Dining table

Drinks

Oven

Fire

Pizza dough

Tomato sauce

Toppings

Sauce

Take + bake

Dining table

Drinks

Oven

Fire

Pizza dough

Tomato sauce

Toppings

Sauce

Dining table

Drinks

Oven

Fire

Pizza dough

Tomato sauce

Toppings

Sauce

Dining table

Drinks

Oven

Fire

Pizza dough

Tomato sauce

Toppings

Sauce

Home delivery RestaurantHomemade

You manage Vendor manages

Figure 1.2  Pizza as a Service model. As you move from homemade pizza, where you
provide everything, to the restaurant model, where you just show up, the responsibilities
and management demands change accordingly.

In the Pizza as a Service model, you have four options to choose among. As you progress
through the models, you worry less and less about the process of eating a slice of pizza:

¡	Homemade—You make the dough; add the sauce, toppings, and cheese; bake
the pizza in your oven; get drinks; and sit down to eat at your dining table.

	 9Understanding the Azure platform

¡	Take + bake—You buy a ready-made pizza. You just need to bake it in your oven,
get drinks, and sit down to eat at your dining table.

¡	Home delivery—You order a pizza delivered to your home. You just need to get
drinks and sit down to eat at your dining table.

¡	Restaurant—You want to go out and eat pizza with minimal effort!

Now that you’re hungry, let’s look at the more traditional model that involves some
compute resources (figure 1.3). This model looks a little more like something you see
in Azure.

Applications

Data

Middleware

OS

Virtualization

Servers

Storage

Network

Infrastructure as
a Service (IaaS)

Applications

Data

Middleware

OS

Virtualization

Servers

Storage

Network

Applications

Data

Middleware

OS

Virtualization

Servers

Storage

Network

Applications

Data

Middleware

OS

Virtualization

Servers

Storage

Network

Platform as a
Service (PaaS)

Software as a
Service (SaaS)

Traditional
on-premises

You manage Vendor manages

Figure 1.3  Cloud computing service model

As you progress through the models, you manage fewer of the underlying resources
and can focus more of your time and energy on your customers:

¡	On-premises—You configure and manage the entire data center, such as the net-
work cables, storage, and servers. You’re responsible for all parts of the applica-
tion environment, support, and redundancy. This approach provides maximum
control, but with a lot of management overhead.

¡	Infrastructure as a Service (IaaS)—You purchase the base compute resources from
a vendor that manages the core infrastructure. You create and manage the VMs,
data, and applications. The cloud provider is responsible for the physical infra-
structure, host management, and resiliency. You may still have an infrastructure
team to help support and deploy VMs, but the team is free from the time and
cost of managing the physical equipment.

10 Chapter 1  Before you begin

This approach is good when you start to move applications out of your own
on-premises environment. The management and operations are often similar
to an on-premises environment, so IaaS provides a natural progression for the
business, IT, and application owners to become comfortable with the cloud.

¡	Platform as a Service (PaaS)—You purchase the underlying platform stack from a
vendor that manages the OS and patches, and bring your applications and data.
You don’t worry about VMs or the virtual network, and your operations team
can focus more of their time on application reliability and performance.

This approach often starts making the IT organization and the business com
fortable with running applications in the cloud. Your focus is on the applica-
tions and your customers, with fewer worries about the infrastructure needed to
run those apps.

¡	Software as a Service (SaaS) —You just need access to software, with a vendor pro
viding everything else. Developers can build against an existing platform to
provide customizations or unique features without having to maintain a large
code base.

This approach is often daunting at first, but you likely already know about and
use a successful SaaS offering such as Salesforce, Office 365, or the Google suite of
Mail or Docs. You use email, create documents or presentations, or manage
customer contact information and sales information. Your focus is on the con-
tent that you create and manage, not on how to make the application run.

Most of what you create in Azure falls into the IaaS and PaaS areas. The main use cases
include VMs and virtual networking (IaaS) or the Azure Web Apps, Functions, and
Cosmos DB (PaaS) services. If you’re a developer, the PaaS solutions are probably the
areas you’re most interested in, because Microsoft covers the infrastructure parts to let
you focus on your code. IT pros may lean more toward the IaaS solutions to build out
and control the Azure infrastructure.

Never stop learning
Don’t forget that even as a business moves from IaaS toward the PaaS model, the
IT pro remains relevant! It’s important to understand what goes on underneath the
PaaS layer when you design or troubleshoot a solution. If you’re an IT pro, don’t skip
the chapters on PaaS solutions in Azure; you can add a lot of value for your business
and customers if you understand the transition to that deployment model.

1.5.1	 Virtualization in Azure

Virtualization is the real magic behind Azure. The IaaS, PaaS, and SaaS models use
virtualization to power their services. The concept of virtualization is nothing new,
going all the way back to the mainframe days of the 1960s. In the mid-2000s, server vir-
tualization in the data center started to gain momentum, and by now, only a few work-
loads are deployed to bare-metal servers rather than being virtualized.

	 11Understanding the Azure platform

Entire books are dedicated to virtualization, but here’s a quick overview: virtualiza-
tion logically divides physical resources in a server into virtual resources that can be
securely accessed by individual workloads. A VM is one of the most common resources
in cloud computing. A VM contains a virtual CPU (vCPU), memory (vRAM), storage
(vDisk), and network connectivity (vNIC), as shown in figure 1.4.

Memory Storage NICCPU

vCPU vRAM vRAM vDisk vDisk vNIC vNIC

vCPU vRAM vDisk vNIC vCPU vRAM vDisk vNIC

Windows Server 2019 Ubuntu 18.04 LTS

IIS + .NET web app Node.js web app

VM 1 VM 2

Physical host in Azure

Hyper-V hypervisor

vCPU

Figure 1.4  Virtualization in action on a physical host in Azure

In addition to physical servers, storage and networking are commonly virtualized, which
allows the Azure platform to quickly define everything you need in software. No physical
interaction or manual configuration of devices is required. You don’t have to wait for
another team to provide an IP address, open a network port, or add storage for you.

At its core, Azure runs on Windows—sort of. A modified version of the Hyper-V
hypervisor powers the compute servers. Hyper-V is a type 1 (bare-metal) hypervisor
that has been available in Windows Server for a decade. And don’t worry—you can
still run Linux as a fully supported, first-class workload! Microsoft is a huge contribu-
tor to the Linux community and kernel. Some of the core software-defined networking
in Azure is powered by a custom-built solution based on Debian Linux—Software
for Open Networking in the Cloud (SONiC)—that Microsoft has made open source.
You can take a virtual tour of Microsoft’s data centers at https://azure.microsoft.com/
global-infrastructure.

1.5.2	 Management tools

With so many Azure services, how do you use them? Any way you want! If you want to
select everything in a web browser, there’s an awesome web-based portal. Comfortable
with PowerShell? As you’d expect, there’s an Azure PowerShell module. There’s also a

12 Chapter 1  Before you begin

cross-platform command-line interface (CLI) tool that’s great if you’re on macOS or
Linux. And developers can interact with Azure through REST APIs using a variety of
common languages such as .NET, Python, and Node.js.

Azure portal

The Azure portal should work in any modern web browser, and it’s a convenient way
to use Azure without installing anything on your computer. The portal is also a great
way to learn how to create and manage resources by quickly seeing a visual representa-
tion of everything.

New features and services are continually being added to Azure, so the portal may
change ever so slightly from what you see in the screenshots in this book or online
documentation and blogs. The wording on a button may change a little, or a new
option may be added, but all the core operations remain the same. Welcome to the
brave new world of cloud computing!

Azure Cloud Shell

If you want to get your hands on the keyboard and type commands, the portal also
includes the Azure Cloud Shell, shown in figure 1.5. This shell is a web-based interac-
tive console that provides a Bash shell, the Azure CLI, and some preinstalled applica-
tion development tools such as Git and Maven. There’s also a PowerShell version of
Cloud Shell that, as the name implies, provides access to the latest Azure PowerShell
cmdlets.

Figure 1.5  The Azure Cloud Shell in the web-based portal

	 13Understanding the Azure platform

You can access the Azure Cloud Shell from a web browser on any computer without
needing to install any tools at https://shell.azure.com. Editors like Visual Studio Code
(https://code.visualstudio.com) provide Cloud Shell access within the application.
There’s even an Azure app available for iOS and Android that allows you to use the
Azure Cloud Shell straight from your smartphone.

With the Azure Cloud Shell, you always have access to the latest version of the CLI
or PowerShell tools. Persistent storage allows you to create and save scripts, templates,
and configuration files.

Local Azure Cli and Powershell Tools

Although there are advantages to the Azure Cloud Shell, you often need access to
your local filesystem and tools. You can install the Azure CLI or Azure PowerShell
locally so that you can work with local resources and Azure resources.

In this book, we’ll mostly use the Azure CLI (technically, the Azure CLI 2.0). It may
seem odd to choose it over Microsoft’s native PowerShell; the advantage is that both
the samples and the exercises can work in the Azure Cloud Shell and locally on your
computer, regardless of what OS you use. Although this information isn’t part of set-
ting up your lab environment, the following guides detail how to install the Azure
management tools on your computer:

¡	Getting Started with Azure PowerShell—https://docs.microsoft.com/powershell/
azure/get-started-azureps

¡	Install Azure CLI—https://docs.microsoft.com/cli/azure/install-azure-cli

14

2Creating a virtual machine

Ready to see how quickly you can set up a web server in Azure? In this chapter, we’ll
dive straight into one of the most common requests when it comes to VMs: building
a basic web server. This workload is a great example of the core Infrastructure as a
Service (IaaS) components in Azure.

Assume that you work for a pizza store that wants to expand its operations and
accept online orders for pizza delivery or takeout. To build an online presence, you
need a website. In the first couple of parts of this book, we’ll explore the different
features and services in Azure that let you build and run both IaaS and Platform as a
Service (PaaS) web applications. You can start to make informed decisions as to when
to build and run a VM to power a website and when you might use PaaS to do so. But
the first step is building a web server.

In this chapter, you’ll create an Ubuntu Linux VM and install a basic web server.
Don’t worry about using Linux; you’ll create a Windows VM in the end-of-chapter

Linux VMLinux VM

Basic web
server

Create in a
web browser.

Log in and
install packages.

Customer on
PC

Customer on
smartphone

Customer on
tablet

Open port 80
to allow

customers to
browse your site.

Figure 2.1  In this chapter, you create a basic VM, log in to install a web server, and then open a
network port to allow customers to browse to the sample website.

	 15Virtual machine configuration basics

lab exercise! Ubuntu is a common web server platform, and it’s a great way to learn
about SSH public-key authentication. Then you’ll see how to open a network port for
customers to access your website on the internet. A high-level overview of this basic
environment is shown in figure 2.1.

2.1	 Virtual machine configuration basics
VMs are among the most common building blocks you’ll use when you start to run
applications in the cloud. Why? They’re usually familiar territory. Most IT depart-
ments run a lot of workloads by using Hyper-V or VMware in an on-premises environ-
ment, so you likely already have some experience in building and running VMs.
Organizations often take their first steps in Azure with VMs, as IaaS workloads don’t
require the big mental adjustment that you need to make when you start to run PaaS
workloads.

There are solutions to migrate VMs from an on-premises environment such as
Hyper-V or VMware into Azure, but before you get too carried away with what’s possi-
ble in Azure (some of which we’ll explore in later chapters), let’s look at some basics.
These next few pages may seem like familiar considerations and options you have with
on-premises VMs. If so, great! If this is new, don’t worry; a lot of the management is
abstracted in Azure, and things like virtual networks are typically created and config-
ured once and then left alone. We’ll go into each area in more depth in the coming
chapters, so take a deep breath and go one step at a time.

2.1.1	 Regions and availability options

Azure is divided into regions around the world, with each region having one or more
data centers. These data centers provide the core compute, storage, and network
resources to run your applications and workloads. Azure runs in more than 50
regions, with the list growing every few months. With so many regions, the idea is that
you can deploy applications close to your employees or customers. This regional avail
ability reduces latency and improves the end-user experience.

An Azure region may not offer every single service that’s available in Azure. With
hundreds of services available, the most common set of core services is usually every-
where, but new or niche services typically roll out over time. As you plan your applica-
tions in Azure, check out product availability by region at https://azure.microsoft​
.com/global-infrastructure/services.

In chapter 8, we’ll look at some of the high-availability options such as Availability
Sets and Availability Zones. These redundancy options let Azure distribute multiple
instances of your VMs or applications within a single data center or across an entire
region. This ability lets you define your tolerance to maintenance updates or hard-
ware failure. In the early chapters of this book, you’ll typically create only one or two
VMs, so don’t worry about these availability options just yet.

16 Chapter 2  Creating a virtual machine

2.1.2	 VM images

To create a VM, you need a starting point. Usually, this starting point comes down to
the choice of operating system: Windows or Linux. Next comes the choice of what ver-
sion of Windows to use (such as Windows Server 2016 or 2019) or what Linux distribu-
tion to use (such as Ubuntu, Red Hat Enterprise Linux, or SUSE).

An image—a preconfigured OS bundle with basic configuration options applied—is
that starting point. Azure contains hundreds of these prebuilt images in the Azure
Marketplace to use when you create VMs. You can often apply existing Windows
licenses, depending on your current licensing model, or can opt in to additional sup-
port from Canonical to run Ubuntu Linux or updates from Red Hat, for example.

To keep things simple and short enough that you can complete these lessons in a
lunch hour, you’ll use these prebuilt images in Azure throughout the book. In the real
world, you’ll probably want to customize things to fit your business needs and require-
ments. To do this, you’ll often create your own VM images. The workflow to create
and manage the VMs is the same as with the Azure Marketplace images, but often,
building your own images takes a lot of planning and then hours of configuring, gen
eralizing, and capturing your own images ahead of time.

Try it now
Here are a few ideas to think about as you plan applications in Azure. They sound
basic, and a lot of the time, you may make these decisions automatically, without
much thought. But it’s still important to understand your application needs before you
start to build and run applications!

¡	What regions should your application run in? Do you have a large concentra-
tion of users in a specific region? How will you provide redundancy?

If you’re building internal applications, run them in the Azure region near-
est to your users. If you have a major office in Houston, Texas, for example
(maybe you like rocket ships!), run your Azure applications and VMs in the
South Central United States.

If you’re building external applications, do you anticipate having customers
from certain regions? This configuration may require multiple instances
deployed in different regions (and also provide high availability). We’ll get to
this configuration in chapter 12.

¡	Do you need to provide a lot of VM customizations? How long does it take to
test and validate all those changes? What business needs drive them?

In a traditional on-premises environment, a lot of time is often spent creating
preconfigured images for deployments. In the cloud, try to minimize this time.
The prebuilt Azure images include the latest security updates; they’re tested for
you and then geographically replicated for the fastest deployment times.

	 17Virtual machine configuration basics

If you do create your own images, use features like Azure Shared Image
Gallery to distribute and replicate those images as needed (https://docs​
.microsoft.com/azure/virtual-machines/windows/shared-image-galleries).

2.1.3	 VM sizes

There are various families of VM sizes in Azure. These families contain groups of simi-
lar virtual hardware types that are targeted for certain workloads. The sizes are some-
times updated as new hardware and workload offerings become available, but the core
families remain constant. The family types are as follows:

¡	General purpose—Great for development and testing or for low-use production
databases and web servers

¡	Compute optimized—High-performance CPUs, such as for production application
servers

¡	Memory optimized—Larger memory options, such as when you need to run big
databases or tasks that require a lot of in-memory data processing

¡	Storage optimized—Low-latency, high-disk performance for disk-intensive applica-
tions

¡	GPU—NVIDIA-based graphics-specialized VMs, if you need graphics rendering
or video processing

¡	High-performance compute—Lots of everything: plenty of CPU, memory, and net-
work throughput for the most demanding workloads

Just how big of a VM can you create in Azure? Things are constantly improving, but at
the time of writing the largest VM you can create is an Mv2-series (part of the memory-
optimized family) with 208 virtual CPUs and 5.7 TiB of memory. That should make for
a decent Minecraft server, don’t you think?!

The key thing to learn here is that the number of VMs and amount of CPU and
memory you can request in Azure are limited only by your budget. You’d likely strug-
gle to create VMs of this size in the traditional on-premises world.

When you create a VM in the Azure portal or by using the CLI or PowerShell, you
must choose what size VM to use. A common VM size, such as D2s_v3, is often used as
a default to get you started. This is probably way too much power for a basic web server
in this chapter, but it’s quick to create the VM and install the required packages!

The Azure portal lets you filter based on a rough size (such as small, medium, or
large) or a specific family (such as the general-purpose or memory-optimized VMs).
An estimated monthly cost is also shown to give you an idea of how expensive each VM
is. Pay attention to the costs, as they can add up quickly! Within reason, you can usu-
ally change the VM size after the VM is up and running, though the VM must shut
down and reboot to complete the process.

18 Chapter 2  Creating a virtual machine

VM cost savings
The VMs created by default are often overpowered for what you need, but they’re
quick to deploy and use, which helps cut down on how much time you spend installing
packages on your lunch break.

In the real world, pay attention to the memory, CPU, and storage demands of your
VMs. Create appropriately sized VMs. This approach is the same as in the on-
premises world, where you can end up with VMs that have much more memory or
many more virtual CPUs assigned than they need.

There’s also a special type of VM in Azure: the B-series. These VM sizes use burstable
CPU and memory resources, and you can bank credits for unused compute
resources. If you want to save your Azure credits, you can choose this series of VMs
for the book exercises. They come with a lower price point and are great for scenarios
in which you don’t always need a lot of CPU and memory resources. Take care,
though: depending on the size of the B-series VM you create, it may have less CPU
and memory than something like the D2s_v3 series, so it will run a little slower.

2.1.4	 Azure storage

Storage for VMs in Azure is straightforward. How many disks do you want, how big,
and what type? The first two really aren’t Azure-specific, so we’ll skip them. These
types of storage are available:

¡	Premium SSD (solid-state drive) disks—Use low-latency, high-performance SSDs
and are perfect for production workloads. You should use mostly this type to get
the best performance for your applications.

¡	Standard SSD disks—Use standard SSDs and deliver consistent performance
compared with hard disk drives (HDDs). This type is great for development and
testing workloads or for budget-conscious, low-demand production uses, such
as web servers.

¡	Standard HDD disks—Use regular spinning disks and are ideal for infrequent
data access, such as archive data or backups. This type is not recommended for
running application workloads.

You don’t need to dig much deeper into the specifics of storage to create a quick web
server. You’ll learn more in chapter 4, including about Ultra disks that are only for
attached data disks. For now, it’s enough to know that when you pick a VM size, that
size helps define what type of storage you use.

The virtual disks you use, regardless of type, are called Azure managed disks. These
managed disks allow you to create a VM and attach additional data disks without wor
rying about underlying storage accounts, resource limits, or performance quotas.
Managed disks are also automatically encrypted at rest; there’s nothing you need to
configure to secure your data! Again, chapter 4 covers all this and more. For now, you
can usually let Azure create the most appropriate disk based on the VM size you select.

	 19Virtual machine configuration basics

Try it now
To check your knowledge, work through the following questions:

¡	For most production workloads, what type of disk provides the best perfor‑
mance?

A premium SSD disk is usually what you should run for production work-
loads. This type is often the default choice when you create a VM. Standard SSD
disks are an okay second choice, and ultra SSDs should be only used on very
disk-intensive applications that require low latency. Although there’s a little bit
of cost savings with standard HDDs, performance often is great, just as with
on-premises virtual environments.

¡	What VM family is a good choice for a database server?
A memory-optimized VM is a good fit, as databases often need a larger

amount of memory than CPU resources. Always try to estimate resource needs
and then monitor performance after deployment. Don’t be afraid to switch to a
different VM size to provide the desired performance.

2.1.5	 Virtual networking

It sounds obvious, but a VM needs network connectivity if you want anyone to reach
your applications. For a basic web server, you need both a virtual network and external
connectivity. Chapter 5 covers core Azure networking in detail, and chapter 9 gets into
how to distribute traffic to multiple VMs by using load balancers. Things get really
cool in chapter 11, with Azure DNS and global routing of end users with Traffic Man-
ager. I won’t make you a network engineer, but you’re going to learn a lot of Azure
networking in this book!

To get started with the basics needed for this chapter, a virtual network in Azure is
made up of the same core features as a regular physical network:

¡	An address space and a subnet mask, such as 10.0.0.0/16
¡	One or more subnets, which you can use to divide external, database, or appli

cation traffic, for example
¡	Virtual network interface cards (NICs) that connect VMs to a given subnet
¡	Virtual IP addresses that are assigned to resources such as a virtual NIC or load

balancer

You can create a VM that’s only attached to a virtual network without providing exter-
nal connectivity, which may be the case for backend database or application servers.
To connect to these VMs for administration and maintenance, you can create a virtual
private network (VPN) connection, or you can use a private, dedicated connection to
Azure from your on-premises networking equipment. In Azure, this dedicated con
nection is called ExpressRoute.

20 Chapter 2  Creating a virtual machine

The basic web server you’ll build in this chapter requires a specific type of virtual
IP address: a public IP address. This public IP address is assigned to the virtual NIC
and allows external traffic to reach your VM. Then you can control the flow of traffic
to your VM with NSGs (network security groups). Think of a regular firewall that you
use to open or close various ports and protocols; in Azure, network security groups
lock down traffic by default and allow only the specific traffic that you define. Com-
mon traffic to allow would be HTTP or HTTPS on TCP ports 80 and 443. Remote
management using remote desktop protocol (RDP) or Secure Shell (SSH) can also be
opened, with care, which you’ll do later in this chapter to see how to connect and
install some packages.

2.2	 Creating an SSH key pair for authentication
In the end-of-chapter lab exercise, you’ll create what you’re probably already familiar
with: a Windows Server VM. This type of VM uses password-based authentication. A lot
of applications in the cloud run on Linux; in fact, more than half of the VMs in Azure
run Linux. You usually don’t use password-based authentication with Linux; instead,
you use SSH and a public-key pair. To start expanding your skills, the basic web server
in this chapter runs Linux, so you need to get comfortable with how to create and use
SSH. You don’t need Linux experience to work in the cloud, but I highly recommend
that you learn some of the basics!

SSH key pairs
SSH is a protocol used to communicate securely with remote computers and is the
most common way to log in to Linux VMs. It’s similar to using an RDP connection to
a Windows VM, except that in Linux, the whole SSH session is typically console-
based. With public-key cryptography, you can use a digital key pair to authenticate
you with a remote Linux VM.

An SSH key pair has two parts: a public key and a private key. The public key is stored
on your Linux VM in Azure. You keep a copy of the private key. When you need to log
in to your Linux VM, the public key on the remote VM is matched with the private key
you keep locally. If the key pairs match, you’re logged in to the VM. There’s a little
more to the process than that, but at its core, public-key cryptography is a great
means to verify identity.

I’d like you to get into the habit of using SSH keys to log in to Linux VMs. SSH keys
are a lot more secure than passwords because, among other things, they aren’t sus-
ceptible to brute-force password attacks. You should always focus on security as a central
concept, especially in the cloud.

Try it now
Create an SSH public-key pair, using the Azure Cloud Shell:

	 21Creating an SSH key pair for authentication

1	 Open a web browser to https://portal.azure.com. Sign in to the Azure account
you created in chapter 1 and then select the Cloud Shell icon at the top of the
dashboard, as shown in figure 2.2. You can also open Cloud Shell directly at
https://shell.azure.com.

Figure 2.2  Select and launch Cloud Shell in the Azure portal by selecting the shell icon.

2	 The first time you open Cloud Shell, it takes a few moments to create persistent
storage that’s always then connected to your sessions. This storage allows you to
save and retrieve scripts, configuration files, and SSH key pairs. Accept any
prompts to allow this storage to be created.

3	 If necessary, choose Bash from the drop-down menu in the top-left corner of
Cloud Shell. PowerShell support is also available, though we’ll focus mostly on
Bash and the Azure CLI throughout the book.

4	 To create a key pair, enter the following command:

ssh-keygen

5	 Accept the default prompts by pressing the Enter key. In a couple of seconds, you
have an SSH public-key pair that you can use with all your VMs! The ssh-keygen
command defaults to a 2,048-bit-length key and uses the RSA version 2 protocol.
This is a good balance of security and is recommended for most use cases. Figure
2.3 shows an example of a completed SSH key pair in Cloud Shell.

Figure 2.3  An SSH key pair created in the Azure Cloud Shell with the ssh-keygen command

22 Chapter 2  Creating a virtual machine

6	 To view your public key and use it with a VM, enter the following command:

cat .ssh/id_rsa.pub

7	 Select the output, and copy it to a simple text file on your computer. You’ll use
this public key to create a VM in section 2.3; this VM is referenced from the
Azure CLI throughout the rest of the book. Usually, you don’t need to copy and
paste the whole key each time, but it’s good to see what’s happening at first.
This information isn’t super-secret, so using Notepad or TextEdit to create and
save a copy of the key is fine. Be careful when copying the output of the public
key, because it’s sensitive to additional whitespace or missing characters. An
example of a complete SSH public key is as follows:

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDPGaOBsfhJJOHAWAv+RLLR/vdUTzS9HOIj
➥JyzWWLsnu0ESH2M6R+YYPPNXv9X7dmVyM1zCXXEaLucpnyFjevbwPedxTgifyxgCFTgylr1
➥kg7o4EyCTGBGhTA+hSHuhXGXa12KPdKWehsPwHMa6Hs8fbt/in9Z1k2ZAwvbT+LWPcmJgNO
➥FuolIHOsOEeoQQqdXLrGa7NU/3fzSXdT9Y2BT1KLINc4KnwdOuONddLw3iANvK+Gkwax8iK
➥7IicKMoammwvJUCRf+MTEK9pZ84tfsc9qOIAdhrCCLbQhtoWjZpIwYnFk+SNBE8bZZtB8b2
➥vkDFNZlA5jcAd6pUR3tPuL0D iain@cc-a444-9fdee8b2-2014310619-v5cl5

TIP   Cloud Shell is browser-based, so the keyboard shortcuts for copy and
paste may work a little differently than you’re used to. Ctrl-Insert and Shift-
Insert should copy and paste, rather than the regular Ctrl-C and Ctrl-V.

2.3	 Creating a VM from your web browser
Now that you know a little of the theory of Azure VMs and have created an SSH key
pair, you’re ready to jump in and create a VM. I’m going to get you started and then
let you configure the VM based on what you’ve just learned, so you’ll definitely need
to pay attention!

The Azure CLI and Azure PowerShell tools are incredibly powerful, but a big
strength of Azure is how much time has gone into building a great portal experience.
The Azure portal is a web-based graphical tool that lets you see how all the different
components come together and do a quick visual check to ensure that all is well. The
portal includes a couple of unique things that the other tools don’t provide, and it’s
fast to use because you don’t have to install anything.

Try it now
Creating a VM in Azure gives you a lot of defaults you can use to reduce the number
of choices you have to make. For this exercise, look at the resources Azure is going to
create based on what you learned in section 2.2 for things like network and storage:

1	 In the Azure portal (https://portal.azure.com), select Create a Resource in the
top-left corner of the dashboard. Popular resources should be listed, including
the most recent Long Term Support (LTS) version of Ubuntu (as of this writ-
ing, it’s Ubuntu Server 18.04 LTS).

	 23Creating a VM from your web browser

2	 Select the LTS version.
You can also search the marketplace across the top of the window or browse

the list of high-level services (such as Compute and Networking) to get an idea
of what else is available for your own future needs. Try to stick with Ubuntu
Server 18.04 LTS so that you can follow one of the upcoming exercises to install
the web-server components.

3	 Create a resource group for your web server.
When you create resources in Azure, they’re logically contained in a

resource group that you define. These groups typically contain like-minded
resources for your applications. Chapter 7 gets into ways to plan and manage
applications by using resource groups.

For now, I suggest naming resource groups by chapter to help you organize
things as you go. Name the resource group in this exercise azuremol-
chapter2, for example.

4	 Give your VM a name, such as webvm, and then pick a region close to you.
Don’t worry about infrastructure redundancy for now.

Look at the options for the VM image, just to get a feel for the other options,
but for this exercise, stick with Ubuntu Server 18.04 LTS. The default VM size is
fine for this exercise, but again, look to see what’s available and how you query
for different sizes and what hardware they run. See how the sizes align with the
VM families you looked at earlier in this chapter.

5	 Make sure that you’re using SSH public-key authentication and then provide a
username, such as azuremol. You’ll use this username to sign into the VM in the
next exercise.

6	 Copy and paste the SSH public key you created in the previous section. Again, make
sure that there’s no additional whitespace or formatting when you copy and paste
the public key. The SSH key should be on one line. Even word wrap in Notepad
can cause problems! The Azure portal validates the key before you can proceed.

7	 To connect to the VM in the next exercise and install the web-server compo-
nents, open SSH on port 22.

Opening SSH on a public VM isn’t great security practice. Chapter 16 looks at
how to open and restrict access automatically by using just-in-time VM access.

Look at some of the other ports you can open here. HTTP and HTTPS are
common ports to open, and you’re meant to be building a web server in this
chapter, right? Don’t cheat and open those ports just yet; I want to introduce you
to the Azure CLI in the next exercise, where you allow HTTP traffic.

Connect securely by using a bastion host
In real-world scenarios, you shouldn’t open remote management ports for SSH or
RDP to the public internet. Seriously, just don’t! Follow the best practices that you
should use in the non-cloud, on-premises world, such as connecting only when nec
essary and limiting remote access to a specific set of management addresses.

24 Chapter 2  Creating a virtual machine

(continued)
A common way to provide remote access is to use a bastion host, or a jump box. In
this kind of setup, you don’t connect directly to application servers from your laptop
or desktop. Instead, you connect to a dedicated bastion host and then connect to the
server you need to manage. This approach locks down access to a limited set of
addresses and provides a secure way to allow remote management.

Azure Bastion (https://docs.microsoft.com/azure/bastion) provides a managed
approach to this need for secure remote connection. You create an Azure Bastion
host in a dedicated subnet and then use this host to connect to VMs that run your
applications. Those VMs don’t need to be publicly accessible. You can do everything
through the Azure portal without opening network ports for SSH or RDP. The bastion
host itself is managed for you in terms of security updates and network security
group rules.

8	 Look at some of the other VM configuration options for storage and network-
ing to familiarize yourself with the options, though you can leave everything as
default for now.

9	 There are also some cool management options, such as enabling Auto-
shutdown, Backups, and Diagnostics, which are covered in chapters 12 and 13.
For now, turn off things like boot diagnostics and OS guest diagnostics, as you
need to create and configure a storage account for them to work.

10	 When you’re all set, review and create your basic VM.

2.4	 Connecting to the VM and installing the web server
When your VM is up and running, you can use the SSH key you created earlier to log
in to your VM. Then you can begin to install and configure the web server, and you
can do it all through Cloud Shell.

2.4.1	 Connecting to the VM with SSH

This section looks at how you can get the connection details for your VM quickly.

Try it now
If Linux is new to you, don’t worry! Follow the next few steps to log in to your VM:

1	 In the Azure portal, browse to and select Virtual Machines on the navigation
bar on the left side of the screen. It takes a couple of minutes to create the
VM from the preceding exercise, so select the Refresh button until VM status
shows Running. When ready, choose your VM and select Connect, as shown in
figure 2.4.

	 25Connecting to the VM and installing the web server

Figure 2.4  Select your VM in the Azure portal and then select Connect to generate the SSH connection
information.

With a Linux VM, you’re shown the SSH command that includes your name
and public IP address. Copy this SSH connection command, such as ssh
azuremol@104.209.208.158.

On a Windows VM, the Connect button downloads an RDP connection file
to your computer that’s prepopulated with the public IP address of your VM.

2	 If necessary, open Cloud Shell again. If you’re going to be switching between
Cloud Shell and the portal, you can minimize Cloud Shell to keep it available in
the background.

3	 Paste the SSH command into Cloud Shell and then press Enter. The SSH key
you created earlier is automatically used to authenticate.

The first time you connect to a VM with SSH, it prompts you to add it to a
list of trusted hosts. This is another layer of security that SSH provides. If some-
one tries to intercept the traffic and direct you to a different remote VM, your
local SSH client knows that something has changed and warns you before
connecting.

Accept the prompt to store the remote VM connection. Figure 2.5 shows the
SSH connection process in the Azure Cloud Shell.

26 Chapter 2  Creating a virtual machine

Figure 2.5  Use the connection string shown in the Azure portal to create an SSH connection
to your VM from Cloud Shell.

At this point, you’re either home away from home or the Linux prompt is totally for-
eign. Don’t worry. You don’t need to know a huge number of Linux commands, and
every command is explained as we go along. That said, I highly recommend that you
learn at least some basic Linux administration skills. A lot of the cloud is based on
Linux systems, and there’s a big move toward containers and microservices for appli
cation development and management. If you’re an old-school Windows admin, wel-
come! There’s something lined up for you at the end of the chapter, so bear with it.

2.4.2	 Installing the web server

Create a VM? Check. Connect to the VM with SSH? Check. Now you can install the
packages for a web server and get ready to see it in action.

Azure supports many Linux distributions (distros). Package-management tools and
configuration file locations vary a little among distros. You’re going to use Ubuntu in
this book because it’s one of the most popular and well-documented Linux distros for
cloud computing. If you get stuck along the way, you should be able to find plenty of
documentation to help, starting at https://help.ubuntu.com. If you want to use a dif-
ferent distribution that you’re already comfortable with, feel free to use that! Other-
wise, stick with Ubuntu.

	 27Allowing web traffic to reach the VM

Try it now
From your SSH session to the VM, install the web server packages with APT:

1	 In Ubuntu, you install packages with an Advanced Packing Tool (APT)—a
super-powerful package-management tool that automatically installs any addi-
tional packages it needs. All you need to do is say “Install a web server,” and APT
installs all the required components.

For this example, install the LAMP web stack. This is probably the most com-
mon set of web components: Linux, Apache (a web server), MySQL (a database
server), and PHP (a web programming language):

sudo apt update && sudo apt install -y lamp-server^

The first command updates the available packages, which is good practice to
make sure you can install the latest and greatest packages. When that command
finishes, run the next command with &&. Why not just start a new line for the
next command? The && runs the next command only if the preceding com-
mand was successful. If there was no network connectivity for apt to get the lat-
est packages, for example (humor me, I know you must have network
connectivity to connect in the first place!), there’s no point in running the
install command.

If the update command is successful, apt determines what additional pack-
ages it needs and begins to install lamp-server. Why is there a caret symbol at
the end (^)? That symbol tells apt to install the entire set of packages that
make up the LAMP server, not just a single package named lamp-server.

2	 The installer may prompt you for a password or default to using an empty
MySQL password. That’s not very secure, and for real production use, you need
to specify a strong password. In chapter 15, you’ll get really cool and store a
strong, secure password in Azure Key Vault that’s automatically injected into
this MySQL install wizard.

It takes a minute or so to install all the packages for your LAMP web stack;
then you’re finished.

3	 Type exit to log out of your VM and return to the Cloud Shell prompt.

That’s it! Your web server is up and running, but you won’t be able to access it in a web
browser just yet. To do that, you need to allow web traffic to reach the VM.

2.5	 Allowing web traffic to reach the VM
Your web server is up and running, but if you enter the public IP address of your VM in
a web browser, the web page doesn’t load. Why? Remember the network security groups
discussed briefly in section 2.1.5? When you created the VM, a network security group
was created for you. A rule was added to allow remote management—in this case, SSH.

28 Chapter 2  Creating a virtual machine

The rest of the VM is locked down. To allow visitors to access your web server over the
internet, you need to create a rule in the network security group that allows web traffic.
Otherwise, no one can order pizzas!

2.5.1	 Creating a rule to allow web traffic

This section mixes things up a little by using the Azure CLI to create a rule for web
traffic. You could have opened this HTTP port in the portal when you created the VM,
but then you would have missed half the fun!

The Azure CLI is available in Cloud Shell. There’s nothing you need to install.
Chapter 5 covers virtual networking and network security groups in more depth;
for now, you can check out how quick and powerful the Azure CLI is with just one
command.

Try it now
Open the Azure Cloud Shell, and follow these steps to see the Azure CLI in action:

1	 If you closed your Cloud Shell window, open it again from the Azure portal.
Make sure that the Bash shell loads, not PowerShell. If necessary, switch to the
Bash version.

2	 To see the Azure CLI and installed modules, type az --version. A list of mod-
ules and version numbers is shown. What’s great about Cloud Shell is that it
always has the latest and greatest version available.

NOTE   If you’re observant, you may have noticed the command output infor-
mation about the version of Python. Why is this information important? Python
is a powerful, popular programming language. The Azure CLI is written in
Python, which is part of what makes it cross-platform and available for you to
install locally on any computer if you don’t want to always use Cloud Shell. To
keep up with Microsoft’s drive to contribute to the open source community, the
Azure CLI is made available on GitHub for anyone to make contributions, sug-
gestions, or report problems (https://github.com/Azure/azure-cli).

3	 To open a port, specify the VM name and its resource group, along with the
port number. For web traffic, you need to open port 80. Enter the resource
group (-g) and VM name (-n) you specified when you created your VM:

az vm open-port -g azuremolchapter2 -n webvm --port 80

2.5.2	 Viewing the web server in action

Now that you have a port open to your VM, see what happens when you try to access it
in a web browser:

1	 In the Azure portal, select your VM, if you navigated away from it. The public IP
address is listed in the top-right corner of the VM overview page.

	 29Lab: Creating a Windows VM

2	 Select the address, and copy it.

3	 In your web browser, open a new tab or window, and paste in the public IP
address. The default Apache website loads, as shown in figure 2.6. Okay, it
doesn’t look like a pizza store, but you have the foundation ready to bring in
your code and start to build your application!

Figure 2.6  To see your web server in action and view the default Apache 2 page, enter the
public IP address in a web browser.

2.6	 Lab: Creating a Windows VM
The preceding sections walked through installing the LAMP stack on an Ubuntu
Linux VM. This platform is a common one for websites, but you may want some love
and attention if you have a Windows background! Your development teams or busi-
ness decision makers may want to use .NET, for example. Even so, you can run .NET
Core on Linux VMs, so don’t let the language drive your decision.

From what you learned in the step-by-step example, try to create a VM that runs
Internet Information Services (IIS). Here are some hints:

¡	You need a VM that runs Windows Server 2019.
¡	You use RDP, not SSH, so expect a slightly different connection experience.
¡	In Server Manager, look for an Add Roles and Features option.

30 Chapter 2  Creating a virtual machine

¡	You need to install the web server (IIS).
¡	Don’t forgot to open a network port for HTTP traffic on TCP port 80. You can use

the portal if you want.

2.7	 Cleaning up resources
As you create resources in Azure, the billing meter starts to spin. You’re charged by
the minute, so it’s wise to form good habits and not leave resources such as VMs run-
ning when you’re done with them. You have two ways to stop the billing charges for
running a VM:

¡	Deallocate a VM. You can select the Stop button in the portal to stop and deallo-
cate a VM, releasing all held compute and network resources.

¡	Delete a VM. This option is rather obvious. If there’s nothing left in Azure,
there’s nothing to pay for. Make sure that you’re finished with the VM before
you delete it. There’s no Undo button in Azure!

I recommend that you create a resource group for each application deployment as
you start to build things in Azure. As you walk through the exercises in this book,
that’s what you’ll do. If you name your resource groups by chapter, such as
azuremolchapter2, it’ll be easier to keep track of your resources and what to delete.
This practice makes cleanup a little easier, because you can delete the entire resource
group at the end of each chapter. Choose Resource Groups from the navigation menu
on the left side of the screen; open each resource group you’ve created in this chap-
ter; and then select Delete Resource Group, as shown in figure 2.7. To confirm, you’re
prompted for the resource group’s name.

Figure 2.7  To save costs, delete resource groups when you no longer need them.

If you get into the habit of deleting resources when you’re done with them, you can
comfortably make it through this book on those free Azure credits. At the very least,
deallocate your VM at the end of each lesson so that you can resume the next day and
stop the clock on the billing.

	 31Houston, we have a problem

2.8	 Houston, we have a problem
Sometimes, you’ll run into problems in Azure. There—I said it. Usually, the Azure
platform is good about issues that come up as you create resources:

¡	The Azure CLI or Azure PowerShell reports back as you run commands, so it
should be obvious when something goes wrong. Azure PowerShell typically uses
nice, calm, red text to get your attention.

¡	The Azure CLI can be a little more cryptic because it usually includes the actual
responses to the underlying REST API calls from the server. If this is new, it can
take a few successes and failures to understand what’s going wrong. The helpful
part of getting the REST responses is that you can copy and paste the error mes-
sages into your favorite search engine and usually get solid results to help you
troubleshoot.

Take a REST? We just got started!
When you open a web page in your browser, your computer is communicating with a
web server using HTTP. I can almost guarantee that you’ve seen a 404 error message
on a website before. That message means that the web page couldn’t be found.
Other common errors you may have seen are 403 (you don’t have permission to view
the page) and 500 (the server encountered an error).

Even when things go well, under the hood, your browser receives code 200 messages
when the page loads fine or code 301 messages if a page has been redirected to a
new location. You don’t need to understand and keep track of all these codes; they’re
just standard ways that HTTP facilitates communication between computers.

Earlier, this chapter discussed how to create and manage Azure resources through
the web portal, CLI, or PowerShell. All the Azure services are accessed by Represen
tational State Transfer (REST) application programming interfaces (APIs).

If this is new to you, REST APIs are a (somewhat) standardized way of exposing ser-
vices via HTTP. You use standard HTTP requests such as GET and POST to request
information or make a change, and when the platform accepts and processes the
request, you receive a status message. Azure has a well-defined set of REST APIs.

You don’t need to understand what all this means. Just be aware that when you see
an error message, it’s not always in the most human-readable, helpful format. Some-
times, you get the raw HTTP response from the REST API that you must decipher by
yourself. Again, paste this error into your favorite search engine. There’s a good
chance that someone has encountered the problem and provided a more human
readable reason for what went wrong and what you need to correct.

The most common problems with VMs occur when you connect to your VM. You
could be connecting for remote administration with SSH or RDP, or trying to access
your applications through a web browser or desktop client. These issues are often

32 Chapter 2  Creating a virtual machine

network related. I don’t get into totally blaming the network folks until chapter 5, so
here are a couple of things to check:

¡	Can you connect to any other Azure VMs or applications running in Azure? If
not, something local to your network is probably preventing access.

If you can connect to other Azure resources, make sure that you opened the
network security group rules (section 2.5). Chapter 5 digs into these rules.

¡	For authentication problems, try the following:

	– Confirm that you have the correct SSH keys. Azure should tell you when you
create the VM whether the public key is invalid, but if you have more than
one private key, make sure that you’re using the correct one.

	– For RDP issues, try to connect to localhost\<username> and enter your pass-
word. By default, most RDP clients try to present local credentials or network
credentials, which your VM won’t understand.

33

3Azure Web Apps

In chapter 2, you created a virtual machine (VM) and manually installed packages
to run a basic web server. You could build an online pizza store with this VM if you
were hungry to get started. One of the biggest use cases for Azure VMs is to run web
applications, typically at scale. Web applications are a comfortable workload for
VMs. Comfortable is nice, if you also like the maintenance that goes with managing
all those VMs—you know, fun things like software updates, security patches, cen
tralized logging, and compliance reports. What if you could get all the power of a
secure web server to run your web applications, including the ability to automati-
cally scale to meet demands, but without the need to create and manage all those
VMs? Let me introduce you to the Azure Web Apps service.

In this chapter, we’ll compare the Infrastructure as a Service (IaaS) approach of
VMs and web servers to the Platform as a Service (PaaS) approach. You’ll learn the
benefits of Azure Web Apps as you create a web application and see how to work
with its development and production releases. Then you’ll learn how to deploy
your web app automatically from a source control, such as GitHub. This workflow is
shown in figure 3.1. Azure Web Apps allows you to deploy and run your online

App service
plan

App serviceCreate
web app.

Deploy sample
app from GitHub.

Web app

App service

Web app

Site

Create app
service.

Figure 3.1  In this chapter, you’ll create an app service plan and a basic web app and then deploy a
website from GitHub.

34 Chapter 3  Azure Web Apps

pizza store in a matter of minutes, without the need to install and configure a VM and
web-server packages.

3.1	 Azure Web Apps overview and concepts
With Azure Web Apps, you start to dip your toes into the wonderful world of PaaS
solutions. If you think cloud computing is all about VMs, you should probably reset
that idea a little. At the start of this book, I talked about buying computer power and
focusing on your applications and customers. As you move from IaaS solutions, such
as VMs, and drift toward PaaS solutions, such as web apps, your applications and cus-
tomers become the focus.

To run web applications on IaaS VMs requires management of the OS, application
updates, security and traffic rules, and configuration of the whole system. With Web
Apps, you upload your web application, and all those management tasks are taken
care of for you. Now you can focus on improving the application experience for your
customers or improving availability with scaling options and traffic management.

Does that mean you should never run VMs to host a web application? Probably not.
There are valid reasons to run the entire application stack and configure it yourself,
such as if you need very specific application support or language run time. But Web
Apps can provide many of the use cases for running web applications.

3.1.1	 Supported languages and environments

What kind of flexibility does Web Apps offer in terms of programming languages you
can use to build your web application? Quite a lot! There are two primary platforms
for running Web Apps: Windows and Linux. You can run .NET Core, Node.js, Python,
Java, Ruby, and PHP web apps natively on both Windows and Linux web apps
instances. On Windows, you can also run the full .NET framework. If you want to be
really cool and run your web application in containers, there’s also Web Apps for Con-
tainers, which lets you run native Docker containers for Linux. We’ll dive more into
containers and Docker in chapter 19. For now, understand that your options are cov-
ered with Web Apps!

When may Web Apps not make sense? Not all application languages are supported
by Web Apps. Say you really want to torture yourself with a web application written in
Perl. In that scenario, you’d likely fall back to running on IaaS VMs that you manage
yourself, because there’s no support for Perl in Web Apps. But Web Apps arguably
supports the most common web programming languages that you’d want to use. You
should probably look at a newer version of your app than one written in Perl, too.

Web Apps provides support not only for various languages, but also for various ver-
sions of those languages. Take PHP, for example. Typically, you can select three or
four versions of PHP to best support your application. And best of all, you don’t have
to worry about the dependencies on the underlying web server to support it all, as you
would if you managed an IaaS VM yourself. Python is another example of differences
between the stable 2.7 and 3.6 (and later) versions, as shown in figure 3.2.

	 35Azure Web Apps overview and concepts

Figure 3.2  Select a specific version of a
language in the Web Apps application settings.

Web Apps stays up to date on security fixes, too. But don’t expect an older version of
PHP or Python to continue to be supported indefinitely. There will be a cutoff on sup-
ported older versions at a certain point. Again, that may be a time when you fall back
to running IaaS VMs yourself if your app needs an older language version. But if you
need to run an older version of a given language to support a legacy application, don’t
get sucked into a constant-maintenance approach. Always look to move those legacy
apps to more modern supported platforms.

3.1.2	 Staging different versions with deployment slots

Deployment slots provide a staged environment for your web application. You can push
new versions of your app to a deployment slot and get them running, using environ-
mental variables or database connections, without affecting the live site. When you’re
happy with how things look and feel in a deployment slot, you can switch this version
to the live site in an instant. Then the previously live site switches to a deployment slot
of its own, providing an archived version, or you can flip the app back to production if
necessary.

The number of available deployment slots varies based on the tier of web app you
select. A larger number of deployment slots enables different developers to use multi-
ple staged versions as they stage and test their own updates.

3.1.3	 App service plans

Web Apps is part of the wider App Service family in Azure. Azure App Service also
includes Mobile Apps, API Apps, and Logic Apps. All but Logic Apps are available in
every region that Azure runs in. Here is a great resource to check out Azure service
availability by region: https://azure.microsoft.com/regions/services. Many services
are available globally.

When you need to create an App Service resource, such as a web app, you create or
use an existing service plan. The service plan defines the amount of resources available

36 Chapter 3  Azure Web Apps

to you, how much automation is available to scale and back up your web app, and how
highly available to make your site with staging slots and Traffic Manager (a way to geo-
graphically route traffic to the closest instance for a user, which we’ll look at in chapter
11). As with anything, you get what you pay for. Your application and business needs
should guide you as to the amount of resources required and what additional features
are needed. Each service tier builds on the features of the lower tiers, generally adding
more storage and available resources.

The four main service plan tiers are as follows:

¡	Free/Shared—Uses a shared infrastructure; offers minimal storage, and has no
options for deploying different staged versions, routing of traffic, or backups.
The Shared tier allows you to use a custom domain and charges for this domain.

¡	Basic—Provides dedicated compute resources for your web app, and allows you
to use SSL and manually scale the number of web app instances you run. The
free/shared and basic tiers provide a good environment for you to test the Web
Apps service, but I wouldn’t recommend running any actual production or
development workloads. The performance isn’t a limiting factor, but you miss
some of the automated features, such as backups and scaling.

¡	Standard—Adds daily backups, automatic scale of web app instances, and
deployment slots, and allows you to route users with Traffic Manager. This tier
may be suitable for low-demand applications or development environments in
which you don’t need a large number of backups or deployment slots.

¡	Premium—Provides more frequent backups, increased storage, and a greater
number of deployment slots and instance scaling options. This tier is ideal for
most production workloads.

The case for isolation
With PaaS solutions such as Web Apps, the infrastructure is intentionally abstracted.
As the names of some of the service plan tiers imply, web apps run across a shared
platform of available resources. That’s not at all to say that web apps are insecure
and that others can view your private data! But compliance or regulatory reasons may
require you to run your applications in a controlled, isolated environment. Enter App
Service Environments: isolated environments that let you run App Service instances
such as web apps in a segmented part of an Azure data center. You control the
inbound and outbound network traffic, and can implement firewalls and create virtual
private network (VPN) connections back on your on-premises resources.

All these infrastructure components are still largely abstracted with App Service envi-
ronments, but this approach provides great balance when you want the flexibility of
PaaS solutions but also want to retain some of the more fine-grained controls over
the network connections traffic flow.

You can do quite a lot with the Free and Basic tiers, although for production work-
loads, you should probably use the Standard or Premium tier. This chapter’s example

	 37Creating a web app

uses the Standard tier so that you can see all the available features. When you use Web
Apps with your own applications, you can decide how many of these features you need
and select the most appropriate service plan tier accordingly.

3.2	 Creating a web app
With a little theory under your belt, take a look at a web app in action. There are a
couple of steps to getting an application running. First, you create the basic web app
and see the default site in your browser. Then, you use a sample web page from
GitHub and push that to Azure. Maybe your web developers have started to build a
frontend for your online pizza store, so you have a basic site ready to upload.

NOTE   If you’ve never used Git before, don’t worry. You don’t need to under-
stand what Git is doing at this point, and there’s room at the end of the chap-
ter to play around and explore a little. Learn Git in a Month of Lunches, by Rick
Umali (https://www.manning.com/books/learn-git-in-a-month-of-lunches),
is an excellent intro to using Git if you want to learn a little more, and it’s
available to read for free on the Manning liveBook platform.

3.2.1	 Creating a basic web app

Just as I did in chapter 2, I’m going to give you some rough guidance along the way,
but see whether you can apply some of the theory on application run times and app
service plans to create a web app. If you’re not sure about some options, it’s safe to
accept the defaults for now.

PaaS, not IaaS
This web app is a new resource and is separate from VMs like the one you created
in chapter 2, which is an IaaS approach to building and running web applications. The
PaaS approach is Web Apps. There’s no real relationship between the two types. In
fact, if you followed the advice in chapter 2 and deleted your VM, this web app runs
without a VM in your Azure subscription at all!

Try it now
To create your web app, complete the following steps:

1	 Open a web browser to https://portal.azure.com, and log in to your Azure
account.

2	 In the portal, select Create a Resource in the top-left corner of the dashboard.

3	 Choose Web from the list of resources you can create, and then select Web App.

4	 To help keep things clean and organized as you did in chapter 2, I suggest
that you create a dedicated resource group for your web app, such as
azuremolchapter3.

38 Chapter 3  Azure Web Apps

5	 For the web app name, enter a globally unique name. This name must be
unique, as it creates the URL to your web app in the form http://<name>
.azurewebsite.net. If you’re wondering, yes, you can apply a custom domain
name here. For now, use the default azurewebsites.net address.

6	 You’re going to push some basic HTML code, not a Docker container, but look
at all the different run-time stacks that are available. You can change this setting
after you’ve created the web app, but for now, choose an ASP.NET run time that
runs on Windows.

7	 Let Azure create an app service plan automatically, but change the size to S1
Standard. This tier provides all the core features without providing too many
resources for your basic demo website. In real-world deployments, this step is
where you could manually create and configure your own app service plans or
select an existing plan.

8	 When you’re ready, review and create your first web app.

It takes a few seconds to create your app service. When you’re ready, browse to and
select App Services on the navigation bar on the left side of the screen; then choose
your web app from the list. On the Overview window of your web app, view and select
the web app’s URL, such as https://azuremol.azurewebsites.net.

When you select the URL to your web app, a new browser window or tab opens. The
default web app page loads, as shown in figure 3.3. It still doesn’t look like pizza. . . .

Figure 3.3  To see the default web app page in action, open a web browser to the URL of your site.

	 39Creating a web app

3.2.2	 Deploying a sample HTML site

You have a web app in Azure, but it’s a rather dull, default website. How do you get
your own website in Azure? One of the most common cross-platform ways is to use Git.
Most application developers and teams use a source control system. Rather than
storing files on your computer and saving changes as you go, source control systems
keep track of changes and allow you to work with others. You can create test releases
that won’t affect your production code and revert to earlier versions if problems arise.
Git is one of the most common source control systems; GitHub is a cloud-based ser-
vice that lets you share and contribute code with the rest of the world. Micro-
soft acquired GitHub in 2018, but there’s nothing that forces you to use GitHub with
Azure, or vice versa. All the samples in this book are available in GitHub.

For this example, you create a local copy of the static HTML sample site and then
push the files to your Azure web app. This workflow is shown in figure 3.4.

Sample HTML
files in GitHub.

Create local
copy of files.

Copy files to
Azure web app.

git clone git push

Figure 3.4  You create a local copy of the sample files from GitHub with the git clone
command. To push these local files to your Azure web app, you use git push.

Try it now
To get a copy of the sample HTML page from GitHub and push it to your web app,
complete the following steps:

1	 Open Cloud Shell in the Azure portal, and wait a few seconds for your session
to connect. To get started, you need the HTML sample site from GitHub.

To clone, or copy, the HTML sample site from GitHub, enter the following
command:

git clone https://github.com/fouldsy/azure-mol-samples-2nd-ed.git

If this is your first time using Git in Cloud Shell, you need to define a couple of
settings for Git to understand who you are. For most of the exercises in this
book, Git doesn’t care who you are, but for use with your own projects and
applications, it’s a great way to track who performs certain actions in a source

40 Chapter 3  Azure Web Apps

control system. You need to define these settings only once. Enter your own
email address and full name in git config as follows:

git config --global user.email "iain@azuremol.com"
git config --global user.name "Iain Foulds"

2	 Change to the azure-mol-samples-2nd-ed directory that was created when you
cloned the Git repo:

cd azure-mol-samples-2nd-ed/03/prod

3	 To get ready to upload the sample HTML page, you must initialize Git and then
add and commit your files. Don’t worry too much about the Git commands
right now! You need to tell Git what files to track and add, and give yourself a
way to track those changes later if needed:

git init && git add . && git commit -m "Pizza"

4	 Now you can get ready to push this HTML sample site to your web app. First,
define the deployment credentials. To secure Web Apps when you use a deploy-
ment method like Git or FTP, you must provide a username and password. Web
Apps can use a set of credentials that are valid across all app service plans in
Azure or app-level credentials that apply only to a single app.

In the real world, I recommend that you use app-level credentials to mini-
mize the scope of an attack should one of the credentials be exposed. Azure
automatically generates the app-level credentials, but you have to retrieve and
assign these credentials each time. To keep things simple, use a defined creden-
tial that you can reuse in the next few chapters.

Create the deployment credentials, and specify your own username and secure
password. The username must be globally unique. If it helps, add your initials to
the username or a naming convention that makes sense for your environment.

az webapp deployment user set --user-name azuremol --password @azurem0l!

5	 Next, you need to get the URL for your web app’s Git repository. Enter the web
app name (not the username you created in step 4) and resource group that you
specified when the web app was created to view the Git repo URL.

How to slash-dot yourself
In the following example and later chapters, the backslash (\) means that the com-
mand continues on the next line. It’s a way to wrap long lines, and this approach is
used in a lot of online samples in which you can copy and paste the commands. You
don’t have to type the backslashes in this book’s examples if you don’t want to! Just
continue typing the additional parameters as part of one big line.

If you’re using the Windows command prompt rather than a Bash shell, don’t include
the backslashes. If you do, you really won’t get the outcome you desire!

	 41Creating a web app

az webapp deployment source config-local-git \
--name azuremol \
--resource-group azuremolchapter3 -o tsv

6	 Your web app is configured to work with Git repos, so you need to tell Cloud
Shell what that repo is. In Git, you define these locations as remotes.

Copy your Git clone URL from step 5 and then set this URL as a destination
for the HTML sample site in Cloud Shell with the following command:

git remote add azure your-git-clone-url

7	 To upload, or copy, files with Git, you push them. Where does Git push them to?
A remote like the one you configured in step 6, such as azure. The final part of
the command is a branch—typically, master. A branch in Git is how you keep
trawent work-in-progress models. A best practice in production environments is
to push to release branches that you can name as you wish, such as dev or staging.
These additional branches allow your production code to run as normal; then
you can work on new features or updates safely and without any effect on real
workloads that your customers use.

Push the HTML sample site to your web app:

git push azure master

8	 When prompted, enter the password that you created for the deployment cre-
dentials. You can copy and paste the password to minimize errors here.

You can see from the output that the existing default web app site page is removed, and
the HTML sample site is uploaded and configured to run. Here’s some sample output:

Counting objects: 3, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 510 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
remote: Updating branch 'master'. remote: Updating submodules.
remote: Preparing deployment for commit id 'dda01e9d86'.
remote: Generating deployment script.
remote: Generating deployment script for Web Site
remote: Running deployment command...
remote: Handling Basic Web Site deployment.
remote: Creating app_offline.htm
remote: KuduSync.NET from: 'D:\home\site\repository' to:

'D:\home\site\wwwroot'
remote: Deleting file: 'hostingstart.html'
remote: Copying file: 'index.html'
remote: Deleting app_offline.htm
remote: Finished successfully.
remote: Running post deployment command(s)...
remote: Deployment successful.
To https://azuremolikf@azuremol.scm.azurewebsites.net/azuremol.git
  * [new branch]	 master -> master

42 Chapter 3  Azure Web Apps

To see your updated web app, refresh your site in a web browser or open it again from
the Overview window in the Azure portal. It should look like the wonderful example
in figure 3.5. Yes, the site is basic, but the workflow for deploying the most basic static
HTML site to a complex .NET or Node.js web app is the same!

Figure 3.5  Refresh
your web browser to
see the default web
app page replaced by
the basic static HTML
site from GitHub.

3.3	 Viewing diagnostic logs
Now that you’ve seen how to create a basic web app and deploy a simple HTML site to
it, what about general management? If you run into problems, it would be helpful to
see the web server or application logs. To help troubleshoot your apps, you can write
output from your app to these log files. Log files can be viewed in real time or written
to log files and reviewed later.

Your web app largely runs by itself. There’s not a lot you can do from a mainte-
nance perspective on the underlying web host. If your application runs into problems,
you may want to look at the logs to see what’s going on and troubleshoot the issue.
With Azure Web Apps, you configure things like the level of log messages to review,
where to store the logs, and how long to keep the logs. Figure 3.6 outlines how you
generate and view log files with Web Apps.

Azure
web app

Application
logs

Access via
FTP or live

stream

Server events
streamed to logs

App events
streamed to logs

Logs collated
in real time
for review

Web server
logs

Figure 3.6  Your application can generate application logs and server logs. To review or
troubleshoot problems, you can download these logs with FTP or view them in real time.

	 43Viewing diagnostic logs

Try it now
To configure your web app for diagnostic logs, complete the following steps:

1	 In the Azure portal, select the web app you created in the preceding exercise.

2	 In the Overview window, scroll down to the Monitoring section, and select App
Service Logs.

3	 Review the available log options, such as the verbosity and whether you want to
enable failed request tracing. If you deal with the infrastructure side of Azure,
you may need to work with your application developers to determine what logs
they need to help troubleshoot problems. Then you can turn on the relevant
logging here. Logs can be stored in the local filesystem of the web app or
pushed to Azure Storage for processing with another application.

4	 For now, turn on Application Logging (Filesystem). Also turn on web-server log-
ging to the filesystem with a retention period of seven days. The default error
level may not show anything if everything works right, but take care with chang-
ing to Debug or Trace, as your logs can fill up fast and make it hard to actually
see what’s happening! If you have a problem, gradually increase the log level
until you capture enough information to troubleshoot without being over-
whelmed by the log data.

If you really want to dig into the data, you can access the logs stored on the filesystem
by using FTP. The FTP addresses are shown in the Download Logs section or on the
Overview window for the web app. You may be thinking, “FTP is a complicated way to
get diagnostic logs. Isn’t there an easier way?” Why, yes, there is! In the Azure portal,
right where you configured your diagnostic logs, is a Log Stream option. Can you
guess what it does? Let me give you a hint: it has something to do with streaming your
log files.

If you select this button in the Azure portal, you can choose between Application
Logs and Web Server Logs. These logs read from the same diagnostic logs that are
written to file. It can take a few minutes for the log data to show in the stream, and
what’s displayed depends on the log levels you specify and whether your web applica-
tion generates any application events. For the basic HTML site, the stream is rather
boring, but it’s a great feature to have in the web browser. Figure 3.7 shows example
streaming web server logs in the Azure portal.

Try it now
View the streaming log files in the Azure portal. You may need to refresh the page in
your web browser a couple of times to generate activity in the logs.

44 Chapter 3  Azure Web Apps

Figure 3.7  You can view the Web Apps web server log streams of live logs from your application
to help verify and debug application performance. The console box on the right side on the screen
shows the real-time streaming logs from your web app.

As you get more comfortable with Azure and use the Azure CLI or Azure PowerShell
module, you can stream logs with these tools. Developers can also enable remote
debugging with Visual Studio or configure Application Insights to allow a web applica-
tion to provide telemetry to additional services for monitoring and diagnostics. The
key takeaway here is that as you move toward PaaS solutions like web apps, you can
still obtain crucial diagnostics logs and application data to troubleshoot and monitor
the performance of your web application.

3.4	 Lab: Creating and using a deployment slot
You’ve walked through creating a simple HTML site and pushing the page to Azure
Web Apps with Git. What if you now want to add some new pizza styles and view them
before you make the site live for customers to order? Check out how to use a deploy-
ment slot to provide somewhere to upload your changes, review them, and then swap
them to production:

1	 In your web app, choose Deployment Slots. Add a deployment slot named Dev,
but don’t clone any settings from the existing deployment slot.

2	 When you’re ready, select the staging slot from the list. The portal shows the
same configuration options and logging options as the production slot, which

	 45Lab: Creating and using a deployment slot

shows how you can change settings in this deployment slot without affecting the
live site.

3	 This time, explore the options in the Azure portal for Deployment Center. You
want to use Local Git for source control that uses the App Service build service
for the staging slot. This happened behind the scenes when you used the Azure
CLI in the earlier exercise, but you have other options in terms of where you can
deploy your code from and what service builds and creates that deployment.

4	 When you’re done, copy the Git Clone Uri, such as https://azuremol-dev.
scm.azurewebsites.net:443/azuremol.git. Note how the Git repo includes the
-dev for the staging slot.

A sample development site is included in the GitHub samples you cloned
earlier.

5	 In the Azure Cloud Shell, change to the development directory as follows:

cd ~/azure-mol-samples-2nd-ed/03/dev

6	 As before, initialize, add, and commit your changes in Git with the following
commands:

git init && git add . && git commit -m "Pizza"

7	 Create a link to the new Git repository in your staging slot with git remote
add dev, followed by your staging slot’s Git deployment URL.

8	 Use git push dev master to push your changes to the deployment slot.

9	 Select the URL to your staging slot from the Azure portal Overview window.
The change isn’t a big one, sure, but the page title lets you know that you’re see-
ing the development version.

10	 In the Azure portal for the web app,
what do you think happens if you
select the Swap button, as shown in
figure 3.8? Try it, and then refresh the
main page, such as https://azure-
mol.azurewebsites.net, in your web
browser.

Figure 3.8  When you swap slots for a web
app, you pick the source and destination

instances to change. You can also preview the
new look before you make the changes live.

46 Chapter 3  Azure Web Apps

Deployment slots, behind the scenes
When you swap slots, what was live in the production slot is now in the dev slot, and
what was in dev is now live in production. Not all settings can swap, such as SSL
settings and custom domains, but for the most part, deployment slots are a great
way to stage and validate content before it goes live to your customers. You can also
perform a swap with preview, which gives you the opportunity to make sure the
swapped content works correctly before it’s publicly live in production.

For production use in DevOps workflows, you can also configure Auto Swap. Here,
when a code commit is noted in source control such as GitHub, it can trigger a build
to an Azure Web Apps deployment slot. When that build is complete and the app is
ready to serve content, the deployment slots swap automatically to make the code
live in production. You typically use this workflow with a test environment to review
the code changes first, not to publish live straight to production!

47

4Introduction
to Azure Storage

We can be certain of one thing in the IT world: when things go wrong, storage and
networking are inevitably to blame. I say this as someone who wore the hat of a SAN
admin in one of my past lives! I was best friends with the networking team. I’m
mostly joking (about being best friends), but it doesn’t matter how well an applica-
tion is designed and written: the foundational infrastructure pieces must be in place
to support it. Bear with me in the next couple of chapters as I explore Azure Storage
and Azure Networking. You may tempted to brush over these services to get to the
cool stuff in the later chapters, but there’s a lot of value in spending some time
exploring and learning these core services. It won’t make your food taste any better,
but it may help your customers as they order their yummy pizzas for delivery!

This chapter looks at the different types of storage in Azure and when to use
them. I also discuss redundancy and replication options for the Azure Storage ser-
vice, and how to get the best performance for your applications.

4.1	 Managed Disks
Years ago, server storage was expensive, slow, and overly complicated. It wasn’t
uncommon for a storage vendor to sell you hardware that cost hundreds of thou-
sands of dollars and took days, or even weeks, for an army of consultants and engi-
neers to configure. As virtualization began to take root in the data center and
VMware and Hyper-V became more accepted, storage often became the bottleneck.
And that’s to say nothing of firmware mismatches between storage adapters in the
server and on the storage array, redundant network paths failing back and forth, and
solid-state disks (SSDs) being considered to be the only way to gain performance.

Has Azure magically fixed all these storage problems? Of course not! But it
abstracts away 95% of these worries and leaves you to focus on building and

48 Chapter 4  Introduction to Azure Storage

creating awesome experiences for your customers. This chapter covers the final 5%
that you need to be aware of.

The Azure Managed Disks service simplifies the approach to VM storage. Managed
disks abstract away a lot of the behind-the-scenes work to give you . . . well, a disk.
That’s all you really need to care about for VMs: how big and how fast they are, and
what they connect to. Throughout the book, and in all your own real-world deploy-
ments, you should always use managed disks for VMs. Managed disks are the default
option, and there aren’t a lot of good reasons to change that behavior.

Before managed disks, you had to create a uniquely named storage account, limit
the number of virtual disks you created in each, and move custom disk images manu-
ally to create VMs in different regions. These types of disks are known as unmanaged
disks or classic disks. The Managed Disks service removes the need for a storage
account, limits you to “only” 50,000 disks per subscription, and lets you create VMs
from a custom image across regions. You also gain the ability to create and use snap-
shots of disks, automatically encrypt data at rest, and use disks up to 64 TiB.

Why is this important? If you run across old documentation or blog posts, they may
have you create a storage account for your VMs. Stop right there! Yes, you can convert
VMs from unmanaged disks to managed disks, but if you have a clean slate, look to
begin each project with managed disks from the start. The use case for unmanaged
disks is more to maintain backward compatibility with existing deployments, although
I argue that you should look to convert those workloads to managed disks!

4.1.1	 OS disks

Remember that line earlier about how, if you wanted the best performance, you had
to buy SSDs? There’s no magic way to get around that requirement in Azure. Sorry.
The truth is that SSDs greatly outperform regular spinning disks. There are physical
limits to how fast those spinning disks can . . . well, spin. The engineers at Microsoft
haven’t been able to bend the laws of physics just yet! There are still use cases for reg
ular spinning disks, like low-cost archival storage, and just as in regular storage arrays,
the latest technologies can provide good performance from a pool of spinning disks.

The first and main choice you need to make for an Azure VM is what type of stor-
age to use:

¡	Premium SSD disks—Use high-performance SSD disks for optimal performance,
greater IOPS, and low latency; recommended storage type for most production
workloads.

¡	Standard SSD disks—Use standard SSDs and deliver consistent performance
compared with hard disk drives (HDDs). These disks are great for development
and testing workloads, or budget--conscious and low-demand production use.

¡	Standard HDD disks—Use regular spinning disks for more infrequent data
access, such as archives and backups.

The VM size you choose helps determine what type of storage you can select. Back in
chapter 2, when you created a VM, you picked a size that gave you a VM quickly. The

	 49Managed Disks

default was likely something like a D2S_v3 series VM, which gave you access to pre-
mium SSD disks. How can you tell which VMs can access premium SSD disks? Look
for an s, for SSD, in the VM size. There are a couple of exceptions to the rule, but
that’s a good pattern to follow. The following examples help you identify which VMs
can access premium disks and which VMs can access standard SSDs or HDDs:

¡	D2S_v3, Fs, GS, and Ls series VMs can access premium SSD disks.
¡	D, A, F, and M series VMs can access only standard SSD or HDD disks.

If you select a VM size that can use premium SSD disks, you’re under no obligation to
do so. You could create and use standard SSD or HDD disks. By choosing premium
SSD disks, you future-proof the application and give yourself the option to use high-
performance SSDs as you need them without resizing your VMs and incurring a little
downtime in the process. All VM sizes can use standard SSD disks.

Ephemeral OS disk
There’s a special type of OS disk called an ephemeral disk. It’s still a managed disk,
of sorts, but it’s local to the underlying Azure host. This fact makes an ephemeral
disk really fast, with low latency.

As the data isn’t written out to a remote storage array, the data may not persist dur
ing VM reboots if you move to a different underlying host. Ephemeral disks are great
for stateless workloads that can handle booting up with a clean image each time and
don’t need to store data locally to access across reboots.

Only certain VM sizes support ephemeral disks, but there’s no additional cost to
using them, and they’re available in all regions. You lose some functionality for things
like Azure Site Recovery and Azure Disk Encryption (chapters 13 and 14, respec-
tively), but if you want high speed, low-latency storage, check out ephemeral disks.

Try it now
How can you tell what VM sizes are available to you? In the Azure portal, open Cloud
Shell. Enter the following command (feel free to use your own region):

az vm list-sizes --location eastus --output table

Remember that any size with an s gives you access to premium SSD disks.

4.1.2	 Temporary disks and data disks

Now that you’ve figured out what level of performance you need for your applica-
tions, I’ll discuss another couple of puzzle pieces. Disks are connected in two ways:

¡	Temporary disks—Every VM automatically has local SSD storage attached from the
underlying host that offers a small amount of high-performance storage. Take
great care how you use this temporary disk! As the name implies, this disk may
not persist with the VM. If the VM moves to a new host in a maintenance event,

50 Chapter 4  Introduction to Azure Storage

a new temporary disk will be attached, and any data you stored there will be lost.
The temporary disk is designed to be a scratch space or application cache.

¡	Data disks—Any disks you specifically create and attach to the VM act as you’d
expect in terms of partitions, filesystems, and persistent mount points. Data
disks are reattached as the VM moves around the Azure data center, and they’re
where the bulk of your applications and data should be stored. You can still use
storage spaces or software RAID to pool data disks at the VM level for even
greater performance.

There’s a specific type of data disk that you can attach to a VM if you need maximum
performance and low latency: ultra disks. These disks are a step above premium SSD
disks and are available only for data disks. Ultra disks are designed for large databases
and data-intensive workloads like SAP HANA. How fast are we talking about? At the
time of writing, ultra disks can be up to 64 TiB in size and provide up to 160,000 IOPS
per disk with a maximum throughput of 2,000 MBps.

4.1.3	 Disk-caching options

It’s also important to consider the OS disk that comes with the VM. When you create a
VM, you always get at least one disk: the disk where the OS itself is installed. It’s tempt-
ing to use that disk to install your applications or write log files to it. Unless you run a
small proof-of-concept deployment, don’t run your applications on the OS disk!
There’s a good chance that you won’t get the performance you desire.

Disks in Azure can have a caching policy set on them. By default, the OS disk has
read/write caching applied. This type of caching typically isn’t ideal for application
workloads that write log files or databases, for example. Data disks, by contrast, have a
default cache policy of none. This is a good policy for workloads that perform a lot of
writes. You can also apply a read-only cache policy, which is better suited for application
workloads that primarily read data off the disks.

In general, always attach and use data disks to install and run your applications.
Even the default cache policy of none likely offers better performance than the read/
write cache policy of the OS disk.

4.2	 Adding disks to a VM
In this section, you’ll see how to add disks to a VM as you create it. In chapter 2, you
created a VM with the Azure portal. This time, use the Azure CLI to create a VM. The
Azure CLI provides a quick way to create a VM and attach a data disk at the same time.

Try it now
To create a VM and see data disks in action, complete the following steps:

1	 In the Azure Cloud Shell, create a resource group with az group create,
providing a name for the resource group along with a location:

az group create --name azuremolchapter4 --location eastus

	 51Adding disks to a VM

2	 Create a VM with the az vm create command. The final parameter, --data-
disk-sizes-gb, lets you create a data disk along with the VM. In the end-of-
chapter lab, you can connect to this VM and initialize the disks.

¡	You can create a Linux or Windows VM for this exercise. If you’re comfort-
able with Linux or want to learn how to initialize and prepare a disk for
Linux, use the following command to create an Ubuntu LTS VM:

az vm create \
--resource-group azuremolchapter4 \
--name storagevm \
--image UbuntuLTS \
--size Standard_B1ms \
--admin-username azuremol \
--generate-ssh-keys \
--data-disk-sizes-gb 64

¡	If you’re more comfortable with Windows, use the following command to
create a Windows Server 2019 VM. Then you can use RDP to connect to the
VM to configure the disks later:

az vm create \
--resource-group azuremolchapter4 \
--name storagevm \
--image Win2019Datacenter \
--size Standard_B1ms \
--admin-username azuremol \
--admin-password P@ssw0rd! \
--data-disk-sizes-gb 64

¡	It takes a few minutes to create the VM. The VM already has one data disk
attached and ready for use.

What if you want to add another data disk after a few weeks or months? Use the Azure
CLI again to see how to add a disk quickly. The process is the same for a Linux or Win-
dows VM. All you do is tell Azure to create a new disk and attach it to your VM.

Try it now
Add an additional data disk to your VM as shown next.

Create a new disk with the az vm disk attach command. Provide a name and size
for the disk. Remember the earlier discussion of standard and premium disks? In the
following example, you create a premium SSD disk:

az vm disk attach \
--resource-group azuremolchapter4 \
--vm-name storagevm \
--name datadisk \
--size-gb 64 \
--sku Premium_LRS \
--new

52 Chapter 4  Introduction to Azure Storage

Do you recognize the last part of that storage type? LRS means locally redundant storage.
We’ll look at redundancy options in section 4.3.3.

In two commands, you created a VM with the Azure CLI that included a data disk
and simulated how to attach an additional data disk later. But just because you
attached these disks doesn’t mean you can write data to them immediately. As with any
disk, be it a physical disk attached to an on-premises server or a virtual disk attached to a
VM, you need to initialize the disk and then create a partition and filesystem. You
can do that in the optional exercise in the end-of-chapter lab.

4.3	 Azure Storage
Storage may not seem to be an obvious topic to examine for building and running
applications, but it’s a broad service that covers a lot more than you may expect. The
Azure Storage service offers much more than just somewhere to store files or virtual
disks for your VMs.

Take a look at what your fictional pizza company may need to build an app that
processes orders from customers for takeout or delivery. The app needs a data store
that holds the available pizzas, list of toppings, and prices. As orders are received and
processed, the app needs a way to send messages among the application components.
Then the frontend website needs mouthwatering images to show customers what the
pizzas look like. As you can see in figure 4.1, Azure Storage has a variety of storage fea-
tures and can cover all three of these needs.

Azure Storage account

Blob
Unstructured data,
such as images of

the pizzas your
store sells

Table
Unstructured

NoSQL data store,
such as the list of

pizzas from
your store

Queue
Messages

between app
components,

to process
pizza orders

File
Traditional SMB
file shares for

VMs, such as to
store pizza store

app logs

Disk
Managed disks,
the basis for all
VM OS and data

disks

Figure 4.1  An Azure Storage account allows you to create and use a wide variety of storage features,
way beyond just somewhere to store files.

¡	Blob storage—For unstructured data such as media files and documents. Applica-
tions can store data in blob storage, such as images, and then render them. You
could store images of your pizzas in blob storage.

¡	Table storage—For unstructured data in a NoSQL data store. As with any debate on
SQL versus NoSQL data stores, plan your application and estimate the per
formance requirements for processing large amounts of data. You could store
the list of pizzas on your menu in table storage. Section 4.3.1 explores NoSQL
in more detail.

	 53Azure Storage

¡	Queue storage—For cloud applications to communicate among various tiers and
components in a reliable, consistent manner. You can create, read, and delete
messages that pass between application components. You could use queue stor-
age to pass messages between the web frontend when a customer makes an
order and the backend to process and bake the pizzas.

¡	File storage—For a good, old-fashioned Server Message Block (SMB) file share,
accessible by both Windows and Linux/macOS platforms; often used to central-
ize log collection from VMs.

Azure Storage for VMs is straightforward. You create and use Azure Managed Disks, a
type of virtual hard disk (VHD) that abstracts away a lot of design considerations
around performance and distributing the virtual disks across the platform. You create
a VM, attach any managed data disks, and let the Azure platform figure out redun-
dancy and availability.

4.3.1	 Table storage

Let’s discuss a couple of types of data storage. First is table storage. Most people are
probably familiar with a traditional SQL database such as Microsoft SQL Server,
MySQL, or PostgreSQL. These are relational databases, made up of one or more tables
that contain one or more rows of data. Relational databases are common in applica-
tion development and can be designed, visualized, and queried in a structured man-
ner—the S in SQL (for Structured Query Language).

NoSQL databases are a little different. They don’t follow the same structured
approach, and data isn’t stored in tables in which each row contains the same fields.
There are different implementations of NoSQL databases; examples include Mon-
goDB and CouchDB. The touted advantages of NoSQL databases are that they scale
horizontally (meaning that you can add more servers rather than adding more mem-
ory or CPU), can handle larger amounts of data, and are more efficient at processing
those large datasets.

How the data is stored in a NoSQL database can be defined in a few categories:

¡	Key-value, such as Redis
¡	Column, such as Cassandra
¡	Document, such as MongoDB

Each approach has pros and cons from a performance, flexibility, or complexity view-
point. An Azure storage table uses a key-value store and is a good introduction to
NoSQL databases when you’re used to an SQL database such as Microsoft SQL or
MySQL.

You can download and install the Azure Storage Explorer at https://azure.microsoft​
.com/features/storage-explorer if you like to visualize the data. You don’t need to do
this right now. Storage Explorer is a great tool for learning what tables and queues
look like in action. In this chapter, I don’t want to take you too far down the rabbit
hole of NoSQL databases; chapter 10 explores some cool NoSQL databases in depth

54 Chapter 4  Introduction to Azure Storage

with Azure Cosmos DB. In fact, in the following exercise, you use the Cosmos DB API
to connect to Azure Storage and create a table. The use of Azure tables is more an
introduction to NoSQL databases than a solid example of production use.

For now, run a quick sample app to see how you can add and query data, just as
you’d do with an actual application. These samples are basic but show how you can
store the types of pizzas you sell and how much each pizza costs. Rather than use
something large, like Microsoft SQL Server or MySQL, use a NoSQL database with
Azure table storage.

Try it now
To see Azure tables in action, complete the following steps:

1	 Open the Azure portal in a web browser, and then open Cloud Shell.

2	 In chapter 3, you obtained a copy of the Azure samples from GitHub. If you
didn’t, grab a copy as follows:

git clone https://github.com/fouldsy/azure-mol-samples-2nd-ed.git

3	 Change into the directory that contains the Azure Storage samples:

cd ~/azure-mol-samples-2nd-ed/04

4	 Install a couple of Python dependencies, if they aren’t already installed. Here,
you install the azurerm package, which handles communication that allows you
to create and manage Azure resources, and two azure packages, which are the
underlying Python SDKs for Azure Cosmos DB and Storage:

pip install --user azurerm azure-cosmosdb-table azure-storage-
➥queue==2.1.0

What does --user mean when you install the packages? If you use the Azure
Cloud Shell, you can’t install packages in the core system. You don’t have per
missions. Instead, the packages are installed in your user’s environment. These
package installs persist across sessions and let you use all the neat Azure SDKs in
these samples.

5	 Run the sample Python application for tables. Follow the prompts to enjoy
some pizza:

python storage_table_demo.py

Snakes on a plane
Python is a widely used programming language that’s often used in “Intro to Com-
puter Science” classes. If you work mainly on the IT operations or administration side
of things, think of Python as a powerful scripting language that works across OSes.

	 55Azure Storage

Python isn’t just for scripting; it can also be used to build complex applications. As
an example, the Azure CLI that you’ve been using is written in Python.

I use Python for some of the samples in this book because they should work outside
Cloud Shell without modification. macOS and Linux distros include Python natively.
Windows users can download and quickly install Python and then run these scripts
locally. Python is great for those who have little to no programming experience, as
well as for seasoned developers who are familiar with other languages. The Azure
documentation for Azure Storage and many other services provides support for a
range of languages, including .NET, Java, and Node.js. You’re not limited to using
Python as you build your own applications that use tables.

The Quick Python Book, 3rd edition, by Naomi Ceder (http://mng.bz/6QZA), can help
you get up to speed if you want to learn more. There’s also a video-based course for
Get Programming with Python in Motion, by Ana Bell (http://mng.bz/oPap).

4.3.2	 Queue storage

Azure tables are cool when you start to dip your toes into the world of cloud applica-
tion development. As you begin to build and manage applications natively in the
cloud, you typically break an application into smaller components, each of which can
scale and process data on its own. To allow these components to communicate and
pass data back and forth, some form of message queue is typically required. Enter
Azure Queues.

The Azure Queues service allows you to create, read, and then delete messages
that carry small chunks of data. These messages are created and retrieved by different
application components as they pass data back and forth. Azure Queues won’t delete
a message until an application has finished processing the message data.

Try it now
To see Azure Queues in action, run the following Python script from the same azure-
samples/4 directory. Follow the prompts to see messages written, read, and deleted
from the queue:

python storage_queue_demo.py

Continue the example application that handles pizza orders. You may have a frontend
application component that customers interact with to order their pizzas and then a
message queue that transmits messages to a backend application component that pro-
cesses those orders. As orders are received, messages in the queue can be visualized as
shown in figure 4.2.

56 Chapter 4  Introduction to Azure Storage

Figure 4.2  Messages are received from the frontend application component that details what pizza each customer
ordered in the Message Text property.

As the backend application component processes each pizza order, the messages are
removed from the queue. Figure 4.3 shows what the queue looks like when you have a
veggie pizza in the oven and that first message is removed.

Figure 4.3  As each message is processed, it’s removed from the queue. The first message shown in figure 4.2
was removed after it was processed by the backend application component.

4.3.3	 Storage availability and redundancy

Azure data centers are designed to be fault-tolerant, with redundant internet connec-
tions, power generators, multiple network paths, storage arrays, and so on. But you
still need to do your part when you design and run applications. With Azure Storage,
you choose what level of storage redundancy you need. This level varies for each appli-
cation and depending on how critical the data is. Here are the available storage-
redundancy options:

¡	Locally redundant storage (LRS)—Your data is replicated three times inside the
single data center in which your storage account was created. This option pro-
vides redundancy in the event of a single hardware failure, but if the entire data
center goes down (rare, but possible), your data goes down with it.

¡	Zone-redundant storage (ZRS)—The next level up from LRS replicates your data
three times across two or three data centers in a region (when multiple data
centers exist in a region) or across regions. ZRS is also available across availabil-
ity zones, which we’ll explore in chapter 7.

¡	Georedundant storage (GRS)—With GRS, your data is replicated three times in the
primary region in which your storage is created and then replicated three times
in a paired region. The paired region is usually hundreds or more miles away.
West US is paired with East US, for example; North Europe is paired with West

	 57Lab: Exploring Azure Storage

Europe, and Southeast Asia is paired with East Asia. GRS provides a great
redundancy option for production applications.

¡	Read-access georedundant storage (RA-GRS)—This option is the premium data-
redundancy option. Your data is replicated across paired regions as in GRS, but
you also have read access to the data in that secondary zone.

4.4	 Lab: Exploring Azure Storage
Here’s a chance to test your skills. Pick one of the following tasks to complete for your
lab exercise.

4.4.1	 VM-focused

If you want to log in to a VM and see that the process to initialize a disk and create a
filesystem is the same as any other VM you’ve worked with, try one of these exercises:

1	 Log in to the VM you created in section 4.2. Depending on your choice, you’ll
connect with SSH or RDP.

2	 Initialize the disk, and create a partition.

¡	In Linux, the flow is fdisk, mkfs, and then mount.

¡	In Windows, use whatever sequence you’re comfortable with—probably Disk
Management > Initialize > Create Volume > Format.

4.4.2	 Developer-focused

If you’re more of a developer and don’t want to figure out initializing data disks on a
VM, go back to Cloud Shell, and explore the two Python demos that use tables and
queues. Even if you’re new to Python, you should be able to follow along with what’s
going on:

¡	Think of some scenarios in which you could implement tables or queues in
your own applications. What would it take to build cloud-native applications
with individual application components that could use queues, for example?

¡	Modify one of the samples that interests you to create an additional pizza menu
item (if a table) or create a new pizza order message (if a queue).

58

5Azure Networking basics

In chapter 4, you explored the Azure Storage service. One of the other core ser-
vices for cloud applications is Azure Networking. Azure has a lot of powerful net-
work features to secure and route your traffic on a truly global scale. These features
are designed to help you focus on how to build and maintain your apps, so you
don’t have to worry about details like IP addresses and route tables. If you build
and run an online store to handle pizza orders, it must securely transmit the cus-
tomer data and process payment transactions.

This chapter examines Azure virtual networks and subnets, and discusses how to
create virtual network interfaces. To secure and control the flow of traffic, you cre-
ate network security groups and rules. If networking is new to you, or if it’s been a
while since you had to work with IP addresses and network cards, this chapter may
take a little longer to work through. It has a lot of Try It Now exercises. It’s worth
your while to take the time to understand this chapter, however, as networking is
key to many of the services in Azure.

5.1	 Virtual network components
Think of how many cables are behind your computer desk or in your entertain-
ment center. Now think of all the cables required to connect the computers on a
given floor of an office building. What about the entire office building? Have you
ever been in a data center or seen photos of one? Try to imagine how large the
Azure data centers are. Now try to imagine dozens of Azure data centers all around
the world. Math isn’t my strong point, so I can’t calculate how many miles and miles
of network cables are used to carry all the traffic in Azure!

Network connectivity is a crucial part of modern life. In Azure, the network is cen-
tral to how everything communicates. For all the thousands of physical network

	 59Virtual network components

devices and miles of network cables that connect everything in an Azure data center,
you work with virtual network resources. How? Software-defined networks. When you
create a VM or a web app, a technician doesn’t have to run around the Azure data cen-
ter to physically connect cables for you and assign IP addresses (although that would
be funny to watch!). Instead, all the network resources that define your entire network
environment are logically handled by the Azure platform. Figure 5.1 shows the virtual
network components you’ll build as you work through this chapter.

Virtual network

Subnet: Web
rule to allow HTTP traffic

Web VM

Network interface
Public IP address + DNS

Subnet: Remote
rule to allow SSH traffic

Jump-box VM

Network interface
Public IP address + DNS

Figure 5.1  Software-defined network connections in Azure

Some of the network components are abstracted if you use PaaS resources. The main
components that you use for VMs are as follows:

¡	Virtual networks and subnets (including IP address pools)
¡	Virtual network interface cards
¡	One or more public IP addresses
¡	Internal DNS name and optional public DNS names for external name

resolution
¡	Network security groups and rules, which secure and control the flow of net-

work traffic the way a regular firewall does

5.1.1	 Virtual networks and subnets

When you created a VM in chapter 2, you didn’t have to adjust any network parame-
ters. The Azure platform can create these resources for you with default names and IP
address scopes. In this section, you’ll create the network resources ahead of time and
see how they come together for a VM.

60 Chapter 5  Azure Networking basics

Try it now
Networking is often easier to visualize when you see it in action. You’re going to use
the Azure portal to get started, which ends up taking quite a few separate steps, but
you’ll see the power of the Azure CLI later in the chapter.

Don’t worry too much about how to use your own address spaces or custom DNS
names right now. To build out your virtual network and subnet, complete the following
steps:

1	 Open the Azure portal, and select Create a Resource in the top-left corner of the
dashboard.

2	 Select Networking from the list of Marketplace services, and then choose Vir-
tual Network.

3	 Enter a name for the virtual network, such as vnetmol.

4	 To give yourself a little more room to play with, change the address space to
10.0.0.0/16.

IP address ranges
Virtual networks span a certain range of IPs—an address space. If you’ve ever seen
an IP address, you may have noticed the subnet mask, which is often something like
255.255.255.0. This subnet mask is often used in a short form that specifies how
big that range is, such as /24.

The Azure portal defaults to a /24 address space. You want to increase the number
of additional IP ranges here without too much network knowledge, so you increase the
address space to /16. You don’t give this type of IP address straight to a VM; in the
next step, you’ll create a subnet that covers a smaller section of this address space.

If network address spaces are totally foreign to you, don’t worry. For the most part,
you won’t deal with them on a daily basis. Sensible Azure governance may work the
same way it does in your existing on-premises IT world; one group of folks may manage
the Azure virtual networks, and you drop your applications into a precreated space.

5	 Create a resource group, such as azuremolchapter5, and then select an
Azure region close to you.

6	 Provide a subnet name, such as a websubnet, and enter the subnet address
range 10.0.1.0/24. This address range is part of the wider virtual network
you specified earlier. Later, you’ll add another subnet.

7	 Look at some of the other options, such as distributed denial of service (DDoS)
protection, service endpoints, and Azure Firewall. Leave the defaults for now,
but I hope this example gives you some hints about what’s possible beyond a
basic virtual network.

8	 When you’re ready, create the virtual network and subnet.

	 61Virtual network components

5.1.2	 Virtual network interface cards

Now that you’ve created a virtual network and subnet, you need to connect a VM. Just
as you do with a regular desktop PC, laptop, or tablet, you use a network interface
card (NIC) to connect to the virtual network. And no, there’s no free Wi-Fi! But there
are VM sizes in Azure that currently provide up to eight NICs with speeds of up to 32
Gbps. Even if I were good at math, I could tell you that these figures add up to some
serious bandwidth!

You may wonder why you’d create each of these resources ahead of time. You can
do all this when you create a VM. That’s true, but take a step back and think about net-
work resources as long-lived resources.

Network resources exist separately from VM resources and can persist beyond the
lifecycle of a given VM. This concept allows you to create the fixed network resources
and create, delete, and create again a VM that maintains the same network resources,
such as IP addresses and DNS names. Think of a lab VM or a development-and-test
environment. You can reproduce the exact same environment quickly because only the
VM changes.

Try it now
To create a NIC, complete the following steps:

1	 In the Azure portal, select Create a Resource in the top-left corner of the dash‑
board.

2	 Search for and select Network Interface, and then select Create.

3	 Provide a name for your network interface, such as webvnic; then select the
virtual network and subnet you created in the previous exercise.

4	 I talked about long-lived resources earlier; now you can see how they work. Cre-
ate a static IP address assignment that uses the address 10.0.1.4.

TIP   Why .4? What about the first three addresses in the address space?
Azure reserves the first three IP addresses in each range for its own manage-
ment and routing. The first usable address you can use in each range is .4.

5	 Don’t create a network security group for now; you’ll come back to this in a few
minutes. If you’re one of the cool kids who knows all about IPv6, you can check
the Private IP Address (IPv6) box and provide a name; otherwise, stick with
IPv4.

6	 Select the existing resource group from the previous exercise, and then choose
to create the NIC in the same region as the virtual network.

7	 When you’re ready, create the NIC.

62 Chapter 5  Azure Networking basics

Role separation in Azure
You don’t have to create other compute resources within the same resource group
as your virtual network. Think back to the concept of Azure governance, discussed
earlier. You may have a group of network engineers who manage all the virtual net-
work resources in Azure. When you create resources for your applications, such as VMs,
you create and manage them in your own resource groups.

Later chapters discuss some of the security and policy features in Azure that allow you
to define who can access and edit certain resources. The idea is that if you don’t know,
or don’t want to know, a great deal about the network resources, you can connect to
what’s given to you, and that’s it. The same applies to other engineers or developers;
they may be able to see your application resources but not edit or delete them.

This kind of governance model in Azure is nice, but take care to avoid the trap of work-
ing in silos. In large enterprises, it may be inevitable that you’re constrained along
department lines. But one of the big advantages of cloud computing providers like
Azure is speeding time to deployment of applications, because you don’t have to wait
for physical network resources to be cabled up and configured. Plan to have the Azure
network resources created and configured, and you should be able to create and
manage your application resources seamlessly.

5.1.3	 Public IP address and DNS resolution

No one can access your resources yet, because no public IP addresses or DNS names are
associated with them. Again, follow the principle of long-lived resources to create a pub-
lic IP address and public DNS name and then assign them to your network interface.

Try it now
To create a public IP address and DNS entry for your network interface, complete the
following steps:

1	 In the Azure portal, select Create a Resource in the top-left corner of the dash‑
board.

2	 Search for and select Public IP Address, and then select Create.

3	 Create a basic SKU and IPv4 address. Standard SKUs and IPv6 addresses are for
use with load balancers (chapter 8). Don’t worry too much about the differ-
ences right now.

4	 Enter a name, such as webpublicip, that uses a dynamic assignment.

IP address assignment types
A dynamic assignment allocates a public IP address when the VM is started. When
the VM is stopped, the public IP address is deallocated. There are a couple of import-
ant points here:

	 63Virtual network components

¡	You won’t have a public IP address until you assign it to a VM and start it.
¡	The public IP address may change if you stop, deallocate, and start the VM.

A static assignment is a public IP address allocated without an associated VM, and
that address won’t change. This assignment is useful when you’re using an SSL cer
tificate mapped to an IP address or a custom DNS name and record that point to the
IP address.

Right now, you’re using a single VM. For production use, you’ll ideally run your appli
cation on multiple VMs with a load balancer in front of them. In that scenario, the
public IP address is assigned to the load balancer and typically creates a static
assignment at that point.

5	 Enter a unique DNS name. This name forms the fully qualified domain name
(FQDN) for your resource that’s based on the Azure region you create it in. If
you create a DNS name called azuremol in the East US region, for example, the
FQDN becomes azuremol.eastus.cloudapp.azure.com.

DNS entries
What about a custom DNS name? The default FQDN isn’t exactly user friendly! Use
a static public IP address, and then create a CNAME record in your registered DNS
zone. You retain control of the DNS record and can create as many entries as you
wish for your applications.

As an example, in the manning.com DNS zone, you might create a CNAME for azure-
mol that points to a static public IP address in Azure. A user would access azure-
mol.manning.com to get your application. This address is a lot more user-friendly than
webmol.eastus.cloudapp.azure.com!

6	 Select the existing resource group from the previous exercise, and then choose
to create the public IP address in the same region as the virtual network.

7	 When you’re ready, create the public IP address.

8	 Associate the public IP address and DNS name label with the network interface
you created in section 5.1.2. Browse to and select Resource Group on the naviga-
tion bar on the left side of the Azure portal. Then choose the resource group
in which you created your network resources, such as azuremolchapter5.

9	 Select your public IP address from the list of resources, and then choose
Associate.

10	 Choose to associate with a network interface (but notice what else you can asso
ciate the public IP address with); then choose the network interface you cre-
ated, such as webvnic.

After a few seconds, the public IP address window updates to show that the IP address
is now associated with your network interface. If you selected Dynamic as the

64 Chapter 5  Azure Networking basics

assignment type, the IP address is still blank, as shown in figure 5.2. Remember that a
public IP address is allocated when an associated VM is powered on.

Figure 5.2  The public IP address is associated with a network interface. With a dynamic
assignment, no public IP address is shown until a VM is created and powered on.

5.2	 Securing and controlling traffic
with network security groups
Pop quiz time: Should you connect a VM to the internet without a firewall to control
and restrict the flow of traffic? If you answered, “Sure, why not?” maybe you should
take the rest of your lunch break to read a little about network security on the Wild
Wide Web!

I hope your answer was a resounding, “No! ” Unfortunately, there’s too much
potential for your VM to come under an automated cyberattack soon after you turn it
on. You should always follow best practices to keep the OS and application software up
to date, but you don’t even want the network traffic to hit your VM if it’s not necessary.
A regular macOS or Windows computer has a built-in software firewall, and every
(competent) on-premises network I’ve seen has a network firewall between the inter-
net and the internal network. In Azure, firewall and traffic rules are provided by net-
work security groups.

5.2.1	 Creating a network security group

In Azure, an NSG logically applies a set of rules to network resources. These rules
define what traffic can flow in and out of your VM. You define what ports, protocols,
and IP addresses are permitted, and in which direction. These groups of rules can be
applied to a single network interface or an entire network subnet. This flexibility
allows you to finely control how and when the rules are applied to meet the security
needs of your application.

Figure 5.3 shows the logic flow of an inbound network packet as it passes through
an NSG. The same process would apply for outbound packets. The Azure host doesn’t

	 65Securing and controlling traffic with network security groups

differentiate between traffic from the internet and traffic from elsewhere within your
Azure environment, such as another subnet or virtual network. Any inbound network
packet has the inbound NSG rules applied, and any outbound network packet has the
outbound NSG rules applied.

Figure 5.3  Inbound packets
are examined, and each NSG
rule is applied in order of
priority. If an Allow or Deny
rule match is made, the
packet is either forwarded to
the VM or dropped.

Here’s what happens to each network packet:

1	 The first NSG rule is applied.

2	 If the rule doesn’t match the packet, the next rule is loaded until there are no
more rules. Then the default rule to drop the packet is applied.

3	 If a rule matches, check whether the action is to deny the packet. If so, the
packet is dropped.

4	 Otherwise, if the rule is to allow the packet, the packet is passed to the VM.

Next, you’ll create an NSG so these concepts start to make sense.

Try it now
To create a network security group, complete the following steps:

1	 In the Azure portal, select Create a Resource in the top-left corner of the dash‑
board.

2	 Search for and select Network Security Group, and then select Create.

3	 Enter a name, such as webnsg, and choose to use the existing resource group.

That’s it! The bulk of the configuration for an NSG comes when you create the filter-
ing rules. Section 5.2.2 discusses how you do that and put your NSG to work.

Apply first
NSG rule

Rule
match?

More
rules?

Apply next
NSG rule

Deny
rule? Drop packet

Allow packet

Yes

Yes

Yes

No

No

No

66 Chapter 5  Azure Networking basics

5.2.2	 Associating a network security group with a subnet

The NSG doesn’t do much to protect your VMs without any rules. You also need to
associate it with a subnet, the same way you associated your public IP address with a
network interface earlier. You’ll associate your NSG with a subnet first.

Try it now
To associate your virtual network subnet with your network security group, complete
the following steps:

1	 Browse to and select Resource Group on the navigation bar on the left side of
the Azure portal. Then choose the resource group you created your network
resources in, such as azuremolchapter5.

2	 Select your NSG, such as webnsg.

3	 On the left side, in the Settings options, are Network Interfaces and Subnets.
Choose Subnets.

4	 Select the Associate button; select the virtual network and network subnet you
created earlier; and then select OK to associate your NSG with the subnet.

The flexibility of NSGs means that you can associate multiple subnets, across
various virtual networks, with a single NSG. The mapping is one-to-many, which
allows you to define core network security rules that apply to a wide range of
resources and applications.

Now you can see what your NSG looks like and what default rules are
applied.

5	 On the left side of your NSG, select Inbound Security Rules. No security rules
are listed—at least, none that you’ve created.

6	 Select Default Rules to see what the Azure platform creates for you, as shown in
figure 5.4.

Figure 5.4  Default security rules are created that permit internal virtual network or load-balancer traffic but deny
all other traffic.

	 67Securing and controlling traffic with network security groups

Three default rules have been created for you. These rules are important to under‑
stand:

¡	AllowVnetInBound—Allows any traffic that’s internal to the virtual network. If
you have multiple subnets in your virtual network, the traffic isn’t filtered by
default and is allowed.

¡	AllowAzureLoadBalancerInBound—Allows any traffic from an Azure load bal-
ancer to reach your VM. If you place a load balancer between your VMs and the
internet, this rule ensures that the traffic from the load balancer can reach your
VMs, such as to monitor a heartbeat.

¡	DenyAllInBound—The final rule that’s applied. Drops any inbound packets that
make it this far. If there are no previous Allow rules, this rule drops all traffic by
default. All you need to do is allow any specific traffic you want; the rest is
dropped.

The priority of an NSG rule is important. If an Allow or Deny rule is applied, no addi-
tional rules are applied. Rules are applied in ascending numerical priority order; a
rule with a priority of 100 is applied before a rule with a priority of 200, for example.

As in previous discussions of the governance of Azure resources, these NSG rules
may already be created for you and applied to a given subnet. You create your VMs
and run your applications, and someone else manages the NSGs.

It’s important to understand how the traffic flows in case something goes wrong. A
couple of tools in Azure can help you determine why traffic may not reach your appli
cation when you think it should!

5.2.3	 Creating network security group filtering rules

Now that you have your NSG associated with the network subnet and we’ve reviewed
the default rules, create a basic NSG rule that allows HTTP traffic.

Try it now
To create your own rules with the network security group, complete the following
steps:

1	 To create an NSG rule from the previous Azure portal window, select Add in the
Inbound Security Rules section.

2	 You have two options for creating rules: Basic and Advanced. To create prebuilt
rules quickly, select Basic at the top of the window.

3	 Choose HTTP from the Service drop-down menu. Many default services are
provided, such as SSH, RDP, and MySQL. When you select a service, the appro-
priate port range is applied—in this case, port 80. The default action on basic
rules allows the traffic.

68 Chapter 5  Azure Networking basics

4	 A priority value is assigned to each rule. The lower the number, the higher the
priority. Accept the default low priority, such as 100.

5	 Accept the default name or provide your own; then select OK.

5.3	 Building a sample web application with secure traffic
So far, you’ve created a virtual network and subnet. Then you created a network inter-
face and associated a public IP address and DNS name label. You created an NSG and
applied it to the entire subnet, and you created an NSG rule to allow HTTP traffic.
You’re missing one thing: the VM.

5.3.1	 Creating remote access network connections

In production, you shouldn’t open remote access, such as SSH or RDP, to VMs that run
your applications. Typically, you have a separate jump-box VM that you connect to from
the internet, and you access additional VMs over the internal connection. So far, you’ve
created all the virtual network resources in the Azure portal. Let’s switch over to the
Azure CLI to see how quickly you can create these resources from the command line.

Try it now
You created the first NSG in the Azure portal. To create another NSG with the Azure
CLI, complete the following steps:

1	 Select the Cloud Shell icon at the top of the Azure portal dashboard. Make sure
that the Bash shell opens, not PowerShell.

2	 Create an additional NSG in the existing resource group. As in earlier chapters,
the backslashes (\) in the following command examples are to help with line
breaks; you don’t have to type them if you don’t want to. Provide a name, such
as remotensg:

az network nsg create \
--resource-group azuremolchapter5 \
--name remotensg

3	 Create an NSG rule in the new NSG that allows port 22. Provide the resource group
and NSG you created in the previous step along with a name, such as allowssh:

az network nsg rule create \
--resource-group azuremolchapter5 \
--nsg-name remotensg \
--name allowssh \
--protocol tcp \
--priority 100 \
--destination-port-range 22 \
--access allow

4	 Create a network subnet for your remote VM. Provide a subnet name, such as
remotesubnet, along with an address prefix inside the range of the virtual

	 69Building a sample web application with secure traffic

network, such as 10.0.2.0/24. You also attach the NSG you created in step 3
to the subnet, such as remotensg:

az network vnet subnet create \
--resource-group azuremolchapter5 \
--vnet-name vnetmol \
--name remotesubnet \
--address-prefix 10.0.2.0/24 \
--network-security-group remotensg

Three commands are all it takes to create a subnet, create an NSG, and create a rule.
Can you start to see the power of the Azure CLI? Azure PowerShell is equally power-
ful, so don’t feel like you must create all resources in the Azure portal. As you move
forward in the book, you’ll use the Azure CLI rather than the portal in most cases.

5.3.2	 Creating VMs

With all the network components in place, you’re ready to create two VMs. One VM is
created in the subnet that allows HTTP traffic so that you can install a web server. The
other VM is created in the subnet that allows SSH so that you have a jump box to fur-
ther secure your application environment and begin to replicate a production deploy-
ment. Figure 5.5 reminds you what you’re building.

Virtual network

Subnet: Web
rule to allow HTTP traffic

Web VM

Network interface
Public IP address + DNS

Subnet: Remote
rule to allow SSH traffic

Jump-box VM

Network interface
Public IP address + DNS

Figure 5.5  You’re bringing together two subnets, NSGs, rules, network
interfaces, and VMs. This example is close to a production-ready
deployment in which one VM runs the web server and is open to public
traffic, and another VM in a separate subnet is used for remote connections
to the rest of the application environment.

When you create a VM, you can provide the virtual network interface that you created
earlier. If you didn’t specify this network resource, the Azure CLI creates a virtual net-
work, subnet, and NIC for you, using built-in defaults. That’s great for creating a VM

70 Chapter 5  Azure Networking basics

quickly, but you want to follow the principle of using long-lived network resources that
another team may manage and in which you’ll create your VMs.

Try it now
To use the Azure CLI to create your web server and jump-box VMs, complete the fol
lowing steps:

1	 Create the first VM for your web server, and provide a name, such as webvm.
Attach the network interface, such as webvnic, and enter an image, such as Ubun-
tuLTS. Provide a username, such as azuremol. The final step, --generate-
ssh-keys, adds to the VM the SSH keys you created in chapter 2:

az vm create \
--resource-group azuremolchapter5 \
--name webvm \
--nics webvnic \
--image UbuntuLTS \
--size Standard_B1ms \
--admin-username azuremol \
--generate-ssh-keys

2	 Create the second VM for the jump box. This example shows how you can use
an existing subnet and NSG, and let the Azure CLI create the network interface
and make the appropriate connections. You create a public IP address, such as
remotepublicip, as part of this command:

az vm create \
--resource-group azuremolchapter5 \
--name remotevm \
--vnet-name vnetmol \
--subnet remotesubnet \
--nsg remotensg \
--public-ip-address remotepublicip \
--image UbuntuLTS \
--size Standard_B1ms \
--admin-username azuremol \
--generate-ssh-keys

The output from both commands shows a public IP address. Make a note of these IP
addresses. In the next exercise, if you try to SSH to your first VM for the web server, it
fails. Why? You can SSH to the remote VM because you created an NSG rule to allow
only HTTP traffic to the web VM.

5.3.3	 Using the SSH agent to connect to your VMs

I need to introduce one piece of magic with SSH that allows you to use your jump box
correctly and connect to the web VM over the Azure virtual network: the SSH agent. This
agent applies only to Linux VMs, so if you mainly work with Windows VMs and Remote

	 71Building a sample web application with secure traffic

Desktop Protocol connections, don’t worry if the SSH talk is new. You can create RDP
connections to Windows VMs from your jump box with the local remote credentials or
with domain credentials if you configure the server appropriately.

An SSH agent can store your SSH keys and forward them as needed. Back in chap-
ter 2, when you created an SSH public-key pair, I talked about the public and private
keys. The private key is something that stays on your computer. Only the public key is
copied to the remote VMs. Although the public key was added to both VMs you cre-
ated, you can’t just SSH to your jump box and then SSH to the web VM. Why? That
jump box doesn’t have a copy of your private key. When you try to make the SSH con-
nection from the jump box, it has no private key to pair up with the public key on the
web VM for you to authenticate.

The private key is something to safeguard, so you shouldn’t take the easy way out
by copying the private key to the jump box. Any other users who access the jump box
could potentially get a copy of your private key and then impersonate you anywhere
that key is used. Here’s where the SSH agent comes into play.

If you run the SSH agent in your Cloud Shell session, you can add your SSH keys to
it. To create your SSH connection to the jump box, you specify the use of this agent to
tunnel your session. This technique allows you to effectively pass through your private
key for use from the jump box without ever copying the private key. When you SSH
from the jump box to the web VM, the SSH agent tunnels your private key through
the jump box and allows you to authenticate.

Try it now
To use SSH with your jump-box VM, complete the following steps:

1	 In Cloud Shell, start the SSH agent as follows:

eval $(ssh-agent)

2	 Add the SSH key you created in chapter 2 to the agent as follows:

ssh-add

3	 SSH to your jump-box VM. Specify the use of the SSH agent with the -A param
eter. Enter your own public IP address that was shown in the output when you
created the jump-box VM:

ssh -A azuremol@<publicIpAddress>

4	 This is the first time you’ve created an SSH connection to the jump-box VM, so
accept the prompt to connect with the SSH keys.

5	 Remember how you created a static private IP address assignment for the web
VM in section 5.1.2? This static address makes it a lot easier to SSH to it. SSH to
the web VM as follows:

ssh 10.0.1.4

72 Chapter 5  Azure Networking basics

6	 Accept the prompt to continue the SSH connection. The SSH agent tunnels
your private SSH key through the jump box and allows you to successfully con-
nect to the web VM. Now what? Well, you have a lab to see this work!

5.4	 Lab: Installing and testing the LAMP web server
You’ve already done the hard work throughout the chapter. This quick lab reinforces
how to install a web server and lets you see the NSG rule on your VM in action:

1	 Install a basic Linux web server. Think back to chapter 2 when you created an SSH
connection to the VM and then installed the LAMP web server package with
apt. From the SSH connection to your web VM created in section 5.3.2, install
and configure the default LAMP web stack.

2	 Browse to the default website. When the LAMP web stack is installed, open your web
browser to the DNS name label you entered when you created a public IP
address in section 5.1.3. In the example, that was azuremol.eastus.cloud-
app.azure.com. You can also use the public IP address that was output when you
created the web VM. Remember, though: that public IP address is different
from the jump-box VM you SSHed to!

Part 2

High availability and scale

Okay, let’s start to have some fun! Now that you understand the core
resources in Azure, you can dive into areas such as redundancy, load balancing,
and geographical distribution of applications. This part is where things get excit-
ing, and the topics you learn about should start to show solutions and best prac-
tices that you can use in real-world deployments. Azure has some awesome
features to replicate data globally, distribute customer traffic to the closest
instance of your application, and automatically scale based on demand. These
features are the power of cloud computing and where you bring true value to
your work.

75

6Azure Resource Manager

Most days, you want to spend as little time as possible on how you deploy an appli
cation environment and get on with actual deployment. In many IT environments,
there’s a movement toward development and operations teams that collaborate
and work closely together, with the DevOps buzzword being thrown around a lot at
conferences and in blogs.

There’s nothing inherently new or groundbreaking about the DevOps culture,
but often, different teams didn’t work together as they should. Modern tools have
spurred the DevOps movement, with continuous integration/continuous delivery
(CI/CD) solutions that can automate the entire deployment of application envi
ronments based on a single code check-in by a developer. The operations team is
usually the one that builds and maintains these CI/CD pipelines, which allows
much quicker tests and deployments of application updates for developers.

The Azure Resource Manager deployment model is central to how you build
and run resources, even though you probably haven’t realized it yet. Resource Man-
ager is an approach to building and deploying resources as much as the automa-
tion processes and templates that drive those deployments. In this chapter, you’ll
learn how to use Resource Manager features such as access controls and locks, con-
sistent template deployments, and automated multitier rollouts.

6.1	 The Azure Resource Manager approach
When you created a VM or web app in previous chapters, you first created a resource
group as the core construct to hold all your resources. A resource group is central to
all resources: a VM, web app, virtual network, or storage table can’t exist outside a
resource group. But the resource group is more than just a place to organize your

76 Chapter 6  Azure Resource Manager

resources—a lot more. This section looks at the underlying Azure Resource Manager
model and shows why it’s important as you build and run applications.

6.1.1	 Designing around the application lifecycle

Ideally, you won’t build an application and never maintain it. You usually have updates
to develop and deploy, new packages to install, new VMs to add, and additional web app
deployment slots to create. You may need to make changes in the virtual network set-
tings and IP addresses. I mentioned in previous chapters that your virtual networks in
Azure may be managed by a different team. You need to start to think about how you
run on a large, global scale, and in terms of the application lifecycle and management.

You have a couple of main approaches for grouping resources in Azure:

¡	All resources for a given application in the same resource group—As shown in figure
6.1, this approach works well for smaller applications and for development and
test environments. If you don’t need to share large networking spaces and can
manage storage individually, you can create all the resources in one place, and
then manage updates and configuration changes in one operation.

Virtual network

Frontend subnet Backend subnet

NIC 1 NIC 2 NIC 3 NIC 4

VM 2VM 1 VM 3 VM 4

Single resource group

OS
disk

Data
disk

OS
disk

Data
disk

OS
disk

Data
disk

OS
disk

Data
disk

Figure 6.1  One way to build an application in Azure is to create all the resources related
to that application deployment in the same resource group and manage them as one entity.

¡	Like-minded resources grouped by function in the same resource group—As shown in fig-
ure 6.2, this approach is more common in larger applications and environ-
ments. Your application may exist in a resource group with only the VMs and
supporting application components. Virtual network resources and IP
addresses may exist in a different resource group, secured and managed by a
different group of engineers.

	 77The Azure Resource Manager approach

Compute resource group

Virtual network

Frontend subnet Backend subnet

NIC 1 NIC 2 NIC 3 NIC 4

Network resource group

VM 2VM 1 VM 3 VM 4

OS
disk

Data
disk

OS
disk

Data
disk

OS
disk

Data
disk

OS
disk

Data
disk

Figure 6.2  An alternative approach is to create and group resources based
on their role. A common example is that all core network resources are in a
separate resource group from the core application compute resources.
The VMs in the compute resource group can access the network resources
in the separate group, but the two sets of resources can be managed and
secured independently.

Why are there different approaches? The answer isn’t all down to job security and the
lovely silos some teams like to work in. It’s about how you need to manage the under
lying resources. In smaller environments and applications where all the resources
exist in the same resource group, you’re responsible for everything in that environ-
ment. This approach is also well suited to development and test environments in
which everything is packaged together. Any changes you make in the virtual network
affect only your application and resource group.

The reality is that networks don’t change often. The address ranges are often well
defined and planned so that they can coexist across Azure and office locations around
the world. Logically, it often makes sense to place the network components in their own
resource group. The network is managed separately from the application. Stor-
age may be managed and updated separately in the same way. There’s nothing inher-
ently wrong with dividing resources in this way as long as the IT staff doesn’t get stuck
in a silo mentality, resulting in a lack of cooperation.

For your applications, the division of resources can also be a benefit, in that you’re
largely free to make changes and updates as you wish. Precisely because you don’t
have the network components in your resource group, you don’t need to worry about
them when you make application updates.

78 Chapter 6  Azure Resource Manager

6.1.2	 Securing and controlling resources

Each resource can have different security permissions applied to it. These policies
define who can do what. Think about it—do you want an intern restarting your web app
or deleting the VM data disks? And do you think that your good buddies over in the net
work team want you to create a new virtual network subnet? Probably not. In Azure,
there are four core roles you can assign to resources, much like file permissions:

¡	Owner—Complete control, basically an administrator
¡	Contributor—Full management of the resource except making changes in the

security and role assignments
¡	Reader—Ability to view all information about the resource but make no changes
¡	User access administrator—Ability to assign or remove access to resources

Role-based access control (RBAC) is a core feature of Azure resources that automati-
cally integrates with the user accounts across your subscriptions. Think of file permis-
sions on your normal computer. The basic file permissions are read, write, and
execute. When these permissions are combined, you can create different sets of per-
missions for each user or group on your computer. As you work with network file
shares, permissions are common tools for controlling access. RBAC in Azure works
along the same lines to control access to resources, just like file permissions on your
local computer or network share (figure 6.3).

Figure 6.3  The access control for each Azure resource lists the current assignments. You can add
assignments or select Roles to see information about what permission sets are available.

	 79The Azure Resource Manager approach

Try it now
Open the Azure portal in a web browser, and then select any resource you have, such
as cloud-shell-storage. Choose the Access Control (IAM) button, as shown in figure
6.3. Review the current role assignments. Look at how to add a role assignment, and
explore all the available role assignments. The information icon for each role shows
what permissions are assigned.

As you explore the available roles, you may notice several resource-specific roles,
including the following:

¡	Virtual Machine Contributor
¡	Website Contributor
¡	Network Contributor

Can you guess what those roles mean? They take the core platform Contributor role
and apply it to a specific resource type. The use case here goes back to that concept of
how you manage like-minded resources. You might be assigned the Virtual Machine
Contributor or Website Contributor role. Then any VMs or web apps created in that
resource group would be available for you to manage. But you couldn’t manage net-
work resources, which may be in a different resource group entirely.

6.1.3	 Protecting resources with locks

The permissions-based approach of RBAC is great for limiting who can access what.
But mistakes can still happen. There’s a reason why you typically don’t log on to a
server as a user with administrative, or root, permissions. One wrong keystroke or
mouse click, and you could mistakenly delete resources. Even if you have backups
(You do have backups, right? And you test them regularly?), it’s a time-consuming pro-
cess that may mean lost productivity or revenue to the business. In chapter 13, you’ll
learn more about the ways the Azure Backup, Recovery, and Replication services pro-
tect your data.

Another feature built into the Resource Manager model is resource locks.
Each resource can have a lock applied that limits it to read-only access or prevents
delete operations. The delete lock is particularly helpful, because it can be all too
easy to delete the wrong resource group. When you start a delete operation, there’s
no going back or canceling the operation after the Azure platform has accepted
your request.

For production workloads, I suggest that you implement locks on your core
resources to prevent deletes. These locks are only at the Azure resource and platform
levels, not for the data within your resources. You could delete files within a VM or
drop a table in a database, for example. The Azure resource locks would apply only if
you tried to delete the entire VM or Azure SQL database. The first time a lock kicks in
and prevents the wrong resource group from being deleted, you’ll thank me!

80 Chapter 6  Azure Resource Manager

Figure 6.4  Create a resource lock in the Azure portal.

Try it now
To see Azure resource locks in action, as shown in figure 6.4, complete the following
steps:

1	 Open the Azure portal in a web browser, and select any resource group you
have, such as cloud-shell-storage.

2	 Choose Locks on the left side of the portal.

3	 Enter a Lock Name, such as Protect; choose Delete from the Lock Type drop-
down menu; and choose OK. Your new lock appears in the list.

4	 Select Overview for the resource group, and then try to delete the resource
group. You need to enter the resource group name to confirm that you want to
delete it (which is also a good mental prompt to make sure that you have the
right resource to delete!).

5	 When you choose the Delete button, review the error message that’s displayed
to see how your lock prevented Azure from deleting the resource.

6.1.4	 Managing and grouping resources with tags

One final feature in the Azure Resource Manager model that I want to bring up is
tags. There’s nothing new or special about how you tag resources in Azure, but this
management concept is often overlooked. You can apply tags to a resource in Azure
that describe properties such as the application it’s part of, the department responsi-
ble for it, or whether it’s a development or production resource.

	 81Azure Resource Manager templates

You can target resources based on tags to apply locks or RBAC roles, or to report
on resource costs and consumption. Tags aren’t unique to a resource group and can
be reused across your subscription. Up to 50 tags can be applied to a single resource
or resource group, so you have a lot of flexibility in how you tag and then filter tagged
resources.

Try it now
To see Azure resource tags in action, complete the following steps:

1	 Open the Azure portal in a web browser, and then select any resource, such as
cloud-shell-storage. Although you can tag a resource group itself, don’t pick a
resource group for this exercise.

2	 With your resource selected, choose the Tags button, as shown in figure 6.5.

3	 Enter a Name, such as workload, and a Value, such as development.

4	 Select Save.

5	 Open Cloud Shell.

6	 To filter resources based on tags, use az resource list with the --tag
parameter. Use your own name and value as follows:

az resource list --tag workload=development

Figure 6.5  You can create up to 50 name:value tags for each Azure resource or resource group.

6.2	 Azure Resource Manager templates
So far, you’ve created a small number of Azure resources at a time. To do this, you used
the Azure portal or Azure CLI. Although I haven’t shown you Azure PowerShell, I did
talk about it in chapter 1, and it’s available in Cloud Shell. Maybe you’ve tried it without

82 Chapter 6  Azure Resource Manager

me. That’s okay; I don’t feel left out! As I mentioned in chapter 1, Azure has tools that
let you choose what’s most comfortable for you and the environment you work in.

The downside of using the portal or CLI or PowerShell commands is that you must
click a bunch of buttons in the web browser or type lines of commands to build your
application environment. You could create scripts to do all these things, but then
you’d have to build logic to handle the creation of multiple resources at the same time
or the order to create resources in.

A script that wraps Azure CLI or PowerShell commands starts to move in the right
direction in terms of how you should build and deploy application environments—
not just in Azure, but across any platform. There’s a move toward infrastructure as
code (IaC), which is nothing new if you’ve been around IT for a while. All it means is
that you don’t rely on a human to type commands and follow a set of steps; rather, you
programmatically create your infrastructure from a set of instructions. Manual deploy-
ments introduce a human element that can often lead to minor misconfigurations
and differences in the final VMs, as shown in figure 6.6.

Human
operator

Scripts

Checklists

Installer
packages

VM 1

VM 2

VM 3
Multiple
steps and
scripts to
build VMs

Potential
differences
in deployed

VMs

Figure 6.6  Humans make mistakes, such as mistyping a command or skipping a step in a deployment.
You can end up with slightly different VMs at the end of the output. Automation is often used to remove
the human operator from the equation and instead create consistent, identical deployments every time.

Even when you have scripts, you still need someone to write them, maintain them, and
keep them updated as new versions of the Azure CLI or PowerShell modules are
released. Yes, there are sometimes breaking changes in the tools to accommodate new
features, although they’re rare.

6.2.1	 Creating and using templates

Resource Manager templates can help reduce human error and reliance on manually
written scripts. Templates are written in JavaScript Object Notation (JSON), an open
standard and cross-platform approach that allows editing them in a basic text editor.
With templates, you can create consistent, reproducible deployments that minimize
errors. Another built-in feature of templates allows the platform to understand depen-
dencies and can create resources in parallel where possible to speed deployment
time. If you create three VMs, for example, there’s no need to wait for the first VM to

	 83Azure Resource Manager templates

finish deploying before you create the second; Resource Manager can create all three
VMs at the same time.

As an example of dependencies, if you create a virtual NIC, you need to connect it
to a subnet. Logically, the subnet must exist before you can create the virtual NIC, and
the subnet must be part of a virtual network, so that network must be created before
the subnet. Figure 6.7 shows the chain of dependencies in action. If you try to write a
script yourself, you must carefully plan the order in which resources are created, and
even then, you must build in logic to know when the parent resources are ready and
you can move on to the dependent resources.

Virtual NIC Subnet Virtual
network

Depends on Depends on

Figure 6.7  Azure Resource Manager handles dependencies for you. The platform knows
the order in which to create resources and has awareness of the state of each resource
without the use of handwritten logic and loops like those you must use in your own scripts.

Want to know something cool? You’ve already used Resource Manager templates—in
chapter 2 and in the very first VM you created. As you create a VM in the portal or the
Azure CLI, under the hood, a template is programmatically created and deployed.
Why? Well, why reinvent the wheel and go through the process of building all that
logic for the deployments? Let Azure Resource Manager do it for you!

Here’s what a section of a Resource Manager template looks like. The following
listing shows the section that creates a public IP address, just as in earlier examples
when you created a VM.

Listing 6.1  Creating a public IP address in a Resource Manager template

{
     "apiVersion": "2019-04-01",
     "type": "Microsoft.Network/publicIPAddresses",
     "name": "publicip",
     "location": "eastus",
     "properties": {
      "publicIPAllocationMethod": "dynamic",
      "dnsSettings": {
       "domainNameLabel": "azuremol"
   }
  }
},

Even if JSON is new to you, it’s written in a (somewhat) human-readable format. You
define a resource type—in this example, Microsoft.Network/publicIPAddresses.
Then you provide a name, such as publicip, and a location, such as eastus. Finally,

84 Chapter 6  Azure Resource Manager

you define the allocation method—dynamic, in this example—and a DNS name label,
such as azuremol. These parameters are the same ones you provided when you used
the Azure portal or CLI. If you use PowerShell, guess what? You’re prompted for the
same parameters.

The difference with the template is that you didn’t have to enter any information.
All the information was in the code. “Great,” you might think, “but what if I want to
use different names each time?” As with a script, you can assign names dynamically by
using parameters and variables:

¡	Parameters are values that you’re prompted for. They’re often used for user cre-
dentials, the VM name, and the DNS name label.

¡	Variables can be preassigned values, but they’re also adjusted each time you
deploy the template, such as the VM size or virtual network name.

Try it now
To see a complete Resource Manager template, open a web browser to the GitHub
repo at http://mng.bz/QyWv.

6.2.2	 Creating multiples of a resource type

As you build your templates, try to think ahead about how you may need to grow your
applications in the future. You may need only a single VM when you first deploy your
application, but as demand for the application grows, you may need to create addi-
tional instances.

In a traditional scripted deployment, you create a for or while loop to create mul
tiple resource types. Resource Manager has this functionality built in! There are more
than 50 types of functions in Resource Manager, just like in most programming and
scripting languages. Common Resource Manager functions include length, equals,
or, and trim. You control the number of instances to create with the copy function.

When you use the copy function, Resource Manager creates the number of
resources you specify. Each time Resource Manager iterates over the create operation,
a numerical value is available for you to name resources in a sequential fashion. You
access this value with the copyIndex() function. The example in listing 6.1 created a
single public IP address. The example in listing 6.2 uses the same Microsoft
.Network/publicIPAddresses resource provider type but creates two public IP
addresses. You use copy to define how many addresses you want to create and copy
Index() to name the addresses sequentially.

Listing 6.2  Creating multiple public IP addresses with copy

{
     "apiVersion": "2019-04-01",
     "type": "Microsoft.Network/publicIPAddresses",
     "name": "[concat(‘publicip’, copyIndex())]",

	 85Azure Resource Manager templates

     "copy": {
      "count": 2
     }
     "location": "eastus",
     "properties": {
      "publicIPAllocationMethod": "dynamic",
     }
},

You also use the concat function to combine the public IP address name and the
numerical value of each instance you create. After this template is deployed, your two
public IP addresses are called publicip0 and publicip1. These names aren’t super-
descriptive, but this basic example shows how you can use a numbering convention as
you create multiple resources with the copy function.

6.2.3	 Tools to build your own templates

So I’ll confess: although Resource Manager templates are neat and among the main
ways I suggest that you build and deploy applications in Azure, you still need to write
the templates. A couple of tools simplify this task for you, and hundreds of sample
templates are available from Microsoft and third parties. In fact, one of the best ways
to learn how to create and use templates is to examine the quick-start templates
Microsoft makes available in its samples repo at https://github.com/Azure/azure​
-quickstart-templates.

If you want to roll up your sleeves and start to write you own templates, I recom-
mend two main tools. The first is Visual Studio Code, a free, open source, multiplat-
form editor (https://code.visualstudio.com). Along with some built-in functionality
such as source control and GitHub integration, extensions are available that can auto-
matically build the different sections, or providers, for the resources to build up a tem-
plate, as shown in figure 6.8. If you download and install VS Code, choose View >
Extensions, and then search for Azure.

Figure 6.8  Many extensions are available in Visual Studio Code to improve and streamline the way you create and
use Azure Resource Manager templates.

86 Chapter 6  Azure Resource Manager

Figure 6.9  With Visual Studio, you can graphically build templates and explore JSON resources.

A more graphical way to build Azure Resource Manager templates is to use the full
Visual Studio editor, shown in figure 6.9. There are versions for both Windows and
macOS, but you need a separate license to use the editor. A Community Edition is
available, but take care if you build templates within your company: you typically need
a licensed version. Consult your license experts, because Visual Studio targets applica-
tion developers.

You can, of course, use a basic text editor. Part of the reason why Azure Resource
Manager templates are written in JSON is that it removes the need for any special
tools. There’s a learning curve to working with JSON, which is why I recommend that
you explore the quick-start templates in the Azure samples repo. Take care with inden-
tation, trailing commas, and the use of parentheses, brackets, and braces!

Life on Mars
There are third-party tools and other ways to use templates in Azure. HashiCorp pro-
vides many open source tools and solutions for cloud computing, one of which is Ter-
raform. With Terraform, you define all the resources you want to build in much the
same way that you do a native Azure Resource Manager template. You can define
dependencies and use variables, too. The difference is that Terraform is technically
cross-provider. The same constructs and template approach can be used across
Azure, Google Cloud, AWS, and vSphere, for example. The difference is the provision-
ers that you use for each resource.

Is it truly a “one template for any provider” approach? No, not at all. Terraform is
also an application that parses your template and then communicates with the rele-
vant cloud provider, such as Azure. You get zero editing capabilities, let alone graphi-
cal tools, to build your template. You pick an editor and write the template by hand.

	 87Lab: Deploying Azure resources from a template

Again, the best way to learn Terraform is to explore its documentation and example
templates.

The reason why I bring up this topic relates to the concept of choice in Azure. If you
find Azure Resource Manager templates written in JSON a little too cumbersome,
explore a product like Terraform instead. But don’t give up on template-driven
Resource Manager deployments. To achieve those reproducible, consistent deploy-
ments at scale, templates are the best approach, so find a good template-driven
approach that works for you.

6.2.4	 Storing and using templates

So you love the idea of Azure Resource Manager templates, and you’ve installed
Visual Studio or Code to write your own templates. How do you store and deploy
them? In the end-of-chapter lab, you deploy a template from the Azure samples repos
itory on GitHub. This repository is public, and you may not want to make your appli
cation templates available to the entire world.

There are a couple of common methods for storing Resource Manager templates
privately:

¡	Use a private repository or network file share within your organization.
¡	Use Azure Storage to centrally store and secure templates for deployment.

There’s no right or wrong way to store and deploy templates. You have the flexibility
to use whatever processes and tools are already in place. The advantage of using a
repository is that you typically have some form of version control, so you can ensure
consistent deployments and review the history of your templates if necessary. The only
limitation is that when you deploy the template, you need to provide the appropriate
credentials to access the shared location. This authentication process can vary, such as
providing a username or access token as part of the URL to a template in a repository
or providing a shared access signature (SAS) token if you use Azure Storage.

Public repositories such as GitHub can also be great ways to learn and share. I do
suggest that you keep your production templates stored privately, but if you create a
neat template for a lab environment or to try some new features, sharing on GitHub
gives a little something back to the IT community and may help others who want to do
the same deployments that you do. And as you begin to build your own templates, be
sure to check out what templates already exist so that you don’t start from scratch and
reinvent the wheel every time!

6.3	 Lab: Deploying Azure resources from a template
All this theory about deployment models and approaches is great, but you’ll (ideally)
start to see the benefits and efficiency when you use templates for real:

1	 Go to the Azure quick-start samples on GitHub (https://github.com/Azure/
azure-quickstart-templates), and find one that interests you. A good place to
start is a simple Linux or Windows VM.

88 Chapter 6  Azure Resource Manager

2	 Built into the GitHub samples are buttons that deploy straight to Azure. When
you find a template you like, select Deploy to Azure, as shown in figure 6.10,
and follow the steps in the portal. The process is much the same as that of creat-
ing a VM, but only a few prompts are required to complete the required param
eters. All the other resources are created for you and abstracted away.

3	 The final step in deploying your template is accepting the license agreement
and then choosing Purchase. You’re creating Azure resources when you deploy
a template, so choosing Purchase means that you agree to pay for the costs of
those Azure resources.

One of the basic templates, such as a simple Linux or Windows VM, costs
about the same as any other VM you’ve created so far. Make sure that you delete
the resource group when your deployment is finished, just as you’d clean up
after any other exercise.

Figure 6.10  For each Resource Manager template in the GitHub sample repo, there’s a Deploy to Azure button. If
you select this button, the Azure portal loads, and the template is loaded. You’re prompted for some basic
parameters, and the rest of the deployment is handled by the template.

	 89Lab: Deploying Azure resources from a template

Parameters in templates
As discussed in section 6.2.1, you can use parameters and variables in your tem-
plates. Remember, parameters are values that you’re prompted for, and variables
are dynamic values that can be applied throughout a template. The values you’re
prompted for (parameters) vary from template to template. So depending on which
quick-start template you select, you may be prompted for one or two values, or you
may have to provide seven or eight.

As you design your templates, try to anticipate how you and other users may want to
reuse the template as you deploy applications. You can provide a default value and
limit what values are allowed. Take care with these default and allowable values,
though; otherwise, you may constrain users too much and force them to create their
own templates. Where possible, try to build reusable core templates that have
enough flexibility.

4	 When your template has deployed, go back to GitHub, and examine the azure-
deploy.json file. This file is the Azure Resource Manager template that you used
to create and deploy the sample. See whether you can understand the different
resource types and configurations that were applied. As you work with more
Azure resource types and templates, the JSON format will become easier to
understand. Honest!

90

7High availability
and redundancy

I can’t count the number of times that something in IT has failed me. I’ve had a
laptop hard drive crash the day before a conference, a smoking power supply in an
email server, and failed network interfaces on a core router. And don’t even get me
started on OS, driver, and firmware updates! I’m sure that anyone who works in IT
would love to share horror stories about situations they’ve had to deal with—usu-
ally problems that happened late at night or at a critical time for the business. Is
there ever such a thing as a good failure, and at a nice time?

If you anticipate failures in IT, you learn to plan and design your applications to
accommodate problems. In this chapter, you’ll learn how to use Azure high availabil-
ity and redundancy features to minimize disruptions caused by maintenance
updates and outages. This chapter builds a foundation for the next two or three
chapters as you start to move from an application that runs on a single VM or web
app to one that can scale and be globally distributed.

7.1	 The need for redundancy
If you want customers to trust you for their important pizza business, you must sup-
ply applications that are accessible whenever they need them. Most customers
won’t look for “hours of operation” on a website, especially if you work in a global
environment and customers could be from all over the world. When they’re hun-
gry, they want to eat!

Figure 7.1 shows a basic example of an application that runs on a single VM.
Unfortunately, this application creates a single point of failure. If that one VM is
unavailable, the application is unavailable, which leads to customer unhappiness
and hunger.

	 91The need for redundancy

Figure 7.1  If your application runs on a single VM,
any outage on that VM causes the application to be
inaccessible. This could mean that customers take
their business elsewhere or, at the least, aren’t
satisfied with the service you provide.

If you drive a car, there’s a good chance that there’s a spare tire in case you have a
puncture. If you a use a laptop or tablet, there’s a good chance that you plug the
device into a charger in case the battery runs out in the middle of work. At home or
your apartment, do you have spare light bulbs in case one of the lights goes out? What
about a flashlight or candles in case there’s a power outage?

Most people like to have some form of redundancy or backup plan, both in day–to‑
day life and, especially, in IT. If you’re ready to switch over to a spare car tire or light
bulb, you can handle outages and failures with minimal interruption. If you design and
build your applications for redundancy, you provide a high level of availability to your
customers that minimizes or even hides any interruptions the application encounters.
All Azure data centers are built for high availability. Backup power supplies, multi-
ple network connections, and storage arrays with spare disks are just some of the core
redundancy concepts that Azure provides and manages for you. All the redundancy
Azure provides may not help if you run your application on a single VM. To give you
flexibility and control over how to make your application highly available, two main
features for IaaS workloads are available:

¡	Availability Zones—Lets you distribute VMs across physically isolated segments of
an Azure region to further maximize your application redundancy. Zones can
also provide high availability to network resources such as public IP addresses and
load balancers.

¡	Availability Sets—Lets you logically group VMs to distribute them across a single
Azure data center and minimize disruption from outages or maintenance
updates.

For most new application deployments in Azure, I suggest that you plan to use Avail-
ability Zones. This approach offers flexibility in how to distribute your application and
provides redundancy to the network resources that are often central to how customers
ultimately access the underlying VMs. To see how each of these approaches works,
let’s discuss them in more depth.

Single
VM

Customer accesses
application

Application
response returned

Customer accesses
application

Application not
accessible

VM
Single

92 Chapter 7  High availability and redundancy

7.2	 Infrastructure redundancy with Availability Zones
Availability Zones are physically separate data centers that operate on independent core
utilities such as power and network connectivity. Each Azure region that supports Avail-
ability Zones provides three zones. You create your resources in and across these zones.
Figure 7.2 shows how Azure resources can be distributed across Availability Zones.

West Europe

Availability Zone 1 Availability Zone 2 Availability Zone 3

VM 1 VM 2 VM 3

Public IP address

Load balancer

Figure 7.2  An Azure region can contain multiple Availability Zones: physically
isolated data centers that use independent power, network, and cooling. Azure virtual
network resources such as public IP addresses and load balancers can span all zones
in a region to provide redundancy for more than just the VMs.

With Availability Zones, your applications can tolerate an entire Azure data center
going offline. Sure, it would take a major event for this situation to occur, but it’s still
possible!

In large application deployments, you may create more than one VM in each Avail-
ability Zone. Multiple VMs in an Availability Zone are automatically distributed across
the available hardware within the zone. There’s nothing you need to configure or can
control. Even if a maintenance update or equipment failure inside a zone were to
affect all your VMs that run in the zone, remember that zones are physically isolated
from each other; the VMs in another zone would continue to run.

Now, if you feel particularly unlucky, could all your VMs in different zones experi-
ence maintenance updates at the same time? Yes, but that’s unlikely. Zones within a
region have staggered update cycles. Updates are performed across one zone; once
they’re complete, updates are performed across the next zone. Availability zones pro-
vide a high level of abstraction and redundancy, and you should look at your applica-
tion across the entire deployment, not just where VMs in one zone reside.

The inclusion of the virtual network resources in Availability Zones is a lot more
important than it may seem at first. Figure 7.3 shows what would happen if the data

	 93Infrastructure redundancy with Availability Zones

West Europe

Availability Zone 1 Availability Zone 2 Availability Zone 3

VM 2 VM 3

AAAAAAAAAvvvvvvvvvvvvvvvvvvAAAAA aaaaaaaaaaaaailability Zoneneneneneneneneneeeeeeneneneeeneeeneneeenn 1

Public IP address

Load balancer

VM 1

Figure 7.3  When network resources are attached to a single Azure data center, or
zone, an outage in that facility causes the entire application to be unreachable by
the customer. It doesn’t matter that the other VMs continue to run in other zones.
Without the network connectivity to distribute traffic from your customers, the whole
application is unavailable.

center became unavailable for network resources such as a public IP address and load
balancer that run across Availability Zones.

I’ll talk more about load balancers in chapter 8, but for now, all you need to under-
stand is that the load balancer distributes traffic across all available VMs that are
attached to it. The VMs report their health status at set intervals, and the load balancer
no longer distributes traffic to a VM that reports as being unavailable. With a load bal-
ancer that works across Availability Zones, an outage in one Azure data center causes
those VMs to become unavailable and be taken out of the load-balancer rotation.

A public IP address that spans Availability Zones provides a single entry point for
customers to reach your load balancer and then be distributed to an available VM. In an
application deployment where that public IP address resides in a single Azure data
center, if that data center encounters a problem, no customer can access the public IP
address. The customer can’t use your application, even if there are VMs available to
serve customer requests.

Resources that can use Availability Zones include both zonal services and zone-
redundant services:

¡	Zonal services are for things like VMs, a public IP address, or a load balancer. The
whole resource itself runs within a given zone and can operate by itself if
another zone is unavailable.

¡	Zone-redundant services are for resources that can automatically replicate across
zones, such as zone-redundant storage and SQL databases. The whole resource
isn’t running within a given zone; rather, its data is distributed across zones so
that it continues to be available if one zone has a problem.

94 Chapter 7  High availability and redundancy

Availability Zone support is available for more than 20 Azure services across more
than ten regions. The number of services and regions that integrate with Availability
Zones continues to grow. However, given the region limitations, there may be times
when Availability Zone support isn’t available for core resources like VMs. In those
cases, there’s another type of VM redundancy that you can use in any region that we
look at in section 7.2.1: Availability Sets.

7.2.1	 Creating network resources across an Availability Zone

To start to see some of this availability and redundancy in action, let’s create some
common resources, such as a public IP address and load balancer, and then VMs. The
goal here is to see that you don’t have to do much configuration at all to take advan-
tage of Availability Zones in Azure. These are simple examples, but they form the core
of most application environments you’d deploy.

Public IP addresses and load balancers can be created in either of two available
tiers: basic and standard. The primary difference is that the standard tier allows the
network resource to use Availability Zones. By default, a standard public IP address or
load balancer is automatically zone redundant. There’s no additional configuration
for you to complete. The Azure platform centrally stores the metadata for the
resource within the region you specify and makes sure that the resource continues to
run if one zone becomes unavailable.

Don’t worry too much about what happens with the load balancer and network
resources right now. Remember what I said at the start; these next two or three chap-
ters build on one another. In chapter 8, we’ll dive into load balancers, and all this
should start to make more sense.

Try it now
To create network resources that are redundant across Availability Zones, complete
the following steps:

1	 Select the Cloud Shell icon at the top of the Azure portal dashboard.

2	 Create a resource group, such as azuremolchapter7az:

az group create --name azuremolchapter7az --location westeurope

3	 Create a standard public IP address in your resource group. By default, a basic
public IP address would be created and assigned to a single zone. The --sku
standard parameter instructs Azure to create a redundant, cross-zone resource:

az network public-ip create \
--resource-group azuremolchapter7az \
--name azpublicip \
--sku standard

	 95Infrastructure redundancy with Availability Zones

4	 Create a load balancer that spans Availability Zones. Again, a basic load bal-
ancer would be created by default and assigned to a single zone, which isn’t the
high-availability design you want for your applications. Specify a standard SKU
to create a zone-redundant load balancer, as follows:

az network lb create \
--resource-group azuremolchapter7az \
--name azloadbalancer \
--public-ip-address azpublicip \
--sku standard

7.2.2	 Creating VMs in an Availability Zone

To create a VM in an Availability Zone, you specify which zone to run the VM in. To
deploy many VMs, you ideally create and use a template. The template defines and
distributes the zones for each of the VMs. As customer demand for your online pizza
store grows, you can also update the template with the number of VMs you now want
and then redeploy the template. The new VMs are distributed across zones for you
automatically, and there’s no need to manually track which zones the VMs run in. In
the end-of-chapter lab, you’ll use a template to create and distribute multiple VMs
automatically. To see the logical process to specify a zone for a VM, let’s create a VM
and manually specify the zone.

Try it now
To create a VM in an Availability Zone, complete the following steps:

1	 In the Azure portal, select the Cloud Shell icon at the top of the dashboard.

2	 Create a VM with the az vm create command you’ve used in previous chap-
ters. Use the --zone parameter to specify zone 1, 2, or 3 for the VM to run in.
The following example creates a VM named zonedvm in zone 3:

az vm create \
--resource-group azuremolchapter7az \
--name zonedvm \
--image ubuntults \
--size Standard_B1ms \
--admin-username azuremol \
--generate-ssh-keys \
--zone 3

It takes a few minutes to create the VM. When the process is finished, the output from
the command indicates the zone that the VM runs in. You can also view this informa-
tion with the az vm show command:

az vm show \
--resource-group azuremolchapter7az \
--name zonedvm \
--query zones

96 Chapter 7  High availability and redundancy

NOTE   The examples in these “Try it now” exercises are simple but are
designed to show you that zones require little configuration to use. You didn’t
integrate the zone-redundant load balancer and VM, but in chapter 8, you’ll
build out a more usable application environment that’s distributed across
Availability Zones. The goal here is to show you that the Azure platform han-
dles the redundancy and distribution of your resources so you can focus on
the application itself.

7.3	 VM redundancy with Availability Sets
Availability zones are great when designing for redundancy on a wider set of resources
that make up your applications and workloads. I recommend that, where possible, you
use them for new workloads. However, there are times when you don’t necessarily
need to make all the resources zone redundant. Or you may want to create VMs in an
Azure region that doesn’t currently have Availability Zone support.

If you only want to provide redundancy for VMs, Availability Sets have you covered.
They’re proven, reliable, and available across all regions. Availability Sets contain a
logical group of VMs that indicates to the Azure platform that the underlying hard-
ware those VMs run on needs to be carefully selected. If you create two VMs that run
on the same physical server, and one server fails, both of those VMs go down. With
potentially tens of thousands or more physical servers in an Azure data center, it’s
highly unlikely that you’d have both of those VMs on the same server, but it’s possible!
It may be not a failure but a maintenance update that causes the physical server to be
briefly unavailable.

What if your VMs run in the same rack, attached to the same storage or networking
equipment? You’re back to the single point of failure discussed at the start of the
chapter.

Availability Sets allow the Azure platform to create your VMs across logical groups
called fault domains and update domains. These logical domains let the Azure platform
understand the physical boundaries of hardware groups to make sure your VMs are
evenly distributed across them. If one piece of hardware has a problem, only a few
VMs in your Availability Set are affected. Or if there are maintenance updates to be
applied to the physical hardware, the maintenance affects only a few of your VMs. The
relationship of physical hardware to logical fault domains and update domains inside
an Availability Set is shown in figure 7.4.

Availability Zones do the same kind of distribution under the hood, but it’s
abstracted away and isn’t exposed. Even with Availability Sets, there’s not a lot you can
configure. But it’s helpful to know what’s happening behind the scenes.

7.3.1	 Fault domains

A fault domain is a logical group of hardware in an Azure data center. It contains
hardware that shares power or network equipment. You don’t control what these
fault domains are, and there’s nothing for you to configure at the VM level. The
Azure platform tracks what fault domains your VMs are placed in and distributes new

	 97VM redundancy with Availability Sets

Availability Set

Fault domain

Update domain

VM

Fault domain

Update domain

VM

Update domain

VM VM

Update domain

Server rack

Physical server

VM

Server rack

Physical server

VM

Physical server

VM VM

Physical server

Figure 7.4  Hardware in an Azure data center is logically divided into update domains and fault domains. These
logical domains allow the Azure platform to understand how to distribute your VMs across the underlying hardware
to meet your redundancy requirements. This example is basic: an update domain likely contains more than one
physical server.

VMs across these fault domains so that you always have VMs available if power or a
network switch fails.

VMs that use managed disks (remember, all your VMs should use managed disks!)
also respect logical fault-domain boundaries and distribution. The Azure platform
logically assigns storage clusters to fault domains to ensure that as your VMs are dis
tributed across hardware groups, the managed disks are also distributed across storage
hardware. There would be no point in VM redundancy across server hardware if there
were potential for all the managed disks to end up in one storage cluster! And yes,
managed disks can be used with Availability Zones too.

7.3.2	 Update domains

Whereas fault domains create a logical group of hardware to protect against hardware
failures, update domains protect against routine maintenance. To provide this protec-
tion, a fault domain is further logically divided into update domains. Again, there’s
nothing for you to configure here. Update domains are a way for the Azure platform
to understand how it must distribute VMs across your Availability Set.

Azure engineers perform (mostly automated) maintenance and apply updates
across all the physical hardware in one update domain, and then perform the same
maintenance across all hardware in the next update domain. This maintenance work
is staggered across update domains to make sure that the VMs in an Availability Set
aren’t all running on hardware that undergoes maintenance at the same time. It’s the
same kind of process we looked at with Availability Zones; the distribution of your
resources means that you can’t have a scenario in which all the underlying hardware
for your resources is being updated at the same time.

98 Chapter 7  High availability and redundancy

There’s no relationship between domains across multiple Availability Sets. The
physical resources that make up the fault and update domains in one Availability Set
may not be the same for a second Availability Set. This awareness means that if you
create multiple Availability Sets and distribute your VMs across them, fault domain 1,
for example, doesn’t always contain the same physical hardware.

7.3.3	 Distributing VMs across an Availability Set

Let’s go step by step and see how VMs are distributed across the logical fault and
update domains that make up an Availability Set. This way, you have multiple VMs that
can run your pizza store, and customers won’t go hungry!

Try it now
To see Availability Sets in action, complete the following steps to deploy a Resource
Manager template:

1	 Open a web browser to a Resource Manager template from the GitHub samples
repo at https://github.com/fouldsy/azure-mol-samples-2nd-ed/tree/master/
07/availability-set, and then select the Deploy to Azure button. You’ll use a tem-
plate in this exercise so that you can deploy VMs quickly and explore how those
VMs are distributed across the Availability Set.

The Azure portal opens and prompts for a few parameters.

2	 Choose to create a new resource group, and then provide a name such as
azuremolchapter7. Select a region, and then provide your SSH key data (you
can obtain in this Cloud Shell with cat ~/.ssh/id_rsa.pub).

The template creates an Availability Set that contains three VMs. These VMs
are distributed across the logical fault and update domains. Building on what
you learned about Resource Manager in chapter 6, this template uses the
copyIndex() function to create multiple VMs and NICs.

3	 To acknowledge that you wish to create the resources detailed in the template,
check the box, “I agree to the terms and conditions stated above,” and then select
Purchase.

It takes a few minutes to create all three VMs in the Availability Set. Let the deploy-
ment continue in the portal while you read the rest of this section.

When the template starts to deploy, an Availability Set is created, and the number
of update and fault domains you requested is assigned. The following properties were
defined in the sample template:

“properties”: {
   “platformFaultDomainCount”: “2”,
   “platformUpdateDomainCount”: “5”,
   “managed”: “true”
}

	 99VM redundancy with Availability Sets

These properties create an Availability Set with two fault domains and five update
domains, as shown in figure 7.5, and indicate that the VMs are to use managed disks,
so honor the disk distribution accordingly. The region you select for the Availability
Set determines the maximum number of fault and update domains. Regions support
either 2 or 3 fault domains and up to 20 update domains.

Update domain 2

Update domain 0

Update domain 4

Update domain 1

Update domain 3

Availability Set

Fault domain 0 Fault domain 1

Figure 7.5  The Availability Set that your sample template
deploys contains two fault domains and five update domains.
The numbering system is zero-based. The update domains are
created sequentially across the fault domains.

As you create more VMs in an Availability Set, you need to consider how many update
domains to use. Five update domains, for example, mean that up to 20 percent of
your VMs may be unavailable due to maintenance:

¡	Let’s say that you have 10 VMs in your Availability Set. Two of those VMs may
undergo maintenance at the same time. If you wanted to allow only one VM at a
time to undergo maintenance, you’d need to create 10 update domains. The
more update domains you create, the longer your application is potentially in a
maintenance state.

¡	Let’s continue the previous example of 10 VMs across 10 update domains. Now
there’s potential for disruption to your applications until all 10 of those update
domains have completed their maintenance cycle. If you have only 5 update
domains, that maintenance time frame is reduced. It’s not necessarily bad to
have a longer maintenance period; it’s more what your tolerance is for poten-
tially running at less than full capacity.

It’s important to remember that these update domains and maintenance cycles are
what the Azure platform performs itself. You also need to factor in your own update
needs and maintenance windows.

100 Chapter 7  High availability and redundancy

When the first VM is created, the Azure platform looks to see where the first avail-
able deployment position would be. This is fault domain 0 and update domain 0, as
shown in figure 7.6.

When the second VM is created, the Azure platform looks to see where the next
available deployment position would be. This is now fault domain 1 and update
domain 1, as shown in figure 7.7.

Your template creates three VMs, so what do you think happens next? The Azure plat-
form looks again to see where the next available deployment position would be. You
created only two fault domains, so the VM is created back in fault domain 0. But the
VM is created in a different update domain from the first VM. The third VM is created
in update domain 2, as shown in figure 7.8.

Figure 7.8  The third VM is
created back in fault domain 0
but in update domain 2. Although
VMs 0 and 2 potentially share
hardware failure risk, they’re in
different update domains and so
will not undergo regular
maintenance at the same time.

Figure 7.6  The first VM is created in
fault domain 0 and update domain 0.

Availability Set

Fault domain 0

Update domain 0

VM 0

Availability Set

Fault domain 0

Update domain 0

VM 0

Fault domain 1

Update domain 1

VM 1

Figure 7.7  With a second VM created, the VMs are evenly
distributed across fault and update domains. This is often
considered the minimal amount of redundancy required to
protect your applications.

Availability Set

Fault domain 0

Update domain 0

VM 0

Fault domain 1

Update domain 1

VM 1

Update domain 2

VM 2

	 101VM redundancy with Availability Sets

VMs 0 and 2 are in the same fault domain, so potentially, a hardware failure could
affect both VMs. But routine maintenance affects only one of those VMs at a time
because they’re distributed across update domains. If you keep going and create more
VMs, the Azure platform will continue to distribute them across different fault and
update domains. When all five update domains are used, the sixth VM is created back
in update domain 0, and the cycle continues.

7.3.4	 View distribution of VMs across an Availability Set

Now that you understand the theory of how VMs are distributed across fault and
update domains in an Availability Set, let’s check what happened to your Resource
Manager template deployment.

Try it now
To see how your VMs are distributed in an Availability Set, complete the following
steps:

1	 Browse to and select Resource Group from the navigation bar at left in the
Azure portal.

2	 Choose the resource group you created for your template deployment, such as
azuremolchapter7.

3	 Select your Availability Set from the list of resources, such as azuremolavail-
abilityset.

The Overview window displays a list of VMs and their associated fault and
update domains, as shown in figure 7.9.

Figure 7.9  The Availability Set lists the VMs it contains and shows the fault domain
and update domain for each VM. This table lets you visualize how the VMs are
distributed across the logical domains.

If you’re particularly observant, you may notice that the VMs don’t line up perfectly
with the expected order of fault and update domains. Is there a bug? Probably not. If
you examine the example in figure 7.9 and compare it with what the previous con-
cepts told you, you’d expect the VMs to be distributed as shown in table 7.1.

102 Chapter 7  High availability and redundancy

Table 7.1  Availability Set VMs sequentially created and distributed across domains

So what went wrong? Nothing. Think back to how Resource Manager creates
resources from a template. The Azure platform doesn’t wait for the first VM to be cre-
ated before the second can be created. All three VMs are created at the same time. As
such, there may be fractions of a second difference in which VM is associated with an
Availability Set first. It doesn’t matter what this order is, because you don’t control
what the underlying fault and update domains represent. That’s up to the Azure plat-
form. You just need to make sure that your VMs are distributed, not where.

No, I must have pretty numbers
If the serial creation behavior of VMs bugs you, and you must distribute the VMs in a
neat order, you can instruct Resource Manager to create VMs in serial, rather than
parallel. In this mode, the VMs are created one after another, so the deployment time
is increased. To enable this serial behavior, use "mode": "serial" in your tem-
plates as part of the copyIndex() function. That should distribute the VMs in a
nice, sequential way for you!

7.4	 Lab: Deploying highly available VMs from a template
This lab combines and reinforces what you learned in chapter 6 about Azure
Resource Manager and templates, with Availability Zones. Take some time to look
over the example quick-start template in this exercise to see how you can use logic and
functions to distribute multiple VMs across zones. Don’t just deploy the template and
move on; look at how the template builds on the features introduced in chapter 6!

What’s a quota?
In Azure, default quotas on your subscription prevent you from accidentally deploying
a bunch of resources and forgetting about them, which would cost you a lot of money.
These quotas typically vary by resource type and subscription type and are enforced
at the region level. You can see a full list of quotas at http://mng.bz/ddcx.

When you start to create multiple VMs in the next few chapters, you may run into
quota issues. You can also encounter quota issues if you haven’t deleted resources
from previous chapters and exercises. The quotas are a good system that keeps you

	 103Lab: Deploying highly available VMs from a template

aware of your resource usage. The error messages may not be clear, but if you see
error text along the lines of

Operation results in exceeding quota limits of Core.
Maximum allowed: 4, Current in use: 4, Additional requested: 2.

that’s a good indication that you need to request an increase in your quotas. Nothing
is complicated or unique to Azure. You can view your current quota for a given region
as follows:

az vm list-usage --location eastus

If you have trouble with this lab, delete the first two resource groups you created in
this chapter, such as azuremolchapter7 and azuremolchapter7az. If you have a low
default quota set, the four VMs across those resource groups may prevent you from
successfully completing this exercise.

To request an increase in your quotas for a region, follow the steps outlined at http://
mng.bz/Xq2f.

Let’s review and deploy a sample template that includes multiple VMs across Availabil-
ity Zones.

1	 In a web browser, open the JSON file at https://github.com/Azure/azure-quick‑​
start-templates/blob/master/201-multi-vm-lb-zones/azuredeploy.json,
and search for the following text:

Microsoft.Compute/virtualMachines

The VMs section looks similar to what you used in chapter 6, but notice the
property value for zones. This section combines a few functions available in
templates to pick zone 1, 2, or 3 as the VM is created. This way, you don’t need
to manually track what VM runs in which zone, and how you then deploy addi-
tional VMs.

2	 In your web browser, search for each of the following to see the sections on the
public IP address and load balancer:

Microsoft.Network/publicIPAddresses
Microsoft.Network/loadBalancers

Both resources use standard SKU, which provides zone redundancy by default.
There’s zero additional configuration to make this work! Let’s see this in action.

3	 In your web browser, open the quick-start template at http://mng.bz/O69a,
and select the Deploy to Azure button.

4	 Create or select a resource group, and then provide a username and password
for the VMs.

5	 Enter a unique DNS name, such as azuremol.

104 Chapter 7  High availability and redundancy

6	 Choose to create Linux or Windows VMs. Windows VMs take a little longer to
create.

7	 Specify how many VMs to create, such as 3.

8	 Check the box to agree to the terms and conditions for the template deploy-
ment, and select Purchase, as shown in figure 7.10.

Figure 7.10  To deploy the Availability Zone template in the Azure portal, specify a
resource group, username, and password, and then the OS type and the number of VMs
you wish to create. The template uses loops, copyIndex(), dependsOn, variables,
and parameters, as covered in chapter 6.

	 105Lab: Deploying highly available VMs from a template

When the VMs have been created, use the Azure portal or the az vm show command
to see how the VMs were distributed across zones. If you’re curious about what the rest
of the template does with the network resources, chapter 8 dives deep into load bal
ancers for you!

Cleanup on aisle 3
Remember that at the start of the book, I said to make sure you clean up after your-
self to minimize the cost against your free Azure credits. I strongly advise you to
delete the resource groups you created in this chapter. The next couple of chapters
continue to create multiple VMs and web app instances, so make sure that you keep
costs and quotas under control.

Each time you log in to the Azure portal, you should get a pop-up notification that lets
you know the status of your Azure credits. If you see your available credit reduced by
a large dollar amount from day to day, examine what resource groups you may have
forgotten to delete!

106

8Load-balancing
applications

An important component of highly available applications is how to distribute traffic
across all your VMs. In chapter 7, you learned the difference between Availability
Zones and Availability Sets, as well as how you can create multiple VMs across Azure
datacenters or regions to provide application redundancy. Even if you have all
these highly available and distributed VMs, that doesn’t help if only one VM
receives all the customer traffic.

Load balancers are network resources that receive the incoming application traf-
fic from your customers, examine the traffic to apply filters and load-balancing
rules, and then distribute the requests across a pool of VMs that run your applica-
tion. In Azure, there are a couple of ways to load-balance traffic, such as if you need
to perform SSL off-loading on large applications that use encrypted network traf-
fic. In this chapter, you’ll learn about the various load-balancer components, and
how to configure traffic rules and filters and distribute traffic to VMs. You’ll build
on the high-availability components from chapter 8 and get ready for chapter 9,
which covers how to scale resources.

8.1	 Azure load-balancer components
Load balancers in Azure can work at two levels: layer 4, where just the network traf-
fic is examined and distributed (the transport layer, really); and layer 7, where
there’s an awareness of the application data within the network traffic to help
determine the distribution of data. Both levels of load balancer work the same way,
as shown in figure 8.1.

	 107Azure load-balancer components

Internet

Frontend IP pool
Public IP address

Backend IP pool
Virtual

NIC
Virtual

NIC
Virtual

NIC

Load-balancer rules

Allow TCP port 80 inbound ->
TCP port 80 on backend pool

Health probe
Path probe to check health.html on

backend VMs

VM

Load balancer

VM VM

Figure 8.1  Traffic from the internet enters the load balancer through a public IP address that’s attached
to a frontend IP pool. The traffic is processed by load-balancer rules that determine how and where the
traffic should be forwarded. Health probes attached to the rules ensure that traffic is distributed only to
healthy nodes. Then a backend pool of virtual NICs connected to VMs receives the traffic distributed by
the load-balancer rules.

A load balancer consists of a few main components:

¡	Frontend IP pool—Entry point to the load balancer. To allow access from the
internet, a public IP address can be attached to the frontend IP pool. Private IP
addresses can be attached for internal load balancers.

¡	Health probes—Monitor the status of attached VMs. To make sure that traffic is
distributed only to healthy and responsive VMs, checks are performed on a reg
ular basis to confirm that a VM correctly responds to traffic.

¡	Load-balancer rules—Distribute the traffic to VMs. Each incoming packet is com-
pared with the rules, which define incoming protocols and ports, and then dis-
tributed across a set of associated VMs. If no rules match the incoming traffic,
the traffic is dropped.

¡	Network Address Translation (NAT) rules—Can route traffic directly to specific
VMs. If you want to provide remote access via SSH or RDP, for example, you can
define NAT rules to forward traffic from an external port to a single VM.

¡	Backend IP pool—Where the VMs that run your application are attached. Load-
balancer rules are associated with backend pools. You can create different back-
end pools for different parts of your applications.

108 Chapter 8  Load-balancing applications

Azure Application Gateway: advanced load balancing
Azure load balancers can work at the network layer or the application layer. This chap-
ter focuses on the regular Azure load balancer, which works at the network layer (layer
4, or transport protocol). At this layer, the traffic is examined and distributed, but the
load balancer has no context of what the traffic means or the applications you run.

Azure Application Gateway is a load balancer that works at the application layer (layer
7). Application Gateway gains insight into the application that runs on the VM and can
manage the traffic flows in more advanced ways. One major benefit of Application
Gateway is the ability to handle encrypted, HTTPS web traffic.

When you load-balance websites with SSL certificates, you can offload the process
that verifies and decrypts the traffic from the web servers. On websites with a lot of
SSL traffic, the process to verify and decrypt the traffic can consume a large portion
of compute time on the VMs or web apps. Application Gateway can verify and decrypt
the traffic, pass the pure web request to the web servers, and then reencrypt the traf-
fic received from the web servers and return it to the customer.

Application Gateway offers some other more advanced load-balancer features, such
as the ability to distribute traffic across any IP endpoint rather than just an Azure VM.
As you build applications that use more than VMs, these advanced distribution rules
may be of use to you. The same core concepts apply as with a regular load balancer,
which is what we’ll focus on in this chapter so that you understand how it all works
in Azure.

8.1.1	 Creating a frontend IP pool

In previous chapters, you created VMs that had a public IP address assigned directly to
them. Then you used this public IP address to access the VM with a remote connection
such as SSH or RDP, or used a web browser to access a website that ran on the VM.
When you use a load balancer, you no longer connect straight to the VMs. Instead, to
allow traffic to reach your load balancer and be distributed to your VMs, one or more
IP addresses must be assigned to the external interface of a load balancer.

Load balancers can operate in either of two modes:

¡	Internet load balancer—Has one or more public IP addresses connected to the
frontend IP pool. An internet load balancer receives traffic from the internet
directly and distributes it to backend VMs. A common example is frontend web
servers that customers access directly over the internet.

¡	Internal load balancer—Has one or more private IP addresses connected to the
frontend IP pool. An internal load balancer works inside an Azure virtual net-
work, such as for backend database VMs. You typically don’t expose backend
databases or application tiers to the outside world. Instead, a set of frontend
web servers connects to an internal load balancer that distributes the traffic
without any direct public access. Figure 8.2 shows how an internal load balancer
can distribute traffic to backend VMs that are behind a public-facing load bal-
ancer and frontend web VMs.

	 109Azure load-balancer components

Internet Internet load
balancer

Frontend
VMs

Frontend
VMs

Frontend
VMs

Internal load
balancer

Backend
VMs

Backend
VMs

Backend
VMs

Figure 8.2  An internet load balancer may be used to distribute traffic to frontend VMs that
run your website, which then connect to an internal load balancer to distribute traffic to a
database tier of VMs. The internal load balancer isn’t publicly accessible and can be accessed
only by the frontend VMs within the Azure virtual network.

The mode for your load balancer doesn’t change the behavior of the frontend IP
pool. You assign one or more IP addresses that are used when access to the load bal-
ancer is requested. Both IPv4 and IPv6 addresses can be configured for the frontend
IP pool, allowing you to configure end-to-end IPv6 communications between custom-
ers and your VMs as the traffic flows in and out of the load balancer.

Try it now
To understand how the load-balancer components work together, complete the fol
lowing steps to create a load balancer and frontend IP pool:

1	 Open the Azure portal, and select the Cloud Shell icon at the top of the dash‑
board.

2	 Create a resource group with az group create.
Specify a resource group name, such as azuremolchapter8, and a location:

az group create --name azuremolchapter8 --location westeurope

As you continue to build on chapter 7 and want to use availability zones, take
care with the region you select to make sure that availability zone support is
available.

3	 Create a public IP address with az network public-ip create.
In chapter 7, you learned that availability zones provide redundancy to net-

work resources, so create a standard, zone-redundant public IP address and
specify a name, such as publicip:

az network public-ip create \
--resource-group azuremolchapter8 \
--name publicip \
--sku standard

110 Chapter 8  Load-balancing applications

To create an IPv6 public IP address, you can add --version IPv6 to the pre
ceding command. For these exercises, you can use IPv4 addresses.

4	 Create the load balancer, and assign the public IP address to the frontend
IP pool. To add the public IP address, specify the --public-ip-address
parameter. If you wanted to create an internal load balancer, you’d use the
--private-ip-address parameter instead.

As with the public IP address, create a standard, zone-redundant load bal-
ancer that works across availability zones:

az network lb create \
--resource-group azuremolchapter8 \
--name loadbalancer \
--public-ip-address publicip \
--frontend-ip-name frontendpool \
--backend-pool-name backendpool \
--sku standard

We’ll dive into what the backend pool is in a few pages.

8.1.2	 Creating and configuring health probes

If one of the VMs that run your application has a problem, do you think the load bal-
ancer should continue to distribute traffic to that VM? A customer who tries to access
your pizza store may get directed to that VM and be unable to order any food! A load
balancer monitors the status of the VMs and can remove VMs that have issues. The
load balancer continues to monitor the health and adds the VM back into the pool for
traffic distribution when the VM is shown to respond correctly again.

A health probe can work in a couple of modes:

¡	Port-based—The load balancer checks for a VM response on a specific port and
protocol, such as TCP port 80. As long as the VM responds to the health probe
on TCP port 80, the VM remains in the load-balancer traffic distribution. Oth
erwise, the VM is removed from the load-balancer traffic distribution, as shown
in figure 8.3. This mode doesn’t guarantee that the VM serves the traffic as
expected—only that the network connectivity and destination service returns a
response.

¡	HTTP path–based—A custom page, such as health.html, is written and placed on
each VM. This custom health check can be used to verify access to an image
store or database connection. In this mode, the VM remains in the load-balancer
traffic distribution only when the health-check page returns an HTTP code 200
response, as shown in figure 8.4. With a port-based health probe, the actual web
server may run but have no database connection. With a custom health-check
page, the load balancer can confirm that the VM is able to serve real traffic to
the customer.

	 111Azure load-balancer components

Internet VM

Load balancer

Health probe

Checks for response
on TCP port 80

Removed from
load-balancer distribution

if no response

Figure 8.3  A port-based load-balancer health probe checks for a VM response on
a defined port and protocol. If the VM doesn’t respond within the given threshold,
the VM is removed from the load-balancer traffic distribution. When the VM starts
to respond correctly again, the health probe detects the change and adds the VM
back into the load-balancer traffic distribution.

Internet

Load balancer

Health probe

Checks for HTTP code 200 (OK)
response from health.html

Removed from
load-balancer distribution

 if doesn’t return
HTTP 200 (OK)

Web server

health.html

VM

Figure 8.4  A VM that runs a web server and has a custom health.html page remains in the
load-balancer traffic distribution, provided that the health probe receives an HTTP code 200 (OK)
response. If the web server process encounters a problem and can’t return requested pages,
those pages are removed from the load-balancer traffic distribution. This process provides
a more thorough check of the web server state than port-based health probes.

Additional work is required to create the custom health-check page, but the improved
customer experience is worthwhile. The health-check page doesn’t have to be compli-
cated. It could be a basic HTML page that’s used to confirm that the web server itself
can serve pages. Without the health-check page, if the web server process has a prob-
lem, the VM would still be available on TCP port 80, so the port-based health probe
would believe the VM to be healthy. An HTTP path-based health probe requires the
web server to correctly return an HTTP response. If the web server process hangs or
has failed, an HTTP response isn’t sent, so the VM is removed from the load-balancer
traffic distribution.

How often the health probe checks the VM, and what the response is, can also be
configured through two parameters:

¡	Interval—Defines how frequently the health probe checks the status of the VM.
By default, the health probe checks the status every 15 seconds.

¡	Threshold—Defines how many consecutive response failures the health probe
receives before the VM is removed from the load-balancer traffic distribution.
By default, the health probe tolerates two consecutive failures before the VM is
removed from the load-balancer traffic distribution.

112 Chapter 8  Load-balancing applications

Try it now
To create a health probe for your load balancer as in figure 8.4, complete the follow-
ing steps:

1	 Open the Azure portal, and select the Cloud Shell icon at the top of the dashboard.

2	 Specify a name for the health probe, such as healthprobe. To set up the
health probe for a web server, specify HTTP port 80, and then define a custom
health-check page at health.html. In section 8.2, you’ll create this health-check
page on your VMs. To show how the interval and threshold for the health-probe
response can be configured, define an interval of 10 seconds and a threshold of
three consecutive failures:

az network lb probe create \
--resource-group azuremolchapter8 \
--lb-name loadbalancer \
--name healthprobe \
--protocol http \
--port 80 \
--path health.html \
--interval 10 \
--threshold 3

After the health probe is created, how do you make it check the status of your VMs?
Health probes are associated with load-balancer rules. The same health probe can be
used with multiple load-balancer rules. Remember chapter 5, in which you created
network security groups (NSGs) and rules? Those NSGs can be associated with multi-
ple VMs or virtual network subnets. A similar one-to-many relationship applies to
health probes.

Let’s see how to put your health probe to work and create load-balancer rules.

8.1.3	 Defining traffic distribution with load-balancer rules

When traffic is directed through the load balancer to the backend VMs, you can
define what conditions cause the user to be directed to the same VM. You may want
the user to retain a connection to the same VM for the duration of a single session or
allow them to return and maintain their VM affinity based on the source IP address.
Figure 8.5 shows an example of the default session affinity mode.

In session affinity mode, the flow of traffic is handled by a 5-tuple hash that uses
the source IP address, source port, destination IP address, destination port, and proto-
col type. Basically, for each request a user makes to your web server on TCP port 80,
they’re directed to the same backend VM for the duration of that session.

What happens if the customer closes their browser session? The next time they
connect, a new session is started. Because the load balancer distributes traffic across
all healthy VMs in the backend IP pool, it’s possible that the user will connect to the
same VM again, but the more VMs you have in the backend IP pool, the greater the
chance that the user will connect to a different VM.

	 113Azure load-balancer components

Load balancer

Session affinity mode (default)

5-tuple hash:
• Source IP
• Source port
• Destination IP
• Destination port
• Protocol type

VM 1

VM 2

VM 3

Load-balancer rule

Backend pool

Session 1

Session 1

Session 2

Session 2

Internet

Figure 8.5  In session affinity mode, the user connects to the same backend VM only for the
duration of their session.

As the application owner and developer, you may want the user to connect to the same
VM as before when they start another session. If your application handles file transfers
or uses UDP rather than TCP, for example, you likely want the same VM to continue
to process a user’s requests. In these scenarios, you can configure the load-balancer
rules for source IP affinity. Figure 8.6 shows an example of source IP affinity mode.

Load balancer

Source IP affinity mode

2-tuple hash:
• Source IP
• Destination IP

VM 1

VM 2

VM 3

Load-balancer rule

Backend pool

Session 1

Session 1

Session 2

Session 2

3-tuple hash:
• Source IP
• Destination IP
• Protocol

Internet

Figure 8.6  When you configure the load-balancer rules to use source IP affinity mode, the user
can close and then start a new session but continue to connect to the same backend VM.
Source IP affinity mode can use a 2-tuple hash that uses the source and destination IP address
or a 3-tuple hash that also uses the protocol.

114 Chapter 8  Load-balancing applications

Try it now
To create a load-balancer rule that uses a health probe, complete the following steps:

1	 Open the Azure portal, and select the Cloud Shell icon at the top of the dashboard.

2	 To create a load-balancer rule, specify a name for the rule, such as httprule.

3	 Provide the external port on which traffic is received and the internal port to
distribute traffic to. In this basic example, traffic is received on port 80 and then
distributed on port 80:

az network lb rule create \
--resource-group azuremolchapter8 \
--lb-name loadbalancer \
--name httprule \
--protocol tcp \
--frontend-port 80 \
--backend-port 80 \
--frontend-ip-name frontendpool \
--backend-pool-name backendpool \
--probe-name healthprobe

If you run multiple websites on a VM that responds on different ports, a given rule
could direct traffic to a specific website on the VM.

8.1.4	 Routing direct traffic with Network Address Translation rules

The load-balancer rules distribute traffic across
the backend pools of VMs, so there’s no guaran-
tee that you can connect to a given VM for main
tenance or management purposes. How can you
connect to a specific VM that’s behind a load
balancer? One final part of the load-balancer
configuration to look at is Network Address
Translation (NAT) rules, which let you control
the flow of specific traffic to direct it to a single
VM. Figure 8.7 shows how NAT rules forward
specific traffic to individual VMs.

Figure 8.7  Traffic in the load balancer is processed by NAT
rules. If a protocol and port match a rule, the traffic is
forwarded to the defined backend VM. No health probes are
attached, so the load balancer doesn’t check whether the
VM is able to respond before it forwards the traffic. The
traffic leaves the load balancer and then is processed by
NSG rules. If the traffic is permitted, it’s passed to the VM.

Internet

Load balancer

Network Address Translation rules
Direct traffic: TCP port 5000 external ->
TCP port 22 internal

Network security group

Network security group rules
Allow TCP port 22 external ->
TCP port 22 internal

VM

	 115Azure load-balancer components

NAT rules work alongside NSG rules. The VM can receive the traffic only if there’s an
NSG rule that allows the same traffic as the load-balancer NAT rule.

Why might you create NAT rules? What if you want to use SSH or RDP to connect
to a specific VM (and aren’t using Azure Bastion, which I mentioned in chapter 2) or
use management tools to connect to a backend database server? If the load balancer
distributes traffic across the backend VMs, you’d have try to connect again and again
and again, and you still might not connect to the desired VM.

Keeping things secure
We’ll dive into some security topics in part 3 of the book, but security should be an
ever-present consideration as you build and run applications in Azure. Security
shouldn’t be something you add later. With the rise of cloud computing and dispos-
able VMs and web apps, it’s easy to overlook some basic security best practices.
Especially if you work in Azure as part of a wider enterprise subscription, make sure
that any resources you create don’t accidentally provide a way for attackers to gain
access to your infrastructure.

What kind of things are bad? Well, some of the things you’ve done already in this
book! Remote management ports for SSH and RDP shouldn’t be opened to the public
internet, as you’ve done; at the very least, you should restrict access from a specific
IP address range.

The best practice would be to use a managed service such as Azure Bastion, or man
ually create one secured VM that has remote management available. As needed, you
connect the Azure Bastion host or your one secured VM, and then connect over the
internal Azure virtual network to additional VMs. You used this basic jump-box VM
approach in chapter 5. This approach minimizes the attack footprint and reduces the
need for NSG rules and load-balancer NAT rules. Chapter 16 discusses Azure Security
Center and shows how you can dynamically request and open remote-management
ports for a specific time period, which is the best of both worlds.

Even if you work in a private Azure subscription that has no connectivity to other Azure
subscriptions at school or work, try to minimize how much remote connectivity you
provide.

Try it now
To create a load-balancer NAT rule, complete the following steps:

1	 Open the Azure portal, and select the Cloud Shell icon at the top of the dash‑
board.

2	 To create a load-balancer NAT rule, define a name, such as natrulessh, and
the frontend IP pool to use. The NAT rule examines traffic on a given protocol
and port, such as TCP port 50001. When there’s a rule match, the traffic is for-
warded to backend port 22:

116 Chapter 8  Load-balancing applications

az network lb inbound-nat-rule create \
--resource-group azuremolchapter8 \
--lb-name loadbalancer \
--name natrulessh \
--protocol tcp \
--frontend-port 50001 \
--backend-port 22 \
--frontend-ip-name frontendpool

At this point, you’ve created a basic load balancer. Examine how the load-balancer
components have come together:

az network lb show \
--resource-group azuremolchapter8 \
--name loadbalancer

A public IP address has been assigned to the frontend IP pool, and you created a
health probe to check the status on a custom health page for a web server. A load-
balancer rule was created to distribute web traffic from your customers to a backend
pool; the rule uses the health probe. You also have a load-balancer NAT rule that per-
mits SSH traffic, but there are no VMs to receive that traffic yet. Your pizza-store cus-
tomers are hungry, so let’s create some VMs that can run your web application and to
which the load balancer can distribute traffic!

8.1.5	 Assigning groups of VMs to backend pools

The final section of the load balancer defines backend pools that include one or more
VMs. These backend pools contain VMs that run the same application components,
which allows the load balancer to distribute traffic to a given backend pool and trust
that any VM in that pool can respond correctly to the customer request. Figure 8.8
details how the backend pools logically group VMs that run the same applications.

Internet Frontend
IP pool

Load-balancer
rules

Health
probes

Backend pool: application tier VMs

VM 1 VM 2 VM 3

Backend pool: multimedia VMs

VM 1 VM 2 VM 3

Load balancer

Figure 8.8  One or more backend pools can be created in a load balancer. Each backend pool
contains one or more VMs that run the same application component. In this example, one backend
pool contains VMs that run the web application tier, and another backend pool contains the VMs
that serve multimedia, such as images and video.

	 117Azure load-balancer components

You create and use a load balancer with VMs, but everything works at the virtual net-
work level. The frontend IP pool uses public or private IP addresses. The health probe
looks at responses on a given port or protocol. Even when an HTTP probe is used, the
load balancer looks for a positive network response. Load-balancer rules focus on how
to distribute traffic from an external port in the frontend pool to a port on the back-
end pool.

When you assign VMs to the backend pool that receive traffic distributed by the load
balancer, it’s the virtual NIC that connects to the load balancer. The VM happens
to attach to the virtual NIC. Think back to chapter 5, and this separation of VMs and
virtual NIC makes sense in terms of how resources are managed. NSG rules control
what traffic is permitted to flow to the VM, but they’re applied to a virtual network
subnet or virtual NIC, not the VM.

What does this mean for how you configure backend IP pools? You must create the
rest of your virtual network resources before you can connect a VM to the load bal-
ancer. The steps to create the network resources should be a recap of what you
learned a few chapters ago, so let’s see how much you remember!

Figure 8.9  To prepare
the virtual network, in this
exercise you’ll create a
network, a subnet, and
virtual NICs that are
protected by an NSG. Rules
attached to the NSG allow
HTTP and SSH traffic.

Try it now
To create the additional network resources, as shown in figure 8.9, complete the fol
lowing steps:

1	 Open the Azure portal, and select the Cloud Shell icon at the top of the dash‑
board.

2	 Create a virtual network and subnet:

az network vnet create \
--resource-group azuremolchapter8 \

Virtual network

Subnet

Network security group
Allow TCP port 80 (HTTP)
Allow TCP port 22 (SSH)

Virtual
NIC 1

Virtual
NIC 2

118 Chapter 8  Load-balancing applications

--name vnetmol \
--address-prefixes 10.0.0.0/16 \
--subnet-name subnetmol \
--subnet-prefix 10.0.1.0/24

In practice, there’s a good chance that these network resources already exist.
Also, these names and IP address ranges are the same ones you used in chapter
5. You should clean up Azure resources at the end of each chapter, so such reuse
of IP ranges shouldn’t be a problem. Just be aware that you typically won’t create
a virtual network and subnet every time you create a load balancer. Rather, you
can use the existing virtual network resources that are already in place.

3	 Create an NSG:

az network nsg create \
--resource-group azuremolchapter8 \
--name webnsg

4	 Create an NSG rule that allows traffic from TCP port 80 to reach your VMs. This
rule is necessary for the web server VMs to receive and respond to customer traffic:

az network nsg rule create \
--resource-group azuremolchapter8 \
--nsg-name webnsg \
--name allowhttp \
--priority 100 \
--protocol tcp \
--destination-port-range 80 \
--access allow

5	 Add another rule to allow SSH traffic for remote management. This NSG rule
works with the load-balancer NAT rule created in section 8.1.4 for one of your
VMs:

az network nsg rule create \
--resource-group azuremolchapter8 \
--nsg-name webnsg \
--name allowssh \
--priority 101 \
--protocol tcp \
--destination-port-range 22 \
--access allow

6	 Associate the NSG with the subnet created in step 2. The NSG rules are applied
to all VMs that connect to this subnet:

az network vnet subnet update \
--resource-group azuremolchapter8 \
--vnet-name vnetmol \
--name subnetmol \
--network-security-group webnsg

7	 The load balancer works with virtual NICs, so create two virtual NICs, and con-
nect them to the virtual network subnet. Also specify the load-balancer name

	 119Creating and configuring VMs with the load balancer

and backend address pool that the virtual NICs connect to. The load-balancer
NAT rule is attached only to the first virtual NIC that’s created:

az network nic create \
--resource-group azuremolchapter8 \
--name webnic1 \
--vnet-name vnetmol \
--subnet subnetmol \
--lb-name loadbalancer \
--lb-address-pools backendpool \
--lb-inbound-nat-rules natrulessh

8	 Create the second NIC in the same way, minus the load-balancer NAT rule:

az network nic create \
--resource-group azuremolchapter8 \
--name webnic2 \
--vnet-name vnetmol \
--subnet subnetmol \
--lb-name loadbalancer \
--lb-address-pools backendpool

8.2	 Creating and configuring VMs with the load balancer
Let’s pause to explore what you’ve created. Figure 8.10 shows the big picture of what
your network resources and load balancer look like. Notice how integrated these
resources are. The load balancer can’t exist by itself. Virtual NICs must be connected

Figure 8.10  No VMs have
been created here; the load-
balancer configuration deals
with virtual network
resources. There’s a tight
relationship between the
load balancer and virtual
network resources.

Internet

Frontend IP pool
Public IP address

Backend IP pool

Load-balancer rules

Allow TCP port 80 inbound ->
TCP port 80 on backend pool

Load balancer

Virtual network
Virtual network subnet

Network security group

Virtual
NIC

Virtual
NIC

Virtual
NIC

Health probe
Path probe to check health.html

on backend VMs

120 Chapter 8  Load-balancing applications

to the load balancer for any traffic to be distributed. Those virtual NICs require a vir-
tual network and subnet, and ideally are protected by an NSG. The VMs that run your
application have almost nothing to do with the steps to create and configure the load
balancer!

You’ve created a lot of network resources and configured multiple parts of the load
balancer. The public IP address and load balancer were created in an availability zone
as zone-redundant resources, so let’s create two VMs across different zones to rein-
force how availability zones enhance the high availability of your applications.

If you use Availability Sets rather than Availability Zones, this is where you create
an Availability Set and then add your VMs to it; then the Azure platform distributes
the VMs across the fault and update domains. You want to maximize the use of Azure
high availability for your pizza store, so use Availability Zones.

Try it now
To create the VMs and attach them to the load balancer, complete the following
steps:

1	 Create the first VM, and assign it to an availability zone with --zone 1:

az vm create \
--resource-group azuremolchapter8 \
--name webvm1 \
--image ubuntults \
--size Standard_B1ms \
--admin-username azuremol \
--generate-ssh-keys \
--zone 1 \
--nics webnic1

2	 Create the second VM; assign it to availability zone 2; and attach the second vir-
tual NIC you created earlier, using --nics webnic2:

az vm create \
--resource-group azuremolchapter8 \
--name webvm2 \
--image ubuntults \
--size Standard_B1ms \
--admin-username azuremol \
--generate-ssh-keys \
--zone 2 \
--nics webnic2

To see the load balancer in action, you need to install a basic web server, as you did in
chapter 2. You can also try out the load-balancer NAT rule. Can you start to see how all
these components in Azure are related and build on one another?

	 121Creating and configuring VMs with the load balancer

Try it now
In chapter 5, we discussed the SSH agent. The SSH agent allows you to pass an SSH
key from one VM to the next. Only VM1 has a load-balancer NAT rule, so you need to
use the agent to connect to VM2. To install a web server on your VMs, complete the
following steps:

1	 Start the SSH agent, and add your SSH key so that you can connect to both VMs:

eval $(ssh-agent) && ssh-add

2	 Obtain the public IP address attached to the load-balancer frontend IP pool.
This is the only way for traffic to route through the VMs:

az network public-ip show \
--resource-group azuremolchapter8 \
--name publicip \
--query ipAddress \
--output tsv

3	 Now you’re ready to SSH to VM 1. Specify the public IP address of the load bal-
ancer (replace <your-ip-address> in the following command) and the port
that was used with the load-balancer NAT rule, such as 50001. The -A parame-
ter uses the SSH agent to pass through your SSH keys:

ssh -A azuremol@<your-ip-address> -p 50001

In chapter 2, you used apt-get to install the entire LAMP stack, including the
Apache web server. Let’s see something a little different from the Apache web
server with the standalone but powerful NGINX web server. On a Windows VM,
this is typically where you’d install IIS. Run the following command to install
the NGINX web server:

sudo apt update && sudo apt install -y nginx

4	 In the GitHub samples repo that you’ve used in previous chapters, there’s a
basic HTML web page and a health-check page for the load-balancer health
probe. Clone these samples to the VM:

git clone https://github.com/fouldsy/azure-mol-samples-2nd-ed.git

5	 Copy the sample HTML page and health check to the web server directory:

sudo cp azure-mol-samples-2nd-ed/08/webvm1/* /var/www/html/

6	 Now you need to connect to the second VM and install the NGINX web server
and sample code. Remember the SSH agent? You should be able to SSH from
VM 1 to VM 2 on the internal, private IP address:

ssh 10.0.1.5

122 Chapter 8  Load-balancing applications

7	 Install the NGINX web server:

sudo apt update && sudo apt install -y nginx

8	 Clone the GitHub samples to the VM:

git clone https://github.com/fouldsy/azure-mol-samples-2nd-ed.git

9	 Copy the sample HTML page and health check to the web server directory:

sudo cp azure-mol-samples-2nd-ed/08/webvm2/* /var/www/html/

Open a web browser, and connect to the public IP address of your load balancer. The
basic web page loads and shows that your pizza store now has redundant VMs in Avail-
ability Zones that run behind a load balancer, as shown in figure 8.11! You may need
to force-refresh your web browser to see that both VM 1 and VM2 respond as the load
balancer distributes traffic between them.

Figure 8.11  When you open the public IP address of the load balancer in a web
browser, traffic is distributed to one of the VMs that run your basic website. The
load-balancer health probe uses the health.html page to confirm that the web
server responds with an HTTP code 200 (OK). If so, the VM is available as part
of the load-balancer traffic distribution.

8.3	 Lab: Viewing templates of existing deployments
This chapter ties together what you learned in multiple previous chapters. You created
network resources, as in chapter 5. You made the load balancer and VMs highly avail-
able with Availability Zones, as in chapter 7. And you installed a web server and
deployed sample files, as in chapter 2. Your pizza store has come a long way from the
basic web page on a single VM at the start of the book!

To tie in one more theme from a previous chapter, in this lab I want you to explore
all the resources that make up the load balancer. To do this, you look at the Resource
Manager template, as you learned about in chapter 6. The goal of this lab is to see how
a single template can create and configure what’s taken many pages and multiple CLI

	 123Lab: Viewing templates of existing deployments

commands. And trust me, it would take even more PowerShell commands! Follow
these steps:

1	 Open the Azure portal.

2	 Browse to and select Resource Group from the navigation bar at left in the
portal.

3	 Choose your resource group, such as azuremolchapter8.

4	 Choose Export Template from the bar on the left side, as shown in figure 8.12.

5	 To see the relevant part of the template, select each of the resources shown in
the list. Take a few minutes to explore this template and see how all the
resources and components that you configured in the Azure CLI are present.

Figure 8.12  In the Azure portal, select your load-balancer resource group, and view the Resource
Manager template.

A template makes it a lot easier to deploy a highly available, redundant, load-balanced
application environment. You can change the load balancer’s name, rules, and distri-
bution mode, and let the template deploy and configure the entire application envi-
ronment for you.

Don’t forget to delete this resource group to make the most of your free Azure
credits!

124

9Applications that scale

In the previous two chapters, we examined how to build highly available applica-
tions and use load balancers to distribute traffic to multiple VMs that run your app.
But how do you efficiently run and manage multiple VMs, and run the right num-
ber of VM instances when your customers need them most? When customer
demand increases, you want to automatically increase the scale of your application
to cope with that demand. And when demand decreases, such as in the middle of
the night, when most people without young children are asleep, you want the appli-
cation to decrease in scale and save you some money.

In Azure, you can automatically scale IaaS resources in and out with virtual
machine scale sets. These scale sets run identical VMs, typically distributed behind a
load balancer or application gateway. You define autoscale rules that increase or
decrease the number of VM instances as customer demand changes. The load bal-
ancer or app gateway automatically distributes traffic to the new VM instances,
which lets you focus on how to build and run your apps better. Scale sets give you
control of IaaS resources with some of the elastic benefits of PaaS. Web apps, which
we didn’t cover a lot in the past couple of chapters, make a solid reappearance in
this chapter, providing their own ability to scale with application demand.

In this chapter, we’ll examine how to design and create applications that can scale
automatically. We’ll look at why this ability to scale with demand helps you run effi-
cient applications, and we’ll explore different ways to scale based on different metrics.

9.1	 Why build scalable, reliable applications?
What does it mean to build applications that scale? It lets you grow and keep up
with customer demand as the workload increases, even when you’re at the movies
on a weekend. It means you don’t get stuck with a bill for a bunch of extra resources

	 125Why build scalable, reliable applications?

you don’t use or, maybe worse, have your application go down due to a lack of avail-
able resources. The sweet spot for applications and the resources they need is rarely
static. Usually, application demands ebb and flow throughout the day and night, or
between weekdays and weekends.

There are two main ways you can scale resources, as shown in figure 9.1: vertically
and horizontally. Both virtual machine scale sets and web apps can scale vertically or
horizontally.

vCPU

vRAM vRAM

vRAM vRAM

vCPU

vRAM vRAM

vRAM vRAM

vCPU

vRAM vRAM

vRAM vRAM

vCPU

vRAM vRAM

vRAM vRAM

vCPU

vRAM vRAM

vRAM vRAM

vRAM

vRAM

vCPU
Scale vertically (up)

Scale horizontally
(out)

Increase assigned
resources

Increase number of
instances

Figure 9.1  You can scale your applications up and down, or in and out. The method you use
depends on how your application is built to handle scale. Vertical scale adjusts the resources
assigned to a VM or web app, such as the number of CPU cores or amount of memory. This method
to scale an application works well if the application runs only one instance. Horizontal scale changes
the number of instances that run your application and helps increase availability and resiliency.

Scalable applications have a strong relationship with highly available applications. In
chapters 7 and 8, we spent a lot of time with Availability Zones and Availability Sets,
and how to configure load balancers. Both chapters centered around the need to run
multiple VMs. When your application can scale automatically, the availability of that
application is also increased as those VMs are distributed across Availability Sets or
Availability Zones. All this is a Good Thing. The power of Azure is that you don’t need
to worry about how to add more application instances, spread those across data center
hardware or even data centers, and then update network resources to distribute traffic
to the new application instances.

9.1.1	 Scaling VMs vertically

The first way to scale resources is often the time-honored way that you may have used
in the past. If your application starts to perform slowly as more customers use it, what
would you normally do? Increase the amount of CvPU or memory, right? You scale up
the resource in response to demand.

126 Chapter 9  Applications that scale

One of the most common uses of vertical scale is for database servers. Databases
are notoriously hungry when it comes to compute resources—even hungrier than
your pizza-store customers! Database servers often consume all the resources provided
to a VM, even if they don’t use them immediately. This can make it hard to monitor
the actual demands on the system and know when you need to scale vertically and pro-
vide more resources. Figure 9.2 shows the typical vertical scale response to a database
server that needs more resources.

vCPU

vCPU

vCPU

vCPU

vRAM vRAM

vRAM vRAM

vRAM

vCPU

vCPU

vCPU

vCPU

vRAM vRAM

vRAM

vRAM vRAM

vRAM vRAM vRAM vRAM

vRAM

vCPU

vCPU

vCPU

vCPU

Increase processing (vCPUs)

Increase memory (vRAM)

Figure 9.2  As a database grows, it needs more resources to store and process the data in
memory. To scale vertically in this scenario, you add more CPU and memory.

You may need to scale beyond the demand for CPU or memory. What if you run a
website that serves a lot of images or video? There may not be a lot of processing
requirements, but the bandwidth demands may be high. To increase the available
bandwidth, you can increase the number of NICs on your VM. And if you need to
store more images and video, you add more storage. You can add or remove resources
such as virtual NICs and storage as the VM continues to run.

Resizing virtual machines

In Azure, you can increase the VM size (scale up) if you need more compute resources
for your application. Back in chapter 2, you created a basic VM. Its size was probably
something like Standard_D2s_v3. That name doesn’t tell you a lot about the compute
resources assigned to a VM to determine whether you may need to increase the CPU or
memory. If you want to scale vertically, you need to know what your options are.

Try it now
Follow along to see the available VM sizes and compute resources:

1	 Open the Azure portal in a web browser, and then open Cloud Shell.

2	 Enter the following Azure CLI command to list available VM sizes and the com-
pute resources they provide:

az vm list-sizes --location eastus --output table

	 127Why build scalable, reliable applications?

The output from az vm list-sizes varies from region to region and changes over
time as Azure adjusts its VM families. Here’s a condensed example of the output,
showing the MemoryInMb and NumberOfCores each VM size provides:

MaxDataDiskCount 	 MemoryInMb 	 Name 	 NumberOfCores

	 4	 8192	 Standard_D2s_v3	 2
	 8	 16384	 Standard_D4s_v3	 4
	 16	 32768	 Standard_D8s_v3	 8
	 32	 65536	 Standard_D16s_v3	 16
	 8	 4096	 Standard_F2s_v2	 2
	 16	 8192	 Standard_F4s_v2	 4
	 32	 16384	 Standard_F8s_v2	 8
	 2	 2048	 Standard_B1ms	 1
	 2	 1024	 Standard_B1s	 1
	 4	 8192	 Standard_B2ms	 2
	 4	 4096	 Standard_B2s	 2

So your Standard_D2s_v3 VM provides two CPU cores and 8 GB of memory—more
than enough for a basic VM that runs a web server. Let’s assume that your online pizza
store starts to get some orders, and you want to scale vertically. You can use az vm
resize to pick another size. You specify the VM size that has the number of CPU
cores and memory your application needs.

The additional CPU and memory don’t magically appear on your VM. This behav-
ior may be a little different from what you experience with Hyper-V or VMware in an
on-premises world. Within reason, you can add or remove core compute resources in
an on-premises environment as the VM continues to run. In Azure, a reboot is usually
required when you resize a VM to register the new compute resources and trigger the
appropriate billing rules. When you want to scale vertically, plan for some downtime
as the VM reboots.

Scaling down

What if you have a VM with more resources than it needs? This scenario is often more
common than a VM that has fewer resources than needed. Application owners may
choose a larger VM size than is required to make sure that their application runs
smoothly. All those wasted resources cost money, and it’s easy for the costs to go unno-
ticed until the bill arrives at the end of the month.

The ability to scale resources works in both directions. We’ve focused on how to
scale up resources, but all the same concepts work to scale down resources. It’s import-
ant to identify the VM sizes in use and how much demand the applications make on
those resources. Then you can use az vm resize to pick a VM size with fewer CPU
cores and memory. Again, a VM restart is currently needed for any resize operation.

9.1.2	 Scaling web apps vertically

Web apps can scale up or down based on resource needs in the same way that VMs do.
When you created a web app in chapter 3, the default S1 Standard size provided one
CPU core and 1.75 GB RAM. Each web app tier and size provides a set amount of

128 Chapter 9  Applications that scale

resources, such as CPU cores, memory, and staging slots. Even if the default size or
resource allocation changes, or if you choose a different web app size, the concept
remains the same.

If you create your web app and find that the application requires more resources
than the service plan provides, you can change to a different tier, as shown in figure
9.3. The same process works if you have more resources than you need. Your web app
can scale up or down manually in this way as needed.

Figure 9.3  To manually scale a web app vertically, you change the pricing tier (size) of the underlying
app service plan. The app service plan defines the amount of resources assigned to your web app. If your
application requires a different amount of storage, number of CPUs, or deployment slots, you can change
to a different tier to right-size the assigned resources to the application demand.

9.1.3	 Scaling resources horizontally

A different approach to keep up with demand is to scale out horizontally. To scale ver-
tically, you increase the amount of CPU and memory assigned to a single resource,
such as a VM. To scale horizontally, you increase the number of VMs instead, as shown
in figure 9.4.

To scale horizontally, your application does need to be aware of this ability and be
able to process data without conflicts. A web application is a great candidate for scal-
ing horizontally because the application can typically process data by itself.

As you build more complex applications, you may break an application into smaller
individual components. If you think back to Azure storage queues from chapter 4, you

	 129Virtual machine scale sets

vCPU

vRAM vRAM

vRAM vRAM

To scale horizontally,
you increase the

number of VMs that
run your app.

vCPU

vRAM vRAM

vRAM vRAM

vCPU

vRAM vRAM

vRAM vRAM

vCPU

vRAM vRAM

vRAM vRAM

Figure 9.4  To deal with an increase in demand on your application, you can increase the number of VMs that
run the application, distributing the load across multiple VMs rather than ever-larger single-instance VMs.

may have one application component that receives the frontend web orders and
another application component that processes those orders and transmits them to the
pizza store. The use of message queues is one approach to designing and writing appli-
cations that can operate in an environment that scales horizontally. This approach also
lets you scale each application component separately and use different VM sizes or web
app plans to maximize efficiency and reduce your monthly bill.

Historically, you’d scale vertically because it was easier to throw more compute
resources at an application and hope it was happy. Setting up a cluster of resources
and scaling an application horizontally were often complex in the physical world.
With cloud computing and virtualization, the challenges of scaling horizontally are
minimized to the point that you can often scale horizontally more quickly than verti-
cally and without downtime.

Remember the az vm resize command earlier in this chapter? What happens as
the VM resize operation completes? The VM is restarted. If that’s the only instance of
your application, no one can access it until it comes back online. When you scale hor
izontally, there’s no downtime when you add VM instances; when the new VMs are
ready, they start to process some of the application requests. The load-balancer health
probes (chapter 8) automatically detect when a new VM in the backend pool is ready
to process customer requests and traffic starts to be distributed to it.

Azure is designed to give you flexibility and choice when it comes to how you scale.
If you’re designing a new application environment, I suggest that you implement a
horizontal scale approach. VMs have a cool cousin in Azure that can help you out
here: virtual machine scale sets.

9.2	 Virtual machine scale sets
VMs are some of the most common workloads in Azure, for good reason. The learn-
ing curve required to build and run a VM is shallow, because most of what you already
know transfers straight to Azure. Web servers are among of the most common work-
loads for a VM, which again is convenient in that you don’t have to learn new skills to
transfer your knowledge to run Apache, IIS, or NGINX on an Azure VM.

What about a cluster of VMs that runs a web server? How would you handle that in
your regular on-premises environment? There are many possible cluster solutions, to

130 Chapter 9  Applications that scale

start with. What about updates to your physical servers or VMs? How would you han-
dle those? What if you wanted to automatically increase or decrease the number of
instances in the cluster? Do you need to use another tool? Figure 9.5 shows an outline
of a virtual machine scale set.

Load balancer

Availability Zone 2

Virtual machine scale set

VM 2

Availability Zone 3

VM 3

Availability Zone 1

VM 1

Internet

Figure 9.5  A virtual machine scale set logically groups together a set of VMs. The VMs are identical
and can be centrally managed, updated, and scaled. You can define metrics that automatically increase
or decrease the number of VMs in the scale set based on your application load.

A scale set simplifies how you run and manage multiple VMs to provide a highly avail-
able, load-balanced application. You tell Azure what size VM to use, a base image for
the VM, and how many instances you want. Then you can define CPU or memory met-
rics to automatically increase or decrease the number of instances in response to the
application load or on a schedule at peak customer hours. Scale sets combine the IaaS
model of VMs with the power of PaaS features such as scale, redundancy, automation,
and centralized management of resources.

A single-VM scale set?
If you build applications on VMs, plan to start out with a scale set, even if you only
need one VM. Why? A scale set can expand at any time, and it automatically creates
the connections to a load balancer or application gateway. If demand for the applica-
tion suddenly increases in two months, you can tell the scale set to create an addi-
tional VM instance or two.

To expand a regular, standalone VM, you need to add that VM to a load balancer, and
if you didn’t begin with the VM in an Availability Set or Availability Zone, you have to plan
how to make those VMs highly available. By creating a scale set to begin with, even
for one VM, you futureproof your application with minimal additional work required.

	 131Virtual machine scale sets

9.2.1	 Creating a virtual machine scale set

Although a scale set makes it simpler to build and run highly available applications,
you need to create and configure a few new components. That said, you can reduce
the process to two commands to deploy a scale set with the Azure CLI.

Try it now
To create a scale set with the Azure CLI, complete the following steps:

1	 Open the Azure portal, and select the Cloud Shell icon at the top of the dash‑
board.

2	 Create a resource group with az group create; specify a resource group
name, such as azuremolchapter9, and a location:

az group create --name azuremolchapter9 --location westeurope

Scale sets can use Availability Zones, so make sure to select a region where sup-
port is available.

3	 To create a scale set, specify the number of VM instances you want and how the
VM instances should handle updates to their configuration. When you make a
change to the VMs, such as to install an application or apply guest OS updates,
the VMs can update automatically as soon as they detect the change. Or you can
set the upgrade policy to manual and apply the updates at a suitable time of
your choice. The rest of the parameters should be familiar from when you cre-
ated a single VM:

az vmss create \
--resource-group azuremolchapter9 \
--name scalesetmol \
--image UbuntuLTS \
--admin-username azuremol \
--generate-ssh-keys \
--instance-count 2 \
--vm-sku Standard_B1ms \
--upgrade-policy-mode automatic \
--lb-sku standard \
--zones 1 2 3

That’s it! You created multiple VMs across an Availability Zone that can scale. Get
ready for what’s really cool about the scale set you just created with the Azure
CLI. Remember that entire chapter about load balancers (chapter 8), all those CLI
commands you had to use, and how templates can simplify how you create a load
balancer? That az vmss create command created and configured a load balancer
for you!

132 Chapter 9  Applications that scale

Remember your quota limits
I mentioned this quota issue in chapter 7, but it’s worth repeating in case you run
into problems. In Azure, default quotas on your subscription prevent you from acci
dentally deploying resources and forgetting about them, which will cost you money!
You can see the list of quotas at http://mng.bz/ddcx.

When you create multiple VMs, you may run into quota issues. You may also have
issues if you don’t delete resources from previous chapters and exercises. If you see
error text along the lines of

Operation results in exceeding quota limits of Core.
Maximum allowed: 4, Current in use: 4, Additional requested: 2.

it’s a good indication that you need to request an increase in your quotas. You can
view your current quota for a given region as follows:

az vm list-usage --location westeurope

To request an increase in your quotas for a region, follow the steps outlined at http://
mng.bz/Xq2f.

The Azure CLI helps you create a scale set with minimal prompts. A load balancer has
been created and configured, a public IP address assigned, and the scale set VM
instances added to the backend IP pool.

Try it now
Check out the resources created with your scale set, as described in the next com‑
mands.

To see what resources were created with your scale set, run the following command:

az resource list \
--resource-group azuremolchapter9 \
--output table

The output is similar to the following example. Look at the Type column for proof
that a virtual network, public IP address, and load balancer were created:

Name 	 ResourceGroup 	 Type

mol	 azuremolchapter9	 Microsoft.Compute/virtualMachineScaleSets
molLB 	 azuremolchapter9	 Microsoft.Network/loadBalancers
molLBIP	 azuremolchapter9	 Microsoft.Network/publicIPAddresses
molVNET	 azuremolchapter9	 Microsoft.Network/virtualNetworks

What does all this magic mean? When you create a scale set with the Azure CLI, a zone-
redundant load balancer and public IP address are created for you. The VMs are cre-
ated and added to a backend IP pool on the load balancer. NAT rules are created that
allow you to connect to the VM instances. The only thing missing are load-balancer

	 133Virtual machine scale sets

rules because they vary based on the applications you want to run. As you add VMs to
or remove VMs from the scale set, the load-balancer configuration automatically
updates to allow traffic to be distributed to the new instances. This magic isn’t limited
to the Azure CLI: if you use Azure PowerShell or the Azure portal, these supporting net
work resources are created and wired up to work together.

Try it now
Your scale was created with two instances. You can manually scale the number of
VM instances in your scale set. When you do, the load balancer automatically
updates the backend IP pool configuration. Set the --new-capacity of the scale
set to four instances as follows:

az vmss scale \
--resource-group azuremolchapter9 \
--name scalesetmol \
--new-capacity 4

9.2.2	 Creating autoscale rules

When you created your scale set, you deployed a fixed number of instances. One of
the most important features of scale sets is the ability to automatically scale in or out
the number of VM instances that the scale set runs.

As shown in figure 9.6, the number of instances in a scale set can increase automat
ically as the application load increases. Think about a typical business application in
your environment. Early in the workday, users start to access the application, which
causes the resource load on those VM instances to increase. To ensure optimum appli-
cation performance, the scale set automatically adds more VM instances. The load
balancer starts to distribute traffic to the new instances automatically. Later in the
workday, as users go home, application demand goes down. The VM instances use less
resources, so the scale set automatically removes some VM instances to reduce unnec
essary resources and lower cost.

Virtual machine scale set

VM 1 VM 2 VM 3

Virtual machine scale set

VM 1 VM 2 VM 3

VM 4 VM 5

Virtual machine scale set

VM 1 VM 2Load
increases

Load
decreases

Automatically scales out to increase
the number of VM instances

Automatically scales in to decrease
the number of VM instances

Figure 9.6  Scale sets can automatically scale in and out. You define rules to monitor certain metrics that trigger
the rules to increase or decrease the number of VM instances that run. As your application demand changes, so
does the number of VM instances. This approach maximizes the performance and availability of your application
while minimizing unnecessary cost when the application load decreases.

134 Chapter 9  Applications that scale

You can base your scale-set rules on various metrics. You can look at host metrics for
basic resource consumption, configure in-guest VM metrics collection for analysis of
specific application performance counters, or use Azure Application Insights to moni-
tor deep within the application code.

You can also use schedules to define a certain number of VM instances in a scale
set for a time window. In the example of a common business application for which
demand is higher during work hours than in the evening, you may want to define a
higher fixed number of instances to run during business hours and define a lower
fixed number of instances to run in the evening.

Autoscale rules based on metrics monitor performance over a defined time inter-
val, such as five minutes, and may take another few minutes to spin up the new VM
instances and configure them for application use. If you use fixed schedules to auto-
scale the number of VM instances in your scale set, those additional resources are
already in use, and the load balancer distributes traffic to them throughout the day.

The use of schedules requires a baseline for the typical application demand and
doesn’t account for higher or lower demand at certain parts of the business account
or sales cycle. You may end up with more resources than you need at times, so you pay
more than necessary. And you may have situations in which the application load is
higher than the number of VM instances the scale set can provide.

Try it now
To create autoscale rules for a scale set, complete the following steps:

1	 Browse to and select Resource Group from the navigation bar at left in the
Azure portal.

2	 Choose the resource group you created for your template deployment, such as
azuremolchapter9.

3	 Select your scale set from the list of resources, such as scalesetmol.

4	 Below Settings on the left side of the Scale Set window, choose Scaling. You can
manually scale or create your own custom autoscale rules.

5	 Choose to create custom autoscale rules.

6	 Enter a name, such as autoscale, and then define a minimum, maximum,
and default instance count. For this exercise, set the minimum to 2, maximum
to 10, and default to 2.

7	 Choose to add a rule, and then review the available rule settings, like those
shown in figure 9.7.

The default parameters look at the average CPU consumption. The rule trig-
gers when the load is greater than 70% over a 10-minute interval. The scale set
is increased by one VM instance, and the rules wait for 5 minutes before they
begin to monitor and can trigger the next rule.

	 135Virtual machine scale sets

Figure 9.7  When you add an autoscale rule, you define the exact behavior
required for the rule to trigger.

This cool-down period gives the new VM instances time to deploy and begin to
receive traffic from the load balancer, which should decrease the overall applica-
tion load in the scale set. Without this cool-down period, the rules may trig-
ger another VM instance to be added before the load has started to be
distributed across the previously created VM instance.

136 Chapter 9  Applications that scale

8	 To create the rule, select Add.

9	 Choose to add another rule. This time, configure the rule to decrease the count
by one when the average CPU load is less than 30% over a 5-minute duration.

10	 Review your rules, like those shown in figure 9.8, and then select Save.

Figure 9.8  You should have one rule that increases the instance count by 1 when the average CPU load
is greater than 70% and another rule that decreases the instance count by one when the average CPU
load is less than 30%.

You can also configure autoscale rules with the Azure CLI, Azure PowerShell, or tem-
plates. The portal provides a nice visual way to review the rules and see available
options for each parameter. As you build more complex rules, templates provide a way
to create scale sets with the same set of rules in a reproducible fashion.

9.3	 Scaling a web app
If you were super-interested in web apps in chapter 3, or in Azure tables and queues in
chapter 4, these last three chapters, which have been heavy on IaaS VMs, may have left
you scratching your head. Wasn’t the cloud meant to be easier than this? For PaaS
components such as web apps, absolutely!

	 137Scaling a web app

I don’t want you to think the next few pages rush through how to provide the same
high availability and autoscale capabilities to web apps. The truth is, it’s a lot easier to
do! As with most things, the choice between IaaS and PaaS is a balance of flexibility
and ease of management. Much of the underlying redundancy is abstracted in PaaS
services such as web apps, so you don’t need a whole chapter on high availability and
another chapter on load balancers.

The IaaS path to build and run your own VMs or scale sets with load balancers and
availability zones may come from a business need or restriction. Developers, opera-
tions engineers, or tools and workflows may not be ready to go all-in to web apps. That
said, I strongly urge you to look at web apps for new application deployments. The use
of PaaS components such as web apps gives you more time to focus on the apps and
your customers rather than infrastructure and administration.

Try it now
To create a web app with the Azure CLI, complete the following steps:

1	 In chapter 3, you created a web app in the Azure portal. As with most resources,
it’s often quicker and easier to use the Azure CLI. Open Cloud Shell in the
Azure portal.

2	 Create an app service plan that’s S1 Standard size. This size allows you to auto-
scale up to 10 instances of your web app:

az appservice plan create \
--name appservicemol \
--resource-group azuremolchapter9 \
--sku s1

3	 Create a web app that uses a local Git repo for deployment, as you did in chap-
ter 3:

az webapp create \
--name webappmol \
--resource-group azuremolchapter9 \
--plan appservicemol \
--deployment-local-git

All the concepts and scenarios for autoscale rules and scale-set schedules discussed in
section 9.2.2 also apply to web apps. As a quick recap, here are a couple of common
scenarios for autoscaling web apps:

¡	Automatically increase or decrease the number of web app instances based on
performance metrics to support application demand throughout the workday.

¡	Schedule a web app to automatically increase the number of instances at the
start of the workday and then decrease the number of instances at the end of
the workday.

138 Chapter 9  Applications that scale

In the case of the pizza store, the web app may receive more traffic later in the day and
throughout the evening, so there isn’t one set of autoscale rules that applies to every
situation. Again, you need to baseline your application performance to understand
how it runs under normal use and the performance metric at which the app needs to
scale out or in. Even when you use autoscale schedules, you should continue to moni-
tor and track when your peak application demands are to create rules that support
that use pattern.

Try it now
To create autoscale rules for a web app, complete the following steps:

1	 Browse to and select Resource Group from the navigation bar at left in the
Azure portal.

2	 Choose the resource group you created for your web app, such as
azuremolchapter9.

3	 Select your web app from the list of resources, such as webappmol.

4	 Below Settings on the left side of the web app window, choose Scale Out (App
Service Plan).

5	 Again, choose to configure custom autoscale rules, not just manually scale the
web app.

6	 Enter a name, such as autoscalewebapp, and then define a minimum, maxi-
mum, and default instance count. For this exercise, set the minimum to 2, maxi-
mum to 5, and default to 2.

7	 Choose to add a rule, and then review the available rule settings. This window
looks the same as the autoscale rules for scale sets. The default parameters look
at the average CPU consumption and trigger when the load is greater than
70% over a 10-minute interval. The web app is increased by one instance, and
the rules wait for 5 minutes before they begin to monitor and can trigger the
next rule.

8	 Choose to add another rule. This time, configure the rule to decrease count
by one when the average CPU load is less than 30% over a 5-minute duration.

9	 Review and then save your rules.

When your autoscale rules trigger the web app to scale out or scale in, the Azure plat-
form updates the traffic distribution to the available web app instances. There’s no
load balancer exposed to you, as you have with scale sets, but the traffic is still auto
matically distributed across the web app instances as your environment scales out or
in. The concept is similar, just abstracted away from you, because you’re meant to
enjoy the PaaS approach and not worry so much!

	 139Lab: Installing applications on your scale set or web app

Both scale sets and web apps provide a way to build rules that automatically scale
the number of instances that run your applications. With multiple instances to run
your application, you also increase the availability of your app. Scale sets are a good
middle ground between developers and business decision makers who want or need
to build applications on VMs while using PaaS-like features to autoscale and reconfig-
ure the flow of customer traffic.

In chapter 11, we’ll look at Azure Traffic Manager, which really completes these
high-availability deployments. Right now, you’re still not quite production ready in
terms of being able to offer multiple redundant scale sets or web app instances with
traffic automatically distributed across them. We’ll get to that soon, though!

9.4	 Lab: Installing applications on your scale set or web app
We’ve covered a lot in this chapter, so now you can choose a quick final lab for either
scale sets or web apps. Or if you want to extend your lunch break, do both!

9.4.1	 Virtual machine scale sets

You have multiple VM instances in your scale sets, but they don’t do a lot right now.
For an overview of the different ways to install applications to VM instances in a scale
set, see http://mng.bz/9Ocx. In practice, you’d use one of those automated deploy-
ment methods, but for now, manually install a web server on the VM instances as you
did in chapter 8:

1	 Remember load-balancer NAT rules? By default, each VM instance in a scale set
has a NAT rule that allows you to SSH directly to it. The ports aren’t on the stan-
dard TCP port 22. View the list of VM instances in a scale set and their port
numbers as follows:

az vmss list-instance-connection-info \
--resource-group azuremolchapter9 \
--name scalesetmol

2	 To connect to a specific port via SSH, use the -p parameter as follows (provide
your own public IP address and port numbers):

ssh azuremol@40.114.3.147 -p 50003

3	 Install a basic NGINX web server on each VM instance with apt install.
Think back to how you did that in chapter 8.

4	 To see the scale set in action, open the public IP address of the scale set load
balancer in a web browser.

5	 If you run into problems, make sure that the load balancer correctly created a
load-balancer rule for TCP port 80 and has an associated health probe for
either TCP port 80 or your own custom HTTP health probe that looks for
/health.html on the VM.

140 Chapter 9  Applications that scale

9.4.2	 Web apps

To deploy your application to a web app that runs multiple instances, the process is
the same as the single web app from chapter 3. You push the application to the local
Git repository for the web app, and thanks to the power of PaaS, the Azure platform
deploys that single code base to multiple web app instances:

1	 Initialize a Git repo in azure-mol-samples-2nd-ed/09, and then add and commit
the sample files as you did in chapter 3:

cd azure-mol-samples-2nd-ed/09
git init && git add . && git commit -m “Pizza”

2	 Your web app has a local Git repository. Add a remote for your web app the
same way you did in chapter 3:

git remote add webappmolscale <your-git-clone-url>

3	 Push this sample to your web app. This makes a single code commit, but then
your app is distributed across the multiple web app instances:

git push webappmolscale master

141

10Global databases
with Cosmos DB

Data. You can’t get by without it. Almost every application that you build and run
creates, processes, or retrieves data. Traditionally, this data has been stored in a
structured database such as MySQL, Microsoft SQL, or PostgreSQL. These large,
structured databases are established and well known, have ample documentation
and tutorials, and can be accessed from most major programming languages.

With great power comes great responsibility, and a lot of infrastructure over-
head and management typically go with these traditional structured databases.
That’s not to say you shouldn’t use them—far from it—but when it comes to appli
cations that run on a global scale, it’s no easy feat to also build clusters of database
servers that replicate your data and intelligently route customers to your closest
instance.

That’s where Azure Cosmos DB becomes your best friend. You don’t need to
worry about how to replicate your data, ensure consistency, and distribute customer
requests. Instead, you add data in one of the many models available, and then
choose where you want your data to be available. In this chapter, you’ll learn about
unstructured database models in Cosmos DB, how to create and configure your
database for global distribution, and how to build web applications that use your
highly redundant and scalable Cosmos DB instance.

10.1	 What is Cosmos DB?
Chapter 4 started to explore unstructured databases with Azure storage tables. The
example was basic, but the concepts are the foundations of Cosmos DB. First, let’s
take a step back and examine what we mean by structured and unstructured databases.

142 Chapter 10  Global databases with Cosmos DB

10.1.1	 Structured (SQL) databases

Structured databases are the more traditional approach to storing data. A structure, or
schema, to the database defines how the data is represented. Data is stored in tables, with
each row representing one item and a fixed set of values assigned to it. If we take the
pizza-store model, each row in a table that stores the types of pizza may indicate the
name of the pizza, its size, and the cost. A basic SQL database is shown in figure 10.1.

Figure 10.1  In a structured
database, data is stored in
rows and columns within a
table. Each row contains a
fixed set of columns that
represent the schema
for the database.

In structured databases, each server typically must contain the entire database for que-
ries and data retrieval to succeed. The data is joined in queries to pull from different
tables based on criteria the developer builds as part of the structured query. This is
where the term Structured Query Language (SQL) comes from. As databases grow in
both size and complexity, the servers that run the database must be sufficiently sized
to handle that data in memory. That becomes difficult, and costly, with very large data-
sets. Given that they need a structure, it also makes it difficult to add properties and
change the structure later.

10.1.2	 Unstructured (NoSQL) databases

The unstructured data in NoSQL databases isn’t stored in
tables of rows and columns; rather, it’s stored in dynamic
arrays that allow you to add new properties for an item as
needed. One big advantage of this approach is that you can
quickly add a new pizza type or specialty topping without
changing the underlying database structure. In a struc-
tured database, you’d need to add a new column to a table
and then update the application to handle the additional
column. In NoSQL databases, you add another property to
a given entry from your code; see figure 10.2.

Figure 10.2  In an unstructured database, data is stored
without fixed mappings of columns to a row in a table.
You can add toppings to a single pizza, for example,
without updating the entire schema and other records.

Structured database

Table

id pizzaName size cost
1 Pepperoni 16” $18

2 Veggie 16” $15

3 Hawaiian 16” $12

Unstructured database

{
"cost": "18",
"description": "Pepperoni"

}
{

"cost": "15",
"description": "Veggie“,
"gluten": "free"

}
{

"cost": "12",
"description": "Hawaiian",
"toppings": "ham, pineapple"

}

	 143What is Cosmos DB?

NoSQL databases also offer different database models. These models give an indica-
tion of how the data is stored and retrieved in the database. Which model you use var-
ies based on the size and format of the data you work with, and how you need to
represent the data in your application. These models include document, graph, and
table. Don’t caught get too caught up in the models for now; different models work
better for different sets of unstructured data, depending on how you need to relate
and query the data. The key takeaway is that unstructured NoSQL databases have a
different underlying concept in how they store and retrieve data, which you can use to
your advantage as you build and run cloud applications in Azure.

10.1.3	 Scaling databases

Remember that I said that for a structured database, the entire database typically
needs to exist on each server? As you get into very large databases, you need ever-
larger servers to run them. You may never work with databases that grow to hundreds
of gigabytes or even terabytes, but NoSQL databases approach how databases grow
and scale differently from SQL databases. The difference is that NoSQL databases typ
ically scale horizontally rather than vertically.

There’s a limit to how much you can vertically scale a VM—that is, give it more
memory and CPU. You start to encounter performance issues in other parts of the
compute stack as you squeeze out the maximum storage throughput and network
bandwidth. And that’s without the hit to your wallet (or your boss’s wallet) when you
see the bill for such large VMs. As a recap from chapter 9, vertical scaling is illustrated
in figure 10.3. Now imagine a cluster of such large database VMs, because you want
redundancy and resiliency for your application, right?

By contrast, scaling horizontally allows you to run database VMs with less resources
and a lower price to go along with them. To do this, NoSQL databases split data across
database nodes and route requests from your application to the appropriate node.
The other nodes in the cluster don’t need to be aware of where all the data is stored;

vCPU

vCPU

vCPU

vCPU

vRAM vRAM

vRAM vRAM

vRAM

vCPU

vCPU

vCPU

vCPU

vRAM vRAM

vRAM vRAM

vRAM

vRAM vRAM

vRAM vRAM

vRAM

vCPU

vCPU

vCPU

vCPU

Increase processing (vCPUs)

Increase memory (vRAM)

Figure 10.3  Traditional structured databases scale vertically. As the database grows, you increase
the amount of storage, memory, and CPU power on the server.

144 Chapter 10  Global databases with Cosmos DB

they just need to respond to their own requests. You can quickly add nodes to a cluster
in response to customer demand as needed.

As a result, in a NoSQL database, the entire database doesn’t need to fit in the
memory of a host. Only part of the database—a shard—needs to be stored and pro-
cessed. If your application works with large amounts of structured data, a NoSQL data-
base may hurt performance because the different hosts are queried for their pieces of
information to return to the customer. If you have a large amount of unstructured data
to process, NoSQL databases may offer a performance improvement, if not a manage-
ment and efficiency benefit. An example of how unstructured databases scale horizon-
tally across hosts is shown in figure 10.4.

vCPU

vCPU

vCPU

vCPU

vRAM vRAM

vRAM vRAM

vRAM

vCPU

vCPU

vCPU

vCPU

vRAM vRAM

vRAM vRAM

vRAM

vCPU

vCPU

vCPU

vCPU

vRAM vRAM

vRAM vRAM

vRAM

Database shard Database shard

Database split across
hosts to scale out and

balance processing
demands

Figure 10.4  Unstructured NoSQL databases scale horizontally. As a database grows, it’s sharded into
segments of data that are distributed across the database servers.

10.1.4	 Bringing it all together with Cosmos DB

So, what is Cosmos DB? It’s an autoscaling, globally distributed database platform that
allows you to use various forms of NoSQL databases. As with services like Web Apps,
Cosmos DB abstracts a lot of the management layer from you. When you create a web
app, you don’t need to configure load balancing or clustering; you choose your
regions and can configure autoscaling and then upload your application code. The
Azure platform handles how to replicate and distribute the web app traffic in a highly
available way. With Cosmos DB, you don’t worry about how large a database you need,
how much memory to assign, or how to replicate data for redundancy. You choose
how much throughput you may need and what regions to store your data in; and then
you start adding data.

This chapter uses an SQL model for Cosmos DB, but the data is stored in a NoSQL
JSON format. These may be new concepts, but stick with me. You can use other mod-
els, including Mongo, Cassandra, Gremlin, and Table. The functionality is the same
for all of them: pick your model, choose your regions, and add your data. That’s the
power of Cosmos DB.

	 145Creating a Cosmos DB account and database

10.2	 Creating a Cosmos DB account and database
Let’s see Cosmos DB and unstructured databases in action, which we can do in a cou-
ple of ways. The first is to use the Azure portal to create an account, select and create
a database model, and enter data into the database so that your app can query it. Or
you can use the Azure CLI, Azure PowerShell, or language-specific software develop-
ment kits (SDKs) to create it all in code. Let’s use the Azure portal so that we can also
visually create and query the data.

10.2.1	 Creating and populating a Cosmos DB database

In chapter 4, you created your first NoSQL database with an Azure storage table.
Let’s use Cosmos DB to create a similar database, this time one that offers all the geo
redundancy and replication options to make sure that the online store allows custom-
ers to order pizza without any downtime. Let’s create a Cosmos DB account and a
document database, and then add some data entries for three types of pizza, as
shown in figure 10.5.

Figure 10.5  In this
section, you’ll create a
resource group and a
Cosmos DB account. A
document database is
created in this account,
and you’ll add three
entries to represent a
basic menu for your
pizza store.

Try it now
To see Cosmos DB in action, create an account using the Azure portal:

1	 Open the Azure portal, and select Create a Resource in the top-left corner of
the dashboard.

2	 Search for and select Azure Cosmos DB, and then choose Create.

3	 Choose to create a resource group, such as azuremolchapter10, and enter a
unique name for your Cosmos DB account, such as azuremol.

Pepperoni
pizza

Veggie
pizza

Hawaiian
pizza

Cosmos DB document database

Cosmos DB account

Azure resource group

146 Chapter 10  Global databases with Cosmos DB

4	 The type of model you can use for your database is referred to as the API. For
this example, choose Core (SQL) from the drop-down menu.

5	 For Location, select East US. Cosmos DB is available in all Azure regions, but
for this example, the web application you deploy in the end-of-chapter lab
expects you to use East US.

6	 Leave the option for georedundancy as disabled, along with any other addi-
tional features, such as multiwrite regions. Section 10.2.2 dives into how to repli-
cate your database globally.

Secure traffic with service endpoints
You have an option to connect your Cosmos DB to an Azure virtual network with some-
thing called a service endpoint. We won’t discuss this option now, but it’s a cool fea-
ture that helps secure your instance by allowing access to the database only from a
defined virtual network.

If you build middleware applications that use Cosmos DB, or internal-only applica-
tions, you can use a virtual network service endpoint to scope down access from a
specific virtual network, not over the internet and with a public endpoint. A growing
number of Azure services support these kinds of endpoints, and it’s another example
of giving you options to secure your environment to fit your business requirements.

7	 When you’re ready, review and create your Cosmos DB account. It takes a few
minutes to create the account.

Your database is empty right now, so let’s explore how you can store some basic data
for your pizza-store menu. Cosmos DB groups the data in a database into something
called a container. No, that’s not the same kind of container that’s the driving force
behind Docker, Kubernetes, and cloud-native applications that you may have heard
of. This naming confusion isn’t a plus, but stick with me for now.

In Cosmos DB databases that use the
document model, data is logically
grouped into containers called collections.
Other API models have a slightly different
name for the container entity, such as
graph for the Gremlin API. For our SQL
API, collections store related pieces of
data that can be quickly indexed and que-
ried, as shown in figure 10.6. Collections
aren’t totally dissimilar to how you orga-
nize a traditional SQL database into
tables, but collections offer a lot more
flexibility when it comes to distributing
the data for performance or redundancy.

Figure 10.6  A Cosmos DB database that uses the
document model stores data in collections. These
collections let you group data for quicker indexing and
querying.

Pepperoni
pizza

Veggie
pizza

Hawaiian
pizza

Cosmos DB document database

Collection

	 147Creating a Cosmos DB account and database

Because Cosmos DB is designed to handle very large amounts of data and through-
put, you can choose how to size and control the flow, and cost, of that data. Through-
put is calculated in request units per second (RU/s), and one request unit is the
equivalent of 1 KB of document data. Essentially, you define how much bandwidth
you want your database to have. In case you haven’t guessed, the more bandwidth
(RU/s) you want, the more you pay. Cosmos DB shows you how much data you’re
using and how much throughput your application uses, and you typically don’t need
to worry too much about right-sizing things. For your pizza store, let’s not start out too
crazy, though!

Try it now
To create a collection and populate some entries in the database, complete the fol
lowing steps:

1	 Browse to and select Resource Group from the navigation bar at left in the
Azure portal.

2	 Choose the resource group in which you created your Cosmos DB database,
such as azuremolchapter10.

3	 Select your Cosmos DB account from the list of resources, and then select the
Overview page.

4	 Choose to add a container.

5	 This is your first database, so enter a name, such as pizzadb.

6	 Leave throughput set to the default value.

7	 For the container ID, enter pizzas. This step creates a logical container that
you can use to store the items on your pizza-store menu.

8	 Enter a partition key of /description to make sure that pizza types are evenly
distributed.

The partition key identifies how the data could be split apart in the database.
It’s not really needed in a small sample database like this one, but using it is
good practice as your app scales.

9	 Don’t choose to add a unique key. Keys further logically define the container,
such as for subsections of food customers can order. The wider collection is for
your menu, but in much larger databases, you may want partition keys for
things like pizzas, drinks, and desserts.

10	 To create the database and collection, select OK.

Now you have a Cosmos DB account, a database, and a collection, but Cosmos DB still
doesn’t contain your pizzas. You could import some data or write code that enters a
bunch of data. Let’s create three pizzas manually to explore some of the graphical
tools built in to the Azure portal for browsing, querying, and manipulating the data in
your Cosmos DB database.

148 Chapter 10  Global databases with Cosmos DB

Try it now
To create add some entries to the database, complete the following steps, as shown
in figure 10.7:

1	 In your Cosmos DB account, chose Data Explorer from the menu at left in the
Overview window.

Figure 10.7  With the Data Explorer in the Azure portal, you can browse your collections to
query or create new documents. This graphical tool lets you manage your database quickly
from a web browser.

2	 Expand first the pizzadb database, and then the pizzas collection.

3	 Add a new item to put some pizzas in the database. Data is added in JSON
format.

4	 In the text box, replace any existing text with the following data to create a new
menu item for a basic pepperoni pizza:

{
   "description": "Pepperoni",
   "cost": "18"
}

5	 To add the data to the database, select Save.

	 149Creating a Cosmos DB account and database

6	 Add another pizza to your menu. This time, add a property to indicate that this
pizza has a gluten-free crust. You don’t need to do anything special to the
underlying database; just add another property to your data. To add another
new item, enter the following data, and select Save:

{
   "description": "Veggie",
   "cost": "15",
   "gluten": "free"
}

7	 Add one final type of pizza. This time, add a property that includes what top-
pings are on the pizza. To add one more new item, enter the following data,
and select Save:

{
   "description": "Hawaiian",
   "cost": "12",
   "toppings": "ham, pineapple"

}

These three entries show the power of a NoSQL database. You added properties to the
entries without needing to update the database schema. Two different properties
showed that the veggie pizza has a gluten-free crust and what toppings are on the
Hawaiian pizza. Cosmos DB accepts those additional properties, and now that data is
available to your applications.

Some extra JSON properties get added for things like id, _rid, and _self. These
aren’t properties you need to worry too much about for now. Cosmos DB uses these
properties to track and identify the data; you shouldn’t manually edit or delete them.

10.2.2	 Adding global redundancy to a Cosmos DB database

You have a Cosmos DB database that stores a basic pizza menu in the East US region.
But your pizza store is ready to open franchises all around the world! You want to rep
licate the data about your pizzas to Azure regions in different locations, close to your
new customers.

Why would you want to do this? If all your customers read and write data from the
database in one region, that’s potentially a lot of traffic crossing under-ocean cables
and routing around the world. To provide the best low-latency experience to custom-
ers, you can replicate your data to Azure regions around the world, and customers can
connect to the closest replica to them, as shown in figure 10.8.

Consistency models and guarantees are built into the Cosmos DB platform to han-
dle data consistency and replication for you. You designate one or more regions as the
primary write location. This book’s examples use a single write point, but you can use
multimaster support to write data to the closest endpoint, which is then propagated

150 Chapter 10  Global databases with Cosmos DB

Cosmos DB
(East US)

Cosmos DB
(North Europe)

Cosmos DB
(West US)

Cosmos DB
(East Asia)

Cosmos DB
(Australia Southeast)

Primary write
region

Consistency
guarantees for

Cosmos DB data

Data replicated
to multiple

regions

Paris, France

Melbourne,
Australia

Los Angeles,
USA

Kuala Lumpur,
Malaysia

Customers query and
read Cosmos DB

from closest region

Figure 10.8  Data is replicated from one primary Cosmos DB instance to multiple Azure regions
around the world. Then web applications can be directed to read from their closet region, and
customers can be dynamically routed to the closest location to minimize latency and improve
response times.

asynchronously to other regions. The data is also rapidly replicated to the read regions
that you designate. You can control the order of failover to designate read regions and,
with your application, automatically or manually specify regions to read from.

You can define a consistency model—which is more of a design consideration
than an operational one—to define how quickly writes across multiple regions are
replicated. The consistency models range from strong, which waits on replicated
writes to be confirmed by replicas and so guarantees reads are consistent, to eventual,
which is more relaxed. The eventual model guarantees that all the data is replicated,
but there may be a slight delay when reads from replicas return different values until
they’re all in sync.

There’s a balance between a more limited geographic distribution, such as with
the strong consistency model, and a wider geographic replication, such as with the
eventual consistency model, but with the understanding that there’s a slight delay as
the data is replicated. There are also bandwidth and processing costs, depending on
how consistently and timely you wish the data to be replicated. The Azure platform
handles the underlying replication of data from your write point; you don’t need to
build your applications to replicate the data or determine how best to read data from
replicated endpoints.

On a global scale, you could have multiple VMs or web apps like the ones you cre-
ated in previous chapters, but in different regions around the world. Those apps

	 151Creating a Cosmos DB account and database

connect to a local Cosmos DB instance to query and read all their data. Through
some cool Azure network traffic features we’ll discuss in chapter 11, users can be
routed automatically to one of these local web application instances, which also use a
local Cosmos DB instance. In the event of regional outages or maintenance, the entire
platform routes the customer to the next-closest instance.

In the traditional structured database world, in which you manage the VMs, data-
base install, and cluster configuration, such a setup takes serious design planning and
is complicated to implement. With Cosmos DB, the process takes three mouse clicks.
Honestly!

Try it now
To replicate your Cosmos DB data globally, complete the following steps:

1	 Browse to and select Resource Group from the navigation bar at left in the
Azure portal.

2	 Choose the resource group in which you created your Cosmos DB database,
such as azuremolchapter10.

3	 Select your Cosmos DB account from the list of resources. Those two mouse
clicks were free, but start counting from here!

4	 Select the menu option at left to replicate data globally. The map, which shows
all the available Azure regions, shows that your database is currently available in
the East US region (figure 10.9).

Figure 10.9  Select an Azure region to replicate your Cosmos DB database to, and then choose Save.
Those are all the steps required to globally distribute your data.

152 Chapter 10  Global databases with Cosmos DB

5	 Choose West Europe, and then select Save. You can choose any Azure region you
wish, but the end-of-chapter lab expects your data to be replicated to West
Europe. It takes a few moments to replicate the data to the region you selected
and bring the data online for your applications to use.

Okay, count those mouse clicks! Three clicks, right? Let’s be generous and consider
the first two mouse clicks to select the resource group and Cosmos DB account. So in
no more than five mouse clicks and a matter of seconds, you created a replica instance
of your database that allows your applications to access data from the closest region to
them. Can you do that with a traditional MySQL cluster? Please tweet me @fouldsy if
you can do that this quickly outside of Cosmos DB!

With your database now distributed globally, does it take a lot of changes to your
code to determine which Cosmos DB region to connect to? How can you maintain all
these different versions of your applications based on what Azure region they run?
Easy—let the Azure platform determine it all for you!

10.3	 Accessing globally distributed data
For the most part, the Azure platform determines the best location for your applica-
tion to talk to. An application typically needs to read and write data. You can define
the failover policies for your Cosmos DB database, which controls the primary write
location. This write location acts as the central hub to ensure that data is consistently
replicated across regions. But your web app can typically read from multiple available
regions to speed the queries and return data to the customer. All this is handled by
REST calls.

Let’s see what happens from the Azure CLI when you ask for information about a
Cosmos DB database. This process is like an application making a connection to a
database, but it stops you from getting too deep into the code.

Try it now
Use az cosmosdb show to find information about your read and write location:

1	 Open the Azure portal in a web browser, and then open Cloud Shell.

2	 Use az cosmosdb show to view the read and write locations for your Cosmos
DB database.

Enter the resource group name and database name you created in the previ-
ous “Try it now” exercises. In the following example, the resource group is
azuremolchapter10, and the Cosmos DB database name is azuremol:

az cosmosdb show \
--resource-group azuremolchapter10 \
--name azuremol

	 153Accessing globally distributed data

A lot of output is returned from this command, so let’s examine the two key parts:
read locations and write locations. Here’s some example output for the readLoca-
tions section:

"readLocations": [
   {
    "documentEndpoint":"https://azuremol-eastus.documents.azure.com:443/",
    "failoverPriority": 0,
    "id": "azuremol-eastus",
    "isZoneRedundant": "false",
    "locationName": "East US",
    "provisioningState": "Succeeded"
   },
   {
    "documentEndpoint":
    ➥"https://azuremol-westeurope.documents.azure.com:443/",
    "failoverPriority": 1,
    "id": "azuremol-westeurope",
    "isZoneRedundant": "false",
    "locationName": "West Europe",
    "provisioningState": "Succeeded"
    }
],

When your application makes a connection to a Cosmos DB database, you can specify
a connection policy. If databases aren’t normally your thing, think of a basic Open
Database Connectivity (ODBC) connection you may create on a Windows machine.
The connection string typically defines a hostname, a database name, a port, and cre-
dentials. Cosmos DB is no different. You can connect to Cosmos DB from multiple
languages, including .NET, Python, Node.js, and Java. The languages may differ, but
all the SDKs have a similar setting: endpoint discovery. Two main properties of the
connection policy are important:

¡	Automatic endpoint discovery—The SDK reads all the available endpoints from
Cosmos DB and uses the failover order specified. This approach ensures that
your application always follows the order you specify at the database level. You
may want all reads to go through East US, for example, and use West Europe
only when there’s maintenance in the primary location.

¡	Preferred endpoint locations—You specify the locations you wish to use. An example
is if you deploy your app to West Europe and want to ensure that you use the West
Europe endpoint. You lose a little flexibility as endpoints are added or removed,
but you make sure that your default endpoint is close to your app without need-
ing more advanced network routing to help determine this for you.

Typically, your application lets the Cosmos DB SDK handle this task. Your application
doesn’t change how it handles the connection to the database: it just knows that it can
connect to different locations. But the SDK is what makes the connection and uses this
location awareness.

154 Chapter 10  Global databases with Cosmos DB

Figure 10.10 shows a simplified approach to how this location awareness is used
between your application and the SDK. Again, the language doesn’t matter, and the
approach is the same; the figure uses the Python SDK because that’s what a couple of
the examples have been written in. This example also assumes that you’re using auto-
matic endpoint locations.

Web
application

Cosmos DB
Python SDK

Azure
Cosmos DB2. Requests automatic

endpoint locations

3. Connection and
locations returned

Azure
Cosmos DB

(primary read)

1. Connection request

6. Requests data
from primary endpoint

7. Data sent from
primary read endpoint

4. Connection returned

5. Data request

8. Data returned

Figure 10.10  The flow of requests through a Cosmos DB SDK when an application uses
location awareness to query Cosmos DB

The steps illustrated in figure 10.10 are as follows:

1	 Your application needs to make a connection to a Cosmos DB database. In the
connection policy, you enable automatic endpoint discovery. The application
uses the Cosmos DB SDK to make a database connection.

2	 The Cosmos DB SDK makes a connection request and indicates that it wishes to
use automatic endpoint locations.

3	 A connection is returned based on the credentials and database requested.

4	 The SDK returns a connection object for the application to use. The location
information is abstracted from the application.

5	 The application requests some data from the Cosmos DB database. The SDK is
again used to query and obtain the data.

6	 The SDK uses the list of available endpoints and makes the request to the first
available endpoint. Then the SDK uses the connection endpoint to query the
data. If the primary endpoint is unavailable, such as during a maintenance
event, the next endpoint location is used automatically.

7	 Cosmos DB returns the data from the endpoint location.

	 155Accessing globally distributed data

8	 The SDK passes the data from Cosmos DB back to the application to parse and
display as needed.

The last things to look at in Cosmos DB are access keys, which allow you to control
who can access the data and what permissions they have. Keys can be regenerated, and
as you do with passwords, you may want to implement a policy to regularly perform
this key-regeneration process. To access the distributed data in Cosmos DB, you need
to get your keys. The Azure portal provides a way to view all the keys and connection
strings for your database.

Try it now
To view the keys for your Cosmos DB account, complete the following steps:

1	 Browse to and select Resource Group from the navigation bar at left in the
Azure portal.

2	 Choose the resource group in which you created your Cosmos DB database,
such as azuremolchapter10.

3	 Select your Cosmos DB account from the list of resources.

4	 On the left side, choose Keys.

5	 Make a note of the URI and primary key (figure 10.11). You’ll use these values
in the end-of-chapter lab.

Figure 10.11  The Keys section of your Cosmos DB account lists the connection information and access
keys. You need this information when you build and run applications, such as in the end-of-chapter lab.

156 Chapter 10  Global databases with Cosmos DB

A lot in Cosmos DB happens under the hood to distribute your data and allow your
applications to read and write from the most appropriate locations. But that’s the
whole point. An awareness of what the Cosmos DB service does helps you design and
plan your application, or troubleshoot if applications don’t let the SDK perform read
and write operations as needed. But you don’t need to worry about the how and when;
focus on your applications, and use Azure services like Cosmos DB to provide the
cloud functionality and benefits that allow you to operate on a global scale.

10.4	 Lab: Deploying a web app that uses Cosmos DB
In section 10.2.2, you distributed your Cosmos DB database globally. Then we went
over a bunch of theory as to how web applications can read from locations around the
world. Now you probably just want to see Cosmos DB in action, so here’s your chance!
In this lab, the basic web app from previous chapters is used, but this time, the pizza
menu comes from the items you added to the Cosmos DB database in an earlier “Try it
now” exercise:

1	 In the Azure portal, create a web app.

2	 As the pizza store isn’t a basic HTML page anymore, pick Node LTS for the run
time that runs on Linux.

3	 When the web app is ready, create a deployment source (local Git repository).
The steps are the same as when you created one in previous chapters, such as
chapter 3, so check those exercises if you need a refresher.

4	 Open Cloud Shell. In earlier chapters, you obtained a copy of the Azure sam-
ples from GitHub. If you didn’t, grab a copy as follows:

git clone https://github.com/fouldsy/azure-mol-samples-2nd-ed.git

5	 Change to the directory that contains the Cosmos DB web app sample:

cd ~/azure-mol-samples-2nd-ed/10/cosmosdbwebapp

6	 Edit the configuration file with the database URI and access key that you copied
in the previous “Try it now” exercise to view your Cosmos DB keys:

nano config.js

7	 Write out the file by pressing Ctrl-O, and then exit by pressing Ctrl-X.

8	 Add and commit your changes in Git with the following command:

git init && git add . && git commit -m "Pizza"

9	 Create a link to the new Git repository in your staging slot with git remote
add azure, followed by your Git deployment URL.

10	 Use git push azure master to push your changes to your web app.

11	 Select the URL to your web app from the Azure portal Overview window.

	 157Lab: Deploying a web app that uses Cosmos DB

12	 Open this URL in a web browser to see your pizza store, which is now powered
by Cosmos DB, as shown in figure 10.12.

Figure 10.12  The basic Azure web app shows your short pizza menu based on
data in the Cosmos DB database. The pizza store from previous chapters is shown,
but now the list of pizzas and their prices is powered by Cosmos DB. The site is
still basic, as the goal is for you to see the service in action and understand how
you could start to build your own applications.

158

11Managing network
traffic and routing

Domain Name System (DNS) resolution is at the heart of almost every digital con-
nection you make. It’s how you browse the web, receive email, watch Netflix, and
make Skype calls. DNS is the mechanism that translates a name, such as man-
ning.com, into an IP address. When I want to learn a new topic, I don’t need to
remember 35.166.24.88; I just enter manning.com in a web browser and browse
some books! Network devices route traffic based on IP addresses, so you need an
approach that helps those of us with bad memories to do things like buy books or
pizza online.

Over the past few chapters, you’ve spent a lot of time learning how to build
applications that can scale, are highly available, and are globally distributed. One of
the last missing pieces is how to direct customers from around the world to the
most appropriate application instance—typically, the instance closest to them.
Azure Traffic Manager makes it easy to automatically route customers to your appli-
cation instances based on performance or geographic location. In this chapter,
we’ll discuss how you can create and manage DNS zones in Azure, and then how to
use Traffic Manager to route customers with DNS queries, as shown in figure 11.1.

11.1	 What is Azure DNS?
You don’t need a deep understanding of how DNS works to complete this chapter
and use Azure DNS. Figure 11.2 shows a high-level overview of how a user queries
a DNS service to obtain the IP address for a web application. A lot of substeps
could happen around steps 1 and 2, so if you have a little time left in your lunch
break at the end of this chapter, feel free to read up on how DNS queries and recur-
sion work.

	 159What is Azure DNS?

DNS queries to locate
appropriate target based on

customer location and
routing method

East US region

Web VM 1
53.17.91.8

West Europe region

Web VM 2
102.42.9.67

Customer
London

Azure regions

Customer routed to the
most appropriate

application instance
based on Traffic Manager

DNS responses

Azure Traffic
Manager

Azure DNS zone
azuremol.com

eastus.azuremol.com

A 53.17.91.8

westeurope.azuremol.com

A 102.42.9.67

Internet

Figure 11.1  In this chapter, we’ll examine how you can create DNS zones in Azure DNS. To minimize latency and
improve response times, Traffic Manager can be used to query DNS and direct customers to their closet application
instance.

Azure DNS functions the same as way any existing DNS solution you may use or be
familiar with. Your zone and records are stored in Azure, and the name servers that
respond to DNS queries are distributed globally across the Azure data centers.

Figure 11.2  This
simplified flow of DNS
traffic shows how a user
sends a DNS request for
www.azuremol.com to a
DNS server, receives a
response that contains the
associated IP address, and
then connects to the web
application.

Customer

Azure DNS

1. Queries DNS for
www.azuremol.com 2. Host record

returned: 53.17.91.8

Web application

53.17.91.8

Azure infrastructure

3. Connects to the public
IP address of the

application in Azure

160 Chapter 11  Managing network traffic and routing

Azure DNS supports all the record types you’d expect in a regular DNS service offer-
ing. Both IPv4 and IPv6 records can be created. The record types are as follows:

¡	A—IPv4 host records, to point customers to your applications and services
¡	AAAA—IPv6 host records, for you cool kids who use IPv6 to point customers to

your applications and services
¡	CNAME—Canonical name, or alias, records, such as to provide a short name

that’s easier to use than the full hostname of a server
¡	MX—Mail exchange records to route email traffic to your mail servers or pro‑

vider
¡	NS—Name server records, which include automatically generated records for the

Azure name servers
¡	PTR—Pointer records, for reverse DNS queries to map IP addresses to host‑

names
¡	SOA—Start-of-authority records, which include automatically generated

records for the Azure name servers
¡	SRV—Service records, to provide network services discovery, such as for identity
¡	TXT—Text records, such as for Sender Protection Framework (SPF) or

DomainKeys Identified Mail (DKIM)

In a typical DNS configuration, you configure multiple DNS servers. Even with geo-
graphic distribution of those servers for redundancy, customers may query a name
server on the other side of the world. Those milliseconds required to query, resolve,
and then request a response for the web application can add up when you have lots of
customers wanting to order pizza.

An Azure DNS zone is replicated globally across the Azure data centers. Anycast
networking ensures that when a customer makes a DNS query to your domain, the
closest available name server responds to their request. How does anycast routing do
this? Typically, a single IP address is advertised across multiple regions. Rather than
using a simple DNS query that resolves back to a single IP address that only exists in
one location, anycast routing allows the network infrastructure to intelligently deter-
mine where a request is coming from and route the customer to the closest advertised
region. This routing allows your customers to connect to your web application more
quickly and provides a better overall customer experience.

You don’t need to be an expert at networking to fully understand how this works;
Azure handles it for you! When you combine Azure DNS with Azure Traffic Manager
(section 11.2), you not only return DNS queries from the closest name servers, but
also connect customers to the closest application instance to them. Make those milli
seconds count!

11.2	 Delegating a real domain to Azure DNS
When you register a real domain, your provider gives you a management interface
and tools to manage that domain. To allow customers to access your services and use
the Azure DNS zone and records, you delegate authority of your domain to the Azure

	 161Delegating a real domain to Azure DNS

name servers. This delegation causes all DNS queries to be directed to those Azure
name servers immediately, as shown in figure 11.3. Azure currently doesn’t allow you
to purchase and register domains within the platform, so you need to purchase the
domain name through an external registrar and then point the NS records to the
Azure name servers.

DNS zone

Host record

www A 53.17.91.8

ns1.azure-dns.com

Customer
DNS query

for your
domain

Provider
forwards all
queries to
Azure DNS

Provider configured with
Azure name servers to

delegate your domain to
Azure DNS

Domain name provider

NS ns1.azure-dns.com.
NS ns2.azure-dns.net.
NS ns3.azure-dns.org.
NS ns4.azure-dns.info.

Figure 11.3  To delegate your domain to Azure, configure your current domain provider with the Azure
name server addresses. When a customer makes a DNS query for your domain, the requests are sent
directly to the Azure name servers for your zone.

Why delegate your DNS to Azure? To simplify management and operations. If you cre-
ate additional services, adjust the load-balancer configuration, or want to improve
response times with globally replicated DNS, Azure provides that single management
interface to complete those tasks. When your DNS zones are hosted in Azure, you can
also implement some of the Resource Manager security features discussed in chapter 6:
features such as role-based access control (RBAC) to limit and audit access to the DNS
zones, and resource locks to prevent accidental, or even malicious, zone deletion.

Most domain registrars provide rather basic interfaces and controls to manage
DNS zones and records. To reduce management overhead and improve security,
Azure DNS allows you to use the Azure CLI, Azure PowerShell, or the REST APIs to
add or edit records. Operations teams can use the same tools and workflows to
onboard new services, and if problems occur, it’s often easier to troubleshoot when
you can verify that DNS operates as you expect without introducing the variable of a
third-party DNS provider.

So if you’re convinced that there’s logic to delegating your domain to Azure DNS,
what Azure name servers do you point your domain to? If you create an Azure DNS
zone, the name servers are listed in the portal, as shown in figure 11.4. You can also
access these name server addresses with the Azure CLI or Azure PowerShell.

There have been no “Try it now” exercises in the previous few pages, because
unless you purchase and configure a real domain, you can’t test how to route real

162 Chapter 11  Managing network traffic and routing

Figure 11.4  You can view the Azure name servers for your DNS zone in the Azure portal, Azure
CLI, or Azure PowerShell.

traffic. You can create an Azure DNS zone without a real domain, but no traffic can
route to it. In real life, you update the NS records with your current provider to point
any queries for your domain to the Azure name servers. It can take 24 to 48 hours
(although usually much less time) for the delegation of your domain to propagate
throughout the global DNS hierarchy, so plan accordingly; this behavior may cause
brief interruptions for customers who access your application.

11.3	 Global routing and resolution with Traffic Manager
In previous chapters, you learned about highly available applications that are globally
distributed. The goal is multiple web app or VM instances, in different regions or con-
tinents, that connect to a Cosmos DB instance close to them. But how do you get your
customers to connect to the closest VM or web app that runs your application?

Azure Traffic Manager is a network service that acts as a central destination for your
customers. Let’s use the example of a web application at the address www.azure-
mol.com. Figure 11.5 provides an overview of how Traffic Manager routes users to the
closest available application.

DNSCustomer Traffic
Manager

1. Customer queries
www.azuremol.com

2. Resolves address to
azuremol.trafficmanager.net 3. Queries Traffic

Manager for endpoint
4. Traffic Manager

examines routing policy,
returns an endpoint

5. Endpoint returned as
eastus.cloudapp.net

6. Resolves
eastus.cloudapp.net to

53.17.91.8

Web VM
East US

53.17.91.8

7. Customer
connects to web

application

Figure 11.5  A customer sends a DNS query to a DNS service for www.azuremol.com. The DNS service forwards
the query to Traffic Manager, which returns an endpoint based on the routing method in use. The endpoint is
resolved to an IP address, which the customer uses to connect to the web application.

	 163Global routing and resolution with Traffic Manager

Traffic Manager doesn’t perform the role of a load balancer, which you learned about
in chapter 8. As figure 11.5 shows, Traffic Manager routes traffic to a public IP. Let’s
examine the flow of traffic a little more closely:

1	 The user makes a DNS query for www.azuremol.com. Their DNS server contacts
the name servers for azuremol.com (which could be Azure name servers if you
use Azure DNS!) and requests the record for www.

2	 The www host resolves to a CNAME record that points to azuremol.trafficman-
ager.net.

3	 The DNS service forwards the DNS request to the Azure name servers for traffic
manager.net.

4	 Traffic Manager examines the request and determines an endpoint to direct
the user toward. Endpoint health and status are examined, as with Azure load
balancers. The Traffic Manager routing method is also reviewed. The routing
methods that Traffic Manager can use are as follows:

¡	Priority—Controls the order in which endpoints are accessed

¡	Weighted—Distributes traffic across endpoints based on an assigned weight
metric

¡	Performance—Latency-based routing of users to an endpoint so that the user
receives the quickest possible response time

¡	Geographic—Associates endpoints with a geographic region, and directs users
to them based on their location

5	 The endpoint eastus.cloudapp.net is returned to the DNS service by Traffic
Manager.

6	 The DNS service looks up the DNS record for eastus.cloudapp.net and returns
the result of the query to the customer.

7	 With the IP address of their requested endpoint, the customer contacts the web
application directly. At this point, the traffic could hit the public IP address of
an Azure load balancer rather than a VM directly.

As you can see, the role of Traffic Manager is to determine a given application endpoint
to direct customers to. Some health checks monitor the status of endpoints, similar to
the load-balancer health probes you learned about in chapter 8. And you can define a
priority or weighted traffic-routing mechanism to distribute users across a set of avail-
able endpoints—again, similar to a load balancer. Traffic Manager typically directs traf-
fic to an Azure load balancer or application gateway, or to a web app deployment.

Azure Front Door
Traffic Manager, which we look at in this section, is great for globally distributing and
routing traffic. It works with any type of internet endpoint, not just resources in Azure.
The traffic routing is based on DNS and doesn’t look at the actual application itself.

If you need application-level traffic distribution and the ability to do TLS/SSL offloading
or per-HTTP/HTTPS request routing, Azure Front Door helps you out. Traffic Manager

164 Chapter 11  Managing network traffic and routing

(continued)
and Front Door offer the same type of service and configuration options, but Front Door
is specifically designed to work at the application layer. Front Door also has some cool
performance tricks, such as split TCP to break connections into smaller pieces and
reduce latency.

Back in chapter 8, we looked at load balancers and mentioned Application Gateway,
which works at the application layer and does things like TLS offloading. The focus in
that chapter was on load balancers to help you learn the core concepts, which Appli
cation Gateway would build on. The same is true here. We focus on Traffic Manager
in this chapter, though many of the same concepts and configuration options, such as
routing options, are also available for Azure Front Door. As with most things in Azure,
what to use in each service is driven by the applications you run and their needs.

11.3.1	 Creating Traffic Manager profiles

Traffic Manager uses profiles to determine what routing method to use and what the
associated endpoints are for a given request. To continue the theme of the previous
chapters about a globally distributed application, you want your users to use the web
application closest to them. If you look at the routing methods again, you have two
ways to do this:

¡	Performance routing—The customer is routed to the endpoint with the lowest
latency relative to the source of the request. This routing method provides
some intelligence and always allows Traffic Manager to forward the customer to
an available endpoint.

¡	Geographic routing —The customer is always routed to a given endpoint based on
the source of their request. If the customer is in the United States, they’re
always directed to East US, for example. This routing method requires you to
define geographic regions to be associated with each endpoint.

When you use geographic routing, you get a little more control of the endpoints that
customers use. There may be regulatory reasons requiring customers in a given region
to always use endpoints in the same region. The exercises use geographic endpoints
to show a more real-world example because there’s a trick to geographic routing: you
should specify a child profile, not an endpoint directly.

The sky won’t fall if you use the geographic routing method with endpoints, but
the recommended practice is to use another Traffic Manager profile to pass traffic to
the final endpoint. Why? Regions can be associated with only one Traffic Manager
profile. In the previous chapters on high availability, you always wanted to make sure
that you have redundancy. If you associate a region with a given endpoint and use geo-
graphic routing, you have no failover option should that endpoint encounter a prob-
lem or if you perform maintenance.

Instead, nested child profiles allow you to set a priority that always directs traffic to
a healthy endpoint. If the endpoint is unhealthy, traffic goes to an alternative

	 165Global routing and resolution with Traffic Manager

endpoint. Figure 11.6 shows traffic failing over to a different region, although you
could also create multiple web app instances in West US and use a weighted routing
method on the child profile. As you start to scale out your application environment,
take time to think about how best to provide high availability to endpoints behind
Traffic Manager. For these examples, you’ll create failover between regions to clearly
see the differences in behavior.

Profile with
geographic

routing method

East US
Child profile with
priority routing

method

West Europe
Child profile with
priority routing

method

Web app
West Europe
Priority 100

Web app
East US

Priority 1

Web app
West Europe

Priority 1

Web app
East US

Priority 100

Figure 11.6  A parent Traffic Manager profile with the geographic routing method should use
child profiles that contain multiple endpoints. Then those child endpoints can use priority routing
to direct traffic to the preferred endpoint. The East US child profile, for example, always sends
traffic to the endpoint in East US, provided that the endpoint is healthy. If the endpoint is
unhealthy, traffic is directed to West Europe. Without this child profile, customers in East US
couldn’t fail over to an alternate endpoint and would be unable to access your web application.

Try it now
To create the Traffic Manager profiles for your distributed application, complete the
following steps.

The rest of the exercises use East US and West Europe. If you don’t live in one of
those regions, pick a different region that’s more appropriate. Just remember to be
consistent throughout the exercises! The end-of-chapter lab shows how this all
comes together and works, but you won’t be correctly directed to your web apps if
you live outside North America or Europe and don’t change the regions accordingly.

1	 Open the Azure portal, and select the Cloud Shell icon at the top of the dash‑
board.

2	 Create a resource group, specifying a resource group name, such as
azuremolchapter11, and a location, such as eastus:

az group create --name azuremolchapter11 --location eastus

166 Chapter 11  Managing network traffic and routing

3	 Create the parent Traffic Manager profile. You want to use the geographic rout-
ing method and then specify a name, such as azuremol. The parameter for the
DNS name tells you that it must be unique, so provide a unique name. The fol-
lowing domain creates the hostname azuremol.trafficmanager.net, which you
use to configure the web apps in the lab at the end of the chapter:

az network traffic-manager profile create \
--resource-group azuremolchapter11 \
--name azuremol \
--routing-method geographic \
--unique-dns-name azuremol

4	 Create one of the child Traffic Manager profiles. This time, use the priority
routing method and the name eastus, and specify another unique DNS name,
such as azuremoleastus:

az network traffic-manager profile create \
--resource-group azuremolchapter11 \
--name eastus \
--routing-method priority \
--unique-dns-name azuremoleastus

5	 Create one more child Traffic Manager profile with the name westeurope and
another unique DNS name, such as azuremolwesteurope:

az network traffic-manager profile create \
--resource-group azuremolchapter11 \
--name westeurope \
--routing-method priority \
--unique-dns-name azuremolwesteurope

6	 You’ve created a web app a couple of times now, so use the CLI to quickly create
two app service plans and a web app in each plan. One of these web apps is in
East US; the other is in West Europe. In the end-of-chapter lab, you’ll upload
sample web pages to these web apps, so for now, create the empty website and
get the apps ready to use a local Git repository.

Create the web app in East US as follows:

az appservice plan create \
--resource-group azuremolchapter11 \
--name appserviceeastus \
--location eastus \
--sku S1

az webapp create \
--resource-group azuremolchapter11 \
--name azuremoleastus \
--plan appserviceeastus \
--deployment-local-git

7	 Create a second web app in West Europe:

az appservice plan create \
--resource-group azuremolchapter11 \
--name appservicewesteurope \

	 167Global routing and resolution with Traffic Manager

--location westeurope \
--sku S1

az webapp create \
--resource-group azuremolchapter11 \
--name azuremolwesteurope \
--plan appservicewesteurope \
--deployment-local-git

11.3.2	 Globally distributing traffic to the closest instance

You’ve created the Traffic Manager profiles and endpoints but no traffic that can flow.
If customers were directed to the profiles, there would be no association with your
endpoints. The diagram in figure 11.7 shows how you need to associate endpoint
with profiles.

Profile with
geographic

routing method

East US
Child profile with
priority routing

method

West Europe
Child profile with
priority routing

method

Web app
West Europe

Priority 100

Web app
East US

Priority 1

Web app
West Europe

Priority 1

Web app
East US

Priority 100

Figure 11.7  In this section, you’ll associate your endpoints with the Traffic Manager
profiles and define the priority for the traffic to be distributed.

The first associations you make are for your web app endpoints. Remember that for
high availability, you want both web apps to be available to each Traffic Manager pro-
file. You use a priority routing method to direct all traffic to the primary web app for
each profile. If that web app is unavailable, the traffic can fail over to the secondary
web app endpoint.

When you created the Traffic Manager profiles in section 11.3.1, a few defaults
were used for the health-check options and endpoint monitoring. Let’s explore what
those options are:

¡	DNS Time to Live (TTL): 30 seconds—Defines how long the DNS responses from
Traffic Manager can be cached. A short TTL ensures that customer traffic is routed
appropriately when updates are made to the Traffic Manager configuration.

168 Chapter 11  Managing network traffic and routing

¡	Endpoint Monitor Protocol: HTTP —You can also choose HTTPS or a basic TCP
check. As with load balancers, HTTP or HTTPS ensures that an HTTP 200 OK
response is returned from each endpoint.

¡	Port: 80—The port to check on each endpoint.
¡	Path: /—By default, checks the root of the endpoint, although you could also

configure a custom page, like the health-check page used by load balancers.
¡	Endpoint Probing Interval: 30 seconds —How frequently to check endpoint health.

The value can be 10 seconds or 30 seconds. To perform fast probing every 10
seconds, there’s an additional charge per endpoint.

¡	Tolerate Number of Failures: 3—How many times an endpoint can fail a health
check before the endpoint is marked as unavailable.

¡	Probe Timeout: 10 seconds —The length of time before a probe is marked as failed
and the endpoint is probed again.

You don’t need to change any of these default options. For critical workloads when
you build your own application environments in the real world, you could lower the
number of failures to tolerate or the probing interval. These changes would ensure
that any health issues were detected quickly, and traffic would be routed to a different
endpoint sooner.

Try it now
To associate endpoints with profiles and finish the geographic routing, complete the
following steps:

1	 In the Azure portal, browse to and select your resource group. For this exercise,
select the Traffic Manager profile you created for East US.

2	 Choose Endpoints from the navigation bar at left in the profile, and then select
Add.

3	 Create an Azure endpoint, and enter a name, such as eastus.

4	 There are different target resource types; you want to use App Service. For the
target resource, select your web app in East US, such as azuremoleastus.

5	 Leave Priority set to 1, accept any other defaults that may be set, and then select
OK.

6	 Repeat the process to add another endpoint. This time, name the endpoint
westeurope, select your web app in West Europe as the target resource, and
set a priority of 100.

Now your Traffic Manager profile lists two endpoints: one for the web app in
East US and one for the web app in West Europe, as shown in figure 11.8. This
priority-based routing of the endpoints always directs traffic to the web app in
East US when that resource is healthy. If that resource is unavailable, there’s
redundancy to fail over to the web app in West Europe.

	 169Global routing and resolution with Traffic Manager

Figure 11.8  Two endpoints are listed for the Traffic Manager profile. The endpoint for East US has the lower
priority, so it always receives traffic when the endpoint is healthy. Redundancy is provided with the West Europe
endpoint, which is used only when the East US endpoint is unavailable.

7	 Go back to your resource group, and select the Traffic Manager profile for West
Europe.

8	 Choose to add endpoints.

9	 Repeat the steps to add two endpoints and configure them as follows:

¡	Name: westeurope
Target Resource: Web app in West Europe
Priority: 1

¡	Name: eastus
Target Resource: Web app in East US
Priority: 100

Now your Traffic Manager profile lists two endpoints: one for the web app in West
Europe and one for the web app in East US, as shown in figure 11.9. You’ve provided
the same redundancy as in the previous Traffic Manager profile, this time with all traf-
fic going to West Europe when healthy and East US if not.

Figure 11.9  The same configuration of endpoints as the previous Traffic Manager profile, this time with the
location of the web apps reversed. These child profiles can be used to route customers to the web app in either
East US or West Europe, but now you have redundancy to fail over to another endpoint if the primary endpoint in
the region is unavailable.

170 Chapter 11  Managing network traffic and routing

This process has just one more part, I promise! Remember, this is a best practice
for high availability if you use Traffic Manager for global distribution of applications.
In the real world, your environment may not be this complex. Look at the diagram
again to see the child profiles and associations with the regional web apps you need to
create, as shown in figure 11.10.

Profile with
geographic

routing method

East US
Child profile with
priority routing

method

West Europe
Child profile with
priority routing

method

Web app
West Europe
Priority 100

Web app
East US

Priority 1

Web app
West Europe

Priority 1

Web app
East US

Priority 100

Figure 11.10  The child Traffic Manager profiles for East US and West Europe
have been created, with the regional web apps and priorities configured
as needed. Now you need to associate the child profiles with the parent profile.

To direct traffic based on geography, you define a region, such as North America, and
a nested profile, such as eastus. All customers in the North America region are
directed to this child profile. You configured the priorities on that child so that the
web app in East US always serves the traffic. But you’ve provided a redundant option
to fail over to the web app in West Europe as needed.

The inverse happens for customers in West Europe. Another endpoint for the par-
ent Traffic Manager profile can be added, this time with Europe as the region to be
associated with the endpoint, and then the westeurope nested profile. All European
traffic is routed to this profile, and the web app in West Europe always serves the web
application. In the event of a problem, the traffic can fail over to East US.

If you have policy or data sovereignty mandates such that traffic can’t fail over to a
different region like this, you may need to adjust how the Traffic Manager endpoints
and profiles are set up. You could, for example, create multiple web apps in West

	 171Global routing and resolution with Traffic Manager

Europe, as you saw in chapter 9. This way, you have multiple web app instances that
can serve customers. Or if your application runs on VMs, use a scale set behind a load
balancer to profile similar redundancy.

Try it now
This is where your own regional location matters! If you live outside one of the
regional groupings shown in the Traffic Manager profiles, make sure that you select
your own region; otherwise, you won’t be able to access the web app in the end-of-
chapter lab.

To associate the child profiles with the parent profile, complete the following steps:

1	 In the Azure portal, browse to and select your resource group.

2	 Select the parent Traffic Manager profile. In the earlier examples, that was
called azuremol.

3	 Choose Endpoints from the navigation bar at left in the profile, and then select
Add.

4	 Create an endpoint that uses the first child profile. Set the type as a nested end-
point, and provide a name, such as eastus. As the target resource, select the
Traffic Manager profile you created for East US.

5	 Under Regional Grouping, choose North America/Central America/Carib-
bean from the drop-down menu, and then select OK.

6	 Repeat the steps to add another endpoint. This time, name the endpoint west
europe, set the target resource to the child Traffic Manager profile for West
Europe, and choose Europe from the drop-down menu for regional grouping.

Now your endpoints for the parent profile list the two child profiles, each
having an endpoint associated with the appropriate geographic region, as
shown in figure 11.11.

Figure 11.11  Nested child profiles with associated geographic regions. This parent Traffic Manager profile directs
all traffic from Europe to the web app in West Europe, with redundancy to use East US if there’s a problem. The
opposite is true for customers in North America/Central America/Caribbean.

172 Chapter 11  Managing network traffic and routing

The web apps are currently set to accept traffic only on their default domain,
which is in the form webappname.azurewebsites.net. When Traffic Manager
directs customers to those web app instances, the traffic appears to come from
the domain of the parent profile, such as azuremol.trafficmanager.net. The web
apps don’t recognize this domain, so the web application won’t load.

7	 Add the domain of the parent Traffic Manager profile to both web app
instances you created in steps 4-6. If necessary, you can find the domain name
on the Overview page of the parent Traffic Manager profile:

az webapp config hostname add \
--resource-group azuremolchapter11 \
--webapp-name azuremoleastus \
--hostname azuremol.trafficmanager.net

az webapp config hostname add \
--resource-group azuremolchapter11 \
--webapp-name azuremolwesteurope \
--hostname azuremol.trafficmanager.net

Now when you open the address of your parent Traffic Manager profile in a web
browser, such as https://azuremol.trafficmanager.net, you can’t tell which endpoint
you access, as both web apps run the same default web page. In the end-of-chapter lab,
you’ll upload a basic web page to each web app to differentiate between them!

Let’s stop to examine what you’ve created through these exercises. It’s important,
because now customers can use all the high-availability and redundancy features from
previous chapters, with automatic traffic routing that directs them to the closest
instance of your web application. In this chapter, you’ve created the following:

¡	A web app in East US and another in West Europe
¡	Traffic Manager profiles that use geographic routing to direct all customers in

North and Central America to the East US web app, and all customers in
Europe to the West Europe web app

¡	Child Traffic Manager policies with priority routing to provide failover use of
the alternative region if the primary web app for the region is unavailable

In terms of high availability:

¡	If you combine this setup with web apps that autoscale, you have a ton of redun-
dancy right now.

¡	If you combine these web apps with Cosmos DB, you have your entire applica-
tion automatically scaling and globally distributed, with customers always
accessing resources close to them for the lowest latency on response times and
the best performance.

¡	Even if you stuck with VMs, you can use scale sets with load balancers to provide
the same highly available, globally distributed environment.

And yes, you could replace Traffic Manager with Front Door if you need to use
advanced application-level traffic management features.

	 173Global routing and resolution with Traffic Manager

I know that the past few chapters contain a lot of new stuff, and each chapter has
taken up pretty much all of your lunch break each day! But look at how far you’ve
come in the past week. Now you can now create a web application with either IaaS
VMs or PaaS web apps, make them highly available and load balanced, and let them
scale automatically (figure 11.12). You can use a globally distributed Cosmos DB back-
end for your database needs, and you can automatically route customers to the closest
regional instance of your application, all with DNS that’s hosted in Azure.

Azure Traffic
Manager

Internet

Customer

Azure DNS

Autoscaling
web app

East US

Autoscaling
web app

West Europe

Cosmos DB

Azure PaaS solution

East US 2

Azure IaaS solution

Virtual
machine
scale set

Availability Zones

Load balancer

West Europe

Virtual
machine
scale set

Availability Zones

Load balanceror

Figure 11.12 After the past few chapters, you should understand how to create highly available IaaS or PaaS
applications in Azure. The IaaS solutions can use availability zones, load balancers, and scal.e sets. The PaaS
solutions can use autoscaling web apps and Cosmos DB. Traffic Manager and Azure DNS can route customers
to the most appropriate application instance automatically, based on their geographic location.

The end-of-chapter lab uploads a couple of basic websites to your web apps just to
prove that Traffic Manager works and the appropriate endpoint serves your traffic. If
you have time, feel free to complete the exercise; otherwise, pat yourself on the back,
and go take a nap. I won’t tell your boss!

We have one more chapter in this second section of the book, and it talks about
how to make sure your applications remain healthy: how to monitor and troubleshoot
your applications and infrastructure.

174 Chapter 11  Managing network traffic and routing

11.4	 Lab: Deploying web apps to see
Traffic Manager in action
This chapter covered a lot, so this exercise should be one that keeps building the
mental muscle of your Azure skills with web apps. In the Azure samples GitHub repo
are two basic web pages for the online pizza-store application. Each web page’s title
shows the location of the web app. Upload these web pages to the relevant web app
instance to see your Traffic Manager flows in practice:

1	 If necessary, clone the GitHub samples repo in your Cloud Shell as follows:

git clone https://github.com/fouldsy/azure-mol-samples-2nd-ed.git

2	 Start with the eastus web page, and then repeat the following steps in the west
europe directory:

cd ~/azure-mol-samples-2nd-ed/11/eastus

3	 Initialize the Git repo, and add the basic web page:

git init && git add . && git commit -m "Pizza"

4	 In the Azure portal, the Overview window for your web app lists the Git clone
URL. Copy this URL, and then set it as a destination for your HTML sample site
in Cloud Shell with the following command:

git remote add eastus <your-git-clone-url>

5	 Push the HTML sample site to your web app:

git push eastus master

6	 Repeat these steps for the azure-mol-samples-2nd-ed/11/westeurope directory.

7	 When you’re finished, open your web browser to the domain name of your par-
ent Traffic Manager profile, such as https://azuremol.trafficmanager.net, to see
the traffic flow.

175

12Monitoring and
troubleshooting

In previous chapters, you learned how to make your applications highly available
and route customers from around the world to globally distributed instances of
your application. One goal was to minimize the amount of interaction with your
application infrastructure and let the Azure platform manage health and perfor-
mance for you. Sometimes, you still need to roll up your sleeves and review diagnos-
tics or performance metrics. In this chapter, you’ll learn how to review boot
diagnostics for a VM, monitor performance metrics, and troubleshoot connectivity
issues with Network Watcher.

12.1	 VM boot diagnostics
With web apps, you deploy your code and let the Azure platform handle the rest. In
chapter 3, we looked at the basics of troubleshooting and diagnosing problems
with web app deployments. You learned how to see real-time application events to
monitor performance. When you work with VMs in the cloud, it’s often hard to
troubleshoot a problem when you can’t physically see the computer screen, the way
you can get web app diagnostics.

One of the most common issues with VMs is lack of connectivity. If you can’t
SSH or RDP to a VM, how can you troubleshoot what’s wrong? One of the first
things you may want to check is whether the VM is running correctly. To help,
Azure provides VM boot diagnostics that include boot logs and a screenshot of the
console.

176 Chapter 12  Monitoring and troubleshooting

Interactive boot console access
For specific troubleshooting scenarios, you can access a live serial console for VMs
in Azure. This serial console allows for interactive logons and troubleshooting in the
event of boot problems. You can reconfigure your VM to correct for failed boot sce
narios or misconfigurations of services and applications that prevent your VM from
booting correctly.

This chapter doesn’t go into specific scenarios for serial console use, but it’s a great
resource that lets you virtually sit in front of the screen of a VM as it starts up. You
also need boot diagnostics enabled, so these exercises are prerequisites for the
serial console.

Try it now
To create a VM and enable boot diagnostics, complete the following steps:

1	 In the Azure portal, select Create a Resource in the top-left corner.

2	 Search for and select a Windows Server 2019 Datacenter VM image.

3	 Create a resource group, such as azuremolchapter12, and then select the
most appropriate Azure region closest to you.

4	 Select a VM size, such as DS1_v2.

5	 Enter a username for the VM, such as azuremol, and a password. The pass-
word must be a minimum 12 characters long and contain 3 of the following: a
lowercase character, an uppercase character, a number, and a special character.

6	 Accept any options for redundancy or inbound port rules.

7	 Accept the defaults for disks and networking; there’s nothing you need to
change. Those settings should be familiar to you by now.

One thing you may have skipped previously was the Management section. As
shown in figure 12.1, the boot diagnostics option is enabled by default, and a
storage account is created.

8	 For now, leave the OS guest diagnostics option disabled.

9	 Review your VM configuration settings, and select Create.

It takes a few minutes to create and configure the VM, so let’s continue to explore the
boot diagnostics.

If you don’t have boot diagnostics enabled but run into a problem, you likely can’t
boot the VM to enable diagnostics. It’s a fun chicken-and-egg scenario, right? As a
result, boot diagnostics are automatically enabled for VMs created in the Azure portal.
For Azure PowerShell, Azure CLI, and the language-specific SDKs, you need to enable

	 177VM boot diagnostics

Figure 12.1  By default, boot diagnostics are enabled when you create a
VM in the Azure portal. A storage account is created; the boot diagnostics
are stored in this account. In a later exercise, you’ll review and enable OS
guest diagnostics, so don’t enable them right now. For production use, I
recommend that you enable both boot diagnostics and OS guest
diagnostics for each VM you create.

boot diagnostics. I highly recommend that you enable boot diagnostics on your VMs
when you create them. Make a habit of using Azure Resource Manager templates
(chapter 6) or your own Azure CLI or PowerShell scripts that enable boot diagnostics
during deployment.

You do need to create a storage account for the boot logs and console screenshots,
but the cost to store this data is likely less than $0.01 per month unless you have a busy
VM that generates a lot of data. The first time you run into a VM problem and need
access to the boot diagnostics, that penny per month will be worth it! This storage
account can also be used to hold additional VM-level performance metrics and logs,
which we’ll examine in section 12.2. Again, the storage costs should be minimal. Even
as your VM environment grows, it’s worth the additional minor cost to be able to
quickly troubleshoot an issue when things go wrong.

Try it now
To view the boot diagnostics for your VM, complete the following steps:

1	 In the Azure portal, select Virtual Machines from the menu on the left.

2	 Choose the VM you created in the previous exercise.

3	 In the Support + troubleshooting section of the VM menu, choose Boot diag
nostics. The boot diagnostics and VM status are displayed, as shown in figure
12.2. The health report indicates any boot problems with the VM and allows
you to diagnose the root cause of the issue.

178 Chapter 12  Monitoring and troubleshooting

Figure 12.2  The boot diagnostics for a VM report on the health and boot status. If errors are displayed,
you should be able to troubleshoot and diagnose the root cause. You can also download the logs from
the portal for analysis on your local computer.

12.2	 Performance metrics and alerts
One of the first steps in troubleshooting an issue is a performance review. How much
memory is available, how much CPU is consumed, and how much disk activity is there?

As you build and test your applications in Azure, I recommend that you record
performance baselines at various points. These baselines give you an idea of how your
application should perform under different amounts of load. Why is this important?
In three months, how can you determine whether you encounter performance prob-
lems without some data to compare the current performance with?

When you learned how to autoscale applications in chapter 9, you used basic per
formance metrics, such as CPU use, to tell the Azure platform when to increase or
decrease the number of instances of your application. These basic metrics give you
only small insights into how the VM performs, however. For more detailed metrics,
you need to look at the performance of the VM, and to do this, you need to install the
Azure diagnostics extension.

12.2.1	 Viewing performance metrics with the VM diagnostics extension

To add functionality to your VMs, Azure has dozens of extensions that you can install
seamlessly. These extensions install a small agent or application runtime into the VM,
which often reports information back to the Azure platform or third-party solutions.

	 179Performance metrics and alerts

VM extensions can automatically configure and install components or run scripts on
your VMs.

The VM diagnostics extension is a common one that’s used to stream performance
metrics from inside the VM to a storage account. These performance metrics can be
analyzed in the Azure portal or downloaded and used in an existing monitoring solu-
tion. You can use the diagnostics extension to gain deeper understanding of the per
formance of CPU and memory consumption from within the VM, which can typically
provide a more detailed and accurate picture than the host.

Automation and VM extensions
In chapter 18, we’ll discuss Azure Automation, which allows you to perform tasks on
your VMs in an automated, scheduled manner. One powerful feature of Azure Auto
mation is acting as a PowerShell Desired State Configuration (DSC) pull server.
PowerShell DSC defines a given state of how a system should be configured, what
packages should be installed, files and permissions, and so on. You create defini-
tions for the desired configuration and apply them to VMs or physical servers. Then
you can report on and enforce compliance with those policies. The Azure PowerShell
DSC extension is used to apply DSC configurations, such as from an Azure Automa-
tion pull server.

Other extensions that can apply configurations and run scripts on VMs include the
Azure Custom Script Extension. With the Custom Script Extension, you define a sim-
ple set of commands or point to one or more external scripts, such as those hosted
in Azure Storage or GitHub. These scripts can run complex configuration and instal
lation tasks, and ensure that all deployed VMs are configured consistently.

Both the Azure PowerShell DSC extension and Custom Script Extension are com-
monly used with virtual machine scale sets. You apply one of these extensions to the
scale set, and as VM instances are created within the scale set, they’re automatically
configured to run your application. The goal of these extensions is to minimize the
required manual configuration of VMs, which is an error-prone process that requires
human interaction.

Other ways to automate VM configurations include Puppet and Chef, both of which
have Azure VM extensions available. If you already have a configuration-management
tool in use, check with the vendor for its supported approach for use in Azure. There’s
a good chance that a VM extension is available to make your life easier.

Try it now
To enable the VM diagnostics extension, complete the following steps:

1	 In the Azure portal, choose Virtual Machines from the menu on the left.

2	 Choose the VM you created in a previous exercise.

3	 In the Monitoring section of the VM menu, choose Diagnostic settings.

4	 Select the button to enable guest-level monitoring.

180 Chapter 12  Monitoring and troubleshooting

It takes a couple of minutes to enable guest-level monitoring. Behind the scenes,
here’s what Azure does:

¡	Installs the VM diagnostics extension
¡	Configures the extension to stream guest-level metrics for the following areas:

	– Logical disk

	– Memory

	– Network interface

	– Process

	– Processor

	– System

	– Enables application, security, and system logs to be streamed to Azure Storage

When the diagnostics extension is installed, you can limit what data is collected by
selecting only certain performance counters to report. You may wish to collect only
memory use, for example, or enable the collection of Microsoft SQL Server metrics.
By default, metrics are collected every 60 seconds. You can adjust this sample rate as
desired for your applications and infrastructure.

The VM diagnostics extension can also stream log files from your VM, allowing you
to centralize the application, security, and system logs for analysis or alerts, as shown
in figure 12.3. By default, application and system logs that generate Critical, Error, or
Warning alerts are logged, along with security events for Audit Failure. You can
change the log levels to enable log collection from IIS and application logs, and for
Event Tracing for Windows (ETW) events. As part of your application planning and
deployment, determine what logs you want to collect.

There’s nothing unique to Windows VMs here. You can use the diagnostics exten-
sion on Linux VMs in the same way to obtain performance metrics and stream various
logs.

If your VM encounters a problem, often the only way to analyze what happened is
to review the crash dumps. Support channels often request these dumps if you want to
get to the root cause of a problem. As with boot diagnostics, there’s no way to retroac-
tively enable crash dumps to see why something failed, so determine whether you
need to monitor certain processes, and be proactive about configuring crash dumps.
You could monitor the IIS process and record a full crash dump to Azure Storage if
the process fails, for example.

Here are a couple of other areas that you can configure for guest metrics:

¡	Sinks allow you to configure the VM diagnostics extension to send certain events
to Azure Application Insights. With Application Insights, you can gain visibility
directly into how your code performs.

¡	Agent lets you specify a storage quota for all your metrics. (The default is 5 GB.)
You can also enable the collection of logs for the agent itself or uninstall the agent.

	 181Performance metrics and alerts

Figure 12.3  You can configure events and log levels for various components within the VM. This feature
lets you centralize your VM logs for analysis and to generate alerts. Without the need to install complex,
often costly monitoring systems, you can review and receive notifications when issues arise on your
Azure VMs.

Try it now
To view guest-level metrics, complete the following steps:

1	 In the Azure portal, choose Virtual Machines from the menu on the left.

2	 Choose the VM you created in a previous exercise.

3	 In the Monitoring section of the VM menu, choose Metrics.

Many more metrics are now available, compared with the basic host-based metrics
from chapter 9. Explore some of the VM host and guest metrics available, and think
about some applications you may want to monitor specific metrics for.

12.2.2	 Creating alerts for performance conditions

With your VM configured to expose guest-level performance metrics, how do you
know when there’s a problem? You don’t want to sit and watch the performance
graphics in real time and wait until a problem occurs! I’m not your boss, if that’s your
thing. But there’s a much better way: metric alerts.

182 Chapter 12  Monitoring and troubleshooting

Metric alerts let you select a resource, metric, and threshold, and then define who
and how you want to notify when that threshold is met. Alerts work on more than just
VMs. You can define alerts on public IP addresses that watch for inbound distributed
denial of service (DDoS) packets, for example, and warn you when a certain threshold
is met that could constitute an attack.

When alerts are generated, you can choose to send an email notification to own-
ers, contributors, and readers. These users and email addresses are obtained based on
the RBAC policies applied. In larger organizations, alerts could send email notifica-
tions to a large group of people, so use with care! Another option is to specify email
addresses, which could be the application owners or specific infrastructure engineers,
or a distribution list or group targeted to the directly involved parties.

A couple of other useful options exist for actions to take when an alert is triggered:

¡	Execute a runbook. In chapter 18, we’ll examine Azure Automation. The Automa-
tion service allows you to create and use runbooks that execute scripts. These
scripts could perform a basic remedial action on the VM, such as to restart a
process or even reboot the VM. They could also run Azure PowerShell cmdlets
to enable Azure Network Watcher features like capture packets, which we’ll
explore in the rest of this chapter.

¡	Run a logic app. Azure logic apps allow you to build workflows that run serverless
code. You could write information to a support-ticket system or initiate an auto-
mated phone call to an on-call engineer. In chapter 21, we’ll explore the won
derful world of serverless computing with Azure logic apps and Azure functions.

In the end-of-chapter lab, you’ll configure some alerts for your VM. Azure can do
more than help to troubleshoot and monitor your VMs, though. Let’s discuss another
common cause for things to go wrong: the network.

12.3	 Azure Network Watcher
VM performance metrics and boot diagnostics are great ways to monitor your Azure
IaaS applications. Web app application logs and App Insights provide awareness of the
performance of your PaaS applications. Network traffic is often less glamorous, but it’s
more likely to be the cause of application connectivity issues that you or your custom-
ers encounter.

Back in chapter 5, I joked that the network team always gets the blame for problems
that the operations team can’t explain. Here’s where we can try to make friends again,
or at least get some solid proof of the network being to blame! Azure Network Watcher
is one of those features that helps bring teams together for a nice group hug. With Net-
work Watcher, you can monitor and troubleshoot using features such as these:

¡	Capturing network packets
¡	Validating IP flow for NSGs
¡	Generating network topology

What’s great about these features is that they put different teams in the driver’s seat to
troubleshoot problems. If you create some VMs and then can’t connect to them, you

	 183Azure Network Watcher

can verify that there’s network connectivity. For developers, if your application can’t
connect to a backend database tier, you can examine the NSG rules to see whether
there’s a problem. And network engineers can capture packets to examine the com-
plete communication stream among hosts for more in-depth analysis.

Additional network troubleshooting
Network Watcher works in tandem with the diagnostic logs and metrics discussed
earlier in the chapter. Network resources such as load balancers and application
gateways can also generate diagnostic logs. These logs work the same way as appli
cation and system logs from a VM or web app. Logs are collated in the Azure portal
for you to determine whether there are errors in the configuration or communications
between hosts and applications.

DNS and Traffic Manager also have a Troubleshoot area in the Azure portal. The por-
tal guides you through some common errors that you may encounter, offers configu
ration advice, and provides links to additional documentation. If all else fails, you can
open a support request with Azure Support.

Although it may be easier to build large application deployments with Azure Resource
Manager templates or with Azure CLI or PowerShell scripts, the Azure portal has a lot
of great tools and features you can use when things go wrong. Especially with com
plicated network configurations and security policies, a few seconds of your time to
review the output from Network Watcher tools can identify an issue and let you
resolve it quickly. All these tools help improve the overall health and experience of
your applications for your customers.

What are some scenarios in which you may want to use Network Watcher and the trou-
bleshooting features it offers? Let’s look at a few common issues and see how Network
Watcher could help.

12.3.1	 Verifying IP flows

Here’s a common problem: customers can’t connect to your application. The applica-
tion works fine when you connect from the office, but customers can’t access the
application over the public internet. Why?

VPNs and ExpressRoute
Azure virtual private networks (VPNs) provide secure communications between on
premises offices and Azure data centers. Azure ExpressRoute provides high-speed,
dedicated private connections from on-premises offices to the Azure data centers
and is often used in large organizations.

Both connections are a little more complicated to set up than we can cover in a single
lunch break, and they’re also often things that you set up and configure only once.
The network team is usually responsible for configuring them, and you may not even
realize that you access Azure over a private connection.

184 Chapter 12  Monitoring and troubleshooting

All the testing of your application works great. You can access the application through
a web browser, place orders, and receive email notifications. But when your customers
try to place an order, the application doesn’t load.

How can Network Watcher help? By verifying IP flows. Network Watcher simulates
traffic flow to your destination and reports whether the traffic can reach your VM.

Try it now
To enable Network Watcher and verify IP flows, complete the following steps:

1	 In the Azure portal, choose All Resources from the top of the navigation menu
on the left.

2	 Filter and select Network Watcher from the list of available services. You enable
Network Watcher in the region(s) that you wish to monitor. When you enable
Network Watcher in a region, Azure uses role-based access controls for the vari-
ous resources and network traffic.

3	 Expand the list of regions for your account. Some regions may already be
enabled. If the region your VM was deployed into isn’t enabled, select the
region, and then enable the network watcher.

4	 When Network Watcher is enabled in a region (it takes a minute or two), select
IP Flow Verify under Network Diagnostic Tools on the left side of the Network
Watcher window.

5	 Select your resource group, such as azuremolchapter12, and VM, such as
molvm. By default, Protocol is set to TCP, and Direction is Inbound. The Local
IP Address of the virtual NIC is also populated.

6	 For Local Port, enter port 80. If you accepted the defaults when you created the
VM in the previous exercise, you didn’t open port 80, so this is a good test of
what happens when traffic is denied.

7	 Under Remote IP Address, enter 8.8.8.8. This address may seem familiar: it’s
an open DNS server provided by Google. You aren’t doing anything with this
server; you just need to give Network Watcher an external IP address to simu-
late traffic flow. You could also go to https://whatsmyip.com and enter your real
public IP address.

8	 Set Remote Port to port 80, and then select Check.

The result of your IP flow check should be Access denied. Helpfully, Network
Watcher tells you which rule caused the traffic flow to fail: the DenyAllInBound rule.
You know that there’s a network security rule that blocks traffic, but where is this rule
applied? At the subnet, virtual NIC, or application security group? Another Network
Watcher feature can tell you!

12.3.2	 Viewing effective NSG rules

NSG rules can be applied to a single virtual NIC, at the subnet level, or against a group
of VMs in an application security group. Rules are combined, which allows you to
specify a common set of rules across an entire subnet and then get more granular for

	 185Azure Network Watcher

application security groups (such as “Allow TCP port 80 on all webservers”) or an indi-
vidual VM.

Here are some common examples of how NSG rules may be applied:
¡	Subnet level—Allow TCP port 5986 for secure remote management from man

agement subnet 10.1.10.20/24.
¡	Application security group level —Allow TCP port 80 for HTTP traffic to web appli

cations, and apply the application security group to all web application VMs.
¡	Virtual NIC level—Allow TCP port 3389 for remote desktop access from manage-

ment subnet 10.1.10.20/24.
These rules are basic, and they explicitly allow certain traffic. If no allow rules match a
network packet, the default DenyAll rules are applied to drop the traffic.

During the testing of the application discussed in the example, you may have con
figured that HTTP rule to allow only traffic from one of your on-premises subnets.
Now customers over the public internet can’t connect.

Try it now
To determine where an NSG rule is applied, complete the following steps:

1	 In Network Watcher, select Effective security rules on the left.

2	 Select your resource group, such as azuremolchapter12, and your VM, such as
molvm. It takes a few seconds for the effective rules to be displayed as shown in
figure 12.4.

Figure 12.4  When you select a VM, Network Watcher examines how all the NSG rules are applied and
the order of precedence, and shows what effective rules are currently applied. Then you can quickly drill
down to the subnet, virtual NIC, and default rules to find and edit where a given rule is applied.

186 Chapter 12  Monitoring and troubleshooting

The default rules from the VM you created earlier aren’t exciting, but you can move
through subnet, network interface, and default rules to get a feel for the way that
effective rules are combined and how you could identify where rules are applied if you
need to make changes.

12.3.3	 Capturing network packets

Let’s assume that you updated your network security rules to allow access to your
application for public internet customers, but one customer reports experiencing odd
behavior. The web application sometimes doesn’t load or displays broken images.
Their connection often appears to time out.

Intermittent problems are often the hardest to troubleshoot, especially if you have
limited, or no, access to the computer that encounters a problem. One common trou-
bleshooting approach is to capture the network packets and review them for signs of
problems such as network transmission errors, malformed packets, or protocol and
communication issues.

With network packet captures, you get the raw stream of data between two or more
hosts. There’s an art to analyzing network captures, and it’s not for the fainthearted!
Special third-party tools such as Riverbed’s Wireshark, Telerik’s Fiddler, and Microsoft’s

Figure 12.5  A network packet capture when viewed in Microsoft’s Message Analyzer. Each individual
packet is available for inspection. You can group and filter by communication protocol or client-host. This
depth of network data allows you to examine the actual packets that flow between nodes to troubleshoot
where an error occurs. A former colleague once told me, “The packets never lie.” The puzzle is to figure
out what the packets tell you.

	 187Azure Network Watcher

Message Analyzer provide a graphical way for you to view and filter the network packets,
typically grouping them by related communications or protocols. Figure 12.5 shows an
example network packet capture.

To enable Network Watcher to capture packets to and from your VMs, first install
the Network Watcher VM extension. As you saw in section 12.3.2, VM extensions pro-
vide a way for the Azure platform to reach inside a VM to perform various manage-
ment tasks. In the case of the Network Watcher extension, it examines network traffic
to and from the VM.

Try it now
To install the Network Watcher VM extension and capture network packets, complete
the following steps:

1	 In the Azure portal, choose Virtual Machines from the menu on the left, and
then select your VM, such as molvm.

2	 In the Settings category on the left in the VM window, select Extensions.

3	 Choose Add an Extension.

4	 In the list of available extensions, choose Network Watcher Agent for Windows,
and then select Create.

5	 To confirm the extension install, select OK. It may take a few minutes for Net-
work Watcher Agent to be installed on your VM.

6	 To go back to the Network Watcher menu in the Azure portal, choose All
Resources at the top of the Services navigation menu on the left in the portal,
and then choose Network Watcher.

7	 In the Network Diagnostic Tools section on the left in the Network Watcher
window, select Packet Capture, and then choose Add a New Capture.

8	 Select your resource group, such as azuremolchapter12, and VM, such as
molvm; then enter a name for your packet capture, such as molcapture.

By default, packet captures are saved to Azure Storage. You can also choose
to save to file and specify a local directory on the source VM. The Network
Watcher Agent extension writes the packet capture file to disk in the VM.

9	 If it isn’t already selected, choose the storage account name that starts with the
name of your resource group, such as azuremolchapter12diag493. This account
is the storage account created and used by the VM diagnostics extension that
you enabled earlier.

10	 You can specify a maximum size for each packet (default is 0 for the entire
packet), the maximum file size for the packet capture session (default is 1 GB),
and the time limit for the packet capture (default is 5 hours). To capture traffic
only from specific sources or ports, you can also add a filter to narrow the scope
of your packet captures.

188 Chapter 12  Monitoring and troubleshooting

11	 Set a time limit of 60 seconds.

12	 To start the packet capture, select OK.

It takes a minute or two to start the capture. When the capture is in progress, the data
is streamed to the Azure Storage account or local file on the VM. The list of captures is
shown on the Network Watcher portal page. If you stream the logs to Azure Storage,
you can have the capture go straight to the Storage account and download the .cap
capture file. Then you can open the packet capture in an analysis program, as dis-
cussed in section 12.3.3. In fact, the example network capture shown in figure 12.5
earlier in this chapter is from an Azure Network Watcher packet capture!

12.4	 Lab: Creating performance alerts
I hope that the VM diagnostics, metrics, and Network Watcher features covered in this
chapter have given you some insight into what’s available in Azure to trouble-
shoot application problems. Some things, such as boot diagnostics and the VM diag-
nostics extension, make the most sense when you enable and configure them as you
deploy VMs.

In this lab, you’ll configure some metric alerts to see what you can be notified
about and what the alerts look like when you receive them:

1	 In the Azure portal, browse to the VM you created in the previous exercises.

2	 In the Monitoring section for the VM, select Alerts.

3	 Choose to create an alert rule, and then add a condition for when the CPU per-
centage is greater than an average of 10% in the past 5 minutes. A chart should
show you what the latest metrics are, so adjust the threshold if 10% wouldn’t
trigger an alert.

4	 Add an action group, and give it a name and short name. For this lab, set both
names to azuremol. Action groups let you define reusable sets of steps to per-
form when an alert is generated, such as email a set of users, or run an auto-
mated PowerShell script or Azure Logic App.

5	 Explore the available action types, and then select Email/SMS/Push/Voice.

6	 Choose how you want to be notified, such as via email or text message. Some
carrier charges may apply for SMS or voice notifications.

7	 When the action group has been created, give the alert a name, and then spec-
ify a severity. This severity is useful when you have lots of alerts defined to help
you triage and prioritize what to resolve first.

8	 Create the rule when you’re ready. It takes 10 to 15 minutes for the rule to
become active and generate the notifications you defined.

This example is a basic one, so think of any existing alerts and notifications you have
for applications and services and how you could use this feature when you run work-
loads in Azure.

Part 3

Secure by default

In an online world in which applications are typically connected to the inter-
net 24/7, the threat of a digital attack is all too real. These attacks cost time,
money, and customer trust. A central part of building highly redundant and dis-
tributed applications includes securing them and protecting your data. Azure
has several built-in features to secure your data, including encryption, monitor-
ing, digital key vault, and backups. In this part of the book, you learn how to
secure and protect your applications right from the start.

191

13Backup, recovery,
and replication

The next few chapters introduce some of the core Azure features and services that
allow you to build security into your applications. That’s probably too subjective:
security shouldn’t be an add-on feature or consideration. Rather, security should be
inherently built into the heart and soul of your application from the start. In this
chapter, you’ll begin your journey into Azure security with backing up and recover-
ing your data. Backups may not seem like a common security topic, but think about
security as being more than data encryption or website SSL certificates. What about
the protection of your data from outages, data loss, and hacking? A discussion of
backups and replication also acts as a good topic to bridge between the chapter on
high availability and this chapter.

Backups may seem trivial, and as a former backup administrator, I can tell you
there isn’t much exciting about backup jobs and rotations! But timely backups that
work are crucial to protect your applications and ensure that in the worst-case sce-
nario, you can restore your data quickly and reliably. You can also replicate your
VMs from one Azure region to another. This ability builds on the high-availability
concepts we looked at back in chapter 7.

In this chapter, you’ll learn how to back up and restore VMs and then replicate
VMs automatically across Azure. All these backups and restore points are encrypted
to secure your data.

13.1	 Azure Backup
One of the cool things about Azure Backup is that it’s both a service and a big bucket
of storage for the actual backups. Azure Backup can protect VMs in Azure, on-
premises VMs or physical servers, and even VMs in other providers such as Amazon

192 Chapter 13  Backup, recovery, and replication

Web Services (AWS). The data backups can be stored on your own on-premises storage
arrays or within an Azure recovery vault. Figure 13.1 shows how the Azure Backup ser-
vice can protect and orchestrate all of your backup needs.

Azure
Recovery

Services vault

On-premises
storage
solution

Multiple data sources can
be backed up.

Azure Backup orchestrates data
backups per defined policy.

Data backups can be stored in Azure
or to secure an on-premises location.

Azure
Backup

Azure
VMs

On-premises
VMs (VMware/

Hyper-V)

On-premises
physical servers

(Windows/
Linux)

External VMs
(such as AWS)

Figure 13.1  Multiple VMs or physical servers, from various providers and locations, can be
backed up through the central orchestration service. Azure Backup uses defined policies
to back up data at a given frequency or schedule. Then these backups can be stored in
Azure or an on-premises storage solution. Throughout, data is encrypted for added security.

At its core, Azure Backup manages backup schedules and data retention, and orches-
trates the backup or restore jobs. To back up Azure VMs, you have no server compo-
nent to install and no agent to install manually. All the backup and restore operations
are built into the Azure platform.

To back up on-premises VMs or physical servers, or VMs in other providers such as
AWS, you install a small agent that enables secure communication back and forth with
Azure. This secure communication ensures that your data is encrypted during transfer.

For data stored in Azure, the backups are encrypted with an encryption key that
you create. Only you have access to those encrypted backups. You can also back up
encrypted VMs (which we’ll look at in chapter 14) to really make sure your data back-
ups are safe.

There’s no charge for the network traffic flow to back up or restore data. You pay
only for each protected instance and then for however much storage you consume in
Azure. If you use an on-premises storage location, the cost to use Azure Backup is mini-
mal because there are no Azure Storage or network traffic costs.

	 193Azure Backup

13.1.1	 Policies and retention

Azure Backup uses an incremental backup model. When you protect an instance, the
first backup operation performs a full backup of the data. After that, each backup
operation performs an incremental backup of the data. Each of these backups is
called a recovery point. Incremental backups are a time-efficient approach that opti-
mizes the storage and network bandwidth usage. Only data that has changed since the
previous backup is securely transferred to the destination backup location. Figure
13.2 details how incremental backups work.

Incremental backup

The first backup
operation backs up all
data from the VM to
the selected recovery

location.

The next backup job backs
up only the data that has

changed since the previous
backup operation.

Additional backup jobs continue
to back up only the data that

has changed since the previous
backup operation.

Full backup Incremental backup

Protected
VM

Figure 13.2  Incremental backups back up only the data that has changed since the previous operation. The first
backup is always a full backup. Each subsequent backup job backs up only data that has changed since the
previous job. You control the frequency of full backups with policies. This approach minimizes the amount of data
that needs to travel securely across the network and be housed in the destination storage location. Azure Backup
maintains the relationships of incremental backups to ensure that when you restore data, that data is consistent
and complete.

With Azure Backup, you can store up to 9,999 recovery points for each instance that
you protect. For some context, if you made a regular daily backup, you’d be set for
more than 27 years. And you could keep weekly backups for almost 200 years. I think
that would cover most audit situations! You can choose to retain backups on a daily,
weekly, monthly, or yearly basis, which is in line with most existing backup policies.

To implement the optimal backup strategy for your workload, you need to under-
stand and determine your acceptable recovery point objective (RPO) and recovery time
objective (RTO).

194 Chapter 13  Backup, recovery, and replication

Recovery point objective

The RPO defines the point that your latest backup allows you to restore. By default,
Azure Backup makes a daily backup. Then you define retention policies as to how
many days, weeks, months, or years you wish to keep these recovery points. Although
the RPO is typically used to define the maximum amount of acceptable data loss, you
should also consider how far back in time you may wish to go. Figure 13.3 shows how
the RPO defines the amount of acceptable data loss.

Protected VM

Daily
backup

Weekly
backup

Acceptable data loss

Maximum
1-day data loss

Maximum
1-week data loss

Figure 13.3  The RPO defines how much data loss you can sustain for a protected
instance. The longer the RPO, the greater the acceptable data loss. An RPO of 1 day
means that up to 24 hours of data could be lost, depending on when the data loss
occurred in relation to the last backup. An RPO of one week means up to seven days’
worth of data could be lost.

Major outages and large amounts of data loss are rare occurrences. More common are
incidents of small data loss or overwrites. These incidents often aren’t noticed or
reported until sometime after the data loss occurred. This is where the retention pol-
icy for your protected instances becomes important. If you have a short retention pol-
icy, you may be unable to restore data from the required point in time. You need to
determine a balance between retaining multiple recovery points and the storage costs
to retain all those recovery points.

Azure storage is relatively cheap, typically less than $0.02 per gigabyte of storage.
This cost equates to approximately $2 per month for a 100 GB VM data backup (plus
a charge for the actual Azure Backup service). Depending on how much your data
changes, the size of the incremental recovery points could add up quickly. Retaining
recovery points for weeks or months could cost tens of dollars per month per pro-
tected instance. This isn’t to discourage you, but it’s important to plan your needs and
be smart about your costs. Storage looks cheap at less than $0.02 per gigabyte until
you have hundreds of gigabytes per protected instance and dozens or even hundreds
of instances to protect.

I’m a former backup administrator, and storage capacity was often a central factor
when I determined how many recovery points to retain. That storage capacity often

	 195Azure Backup

created compromises with those RPOs. If you use Azure Storage rather than an on-
premises storage solution, you don’t need to worry about available storage capacity. I
can all but guarantee that there’s more storage than your credit card limit!

Recovery time objective

The RTO dictates how quickly you can restore your data. If you choose to back up
Azure VMs and store the recovery points in an on-premises storage solution, it takes
much longer to restore those backups than if they were housed directly in Azure Stor-
age. The inverse would be true if you backed up on-premises VMs or physical servers
to Azure Storage. Figure 13.4 outlines the RTO.

Protected VM

Single full
backup Acceptable duration of

application outage

Shortest
time to

recover data

Progressively
longer

recovery time

Multiple
incremental

backups

Figure 13.4  The RTO defines how long it’s acceptable for the data-restore process
to take and the application to be unavailable. The more recovery points are involved
in the restore process, the longer the RTO. In a similar manner, the closer the backup
storage is to the restore point, the shorter the RTO.

In either scenario, the recovery-point data would need to be transferred from the
recovery-point storage location to the restore location. For large restore operations, in
which you may need to transfer hundreds of gigabytes, your network bandwidth
becomes a real bottleneck that controls how quickly you can make applications avail-
able again.

The same is true for long retention policies with many successive incremental
recovery points. Restoring the data may require that multiple recovery points be
mounted and restored. Your job is to determine how far back in time you need to be
able to travel and how much time you can take to restore the data.

Both RPO and RTO vary based on your applications and business use. An applica-
tion that processes real-time orders can’t tolerate much outage or downtime, so the
RPO and RTO are likely to be very low. You typically use a database to hold your data,
so you’d typically design tolerances into the application rather than rely on recovery
points. If you think back to Cosmos DB, there isn’t anything to back up: the Azure plat-
form performs the replication and data protection for you. If you built a custom solu-
tion on MySQL or Microsoft SQL Server, you’d typically use a similar type of clustering

196 Chapter 13  Backup, recovery, and replication

and replication to ensure that multiple copies of the database exist, so the loss of one
instance wouldn’t require you to restore from a backup. Backups primarily protect
against a major outage or data corruption.

13.1.2	 Backup schedules

How do you control the frequency of your backups and the retention of the recovery
points? In Azure Backup, these settings are defined in policies. You build these poli-
cies to cover the various scenarios you wish to protect against, and you can reuse the
policies for multiple protected instances.

A backup policy may define that you want to make a backup at 6:30 p.m. each day,
for example. You wish to keep daily backups for 6 months and rotate them to retain
weekly backups for 2 years. For compliance purposes, you retain monthly backups for
5 years. A yearly backup is retained for 10 years. These retention values may appear
excessive, but for an application that involves communication and messaging, you often
need to retain backups for regulatory and compliance purposes for these long
time frames. Azure Backup provides the flexibility to define policies to suit different
application workloads and quickly enforce compliance.

Try it now
All your Azure backups are stored in a Recovery Services vault. To create a vault and
backup policy, complete the following steps:

1	 Open the Azure portal, and choose Create a Resource from the menu at top left.

2	 Search for and select Backup and Site Recovery, and then choose Create.

3	 Create a resource group, such as azuremolchapter13, and then enter a name
for the vault, such as azuremol.

4	 Select a location, and then review and create the vault.

5	 When the vault has been created, choose Resource Groups from the menu at
left in the portal, and then choose the resource group you created.

6	 Select your Recovery Services vault from the list of available resources, choose
Backup Policies from the menu at left, and then choose to add a policy.

7	 Select the Azure Virtual Machine policy type, and provide a name for your new
policy, such as molpolicy. By default, a backup is created each day.

8	 Choose the most appropriate time zone from the drop-down menu. By default,
Azure uses Universal Coordinated Time (UTC).

If you wish, review and adjust the retention policies for daily, weekly,
monthly, and yearly. The section on the concepts of backup and retention
schedules detailed how you would select these values. These values typically vary
as you create and apply backup policies to protect your VM instances.

9	 When you’re ready, select Create.

	 197Azure Backup

The simple life
You can also configure VM backups when you create a VM in the Azure portal. On the
Settings page where you configure virtual network settings or diagnostics and trou
bleshooting options, you can enable Azure Backup. You can pick an existing Recovery
Services vault or create one, and then create or use a backup policy. You can’t cur-
rently enable backups as part of the VM deployment in the Azure CLI or Azure Power-
Shell, but it usually takes a single command postdeployment to do so.

I like to plan a backup strategy, retention policies, and schedules, which is why these
exercises created the Recovery Services vault and policies first. But if you want to cre-
ate a VM and enable backups quickly, you can do that in the Azure portal in one step.

Now you have a backup policy, which also defines retention policies for various peri-
ods, but you have nothing to back up yet. Let’s create a VM with Cloud Shell so that
you can create a backup and, in a later exercise, replicate the data.

Try it now
To create a test VM for backup and replication, complete the following steps:

1	 Select the Cloud Shell icon at the top of the Azure portal.

2	 Create a VM with az vm create; provide the resource group name you cre-
ated in the previous lab, such as azuremolchapter13; and then enter a VM
name, such as molvm:

az vm create \
--resource-group azuremolchapter13 \
--name molvm \
--image win2019datacenter \
--admin-username azuremol \
--admin-password P@ssw0rdMoL123

A backup policy is defined, and a test VM is ready. To see Azure Backup in action, let’s
apply your backup policy to the VM.

Try it now
To back up a VM with your defined policy, complete the following steps:

1	 Select Resource Groups from the menu at left in the portal.

2	 Choose the resource group, and then the VM you created.

3	 Under Operations, select Backup.

4	 Make sure that your Recovery Services vault is selected, and choose your backup
policy from the drop-down menu.

198 Chapter 13  Backup, recovery, and replication

5	 Review the schedule and retention options, and then enable the backup. It
takes a few seconds for the backup policy to be applied.

6	 When the policy is enabled, return to the backup settings. The VM status
reports Warning (Initial backup pending).

7	 To create the first backup, choose the Backup Now button, as shown in figure
13.5.

Figure 13.5  To create the first backup, select the Backup Now button. The status updates when
complete and shows the latest backup time, latest restore point, and oldest restore point.

It can take 15 to 20 minutes for the first complete backup operation to finish. To see the
progress of the backup job, you can select the View All Jobs option. There’s no progress
bar or percentage indicator, but you can make sure that the job is still running.

That’s all it takes to back up VMs and protect your data in Azure! Keep reading to see
how you can restore the data should something go wrong.

13.1.3	 Restoring a VM

Azure Backup allows you to restore a complete VM or perform a file-level restore. In
all my years in the field, file-level restore operations were the more common of the
two. This type of restore job is usually performed when files are deleted or acciden-
tally overwritten. File-level restores usually determine the retention policies for your
backups. The more important the data, the more likely you want to retain backups
longer, in case you get a late-night call to restore a file from six months ago.

A complete VM restore, as you might expect, restores the entire VM. Rarely have I
performed a complete VM restore to bring a deleted VM back online. A great use case
for a complete VM restore is to provide a test VM that’s functionally equivalent to the
original. You can restore a VM and then test a software upgrade or other maintenance

	 199Azure Backup

procedure, which can help you identify potential problems and create a plan for han-
dling the real production VM.

It’s also important to test your backups regularly. Don’t wait until you need to
restore data in a real-world scenario. Trust Azure Backup, but verify that you know
how and where to restore the data when needed!

File-level restore

A file-level restore is a pretty cool process in
Azure Backup. To give you flexibility in how
and where you restore files, Azure creates a
recovery script that you download and run.
This recovery script is protected by a pass-
word so that only you can execute the recov-
ery process. When you run the recovery
script, you’re prompted to enter the pass-
word before you can continue. The window
for downloading the recovery script is shown
in figure 13.6.

When you run the recovery script, your
recovery point is connected as a local filesys-
tem on your computer. For Windows VMs, a
PowerShell script is generated, and a local
volume is connected, such as F:. For Linux
VMs, the recovery point is mounted as a data
disk, such as /dev/sdc1 in your home vol-
ume. In both cases, the recovery script clearly
indicates where you can find your files.

When you’ve finished restoring files from
the recovery vault, return to the Azure por-
tal, and select the Unmount Disks option.
This process detaches the disks from your local
computer and returns them for use in the
recovery vault. Don’t worry if you forget
to perform this unmount process in the heat of
the moment when you need to restore
files quickly for a production VM! Azure
automatically detaches any attached recovery
points after 12 hours.

Complete vm restore

A complete VM restore creates a VM, connects the VM to the virtual network, and
attaches all the virtual hard disks. Let’s try the process for a complete VM restore.
Because it’s always best to test maintenance updates before you perform them for real,
this restore exercise is good practice.

Figure 13.6  When you perform a file-level
restore, you choose a recovery point to
restore. Then a recovery script is
downloaded to your computer. You can
execute this script only by entering the
generated password. The recovery script
mounts the recovery point as a local
volume on your computer. When you’ve
restored the files you need, unmount the
disks from your computer, which returns
them for use in the recovery vault.

200 Chapter 13  Backup, recovery, and replication

Try it now
To restore a complete VM, complete the following steps:

1	 From your resource group, select the VM that you backed up in the previous
exercise.

2	 Select the Backup option from the menu at left in the VM. The backup over-
view should report that a recovery point has been created, as shown in figure
13.7. If not, wait a few minutes, and then come back to this exercise. Or just
read what the process entails.

Figure 13.7  When the VM backup is complete, the overview page shows the data from the last
backup and available restore points. To start the restore process, select Restore VM.

3	 Select the Restore VM button, choose a restore point from the list, and then
select OK.

4	 Choose a restore point, and choose how to restore the VM. You can choose to
create a new VM or replace an existing VM.

The default option is to create a new VM. In this configuration, a new VM is
created and connected to the specified virtual network, and the disks are
restored and connected.

You can also choose to replace an existing VM. In this scenario, the disks are
restored from the backup and attached to the existing VM. Whatever virtual
network or other configuration options applied to the VM are retained.

5	 For this exercise, chose to restore to a new VM. Provide a name for the restored
VM, such as restoredvm, and then review the settings for virtual network and
storage. In production, you typically connect the restored VM to an isolated vir-
tual network so that you don’t affect production traffic.

6	 Select OK and then Restore.

	 201Azure Site Recovery

It takes a few minutes to connect the recovery point and create a restored VM with the
previous disks attached. At this point, you could connect to the restored VM to test
software upgrades or restore large amounts of data as needed.

You can also back up a web app, so this approach isn’t just for VMs. The process is
a little different, but the concepts are the same. Moving your application model to a
PaaS solution like a web app doesn’t mean you can forget the basics of data backups and
retention!

13.2	 Azure Site Recovery
Remember when we discussed Cosmos DB, and you learned that with the click of a but
ton, your data is replicated to a completely different Azure region for redundancy and
fault tolerance? You can do that with entire VMs too! Azure Site Recovery is a powerful
service that can do way more than just replicate VMs to a different region. Figure 13.8
outlines how Azure Site Recovery acts to orchestrate workloads between locations.

Azure Site
Recovery

Azure
VMs

VMware
VMs

Hyper-V
VMs

Physical
servers

Azure region
Secondary

on-premises
location

On-premises resources

Various virtual or
physical servers can be
protected and replicated
with Site Recovery. Azure Site Recovery acts as

an orchestrator to replicate
workloads based on
defined policies that define
the schedule and locations.

Resources can be
replicated or migrated
to Azure or a secondary
on-premises location.

Figure 13.8  Azure Site Recovery orchestrates the replication and migration of
physical or virtual resources to another location. Both on-premises locations and Azure
can serve as source and destination points for protection, replication, or migration.

An important aspect is that Azure Site Recovery is for more than just Azure VMs; Site
Recovery can be used to replicate on-premises VMware or Hyper-V VMs to Azure for
disaster recovery (DR) or as part of a migration to Azure. You can also use Azure Site
Recovery purely as the orchestrator to replicate on-premises VMs from one location to
a secondary on-premises location.

202 Chapter 13  Backup, recovery, and replication

In the same way that Azure Backup doesn’t mean “works only with Azure,” Azure
Site Recovery doesn’t mean “replicates only Azure VMs.” Both Azure Backup and
Azure Site Recovery can be used as hybrid solutions for backup and disaster recovery.
These Azure services can be used to protect all your workloads, both on-premises and
in Azure. Then a single reporting structure for compliance and validation can be gen
erated to make sure that all the workloads you think are protected are indeed safe
from data loss.

Why would you use Azure Site Recovery? Two primary reasons are most common:
replication and migration.

Replication protects you from a complete Azure region outage. It would take a cat
astrophic event for an entire region to go offline, but when you work in IT, you know
that anything is possible. Even Availability Sets and Availability Zones, which we talked
about in chapter 7, typically protect you only from a smaller outage within an Azure
region. If the entire region goes down, your app will go down. With Site Recovery,
your entire application environment, including virtual network resources, is repli-
cated to a secondary Azure region. At the click of a button, that secondary location
can be brought online and made active. Then traffic can route to this secondary loca-
tion and begin to serve your customers. Figure 13.9 shows a high-level overview of how
Azure Site Recovery protects your environment.

Azure virtual
network

Subnet

Azure VM

Virtual disks
Replication policy

Recovery Services vault

Azure Site Recovery

East US

Azure virtual
network

Subnet

Virtual disks

West US

Production
environment

Recovery
environment

VM,
configuration,
storage, and

virtual
network

replicated

Configuration
and data

replicated
from

production
based on

defined policy

Figure 13.9  Azure Site Recovery replicates configuration, data, and virtual networks from the
production environment to a recovery environment. The VMs aren’t created in the recovery environment
until a failover is initiated. Only the data replicates.

The VM is just metadata that defines what the VM size is, what disks are attached, and
what network resources the VM connects to. This metadata is replicated, which allows
the VMs to be created quickly when a failover is initiated. The virtual disks are repli-
cated to the recovery environment and are attached when a recovery VM is created
during a failover event.

	 203Azure Site Recovery

For Azure-to-Azure replication, there’s no defined replication schedule. The disks
replicate in almost real time. When data on the source virtual disks changes, it’s
replicated to the recovery environment. For hybrid workloads, where you protect
on-premises VMware or Hyper-V VMs, you define policies that control the replication
schedule.

If we focus on Azure-to-Azure replication, how does the data replicate in near real
time? A storage account cache is created in the production environment location, as
shown in figure 13.10. Changes written to the production virtual disks are immedi-
ately replicated to this storage account cache. Then the storage account cache is repli-
cated to the recovery environment. This storage account cache acts as a buffer so that
any replication delays to the distant recovery location don’t affect performance on the
production workload.

Virtual disks

Azure VM

East US

Storage account
cacheData written to

production disks
is immediately

replicated to the
storage account cache.

Production environment

Virtual disks

West US

Recovery environment

Data replicated
from storage

account cache to
recovery

environment

Figure 13.10  Changes on the production disks are immediately replicated to a storage account cache.
This storage account cache prevents performance effects on the production workloads as they wait to
replicate changes to the remote recovery location. Then the changes from the storage account cache
are replicated to the remote recovery point to maintain data consistency.

The process of configuring Site Recovery for Azure-to-Azure replication is straightfor-
ward, but it takes some time to create all the necessary replicated resources and com-
plete the initial data replication. In the end-of-chapter lab, you’ll configure this Azure-
to-Azure replication.

What can you do with VMs replicated to a secondary location with Azure Site
Recovery? For the most part, cross your fingers and hope that you don’t need them!
But there are a couple of scenarios in which you would need them.

The first should be obvious: a major outage. If an Azure region becomes totally
unavailable, such as because of a natural disaster in the area, you can initiate a failover
of your resources. This failover tells Azure Site Recovery to create VMs in the recovery
location based on the replicated VM metadata and then attach the appropriate virtual
hard disks and network connections. You could also be proactive here: if a natural
disaster is forecast to hit an Azure region, you could initiate a failover before the event
takes place. This approach lets you decide when to incur some potential downtime as

204 Chapter 13  Backup, recovery, and replication

the resources fail over to the secondary location, typically outside primary business
hours. When the forecast event has passed in the primary Azure region, you can fail
back your resources and continue to run as normal.

The second scenario in which you may fail over is to test that the process works. In
the same way that backups should be regularly tested, you should test a replication
and failover plan. It would be pretty embarrassing and stressful to find that when you
need to bring a secondary location online, there’s some misconfiguration on the vir-
tual networks, or one of the applications doesn’t fail over gracefully. Helpfully, Azure
provides an option specifically for testing failover. An isolated Azure virtual network is
typically used in the secondary location, and the production workloads continue to
run as normal in the primary location. If you use Azure Site Recovery, be sure to test
the failover process regularly!

13.3	 Lab: Configuring a VM for Site Recovery
There are several prerequisites for configuring on-premises VMware or Hyper-V repli-
cation with Azure Site Recovery. It’s a great feature, both for disaster-recovery pur-
poses and to migrate VMs to Azure, but it takes up way more than your lunch break! If
you want to learn more about those scenarios, head over to http://mng.bz/x71V.

Let’s set up Azure-to-Azure replication with the test VM you created and backed up
earlier:

1	 In the Azure portal, choose Resource Groups from the menu at left.

2	 Select the resource group you used in the previous exercises, such as
azuremolchapter13.

3	 Select the VM you created in the earlier exercises, such as molvm.

4	 Choose Disaster Recovery from the menu at left in the VM window.

5	 Under the advanced settings, look at the default settings used by Azure Site
Recovery to create a resource group and a virtual network at the destination
location. A storage account cache is created to replicate from the source virtual
disks, and a Recovery Services vault and policy are created to control the replica-
tion process.

6	 There’s nothing you need to change here, although if you use Site Recovery in
production and have multiple VMs to protect, you’ll need to review how the
VMs map to existing replicated virtual networks and subnets. For this lab,
review and enable the replication using the default values.

Now go back to work. Seriously! It takes a while to configure all the replicated
resources and complete the initial data sync. Don’t wait around unless your boss is
fine with your taking a really long lunch break today!

	 205Lab: Configuring a VM for Site Recovery

Keeping your backups safe from deletion
I hope that as a best practice, you’ve deleted resource groups and their resources at
the end of each chapter to keep your free Azure credits available for use in the rest
of the book.

If you have VMs that are protected with Azure Backup or Site Recovery, you can’t
delete the Recovery Services vault or resource group for the VM. The Azure platform
knows you have active data that’s backed up or replicated and prevents those
resources from being deleted.

To delete protected VMs, first disable any active backup jobs or replicated VMs.
When you do so, you can choose to retain the protected data or remove it. For the
lab exercises in this chapter, choose to delete the restore points. As a security fea-
ture, Azure automatically soft-deletes these restore points and lets you undelete
them for 14 days. There’s nothing for you to configure here, and you can’t forcefully
remove these soft-deleted restore points. I don’t recommend it, but you can also dis-
able the soft-delete function of a Recovery Services vault by selecting the Properties
of the vault in the Azure portal.

The good news is that the rest of the resource group can be deleted, and you don’t
pay for these soft-deleted restore points. When the 14-day soft-delete period is up,
the Recovery Services vault can be deleted as normal. The goal here is to protect you
from accidental, or malicious, deletion of restore points and give you time to realize
that they’re actually needed and recover them.

206

14Data encryption

The security of your data is important. More specifically, the security of your cus
tomers’ data is critical. We hardly go a week without reading in the news about a
major company that encountered a data breach. Often, these incidents are caused
by a lack of security, misconfiguration, or plain carelessness. In this digital age, it’s
all too easy for attackers to automate their attempts to gain access to your data. The
time to recover from a security incident at an application level may be nothing
compared with how long it takes the business to regain the trust of its customers if
their data was exposed.

Azure includes encryption features that make it hard to claim you don’t have
the time or expertise to secure your data. In this chapter, we examine how to
encrypt data stored in Azure Storage, on managed disks, or the complete VM.
Entire books have been written about data encryption, and this chapter doesn’t
dive deep into encryption methods and considerations. Instead, you see how to
enable some of the core Azure features and services to secure your data throughout
the application lifecycle.

14.1	 What is data encryption?
When you purchase something online, do you check that there’s a little padlock
icon on the address bar to indicate that the website uses HTTPS? Why is it bad to
send your credit details over a regular, unsecured HTTP connection? Every bit of
data in a network packet that flows between devices could potentially be monitored
and examined. Figure 14.1 shows how shopping online without an HTTPS connec-
tion could be bad for your credit card statement.

There’s no excuse for web servers to use unsecure connections. Every web app
that you create in Azure automatically has a wildcard SSL certificate applied to it.

	 207What is data encryption?

HTTP
website

connection
InternetCustomer

Attacker

011110101

011110101

Data transmitted over an
unencrypted HTTP
connection can be

intercepted by attackers.

The web server is
unaware that traffic

has been
intercepted. It can’t
protect your data.

Attackers can view all of
your network traffic and
piece together your private
information, such as credit
card details and billing
address.

Figure 14.1  In this basic example, an attacker could intercept network traffic that’s sent
over an unencrypted HTTP connection. Because your data isn’t encrypted, the attacker
could piece together the network packets and obtain your personal and financial information.
If you instead connect to the web server over an encrypted HTTPS connection, an attacker
can’t read the contents of the network packets and view the data.

An SSL certificate is a digital component that’s used to secure the web server and allow
a web browser to validate the connection. A wildcard SSL certificate can be used
across an entire domain, such as *.azurewebsites.net, the default domain for web
apps. When you created a web app in chapter 3, you could have added https:// to the
web address and started to use encrypted communications with your web apps. That’s
all there is to it!

Custom SSL certificates are relatively cheap and easy to implement. Through proj-
ects such as Let’s Encrypt (https://letsencrypt.org), you can obtain a certificate for
free and automatically configure your web server in minutes. You can also buy and use
an App Service Certificate that integrates directly into Web Apps. App Service Certifi-
cates are stored in Azure Key Vault, which we’ll look at more in chapter 15.

As you design and build applications in Azure, you should implement secure com-
munications wherever possible. This approach helps secure the data while it’s in tran-
sit. But what about when that data is written to disk? A similar process exists for disks
and VMs that secures and protects your data at rest. Figure 14.2 shows how disk and
VM encryption works.

I hope that these simplified examples of data encryption in Azure motivate you to
implement encryption as you design and build applications in Azure. Most customers
expect their data to be secured, and many companies have regulatory and compliance
mandates that require encryption. Don’t think only about the potential fines to the
business for a data breach or the loss of customer trust. Consider the risk that the cus-
tomers’ personal and financial data will be exposed and how that exposure could

208 Chapter 14  Data encryption

Figure 14.2  When you encrypt
your data, only you can decrypt
and view the contents. If an
attacker were to gain access to a
virtual disk or individual files,
they wouldn’t be able to decrypt
the contents. Encryption
methods can be combined:
customers can connect to your
web over HTTPS, you can force
traffic to storage accounts to be
over HTTPS, and you can encrypt
the data that’s written to disk.

affect their daily lives. You probably don’t like the idea of your own data being
exposed, so do all you can to protect the data of your customers.

14.2	 Encryption at rest
If data encryption is so important, how do you use it in Azure? Just keep doing what
you’ve already learned in this book! Right at the start, I mentioned that all of your
VMs should use managed disks, right? There are many good reasons for that, one of
which is security. A managed disk is automatically encrypted. There’s nothing for you
to configure, and there’s no performance impact when it’s enabled. There’s no opt-
out here; your data is automatically encrypted at rest with managed disks.

What does it mean for the data to be encrypted at rest? When you use managed disks,
your data is encrypted when it’s written to the underlying Azure storage. The data that
resides on the temporary disks, or data that exists in memory on the VM, isn’t
encrypted. Only when the OS or data disk’s data rests on the underlying physical disk
does it become encrypted. Figure 14.3 shows how the data is encrypted as it’s written
to a managed disk.

Managed
diskTemp.

disk
Virtual

memory

Virtual machine

Data is encrypted when
written to a managed disk.

Temporary disk and
in-memory data on the
VM aren’t encrypted.

Figure 14.3  As data is written to a managed disk, it’s encrypted. In-memory
data on the VM, or data on temporary disks local to the VM, isn’t encrypted
unless the entire VM is enabled for encryption, which we’ll look at in section 14.4.2.
The automatic encryption of data written to managed disks causes no overhead
to the VM. The Azure platform performs the encryption operation on the underlying
storage. The VM doesn’t need to handle any encrypt/decrypt processes.

Azure
Managed

Disk

Azure
Storage

blob

Azure
Storage

file
Azure VM

Application

011110101

011110101

Data is encrypted as it’s
written to disk. The data
can be accessed and
decrypted only with your
encryption keys.

For Azure VMs, in-memory data
and temporary disks are also
encrypted. Only you can decrypt
and view the VM’s data.

	 209Storage Service Encryption

This encryption at rest for managed disks means that there’s no performance impact
on the VMs. There’s no additional processing for the VM to perform to encrypt and
decrypt the data, so all the available CPU power can be used to run applications. In
typical VM encryption scenarios, the VM uses a certain amount of compute power to
process and manage the data encryption. The trade-off to the automatic managed
disk encryption is that only the OS and data disks are secured. Potentially, other in-
memory or temporary disk data on the VM could be exposed.

Microsoft manages the digital encryption keys within the Azure platform with the
automatic encryption of managed disks. This does create another trade-off in that you
can automatically encrypt your data without the need to create, manage, rotate, or
revoke keys, but you have to trust Microsoft to protect those keys.

14.3	 Storage Service Encryption
Automatic managed disk encryption is great, but what if you use Azure Storage for
blob or file storage? Azure Storage Service Encryption (SSE) lets you encrypt data at
the storage account level. Data is encrypted as it’s written to the account. Again,
Microsoft handles the encryption keys, so no management overhead or configuration
is required. The Azure platform abstracts the key generation and management for
you. If you prefer, you can create and use your own encryption keys, with a little addi-
tional management overhead. Like automatic managed disk encryption at rest, Azure
storage encryption is automatically enabled when you create an account.

The goal of both automatic managed disk encryption and SSE is to make it as easy
as possible for you to encrypt your data and spend more time designing, building, and
running your applications. Figure 14.4 shows how SSE protects your data and can also
force secure communications when data is in transit.

Application
HTTPS

Encrypted storage
account

Data
Data is encrypted as
it’s written to blob
or file storage.

FileBlob Only traffic that uses
encrypted communication,
such as HTTPS, is accepted.

HTTP

Figure 14.4  When you enable SSE, Azure blobs and files are encrypted as the data is written to
disk. Azure tables and queues aren’t encrypted. For additional data security, you can force all
communications with a Storage account to use secure communication protocols, such as HTTPS.
This protects the data in transit until the moment it’s encrypted on disk.

Forcing storage traffic to use secure transfers
Along with enabling SSE, you can force all storage requests and transfers to use a
secure communication method. This setting forces all REST API calls to use HTTPS
and all Azure file connections that don’t enable encryption, such as older versions of
the SMB protocol, to be dropped.

210 Chapter 14  Data encryption

(continued)
Azure SDKs, such as the Python examples we examined in chapter 4, can use
encrypted connections. The reference docs for each language-specific SDK provides
guidance on how to implement secure communications.

The use of secure communications should be built into applications from the start.
It may cause problems to enable secure communications on an existing application
if some components weren’t originally configured appropriately. At the very least,
test secure communications for an existing application in a development environ-
ment first.

Try it now
To create a storage account and enable both encryption and secure communications,
complete the following steps:

1	 Open the Azure portal, and choose the Cloud Shell icon from the top menu.

2	 Create a resource group; provide a name, such as azuremolchapter14; and
provide a location, such as eastus:

az group create --name azuremolchapter14 --location eastus

3	 Create a storage account with az storage account create. Provide a unique
name, such as azuremolstorage, and enter the resource group that you cre-
ated in step 2. Enter a storage account type, such as Standard_LRS for locally
redundant storage. To force secure communications, set --https-only.

az storage account create \
--name azuremolstorage \
--resource-group azuremolchapter14 \
--sku standard_lrs \
--https-only true

4	 Verify that the storage account is encrypted and enabled for secure communica-
tions by querying for enableHttpsTrafficOnly and the encryption
parameters:

az storage account show \
--name azuremolstorage \
--resource-group azuremolchapter14 \
--query [enableHttpsTrafficOnly,encryption]

The output is similar to the following:

[
  true,
  {
   "keySource": "Microsoft.Storage",

	 211VM encryption

   "keyVaultProperties": null,
   "services": {
    "blob": {
     "enabled": true,
     "lastEnabledTime": "2019-09-27T03:33:17.441971+00:00"
    },
    "file": {
     "enabled": true,
     "lastEnabledTime": "2019-09-27T03:33:17.441971+00:00"
    },
    "queue": null,
    "table": null
   }
  }
]

14.4	 VM encryption
The automatic encryption of Azure Managed Disks helps provide a level of VM secu-
rity. For a comprehensive approach to VM data security, you can encrypt the VM itself.
This process involves more than encrypting the underlying virtual hard disks. The OS
disk and all attached data disks, along with the temporary disk, are encrypted. The VM
memory is also encrypted to further reduce the attack surface. You use digital keys to
encrypt VMs.

One advantage of encrypting the entire VM is that you manage the encryption
keys. These encryption keys are securely stored in Azure Key Vault, and you can
choose between using software- and hardware-generated keys. You control these keys,
so you can define access to them and use role-based access controls and auditing to
track usage. You can also rotate the encryption keys on a defined schedule, much like
changing your password every 60 or 90 days. These additional controls and manage-
ment tasks for encryption keys add some management overhead but provide maxi-
mum flexibility for securing your data, and they may be required for certain
regulatory purposes. Let’s look a little more at Azure Key Vault.

14.4.1	 Storing encryption keys in Azure Key Vault

We’ll spend chapter 15 on Azure Key Vault, but I want to show you the power of data
encryption and VM encryption first. As a quick overview, Azure Key Vault is a digital
vault that allows you to securely store encryption keys, SSL certificates, and secrets
such as passwords. For redundancy, key vaults are replicated across Azure regions.
This replication protects your keys and secrets, and ensures that they’re always avail-
able for use.

Only you have access to your key vaults. You generate and store objects in key
vaults and then define who has access to those vaults. Microsoft manages the underly-
ing Key Vault service but has no access to the contents of the vaults. This security
boundary means when you encrypt your data in Azure, you are the only one who can
decrypt and view it.

212 Chapter 14  Data encryption

Try it now
To create a key vault and encryption key, complete the following steps:

1	 Open the Azure portal, and choose the Cloud Shell icon from the top menu.

2	 Create a key vault with the az keyvault create command; specify the resource
group you created in the previous exercise, such as azuremolchapter14; and then
provide a unique name for your key vault, such as azuremolkeyvault:

az keyvault create \
--resource-group azuremolchapter14 \
--name azuremolkeyvault \
--enabled-for-disk-encryption

Let’s pause and think about why you add a parameter for --enabled-for-disk-
encryption. When you encrypt a VM, the Azure platform needs to be able to start
and decrypt the VM so that it can run. The Azure platform doesn’t have any permis-
sions to access that data, and Microsoft doesn’t have access to view and use those
encryption keys for anything other than starting a VM. When you enable a key vault
for disk encryption, you grant permissions for Azure to access the key vault and use
the encryption key associated with a VM.

Again, Microsoft doesn’t have access to these keys or your data—only the ability to
start your encrypted VM. It’s pretty hard to do much with an encrypted VM when it
can’t boot. Figure 14.5 shows how the Azure platform uses the encryption key to start an
encrypted VM.

Encryption key

Azure Key Vault
Azure VM

1. Azure platform attempts to
start encrypted VM. It obtains
details for encryption key
required.

2. Azure platform requests
encryption key from key vault to
decrypt and start VM

3. Key vault
enabled for disk
encryption and
returns required key

4. VM successfully
started

Azure
platform

Figure 14.5  When a key vault is enabled for disk encryption, it grants permission for the Azure platform
to request and use the encryption key to successfully start an encrypted VM.

Keys can be created and stored in software, or they can be stored in hardware security
modules (HSMs) for additional security. For many purposes, software keys work great,
although you may have security mandates that require the use of HSMs. We’ll discuss
this topic more in chapter 15.

	 213VM encryption

3	 To create a key, specify the vault you created in step 2, such as azure
molkeyvault, and then provide a key name, such as azuremolencryptionkey:

az keyvault key create \
--vault-name azuremolkeyvault \
--name azuremolencryptionkey \
--protection software

14.4.2	 Encrypting an Azure VM

The encryption key you created in section 14.4.1 can be used to encrypt many VMs, if
desired. This approach minimizes the overhead of key management and, if you use
virtual machine scale sets, allows you to autoscale the number of VM instances without
the need to generate encryption keys each time. The alternative is that each VM has
its own encryption key, which adds complexity but provides a layer of security for your
VMs. If you have the same encryption key used for backend application VMs and then
database VMs, for example, a theoretical attacker with that one key could gain access
to the data of both sets of VMs. If different keys are used, the number of potentially
compromised VMs is lower. In the end-of-chapter lab, you’ll encrypt a single VM,
although the same process can work with a scale set that has multiple VMs but uses
just the one key. Especially when you work with larger, autoscaling applications, be
sure to design and build in security features.

When you encrypt a VM, an Azure VM extension is installed. The extension controls
the encryption of the OS disk, temporary disk, any attached data disks, and in-memory
data, as shown in figure 14.6. For Windows VMs, the BitLocker encryption mechanism
is used. For Linux VMs, dm-crypt is used to process the encryption. Then the VM exten
sion can report back on the status of encryption and decrypt the VM as desired.

Azure VM

VM disk
encryption
extension

Bitlocker /
DM- Crypt

process

When you encrypt a VM, the
VM disk encryption extension is
installed into the VM.

Extension manages
OS-level processes to
encrypt/decrypt data.

Extension

Figure 14.6  When you encrypt a VM, the Azure disk encryption extension is installed. This extension
manages the use of BitLocker on Windows VMs or dm-crypt on Linux VMs, to perform the data encryption
on your VM. The extension is also used when you query the encryption status for a VM.

Because the VM disk encryption extension relies on BitLocker or dm-crypt, there are
some limitations on the use of VM encryption. Most Azure Marketplace images sup-
port disk encryption, although some restrictions exist on VM sizes that support
encryption or encryption of connected network file shares such as Azure files. For the

214 Chapter 14  Data encryption

most comprehensive information on supported limitations and considerations for VM
encryption, read the latest Azure docs at http://mng.bz/yyvd.

This chapter provided a quick intro to the data security and encryption features in
Azure. Automatic encryption for managed disks and SSE doesn’t require much con
figuration, so there’s no real barrier to prevent you from using them.

14.5	 Lab: Encrypting a VM
Let’s see all this in action by encrypting a VM with the encryption key you stored in
your key vault:

1	 Create a VM. Most Linux images in the Azure Marketplace support encryption,
as do the Windows Server images from Server 2008 R2 and later. To make it
quick and easy, create an Ubuntu LTS VM, just as you have for most of this
book. As the VM requires enough memory to perform the disk encryption
operation, specify a size of Standard_D2s_v3:

az vm create \
--resource-group azuremolchapter14 \
--name molvm \
--image ubuntults \
--size Standard_D2s_v3 \
--admin-username azuremol \
--generate-ssh-keys

2	 Enable encryption on the VM, and provide the name of the Azure Key Vault
and digital key you created in a previous exercise:

az vm encryption enable \
--resource-group azuremolchapter14 \
--name molvm \
--disk-encryption-keyvault azuremolkeyvault \
--key-encryption-key azuremolencryptionkey

It takes a few minutes to install the Azure VM disk encryption extension and
begin the process of encrypting the VM.

3	 When encryption has started, monitor the progress, and be ready to restart the
VM to complete the encryption process. View the status as follows:

az vm encryption show \
--resource-group azuremolchapter14 \
--name molvm \
--query ‘status’

Here’s some example output of a VM in the process of being encrypted. At the
start, the status message reports as

[
  {
   "code": "ProvisioningState/succeeded",
   "displayStatus": "Provisioning succeeded",
   "level": "Info",

	 215Lab: Encrypting a VM

   "message": "OS disk encryption started",
   "time": null
  }
]

It can take a while to complete the disk encryption, so this may be another good
lab exercise to come back to in an hour or so—unless you want a long lunch
break! Hey, I’m still not your boss, but it gets boring looking at the same encryp-
tion status message.

4	 When the encryption status reports as Encryption succeeded for all vol-
umes, restart the VM:

az vm restart --resource-group azuremolchapter14 --name molvm

You can then check the status of VM encryption again with az vm encryption
show to confirm that the VM reports as Encrypted.

Remember your housecleaning chores
These last two end-of-chapter labs didn’t take long to complete, but they may have
taken a while to finish. Don’t forget to go back and delete resources when you’re
done with them.

As discussed in chapter 13, remember that you need to disable Azure Backup or Site
Recovery protection before you can delete the Recovery Services vault or resource
group (after waiting the 14 days for the free soft-delete recovery points to expire).
Make sure to go back and clean up those lab resources before they start to use up
too many of your free Azure credits.

216

15Securing information
with Azure Key Vault

Almost every week, there’s news of a cybersecurity incident with a major company.
In the same way that you’ve used various forms of automation to grow or replicate
your applications and data, attackers automate their own actions. It’s unlikely that a
single person will try manually to compromise the security of your systems. This
concept makes it difficult to defend your systems 24 hours a day, 7 days a week, 365
days a year (okay, or 366 days!).

Chapter 14 discussed how to encrypt your data and VMs. This process is a great
first step, and we briefly looked at how to create and use encryption keys stored with
the Azure Key Vault service. Secure data such as keys, secrets, and certificates is best
stored in a digital vault like a key vault, which can centrally manage, issue, and audit
the use of your critical credentials and data. As your applications and services need
access to different resources, they can automatically request, retrieve, and use these
keys, secrets, and credentials. In this chapter, you’ll learn why and how to create a
secure key vault, control access, and then store and retrieve secrets and certificates.

15.1	 Securing information in the cloud
As applications become more complex and the risk of cyberattacks grows, security
becomes a critical part of how you design and run your services. Especially as you run
more internet-facing applications, either on-premises or in the cloud, making sure
you minimize the risk of unauthorized data access should be one of the main design
areas you focus on. There’s no point having the greatest pizza store in the world if
customers don’t trust you with their payment details or personal information.

A common way to provide security for applications and services is through the
use of digital keys, secrets, and certificates, as shown in figure 15.1. Rather than
using a username and password that must be entered manually time and again—or,

	 217Securing information in the cloud

maybe worse, written in an unencrypted configuration file—you use a digital vault to
store these secure credentials and data. When an application or service requires
access, it requests the specific key or secret it needs, and an audit trail is created to
trace any possible security misuse or breach.

Key Vault

Certificates Secrets Keys

Applications VMs Services

Applications and services, or
Azure resources like VMs,
can view, create, and update
items in the vault.

Items such as certificates, keys,
and secrets (like passwords) can
be securely stored in the vault
and their access audited.

Figure 15.1  Azure Key Vault provides a secure way to store digital information
such as certificates, keys, and secrets. Then these secure items can be
accessed directly by your applications and services, or Azure resources such
as VMs. With minimal human interaction, you can centrally distribute secure
credentials and certificates across your application environments.

When designed and implemented correctly, these digital vaults are almost fully auto-
mated and secure. Services can request a new digital certificate, be issued one that’s
then securely stored in the vault, and use it to authorize themselves against other
application components. Servers can configure software by retrieving secrets such as
passwords from the digital vault and then installing application components without
the credentials being stored in a text-based configuration file. An application adminis-
trator can centrally manage all the secrets, keys, and certificates for a service and
update them regularly as needed.

Azure Key Vault provides all these digital security features and allows you to tightly
control which users and resources can access the secure data. Key vaults can be securely
replicated for redundancy and improved application performance, and integrate with
common Azure resources such as VMs, web apps, and Azure Storage accounts.

15.1.1	 Software vaults and hardware security modules

Before we jump into a hands-on example of how to create and use a key vault, it’s impor
tant to understand the way your secure information is stored in a vault. As shown in fig-
ure 15.2, all the keys, secrets, and certificates in a key vault are stored in a hardware
security module (HSM). These devices aren’t unique in Azure; they’re industrywide
hardware devices that provide a high level of security for any data stored on them.

218 Chapter 15  Securing information with Azure Key Vault

Azure Key Vault

Certificates Secrets Keys

Hardware security module (HSM)

All the certificates, secrets, and
keys for a key vault are stored in
hardware security modules
inside the Azure data centers.

Software-protected vault

Cryptographic
operationsFor software-protected vaults,

encrypt/decrypt operations are
performed in software, outside
the HSM boundary.

Figure 15.2  Azure Key Vault is a logical resource in Azure, but any certificates, secrets,
and keys are stored in an HSM. For development or test scenarios, a software-protected
vault can be used, which performs any cryptographic operations—such as encrypting or
decrypting data—in software, not in hardware on the HSM. For production, you should use
an HSM-protected vault, where all the processing is done on hardware.

Currently, you can use two types of key vaults: software-protected and HSM-protected.
The difference may be confusing, which is why I want to clear it up before we get started:

¡	A software-protected vault stores keys, secrets, and certificates in an HSM, but any
cryptographic operations that are required to encrypt or decrypt its contents
are performed by the Azure platform in software. Software-protected vaults are
great for development and test scenarios, although you may decide that pro
duction workloads require a slightly more secure way to perform the crypto
graphic operations.

¡	An HSM-protected vault stores keys, secrets, and certificates in an HSM, and cryp-
tographic operations that are required to encrypt or decrypt its contents are
performed directly on the HSM. You can also generate your own secure keys in
an on-premises HSM and then import them into Azure. There are some addi-
tional tools and processes to follow, but this way, you ensure that you completely
control the keys and that they never leave the HSM boundary.

To maximize the security and integrity of your data, hardware-protected
vaults are the preferred approach for production workloads.

Regardless of which type of vault you use, it’s important to remember that all of your
data is stored securely on a Federal Information Processing Standard (FIPS) 140–2
Level 2 validated (at a minimum) HSM and that Microsoft can’t access or retrieve your
keys. There’s an additional cost for HSM-protected vaults, so as with anything in Azure
and cloud computing, balance the cost versus the risk of your data being compromised.

	 219Securing information in the cloud

15.1.2	 Creating a key vault and secret

A digital vault sounds great, but you may be a little unsure how to make use of the
power that Azure Key Vault provides. Let’s build an example of a basic server that runs
a database such as MySQL Server, as shown in figure 15.3.

Key Vault Database
password

Linux VM

1. VM requests secret
from the key vault

2. If access to
key vault and secret is

permitted, secret is
retrieved from vault

3. Secret returned
to VM

MySQL Server
install

4. Secret is used to provide
secure password for
MySQL Server install

Figure 15.3  In the next few exercises, you’ll build an example of a secret stored in
a key vault that can be used as the database password for a MySQL Server install.
A VM is created that has permissions to request the secret from the key vault. Then
the retrieved secret is used to automatically enter a secure credential during the
application install process.

One of the first exercises in this book was to create a VM and then install the LAMP
web server stack. You were likely prompted for a MySQL Server password, or a blank
password was automatically used. Now that you know all about key vaults, you can
retrieve a password from the vault automatically and use it dynamically to install and
configure the server.

Try it now
To create a key vault and add a secret, complete the following steps:

1	 Open the Azure portal; launch Cloud Shell; and create a resource group, such
as azuremolchapter15:

az group create --name azuremolchapter15 --location eastus

2	 Create a key vault with a unique name, such as azuremol, and enable it for
deployment so that you can use the vault to inject keys and certificates into a VM:

az keyvault create \
--resource-group azuremolchapter15 \

220 Chapter 15  Securing information with Azure Key Vault

--name azuremol \
--enable-soft-delete \
--enabled-for-deployment

By default, your Azure user account is assigned full permissions to the key vault.
For these exercises, this is fine, although as a security best practice, you should
consider limiting who can access your key vault. You can add the --no-self-
perms parameter to skip permission assignment to your account

3	 Create a secret, such as databasepassword, and assign a password value, such
as SecureP@ssw0rd. (Yep, really secure, right?) This secret can be used as the
credentials for a database server, which you’ll deploy in the following exercises:

az keyvault secret set \
--name databasepassword \
--vault-name azuremol \
--description "Database password" \
--value "SecureP@ssw0rd"

4	 You have full permissions to the key vault, so you can view the contents of your
secret:

az keyvault secret show \
--name databasepassword \
--vault-name azuremol

From a management perspective, you can also perform common actions such as back-
ing up and restoring, downloading, updating, and deleting items stored in a key vault.
One additional property that you set when the key vault was created is the option to
enable-soft-delete. If your applications and services can’t retrieve the secrets
they need from the key vault, you could have a pretty large application outage to deal
with! A key vault can store metadata for secrets for up to 90 days after they’re truly
deleted, which allows you to recover data that’s incorrectly or maliciously deleted.

5	 Delete the key you just created to simulate a mistake or possibly someone with
malicious intent:

az keyvault secret delete \
--name databasepassword \
--vault-name azuremol

6	 Recover the secret so that you can continue to use the database password with
your application and services:

az keyvault secret recover \
--name databasepassword \
--vault-name azuremol

If you truly want to remove a secret, you also have the option to purge a deleted secret.
This option permanently removes the secret without waiting for the default 90-day
recovery period to elapse.

	 221Managed identities for Azure resources

Feel free to use az keyvault secret show again to view the information on your
secret and confirm that the password you stored is there after you deleted and
restored it. Now let’s move on to see how a VM can access a key vault and use the
secret to install the MySQL Server.

15.2	 Managed identities for Azure resources
The ability to use Azure Key Vault to store secrets or keys is great, but how do you
access these secrets? The Azure CLI or Azure PowerShell can access the information
stored in a key vault, but it’s often more convenient to allow your VMs or applications
to retrieve secrets or keys directly when they need them. One way to do this is with
managed identities for Azure resources, as shown in figure 15.4.

Azure VM

Azure Active
Directory

Service principal

Enable managed
service identity on

an Azure VM

1. Service principal, a special
type of account, created in
Azure Active Directory

2. Managed service identity
applied to a VM that grants
access to Azure resources

Azure
resource

3. VM uses Instance
Metadata Service to request
access token to connect to a
service or resource

4. Access token used to
connect to resource, such
as to retrieve key vault
secret

Instance
Metadata

Service

Figure 15.4  When you create a managed identity for a VM, a service principal is created in Azure Active Directory.
This service principal is a special type of account that can be used for resources to authenticate themselves. Then
this VM uses the Instance Metadata Service endpoint to makes requests for access to resources. The endpoint
connects to Azure AD to request access tokens when the VM needs to request data from other services. When an
access token is returned, it can be used to request access to Azure resources, such as a key vault.

A managed identity lets you create a special kind of account that can be used by an
Azure resource, like a VM. If you’ve used a directory service such as Active Directory, a
computer account is often used to identify and grant access to various network
resources that a computer needs. You don’t create and use regular user accounts for
this type of authentication, which improves security: you can grant a restrictive set of
permissions just to a computer rather than also worrying about user permissions and
shared folder access, for example.

222 Chapter 15  Securing information with Azure Key Vault

A managed identity is like a computer account, but it’s stored in Azure Active Direc-
tory (Azure AD). The identity, called a service principal, is unique to each VM and can be
used to assign permissions to other Azure resources, such as an Azure Storage account
or key vault. The VM has permissions to access those resources, so you can script tasks
(such as with Azure Automation, which we’ll explore in chapter 18) that require no
user intervention or prompts for usernames and passwords. The VMs authenticate
themselves, and the Azure platform authorizes access to their assigned resources.

You can create two types of managed identities:

¡	System-assigned—This type of managed identity is applied directly to a resource,
like a VM, and is used only by that resource. Each resource has its own unique
identity when it comes to auditing or troubleshooting access. When the
resource is deleted, the managed identity is deleted automatically.

¡	User-assigned—A separate Azure resource is created and managed for the speci-
fied managed identity. This managed identity can be shared across other
resources to define access. When any resources that use the identity are
deleted, the managed identity remains available for use.

Let’s see how you can use a system-assigned managed identity to request the data
basepassword secret from a key vault. Once the VM can retrieve the secret, the pass-
word can be used to install a MySQL database server automatically. With a key vault
and MSIs, you can run a couple of commands to retrieve the secret from the key vault,
run the MySQL Server installer, and automatically provide the secure password.

Azure Instance Metadata Service
A VM that’s enabled with an managed identity uses a REST endpoint through the
Instance Metadata Service (IMDS) to request an access token from Azure AD that it
can then use to request data from Azure Key Vault. But what is the Instance Metadata
Service?

IMDS is a REST endpoint that’s accessible only internally to VMs. The endpoint is
available at the nonroutable address of 169.254.169.254. A VM can make a request
to the IMDS endpoint to retrieve information about itself, such as Azure region or
resource group name. This ability allows the VM to understand how and where in the
Azure platform it’s running. The IMDS endpoint can be accessed from many lan-
guages, including Python, C#, Go, Java, and PowerShell.

For maintenance events, the IMDS endpoint can also be queried so that the VM
becomes aware of a pending update or reboot event. Then any preupdate or reboot
tasks that are required can be carried out. Because IMDS is a REST endpoint on a
nonroutable IP address, there’s no agent or extension for the VM to install, and there
are no network security or routing concerns.

For managed-identity purposes, the IMDS endpoint is used to relay the request for an
access token to Azure AD. This approach provides a secure way for VMs to request
access without needing to talk to Azure AD directly.

	 223Managed identities for Azure resources

Try it now
To create a VM with an MSI, complete the following steps:

1	 Create an Ubuntu VM; then provide your resource group, such as azuremol-
chapter15, and a name for the VM, such as molvm. A user account named
azuremol is created, and the SSH keys that you’ve used in previous chapters are
added to the VM:

az vm create \
--resource-group azuremolchapter15 \
--name molvm \
--image ubuntults \
--admin-username azuremol \
--generate-ssh-keys

2	 As a security best practice, you shouldn’t allow accounts to access all the
resources across your entire Azure subscription. Especially for managed identi-
ties, grant only the minimum amount of permissions needed.

For this exercise, scope access to only your resource group, such as
azuremolchapter15. You set the scope by querying for the ID of the resource
group with --query id. Then this ID is assigned to a variable named scope:

scope=$(az group show --resource-group azuremolchapter15
➥--query id --output tsv)

3	 Create a system-assigned managed identity for the VM with the reader role so
that it can only read resources, not make changes to them. Scope the identity
to the resource group. The variable you created in the previous step that con-
tains the resource group ID is provided:

az vm identity assign \
--resource-group azuremolchapter15 \
--name molvm \
--role reader \
--scope $scope

4	 Apply permissions on the Azure Key Vault that grants access to the service prin
cipal for the managed identity. You can do this through the portal under Access
Policies for the Key Vault resource, or you can use the Azure CLI. Let’s use the
CLI to see how to get the information programmatically.

First, get information on the Azure AD service principal for your managed
identity. Filter on the display-name of the VM you created in step 3, such as
molvm:

az ad sp list \
--display-name molvm \
--query [].servicePrincipalNames

224 Chapter 15  Securing information with Azure Key Vault

The output is similar to the following condensed example. Don’t worry too
much about what these values mean; you don’t need to work with them beyond
assigning the initial permissions here. Again, you can use the Azure portal to
avoid the CLI if you’re uncomfortable.

Make a note of the first servicePrincipalName. This value is used to
assign permissions on Azure resources such as your key vault and is needed in
the next step:

[
  "887e9665-3c7d-4142-b9a3-c3b3346cd2e2",
  "https://identity.azure.net//
  ➥ihxXtwZEiAeNXU8eED2Ki6FXRPkklthh84S60CiqA4="
]

5	 Now set the access policy on the key vault such that the service principal for
your VM can read secrets, and enter your first servicePrincipalName from
step 4:

az keyvault set-policy \
--name azuremol \
--secret-permissions get \
--spn 887e9665-3c7d-4142-b9a3-c3b3346cd2e2

One point to make here is that when the managed identity was created and scoped to
the resource group, that didn’t mean the VM could do anything it wanted. First, the
only role created for the identity was read permissions to resources. But you still had
to assign permissions to the key vault itself. These layers of security and permissions
give you fine-grained control over the exact resources each identity can access.

Now that you have access to a key vault, you probably want to know how to retrieve
the secret, right?

15.3	 Obtaining a secret from within a VM
with managed identity
You’ve stored a secret in a key vault for a database password, and you have a VM with a
managed identity that provides access to read that secret from the key vault. Now
what? How do you retrieve the secret and use it? Figure 15.5 shows how a VM uses the
IMDS to request access to a resource, such as a key vault. Let’s go through the steps to
see how the VM retrieves the secret.

Most use cases for Azure Key Vault wouldn’t have a VM connecting and retrieving
the secrets this way. Key Vault really shines when applications themselves, within the
code, reach out to retrieve secrets. The application code would use the appropriate
Azure SDK, such as Python, .Net, or Java. To avoid complexities of code abstracting
what’s happening, the following exercise uses a VM and some command-line work. As
you work through this exercise, remember that this magic usually would happen
within the application code.

	 225Obtaining a secret from within a VM with managed identity

Azure VM

Azure Key Vault

databasepassword
secret

Azure Active
Directory

Service principal

1. VM makes HTTP request to Instance Metadata
Service (IMDS) endpoint

curl 'http://169.254.169.254/metadata/identity/oauth2/token?api
version=2018-02-01&resource=https%3A%2F%2Fvault.azure.net'

2. IMDS passes VM request
for access token to Azure
Active Directory for the
target resource

3. Access token returned from
Azure Active Directory

4. Access token used
by VM to request
access to resource,
such as key vault

5. Key vault secret for
databasepassword
returned to VM

Instance
Metadata

Service

Figure 15.5  The VM uses the IMDS to request access to a key vault. The endpoint communicates with
Azure AD to request an access token. The access token is returned to the VM, which is then used to request
access from the key vault. If access is granted by the key vault, the secret for databasepassword is
returned to the VM.

Try it now
To retrieve and use a secret on a VM with a managed identity, complete the following
steps:

1	 Get the public IP address of the VM you created in the previous exercise, such
as molvm:

az vm show \
--resource-group azuremolchapter15 \
--name molvm \
--show-details \
--query [publicIps] \
--output tsv

2	 SSH to your VM, such as ssh azuremol@publicIps.

3	 To access a key vault, you need an access token. This access token is requested
from the IMDS. It’s an HTTP request, and on a Linux VM you can use the curl
program to make the request. The IMDS passes your request on to AAD:

curl 'http://169.254.169.254/metadata/identity/oauth2/token?
➥api-version=2018-02-01&resource=https%3A%2F%2Fvault.azure.net'
➥-H Metadata:true

226 Chapter 15  Securing information with Azure Key Vault

4	 The output is a little hard to read because it looks like a jumble of text. It’s in
the JSON Web Token (JWT) format. To process the JSON output and make
things more human-readable, install a JSON parser called jq:

sudo apt-get update && sudo apt-get -y install jq

5	 Make your curl request again, but this time, view the output with jq:

curl 'http://169.254.169.254/metadata/identity/oauth2/token?
➥api-version=2018-02-01&resource=https%3A%2F%2Fvault.azure.net'
➥-H Metadata:true --silent | jq

These first few steps show you how the requests are made and what the output looks
like, as shown in figure 15.6. If you still log in to the VM and manually request an access
token, what’s the point of using a managed identity? You could just provide your own
credentials. In production use, you’d likely use a script that runs on the VM to make the
request for an access token automatically and then retrieve the secret from the key
vault. Let’s keep going to see how you automate this process and retrieve the secret.

Azure VM

Azure Key Vault

databasepassword
secret

Azure Active
Directory

Service principal

1. VM makes HTTP request to Instance Metadata
Service (IMDS) endpoint

curl 'http://169.254.169.254/metadata/identity/oauth2/token?api
version=201802-01&resource=https%3A%2F%2Fvault.azure.net'

2. IMDS passes VM request
for access token to Azure
Active Directory for the
target resource

3. Access token returned from
Azure Active Directory

4. Access token used
by VM to request
access to resource,
such as key vault.

5. Key vault secret for
databasepassword
returned to VM

Instance
Metadata

Service

Figure 15.6  The curl request covers the first three steps of this diagram. The curl request is made,
the endpoint communicates with Azure AD, and an access token is issued.

6	 To make things easier—and if you were going to do all this in a script—you can
use jq to process the curl response, extract only the access token, and set it as
a variable named access_token:

access_token=$(curl
➥'http://169.254.169.254/metadata/identity/oauth2/token?
➥api-version=2018-02-01&resource=https%3A%2F%2Fvault.azure.net'
➥-H Metadata:true --silent | jq -r '.access_token')

	 227Obtaining a secret from within a VM with managed identity

7	 As a manual step to help you understand what this looks like, view the
access_token variable:

echo $access_token

8	 Now the fun part! Use the access token to request your secret from the key
vault. First, do this manually so you understand what happens.

9	 Retrieve the secret with another curl request, and format the output with jq.
Enter your own key vault name at the start of the https:// address:

curl https://azuremol.vault.azure.net/secrets/databasepassword?
➥api-version=2016-10-01 -H "Authorization: Bearer $access_token"
➥--silent | jq

The output is similar to the following, which shows the value of the password
stored in the secret, along with some additional metadata about the secret that
you don’t need to worry about for now:

{
  "value": "SecureP@ssw0rd!",
  "contentType": "Database password",
  "id":
➥"https://azuremol.vault.azure.net/secrets/databasepassword/
➥87e79e35f57b41fdb882c367b5c1ffb3",
}

This curl request is the second part of the workflow, as shown in figure 15.7.

Azure VM

Azure Key Vault

databasepassword
secret

Azure Active
Directory

Service principal

1. VM makes HTTP request to Instance Metadata
Service (IMDS) endpoint

curl 'http://169.254.169.254/metadata/identity/oauth2/token?api-
version=2018-02-01&resource=https%3A%2F%2Fvault.azure.net'

2. IMDS passes VM request
for access token to Azure
Active Directory for the
target resource

3. Access token returned from
Azure Active Directory

4. Access token used
by VM to request
access to resource,
such as key vault

5. Key vault secret for
databasepassword
returned to VM

Instance
Metadata

Service

Figure 15.7  This second curl request covers the last two steps in the diagram. The access token is used to
request the secret from the key vault. The JSON response is returned, which includes the value of the secret.

228 Chapter 15  Securing information with Azure Key Vault

10	 In the same way that you used a variable to store the access token, in a script you
can assign the value of the secret to a variable as well. This time, use jq to pro-
cess the response, extract only the value secret, and set it as a variable named
database_password:

database_password=$(curl
➥https://azuremol.vault.azure.net/secrets/databasepassword?
➥api-version=2016-10-01 -H "Authorization: Bearer $access_token"
➥--silent | jq -r '.value')

11	 Again, as a manual step to help you understand the process, view the contents
of the database_password variable:

echo $database_password

I hope that you’re following along! If you write an application in Python, ASP.NET, or
Node.js, for example, the process will be similar as you make a request for the access
token and then use the token to request a secret from a key vault. There are likely
other libraries you could use in your code rather than the jq utility from the com-
mand line.

As a quick recap, all these steps can be condensed to two lines, as shown in the fol
lowing listing.

Listing 15.1  Requesting an access token and then a secret from a key vault	

access_token=$(curl
➥'http://169.254.169.254/metadata/identity/oauth2/token?
➥api-version=2018-02-01&resource=https%3A%2F%2Fvault.azure.net'
➥-H Metadata:true --silent | jq -r '.access_token')
database_password=$(curl
➥https://azuremol.vault.azure.net/secrets/databasepassword?
➥api-version=2016-10-01 -H "Authorization: Bearer $access_token"
➥-silent | jq -r '.value')

Now what? The managed identity for your VM can retrieve a secret from a key vault.
Let’s see how you can use that managed identity to install and configure MySQL
Server.

In Ubuntu, you can set configuration selections for package installers, such as
MySQL Server. These configuration selections let you provide values such as user-
names and passwords and have them used automatically at the relevant part of the
install process. The manual prompts to provide a password, as you may have seen back
in chapter 2, are gone.

12	 Set the configuration selections for the MySQL Server passwords with the
database_password variable you created in step 10:

sudo debconf-set-selections <<< "mysql-server mysql-server/root_password
➥password $database_password"
sudo debconf-set-selections <<< "mysql-server mysql-
➥server/root_password_again password $database_password"

	 229Creating and injecting certificates

13	 Install MySQL Server. There are no prompts because the password is provided
by configuration selections:

sudo apt-get -y install mysql-server

14	 Let’s prove that all this worked! View the database_password variable so you
can clearly see what your password should be:

echo $database_password

15	 Log in to MySQL Server. When prompted for a password, enter the value of
database_password, which is the value of the secret from the key vault:

mysql -u root -p

You’re logged in to the MySQL Server, which confirms that the secret from the
key vault was used to create the SQL server credentials!

16	 Type exit twice to close out of the MySQL Server command prompt, and then
close your SSH session to the VM.

This example is a basic one; you’d still need to secure the MySQL Server and provide
additional credentials for applications to access databases or tables, for example. The
advantage of using a secret from a key vault is that you guarantee all the passwords are
the same. If you use virtual machine scale sets, for example, each VM instance can
automatically request the secret and install MySQL Server so that it’s ready to serve
your application data. Those passwords are never defined in scripts, and no one needs
to see what the passwords are. You could even generate passwords at random and
rotate them as secrets in a key vault.

Storing passwords in a key vault is great, but can you use a key vault to store certifi-
cates and retrieve them automatically from your applications or VMs? Of course
you can!

15.4	 Creating and injecting certificates
Digital certificates are a common form of security and authentication in web services
and applications. Certificates are issued by a certificate authority (CA), which is (we
hope!) trusted by end users. The certificate allows users to verify that a website or
application is indeed what it says it is. Every time you see a website with a web browser
address that begins with https:// and has a padlock symbol, the traffic is encrypted
and secured by a digital certificate.

Managing digital certificates can become a major management task. A common
problem is how to store and grant access to certificates as services and applications
need them. In the previous exercises, we examined how a key vault can be used to
share secure secrets and keys with services and applications, but a key vault can do the
same with certificates. As shown in figure 15.8, a key vault can be used to request,
issue, and store certificates.

In production use, you should always use a trusted CA to issue your certificates. For
internal use, you can issue self-signed certificates that you create yourself. These

230 Chapter 15  Securing information with Azure Key Vault

Key Vault
User,

application, or
service

1. Request to create
certificate sent to
key vault

Certificate
authority

2. Certificate signing
request (CSR) sent
to certificate
authority (CA)

3. Signed X.509
certificate returned
to and stored in key
vault

4. Certificate issued
from key vault

Figure 15.8  A user, application, or service can request a new certificate from a key vault. A
certificate signing request (CSR) is sent by the key vault to an external third-party CA or a
 trusted internal CA. Azure Key Vault can also act as its own CA to generate self-signed
certificates. Then the CA issues a signed X.509 certificate, which is stored in the key vault.
Finally, the key vault returns the certificate to the original requestor.

self-signed certificates aren’t trusted by other services and applications, so they typi-
cally generate a warning, but self-signed certificates let you get up and running
quickly and make sure your code works as expected with encrypted traffic.

Azure Key Vault can generate self-signed certificates for you. Under the hood, Key
Vault acts as its own CA to request, issue, and then store certificates. Let’s use this abil-
ity to generate a self-signed certificate and see how to easily inject it into a VM. Then
the certificate is used for a basic web server to show you how to quickly enable SSL to
secure your web traffic.

Try it now
To create and inject a certificate into a VM, complete the following steps:

1	 Create a self-signed certificate in Azure Key Vault, and enter a name, such as
molcert. Policies are used to define properties such as expiration time peri-
ods, encryption strength, and certificate format. You can create different poli-
cies to suit the needs of your applications and services. For this exercise, use the
default policy that creates a 2,048-bit certificate and is valid for one year:

az keyvault certificate create \
--vault-name azuremol \
--name molcert \
--policy "$(az keyvault certificate get-default-policy)"

2	 To see the certificate in action, create another VM, such as molwinvm. This
time, create a Windows VM that uses Windows Server 2019, so you spread
around the OS love and see that these Key Vault features aren’t dependent on a
specific OS! Provide your own admin username and password:

az vm create \
--resource-group azuremolchapter15 \

	 231Creating and injecting certificates

--name molwinvm \
--image win2019datacenter \
--admin-username azuremol \
--admin-password P@ssw0rd1234

3	 You can automatically add the certificate to the VM straight from the Azure
CLI. This approach doesn’t rely on a managed identity; the Azure platform
injects the certificate using the Windows Azure VM agent.

Add your certificate, such as molcert, to the VM you created in step 2, such
as molwinvm:

az vm secret add \
--resource-group azuremolchapter15 \
--name molwinvm \
--keyvault azuremol \
--certificate molcert

4	 Connect to the VM, and verify that the certificate was injected correctly. To con-
nect to your VM, first get its public IP address:

az vm show \
--resource-group azuremolchapter15 \
--name molwinvm \
--show-details \
--query [publicIps] \
--output tsv

Use a local Microsoft Remote Desktop connection client on your computer to
connect to your VM. Use the credentials to connect to localhost\azuremol, not
the default credentials of your local computer that your Remote Desktop client
may try to use, as shown in figure 15.9.

Figure 15.9 Your Remote Desktop
client may try to use your default
local computer credentials. Instead,
select Use a Different Account, and
then provide the localhost\azuremol
credentials that you specified when
you created the VM.

232 Chapter 15  Securing information with Azure Key Vault

5	 When you’re logged in, select the Windows Start button, type mmc, and open
the Microsoft Management Console.

6	 Choose File > Add / Remove Snap-in, and then select the option to add the
Certificates snap-in.

7	 Choose to add certificates for the Computer account, select Next, and then
select Finish.

8	 Choose OK to close the Add / Remove Snap-in window.

9	 Expand the Certificates (Local Computer) > Personal > Certificates folder. The
certificate from Azure Key Vault that you injected into the VM is listed, such as
CLIGetDefaultPolicy, as shown in figure 15.10.

Figure 15.10  In the Microsoft Management Console, add the Certificates snap-in on the local computer.
Expand the Personal > Certificates store to view installed certificates. The certificate injected from Key
Vault is listed.

That’s all there is to it! Create the certificate in Key Vault, and then add the certificate
to the VM. The certificate is placed in the local certificate store of the computer,
which allows any service or application to access it. On a Windows VM, the certificates
are stored in the local certificate cache, as shown in this exercise. On Linux VMs, .prv
and .crt files for the private and public parts of the certificate are stored in /var/lib/
waagent/. You can move the certificates to wherever you need to for your application
or service.

Certificates can be used for authentication between clients and servers, or between
application components and services. A common example is for a web server to use an
SSL certificate, which is what you’ll do in the end-of-chapter lab.

15.5	 Lab: Configuring a secure web server
In the last exercise, you injected a self-signed certificate from Azure Key Vault into a
Windows VM. For this lab, install and configure the IIS web server to use the certifi-
cate, following this guidance:

1	 Open PowerShell on your Windows VM, and install the IIS web server:

Add-WindowsFeature Web-Server -IncludeManagementTools

	 233Lab: Configuring a secure web server

2	 Open Internet Information Server (IIS) Manager. You can do this from the
Tools menu in Server Manager.

3	 For Default Web Site, choose Edit Bindings.

4	 Add an HTTPS binding on All Unassigned IP addresses on port 443.

5	 Select the self-signed certificate you created and injected from Key Vault, typi-
cally named something like CLIGetDefaultPolicy.

6	 Open a web browser on the VM, and enter https://localhost. You gener-
ated a self-signed certificate in Key Vault, so the web browser doesn’t trust it.

7	 Accept the warning to continue, and verify that the HTTPS binding works.

8	 Back in the Azure Cloud Shell or portal, create an NSG rule for the VM on TCP
port 443. Enter https://yourpublicipaddress in a web browser on your
local computer. This is the experience your users would receive, with a warning
about an untrusted self-signed certificate. For most use cases, remember to use
a trusted internal or third-party CA to generate trusted certificates and store
them in a key vault.

234

16Azure Security Center
and updates

Wouldn’t it be great if Azure were smart enough to monitor all of your core appli
cation resources and alert you about any security concerns? Or what if your busi-
ness has security policies already defined? (If you don’t have any security policies,
please stop right now and make a note to create some!) In the latter case, how do
you ensure that your Azure deployments remain compliant? If you’ve ever gone
through an IT security audit, you know how fun it can be to look over a list of mis-
configurations applied to your environment, especially the basic security lapses that
you know to avoid!

Azure Security Center provides a central location for security alerts and recom-
mendations to be grouped for your review. You can define your own security poli-
cies and then let Azure monitor the state of your resources for compliance.

In this chapter, we’ll discuss how Security Center can alert you to problems and
provide steps to correct them, how you can use just-in-time VM access to control
and audit remote connections, and how Update Management keeps your VMs up
to date with the latest security patches automatically.

16.1	 Azure Security Center
Throughout this book, we’ve discussed security-related topics such as how to create
and configure network security groups (NSGs) to restrict access to VMs, and how
to permit only encrypted traffic into Azure Storage accounts. For your own
deployments beyond the exercises in this book, how do you know where to start,
and how can you check that you applied all the security best practices? That’s where
Azure Security Center can help—by checking your environment for areas you may
have missed.

	 235Azure Security Center

Azure Security Center scans your resources, recommends fixes, and helps remedi-
ate security concerns, as shown in figure 16.1. When you have only a couple of test
VMs and a single virtual network in your Azure subscription, it may not seem that hard
to keep track of what security restrictions you need to put in place. But as you scale up
to tens, hundreds, or even thousands of VMs, manually keeping track of what security
configurations need to be applied to each VM becomes unmanageable.

Azure Security Center

Virtual
networks Storage ApplicationsVMs

Just-in-time
VM access

Update
management

Application
whitelisting

Monitor Azure
resources for security
concerns

Generate alerts and
provide remediation
guidance

Dedicated security
features to complement
policy recommendations

Figure 16.1  Azure Security
Center monitors your Azure
resources and uses defined
security policies to alert you
to potential threats and
vulnerabilities.
Recommendations and
steps to remediate issues
are provided. You can also
use just-in-time VM access,
monitor and apply security
updates, and control
whitelisted applications
that can run on VMs

Security Center can also alert you to general best practices, such as if a VM doesn’t
have diagnostics enabled. Remember in chapter 12 when we looked at how to moni-
tor and troubleshoot VMs? You need to install and configure the diagnostics agent
before you have a problem. If you suspect a security breach, you may not be able to
access the VM and review logs. But if you had configured the diagnostics extension to
stream logs to Azure Storage, you could review what had occurred and (if all goes
well) track down the source and extent of the problem.

Try it now
To get started with Azure Security Center, complete the following steps:

1	 Open the Azure portal, and choose the Cloud Shell icon from the top menu.

2	 Create a resource group; provide a name, such as azuremolchapter16; and
provide a location, such as eastus:

az group create --name azuremolchapter16 --location eastus

236 Chapter 16  Azure Security Center and updates

3	 Create a basic Linux VM so that Security Center has something to monitor and
provide recommendations for:

az vm create \
 --resource-group azuremolchapter16 \
 --name azuremol \
 --image ubuntults \
 --admin-username azuremol \
 --generate-ssh-keys

4	 When the VM is deployed, close Cloud Shell.

5	 In the Azure portal, select Security Center in the list of services at left. The first
time the dashboard opens, it takes a few seconds to prepare all the available
components; see figure 16.2.

Figure 16.2  The Azure Security Center Overview window provides a list of recommendations, alerts, and events.
You can select a core resource type such as Compute or Networking to view a list of security items specific to
those resources.

Security Center looks at how resources such as VMs, NSG rules, and storage are
deployed. Built-in security baselines are used to identify problems and provide recom-
mendations. The virtual network deployed with your VM generates warnings, for
example, as shown in figure 16.3. You can, and should, implement your own security
policies that tell Azure how you want to restrict access or what needs to be done to
comply with business mandates. Then, as you create or update resources, Azure

	 237Just-in-time access

Figure 16.3  The virtual network
for your VM already triggers
security warnings. In this
example, it warns that a network
security group should be
associated with the subnet.

continually monitors for deviations from these policies and alerts you about what steps
need to be taken to remediate the security issues. You’ll use the default Azure security
policies in this chapter, but think of any particular security configurations that you
may want to apply to your VMs and how they could be defined in your own custom
policies.

6	 Choose Compute & apps on the left menu in the Security Center window; then
choose VMs and Computers.

7	 Select the VM you created in step 3. Even though you just created this VM and
used default values from the Azure CLI, some security warnings are shown.

Explore some of these recommendations. As you select each recommendation, some
just give you more information; others guide you through remediation. These aren’t
hard-and-fast rules; they’re recommendations and best practices. In your own environ-
ment, some of these may not make sense. But they’re a good starting point to know
what things you should be doing to secure resources as you create them in Azure.

16.2	 Just-in-time access
In section 16.1, you learned how Security Center suggests that you limit the scope of
inbound remote connectivity. You could provide an IP range to limit traffic, but ide-
ally, you open inbound connectivity only when it’s needed. That way, the VM is com-
pletely closed for remote connections and is accessible only for a short time when

238 Chapter 16  Azure Security Center and updates

Azure user
Azure Security Center

JIT VM access

Role-based access
control (RBAC)
permissions

Network security
group (NSG) rules

1. User requests
just-in-time (JIT)
VM access

2. RBAC permissions
verified for access to
VM resource

3. If RBAC permissions
allowed, JIT access is
granted and configured

4. NSG rules
configured to grant
defined access

5. NSG rules allow
access for defined
time period

6. User can access
VM for defined
time period

Figure 6.4  With JIT VM access, NSG rules are configured to deny remote connections to a VM. RBAC permissions
are used to verify permissions when a user requests access to a VM. These requests are audited, and if the request
is granted, the NSG rules are updated to allow traffic from a given IP range for a defined period. The user can access
the VM only during this time. When the time has expired, the NSG rules automatically revert to a deny state.

needed. And yes, you should still limit that brief window of connectivity to a specific IP
range! That’s where just-in-time (JIT) VM access is useful, as shown in figure 16.4.

With JIT access, Security Center dynamically adjusts access restrictions on a VM.
When enabled, NSG rules are created that deny all remote connection traffic. Then a
user can request access to a VM only when needed. In combination with role-based
access control (discussed in chapter 6), Security Center determines whether a user has
rights to access a VM when they request a connection. If the user does have permissions,
Security Center updates the relevant NSG rules to allow incoming traffic. These rules
are applied only in a specific time window. When that time is up, the rules are reverted,
and the VM becomes closed to remote connections again. If you have an active connec-
tion to a VM, you aren’t automatically disconnected when the time expires. You can fin-
ish your maintenance or troubleshooting work and disconnect when ready, but you
won’t be able to start a new connection unless you request JIT access again.

Drinking from a fire hydrant
We haven’t really looked at Azure Firewall, but it’s a virtual network resource that’s a lit-
tle more similar to an on-premises physical firewall than to NSGs by themselves. If
you need more flexibility and control of traffic, Azure Firewall is a great option, though
a cost is associated with it.

Without getting too deep into Azure Firewall, I want to note that Azure Security Center
can also integrate with Azure Firewall to open and close the required rules. If you

	 239Just-in-time access

use Azure Firewall to protect VM traffic on virtual networks, not just NSGs, you can
still use the automated rules management of JIT VM access.

To learn more about Azure Firewall, see the docs at https://docs.microsoft.com/azure/
firewall/overview.

When would you use JIT in your fictional pizza store? Think about any VMs that would
run your web application, order system, or business logic applications. Would you
want those to be connected to the internet and available for people to access all the
time? I hope not! There are valid reasons for remote access with SSH or RDP, but
always try to minimize how long that access is available. Even if you have NSG rules
that restrict access to certain IP ranges, JIT adds another layer of protection in terms
of what Azure users can access and then creates an easier audit trail on which Security
Center can provide reports.

Try it now
To enable JIT VM access, complete the following steps:

1	 Open the Azure portal, and choose Security Center from the menu at left.

2	 Under Advanced Cloud Defense, select Just in Time VM access.

3	 If prompted, choose the option Try Just in Time VM access or Upgrade to Stan-
dard Tier of Security Center. This free trial lasts 60 days and shouldn’t extend
automatically. It overlaps with your free Azure account and won’t cost you any
money to use. Select the option Apply Standard Plan, and wait a few moments
for it to be enabled. When it’s enabled, you may need to close and reopen the
Azure portal before you can complete the following steps.

4	 Select Just in Time VM Access in the Security Center window again. When your
standard tier account is enabled, you can view a list of VMs to use.

5	 Select your VM, and then choose Request Access, as shown in figure 16.5.

Figure 16.5  Select a VM from the Recommended options, and then choose to Enable JIT on 1 VMs. State currently
shows that this VM is Open for all remote access, which flags the severity of the security concern as High.

240 Chapter 16  Azure Security Center and updates

By default, JIT defines rules that can open ports for SSH (port 22), RDP (port
3389), and PowerShell remoting (ports 5985 and 5986) for a period of three
hours.

6	 For this exercise, choose to enable SSH from your own IP. As a best practice for
production use, enter a justification to keep track of why access is being
requested. Leave the defaults, and choose Open Ports, as shown in figure 16.6.

Figure 16.6  When you enable JIT, you can change the default rules to be allowed, the allowed
source IPs, and a maximum request time in hours. These JIT rules allow granular control of what’s
permitted to allow only the bare minimum of connectivity.

7	 With JIT enabled, browse to your resource group, and select your VM.

8	 Choose Networking to view the assigned virtual network configuration for the
VM. The list of assigned NSG rules is displayed, as in figure 16.7.

Figure 16.7  The JIT rules are created with the lowest priority. These priorities make sure that the JIT rules take
precedence over any later rules applied at the subnet level.

	 241Azure Update Management

The JIT rules are shown at the top of the list because they have the lowest priority.
Traffic is allowed to the IP address of the VM, but only from your own IP address. This
is what JIT configured. What may seem odd here is that a default-allow-ssh rule still
exists and permits all traffic. Think back to chapter 5, when we discussed NSGs. Can
you tell what’s happening here?

JIT applies only to the VM. In the JIT rule, Destination shows the IP address of the
VM. In the example shown in figure 16.7, that’s 10.0.0.4. Traffic is allowed. But the
actual NSG rule is applied to the entire subnet. The default-allow-ssh rule applies at
the subnet level and allows traffic from Any source and to Any destination.

NSG rules are processed in order of priority, from low to high. As discussed in
chapter 5, a Deny action always takes effect, regardless of any additional rules. Even if
you changed that default-allow-ssh rule to deny traffic, the JIT rule would still allow
access to the specific VM and from the defined source IP address.

Take care with this layering of NSG rules. Ideally, you’d remove the default-allow-
ssh rule and then allow access only as needed with JIT. In this approach, SSH is denied
by the final DenyAllInbound rule. When you need to connect to a VM, use JIT to
request access, which automatically creates a rule to allow SSH scoped to your IP
address for a defined period.

The NSG rule is deleted automatically after the specified time period has elapsed.
By default, JIT rules are applied for three hours. After that time, the VM returns to a
more secure state, and you need to request access to the VM again.

This JIT process controls who can request, and be granted, access to the VM. But
just because a person can successfully request access to a VM doesn’t mean they have
permissions to log on to that VM. All that happens in Azure is that the defined NSG
rules are updated. Security Center and JIT can’t add, remove, or update access cre
dentials on the VM.

All JIT requests are also logged. In Security Center, select the Just in Time VM
Access option, and choose your rule. On the right, select the … menu option, and
then choose Activity Log. This activity log helps you audit who requested access to a
VM in the event of a problem.

JIT VM access is one way that Security Center and Azure help keep your VMs
secure. Controlling access to the VMs is a big part of security. But what about the
applications, libraries, and services running on the VMs? That’s where you need to
ensure that all the latest security updates are applied to your VMs in a timely manner.

16.3	 Azure Update Management
One area that Azure Security Center can report on is the status of any OS updates
required by the VM. In your pizza store, you should try to install the latest security and
application patches. You don’t want to run any systems that have a known vulnerability
or attack area, so a way to automate the updates of those systems and track compliance
improves your security. When you work with applications that involve customer data
and payment information, don’t run systems without the latest patches installed.

242 Chapter 16  Azure Security Center and updates

And remember to plan for a test environment that lets you safely apply security
patches and validate that they don’t cause problems before you apply them to produc-
tion systems!

An Update Management feature is built into Azure VMs and can scan, report, and
remediate OS updates. What’s great about this solution is that it works across both
Windows and Linux, and even within Linux, across different distributions such as
Ubuntu, Red Hat, and SUSE. Figure 16.8 shows how Update Management monitors
and can install required updates.

Update Management Azure
Automation

Azure
Monitor

2. Collects and analyzes
data from agent on
VM to determine
update status

Monitoring
VM agent 1. Agent installed on

VM to report data
on installed updates

3. Runbooks
executed on defined
schedule to apply
required updates

Figure 16.8  Update Management installs a VM agent that collects information on the installed updates
on each VM. This data is analyzed by Azure Monitor and reported back to the Azure platform. The list of
required updates can be scheduled for automatic install through Azure Automation runbooks.

It takes a few minutes for the VM to prepare itself and report back on its update status,
so let’s set up your VM and then see what goes on behind the scenes.

Try it now
To configure your VM for Update Management, complete the following steps:

1	 Open the Azure portal, and choose Resource Groups from the menu at left.

2	 Select your resource group, such as azuremolchapter16, and then select your
VM, such as azuremol.

3	 Under Operations, select Update Management.

4	 Accept the default option for Location and the option to create a Log Analytics
workspace and Automation Account. We’ll examine these components in the
remainder of this section.

5	 To turn on update management for the VM, select Enable.

	 243Azure Update Management

You return to the Update Management Overview window, but it takes a few
minutes to configure the VM and report back on its status. Continue reading,
and let the process continue.

Let’s look a little more at what happens to make this Update Management solution
work.

16.3.1	 Combined Azure management services

If you’ve worked with any on-premises Microsoft technologies, you may have come
across the System Center suite. System Center consists of multiple components such as
Configuration Manager, Operations Manager, Orchestrator, and Data Protection
Manager. There are a couple of other parts, but those core components provide a way
to do the following:

¡	Define configurations and desired state
¡	Install applications and updates
¡	Report on health and security
¡	Automate deployments of large services and applications
¡	Back up and replicate data

As businesses have moved to cloud computing over the past few years, those more tra-
ditional on-premises System Center components are replaced by Azure services that
can work in a hybrid environment. We looked at two components in earlier chapters,
even if you didn’t realize it:

¡	Azure Backup provides a way to back up VMs or individual files, define retention
policies, and restore data.

¡	Azure Site Recovery allows you to replicate VMs to different geographic regions in
the event of a natural disaster or prolonged outage.

Both Azure Backup and Site Recovery helped you protect your data in chapter 13.
Now you’ll use some additional services with Update Management:

¡	Log Analytics workspaces collect information from various sources or agents, and
allow you to define policies and queries to alert you to conditions that may
occur. These queries and alerts can help you track the update status of a VM or
notify you of configuration or security issues.

¡	Azure Monitor details and reports information based on processing carried out
in Log Analytics workspaces. Azure Monitor provides a centralized way to view
alerts, query log data, and generate notifications across all your Azure
resources.

¡	Azure Automation allows you to build runbooks that execute commands or entire
scripts. Runbooks can be large, complex deployments and can call multiple
othwoks. We’ll look at Azure Automation in depth in chapter 18.

244 Chapter 16  Azure Security Center and updates

The integration of these components is shown in figure 16.9.

Azure

Azure
Automation

Azure
Backup

Azure Site
Recovery

Log Analystics
workspace

Automatically
execute runbooks;
multiple host targets

Replicate data to defined
regions based on schedule
and retention policies

Back up data or entire
VMs based on schedule
and retention policies

Collate and analyze logs
from various sources to
provide queries and alerts

Figure 16.9  Multiple Azure services work together to provide
management and configuration features across your entire application
environment. The services that use these components aren’t limited to
Azure VMs or resources and can work across other cloud providers or
on-premises systems when they’re appropriately configured.

Both Log Analytics workspaces and Azure Automation are powerful components and
could easily fill entire chapters of a book by themselves. With only a handful of VMs to
manage, you may find it easy to overlook the need for a centralized log repository for
querying and alerting, or a way to automate configurations and deployments across
VMs. If you haven’t already been making a list of Azure components to follow up on
when you finish this book, start one, and add both of these components to that list!

One thing to understand is that in Azure, multiple services and components can
interact with and complement one another. In the same way that Azure VMs and
Azure virtual networks are individual services, both services also complement, or even
rely on, each other. Azure Backup and the Azure diagnostics extension are great indi-
vidual components, but they really shine if Log Analytics workspaces and Azure Moni-
tor are used to monitor their status and collate any generated events or warnings. I
hope that you’ve begun to identify some of these related components and see how
Azure services build on one another. Now that we’re into these final few chapters and
looking at security and monitoring options, the goal is to ensure that the applications
you run in Azure are healthy and stable.

	 245Azure Update Management

This little thing called “Identity”
Thinking about services that complement each other, one large (and I mean large!)
part of Azure that we’ve touched on only lightly is Azure Active Directory (Azure AD).
Identity is central to everything in Azure, and Azure AD provides some of the security
features we examined in chapter 6 with the Azure Resource Manager deployment
model. The ability to use RBAC to limit what actions can be performed on a resource
by certain users or groups is tied into a central identity solution. Even being able to
sign in to the Azure portal or Azure CLI is driven by Azure AD.

This book doesn’t cover Azure AD, because what it provides is broad and quite differ-
ent from Azure IaaS and PaaS services such as VMs, scale sets, and web apps.
There may be some overlap in the topics’ audience, but most developers would have
a different goal for what they wanted to learn about Azure AD, compared with an appli
cation manager or an IT pro who deploys the infrastructure.

Depending on your Azure account, you may be limited in what you can do with Azure
AD. When you sign up for a free Azure trial account, a default Azure AD instance is
created for you. You’re the primary account in that directory, and you have full admin
istrator rights. If you log in to Azure with an account from your business or educational
institution, there’s a good chance that you have few to no administrative rights. So
even if we could agree on a couple of topics to focus on, you might not be able to
carry out any of the exercises directly. And I really don’t recommend that you go dig-
ging around in an actual Azure AD environment to learn how things work!

But Azure AD is another of those central services in Azure that binds together many
other services and components. Cloud computing doesn’t magically make things eas-
ier or break down operational silos; you still need the skills to work with different
teams and stakeholders. I hope that throughout these chapters, you’ve picked up the
core skills for these Azure services, which will help you understand how to build large,
redundant applications and converse at a better level and with more awareness of
what other teams may face.

16.3.2	 Reviewing and applying updates

It can take some time for the VM agent to perform the first scan and report back on
the status of applied updates. The list of installed components must also be cross-
referenced with the list of available updates for a given OS and version. If your VM
hasn’t finished and reported back on its status, keep reading, and check back in a few
minutes. When it’s ready, the overview looks like figure 16.10. Be patient; it can take
10 to 15 minutes for the agent readiness to show as Ready and let you schedule
updates for installation.

A list of required updates is great, but what about a way to install them? That’s
where Azure Automation steps in! When you enabled Update Management, several
Azure Automation runbooks were created that automatically handle the process to
apply the required updates.

246 Chapter 16  Azure Security Center and updates

Figure 16.10  When the VM agent has scanned for compliance, a list of available updates is provided.
Depending on the OS and version, Update Management may be able to work with the Log Analytics
workspace and Azure Monitor to classify the updates based on severity or to provide links to the relevant
update hotfix pages.

Try it now
If you’re lucky (or unlucky), your VM may report that no updates are required. VM
images are frequently updated in Azure, and if you deploy a VM soon after the latest
image was built, all the required updates are already installed. If so, read through
these steps so that you understand what’s required when your VMs do need
updating!

To apply the required updates for your VM, complete the following steps:

1	 In the Update Management section of your VM, select Schedule Update
Deployment.

2	 Enter a name for the update deployment, such as azuremolupdates, and
then review the Update Classifications. You can control which sets of updates
are applied. For now, leave all the default options set.

3	 Updates to Exclude lets you specify specific updates that you don’t want to
install. If you know your application requires a specific version of a package or
library, you can make sure an updated package isn’t installed that breaks things.
Review the available options, but there isn’t anything to change in this exercise.

	 247Azure Update Management

4	 Select Schedule Settings, and then choose a time for the updates to be applied
from the calendar and time options. The start time must be at least five minutes
ahead of the current time to give the Azure platform a few moments to process
and schedule your runbook in Azure Automation.

5	 When you’re ready, select OK.

6	 If certain applications and services need to pause or shut down before updates
are applied and start up again when the updates are finished, choose Pre-scripts
+ Post-scripts. Separate automation tasks can be configured to carry out actions
on the VMs before and after the updates are applied.

7	 Maintenance Window (minutes) defines how long the update process can run
before the VM needs to be back in operation. This window prevents long-
running update processes that may cause a VM to be unavailable for hours at a
time. You may want to make the maintenance window shorter or longer,
depending on any service-level agreements for the applications that run on
those VMs, or the number and size of the updates required. Accept the default
value, and then select Create.

8	 Back in the Update Management window, select Deployment Schedules. The
updates are listed as scheduled to install at the date and time you select, as
shown in figure 10.86.11.

Figure 16.11  The list of scheduled deployment tasks is shown. If desired, you can delete a given task;
otherwise, the updates are applied automatically at the defined time.

9	 At the top of the Update Management window, select Manage Multiple
Machines. The window switches to the Azure Automation account that was cre-
ated when Update Management was enabled for the VM. Don’t worry too much
for now about what the runbooks do. There’s nothing for you to customize, and
we’ll examine Azure Automation in chapter 18.

Note that you can choose Add Azure VM or Add Non-Azure machine, as
shown in figure 16.12. This ability highlights a single approach to managing
updates across your entire application environment, not just for Azure VMs.

248 Chapter 16  Azure Security Center and updates

Figure 16.12  In the Azure Automation account, you can manage multiple computers and view the status
or apply updates. Both Azure VMs and non-Azure computers can be monitored and controlled by the same
Azure Automation account. Behind the scenes, Azure can integrate with other providers to install agents
on computers in a hybrid environment. This integration allows a single dashboard and management
platform to handle your update needs.

10	 Go back to the Update Management window for your VM, and select the His-
tory tab. When your update deployment starts, its status is displayed. Remember
that you scheduled the job to run a few minutes in the future, so it doesn’t show
up right away.

11	 Select the schedule to see the status and output, as shown in figure 16.13.

Figure 16.13  You can monitor the status of running Azure Automation jobs in the portal. To review or
troubleshoot tasks, you can click a job to view any output and generated logs.

	 249Lab: Enabling JIT and updates for a Windows VM

12	 When the update deployment has finished, browse back to your resource
group, select your VM, and then choose Update Management. It may take a few
minutes for the agent to update itself and report back through a Log Analytics
workspace that the updates have been applied; then the dashboard should
show that the VM is up to date, and no additional updates are required.

This chapter has been a whirlwind tour of Security Center and associated components
such as JIT VM access and Update Management. The goal is for you to start to think
beyond just how to deploy and run a VM or web app, and instead plan for the wider
application management that goes with it. Cloud computing doesn’t change the need
for security policies; there’s arguably a greater need for resources to be secured. Let
Azure features such as Security Center guide you through what needs to be done, and
use built-in tools such as Update Management and Azure Automation to keep things
secure at all times.

16.4	 Lab: Enabling JIT and updates for a Windows VM
This chapter covered a few components that may have taken some time to enable
themselves and report back on their expected status. This lab is optional; it’s designed
to show that there’s nothing OS-specific about any of these features. If you don’t have
time, or if you feel that you understand how to apply these features to a Windows VM,
feel free to skip this lab. Otherwise, try the following tasks to gain some additional
practice with Security Center and Update Management. Practice makes perfect, right?

1	 Create a Windows Server VM of your choice in the same resource group you
used for the previous exercises, such as azuremolchapter16.

2	 View the NSG rules for the VM/subnet, and delete any default rules that permit
RDP on TCP port 3389.

3	 Use your local Remote Desktop Connection client to verify that RDP connec-
tions are blocked.

4	 Request JIT access, review the NSG rules again, and confirm that now you can
RDP to your VM.

5	 Enable Update Management on your Windows VM. This time, you should be
able to use the existing Log Analytics workspace and Azure Automation
accounts.

6	 Let the monitoring agent report back on required updates, and then schedule
the updates to be applied through Azure Automation.

Part 4

The cool stuff

Now for the really cool stuff! In these final few chapters, you’ll learn
about some up-and-coming technologies that you can use in Azure, such as arti
ficial intelligence, machine learning, containers, Kubernetes, and the Internet
of Things. You may not be using these services right now, but with the current
trends in computing, you probably will be soon. These services are some of the
most exciting technologies to work with. Although the book moves pretty
quickly to cover these topics over your lunch break, this part is a great way to
wrap things up and show you the possibilities of what you can build in Azure.

253

17Machine learning
and artificial intelligence

Let’s hope that we won’t end up in a world where films like The Terminator and The
Matrix come true. In those movies, the rise of artificial intelligence (AI) almost
causes the downfall of humanity as machines fight to take control of their surround-
ings. One cause for concern in computing right now is how the development of AI
is mostly done by large, private companies, with little or no regulation and central
oversight. That’s not at all to say that AI is a bad thing! Digital assistants on smart-
phones can help with many day-to-day tasks. Machine learning (ML) in navigation
apps can monitor the user’s daily drive to suggest alternate routes based on road or
weather conditions. Home-heating controls can adjust automatically based on the
outside temperature, time of day, and time of year (such as summer or winter).

As you begin this final part of the book, you’ll learn about the Azure services for
machine learning and artificial intelligence. In one chapter. On your lunch break.
Let’s set some realistic expectations: you’re not going to become an expert in ML
or AI in the next 45 minutes! If you eat your sandwich quickly, you may learn
enough about the many services that Azure offers to understand how to integrate
some ML and AI services into your applications. Many of the Azure ML and AI ser-
vices expect at least some prior experience in data algorithms, programming lan-
guages, batch processing, or language understanding, so don’t expect to become
an expert in the next hour!

In this chapter, let’s go on a whirlwind tour of some of the Azure cognitive ser-
vices that provide ML and AI features. You’ll learn how to use these services to per-
form basic machine learning on data models; then you’ll use a little of the Azure
Web Apps service and the Microsoft Bot Framework to apply some of the AI ser-
vices that can run a pizza-store bot for customers to order pizza.

254 Chapter 17  Machine learningand artificial intelligence

17.1	 Overview and relationship of AI and ML
Hold on tight, because we’re about to go from 0 to 600 mph in just a few pages! AI
and ML often overlap as you build applications in Azure. Let’s explore what each is,
and then worry about how they work together.

17.1.1	 Artificial intelligence

AI allows computers to complete tasks with some amount of flexibility and awareness,
and to adjust their decisions based on external factors or without the need for human
interaction. The goal usually isn’t to build a completely autonomous system that can
evolve and develop thoughts for itself, but to use a set of data models and algorithms
to help guide the decision-making process.

Common AI on personal computers and smartphones includes Siri, Cortana, and
Google Assistant. As shown in figure 17.1, these AI resources allow you to communi-
cate, often via voice commands, to ask for directions, set reminders, search the web,
and more.

Google
Assistant

Siri

Cortana

Common AI digital
assistants

Set
reminder

Call Bob

Check
weather

Voice commands

Create
memo

Start
timer

Send
email

Text commands

Calendar
appts.

Traffic +
commute

Email
notifications

Integrated applications

Figure 17.1  A common use of AI in everyday life is digital assistants such as Cortana, Siri, and
Google Assistant. You can use voice or text commands to interact with them, and they can monitor
your daily calendar and commute conditions to warn you about traffic problems.

Digital assistants like these typically don’t involve a large amount of what you may con-
sider intelligence. They listen and respond to input you provide. But those inputs can
vary and may not always be specific commands. Think about how a digital assistant lets
you set a reminder. You could use one of the following phrases:

	 255Overview and relationship of AI and ML

¡	“Remind me at 5 to pick up milk.”
¡	“Tell me to pick up milk on the way home.”
¡	“I need to get milk when I’m at the store.”

If you developed a traditional application, you’d need to write code that could handle
all the possible variations of how a user might provide instructions. You could build
regular expressions to help catch some of the variations, but what happens when the
user comes up with a phrase that you didn’t program? Or what if they interact via text
and have a typo in their request that you didn’t anticipate? These types of interactions
are a great fit for AI. As shown in figure 17.2, the application is programmed for sev-
eral common phrases and is then able to make an educated guess based on what it
“thinks” the user is asking for.

Google
Assistant

Siri

Cortana

Common AI digital
assistants

Reminder set for
5 p.m. to

pick up milk

Monitor and detect
when traveling home

Use GPS location to
detect grocery store

User probably doesn’t
want to be awakened at

5 a.m. to pick up milk

User leaves building and
enters their car to start

commute home
from work

User’s GPS location and
map lookup indicate

grocery store

“Remind me at 5 to
pick up milk.”

“Tell me to pick up milk
on the way home.”

“I need to get milk
when I’m at the store.”

Figure 17.2  AI can take input from the user and make decisions that best suit the anticipated action. The AI isn’t
preprogrammed with all of these possible responses and decision trees. Instead, it uses data models and algorithms
to apply context to the user input and interpret the meaning and appropriate outcome.

It’s not true intelligence (yet), even in complex forms of AI; instead, it’s an educated
guess based on a data model that the AI has been trained with. This data model may
include many variations and phrases, and may be able to learn new meanings over
time. How does it learn, and where do these data models come from? That’s where
ML becomes important.

17.1.2	 Machine learning

A great buzzword in computing over the past few years is big data. The concept is that
computer systems, especially in the cloud, are a great resource for processing large
amounts of data. Really large amounts of data. These processing jobs may run for a few
minutes or hours, depending on the amount of the data and the calculations required,
and allow you to prepare and analyze large volumes of data to determine specific pat-
terns and correlations. These learnings form data models that other applications or

256 Chapter 17  Machine learningand artificial intelligence

Big data

Data
preprocessed
and prepared/

sanitized

ML algorithms
applied to

data
Data model

Applications
use data
model

Figure 17.3  Large amounts of raw data are processed and made ready for use. Different preparation techniques
and data sanitization may be applied, depending on the raw inputs. Then ML algorithms are applied to the prepared
data to build an appropriate data model that reflects the best correlation among all the data points. Different data
models may be produced and refined over time. Applications can use the data models on their own data inputs to
help guide their decision making and understand patterns.

AI can use to make decisions. As shown in figure 17.3, ML involves a few steps and
includes both inputs and outputs.

Here’s how the most basic form of ML works:

1	 To begin the process, large amounts of raw data are provided as input.

2	 This data is processed and prepared in a usable format to focus on the specific
data points required for analysis.

3	 ML algorithms are applied to the data. This is where the real number crunch-
ing occurs. The algorithms are designed to detect and compute similarities or
differences across the large number of data points.

4	 Based on the analysis of the algorithms, a data model is produced that defines
patterns within the data. These data models may be refined over time if parts of
the model prove to be incorrect or incomplete when additional real-world data
is applied.

5	 Applications use the data models to process their own datasets. These datasets
are typically much smaller than the raw data provided to the ML algorithms. If
the data model is valid, even with a small data input from the application, the
correct outcome or correlation can be determined.

ML often involves complex algorithms that are designed to process all the data points
provided. Hadoop and Apache Spark are two application stacks commonly used to
process big data. Azure HDInsight is a managed service that allows you to analyze the
large datasets processed by these application stacks. To get a little deeper into the
analysis and algorithms, data scientists commonly use the R programming language to
develop the models required. Don’t worry too much about what Hadoop or R is. The
key point is that Azure can run the common ML tools that are widely accepted within
the industry.

17.1.3	 Bringing AI and ML together

A common application on a smartphone is the navigation app, as shown in figure
17.4. Your provider, such as Google, can track the route you take to work each day,
what time you usually leave home, and how long it takes you to get there.

This Google Maps example shows AI and ML working together. AI is applied to know
when to generate a notification based on the data received after processing the

	 257Overview and relationship of AI and ML

Daily commute
Daily commute

Daily commute

User 1

Daily commute
Daily commute

Daily commute

User 2

Daily commute
Daily commute

Daily commute

User 3

Active
driver 1

Active
driver 2

Active
driver 3

Weather
forecast

Real-time
weather

Your
smartphone

Traffic alerts
and suggestions

Google Maps
service

Figure 17.4  Each day, the Google Maps service receives multiple data points from
users that record details of their commute. This data can be prepared and
processed, along with the weather forecast and real-time weather during those
commutes. ML algorithms can be applied to these large datasets and a data model
produced. As a smaller sample of active drivers feed their current travel conditions
or weather data into the Google Maps service, the data model can be applied to
predict the commute and generate a traffic alert to their smartphones that suggests
an alternative route home.

ML data model. Another example of AI and ML working together is the idea of set-
ting a reminder to buy milk. If the AI was trained with ML data models, the assistant
would know that you probably buy milk at the grocery store, so it wouldn’t remind you
if you went to the hardware store. The ML data model would also be able to help the
AI understand that there’s a greater probability that you want to be reminded of
something at 5 p.m., not 5 a.m., so it shouldn’t wake you at 5 a.m. to remind you to
buy milk. If your smartphone tracks you getting in your car at 5 p.m. and starting to
drive away from work, ML will generate a data model that predicts you’re driving
home, so that hour is a good time for the AI to remind you about buying milk.

These basic but powerful examples show how ML is used to improve AI. You train
AI by providing a set of data points that are processed by ML to improve accuracy or
decision making.

17.1.4	 Azure ML tools for data scientists

I want to quickly cover a couple of ways that some real-world number crunching and
ML work can be done. To make this chapter accessible to all, the exercises use the
Microsoft Bot Framework for AI, and ML with Language Understanding Intelligent
Service (LUIS). To get your hands dirty with ML, we need to focus a little more on
data processing and algorithms.

258 Chapter 17  Machine learningand artificial intelligence

In Azure, a couple of cool components help you dig into data on a massive scale.
First, there’s Azure Machine Learning itself, a web-based service that lets you visually
build experiments by adding datasets and analysis models. These experiments can use
data sources such as Hadoop and SQL, and additional programming support is pro-
vided for languages such as R and Python. You can drag and drop data sources, data--
preparation techniques, and ML algorithms. You can adjust those algorithms and
then review and tweak the data models produced.

Azure Machine Learning provides a low barrier for entry to the large-scale com-
pute resources available in Azure. A primary benefit of performing ML data crunch-
ing in Azure is that you can access a large amount of compute power and use it for
only the time required to complete your calculations. In traditional environments,
those expensive compute resources would sit idle for large periods of time between
data-processing jobs.

One other cool resource that helps you perform serious ML and number crunching
in Azure is data science virtual machines (DSVMs). These VMs are available for both
Linux and Windows. They come with many common applications preinstalled, includ-
ing Jupyter Notebooks, Anaconda Python, and R Server or SQL Server (figure 17.5).

Figure 17.5  DSVMs are available for Windows and Linux. This Window Server 2016 DSVM comes
with several preinstalled data science applications, such as R Server and Jupyter Notebooks. DSVMs
let you get up and running quickly with processing big data and building ML algorithms.

	 259Azure Cognitive Services

There’s no need to install all the tools and dependencies on your local computer; you
can create a DSVM with as much CPU and memory resources as you need to process
your data quickly and then delete the VM when your processing job is complete and you
have the data models you need.

17.2	 Azure Cognitive Services
Okay, so what about AI services to make your apps smarter? In Azure, a set of related
services makes up the Cognitive Services suite. The services cover a few common areas
of AI that let you quickly integrate these intelligent resources into your applications,
divided into the following general areas:

¡	Vision
¡	Speech
¡	Language
¡	Decision
¡	Search

More than two dozen services are part of the Cognitive Services family. Some of these
services are

¡	Vision, which includes

	– Computer Vision for image analysis, captioning, and tagging.

	– Face for analyzing and detecting faces in images.
¡	Speech, which includes

	– Speech Services for analyzing and converting speech to text, and vice versa.

	– Speaker Recognition for identifying and verifying the speaker.
¡	Language, which includes

	– Language Understanding (LUIS) for understanding and processing interaction
with users. We’ll explore LUIS in the lab at the end of this chapter.

	– Translator Text for analyzing and correcting spelling mistakes or performing
translations.

¡	Decision, which includes

	– Content Moderator for reviewing and moderating photos, video, and text.

	– Personalizer for analyzing patterns and providing recommendations to cus
tomers.

¡	Search, which includes

	– Bing Custom Search for implementing search on your custom data and within
applications.

	– Bing Autosuggest for providing automatic suggestions as users enter search
phrases and queries.

As you can see, many Azure services combine AI and ML features. This chapter focuses
on language, specifically LUIS. This service is commonly used to build an intelligent
bot that can help customers on your website. Then you can build an application that

260 Chapter 17  Machine learningand artificial intelligence

uses AI services in Azure that can interpret phrases and questions, and provide the
appropriate response to guide a user through an order process or support request.

17.3	 Building an intelligent bot to help with pizza orders
A bot is an application that’s programmed to respond to tasks and input from a user. If
this sounds much like any normal application, well, it pretty much is! The difference is
how the bot application determines the response.

A basic, common bot is often nothing more than an application that provides
some form of automation. When a user sends a message, sets a tag on an email mes-
sage, or submits a search term, the bot carries out preprogrammed tasks that perform
a specific action. There’s no real AI or ML here; the bot application is just responding
to user input.

With the right framework, a bot can be extended and given a little more freedom
and intelligence. At the start of our overview of AI, I discussed how a typical applica-
tion must be preprogrammed with all the anticipated user inputs and what the corre-
sponding output would be. But there’s no flexibility if the user provides a different
input phrase or a spelling mistake, for example.

Microsoft produces the Bot Framework, which allows an Azure bot to easily inte-
grate the Bot Builder SDKs and connect to Azure Cognitive Services. With minimal
code experience, you can build intelligent bots that use the power of Azure to deliver
a great customer experience. Just don’t try to build Skynet unless you know how The
Terminator ends!

17.3.1	 Creating an Azure web app bot

Let’s deploy a bot and integrate some AI and ML services. The bot runs in an Azure
web app and uses Microsoft Bot Framework to connect to LUIS and let a customer order
pizza. Figure 17.6 outlines what these exercises will build and what services are used.

Figure 17.6  In the upcoming
exercises, you’ll create a web
app bot that integrates multiple
Azure AI and ML services to
interact with a customer and
help them order pizza.

Microsoft Bot
Connector
Framework

Node.js
app

Web app

App service plan

Language
understanding

and intent

Stores persistent bot
data and session state

Azure subscription

Table

Storage account

LUIS app

	 261Building an intelligent bot to help with pizza orders

Try it now
To create an Azure web app bot, complete the following steps:

1	 Open the Azure portal, and select Create a Resource in the top-left corner.

2	 Search for and select Web App Bot, and then select Create.

3	 Enter a name for your bot, such as azuremol; then create a new resource
group and provide a name, such as azuremolchapter17.

4	 Select the most appropriate region for you, and choose the F0 pricing tier. Your
bot won’t process a lot of messages, so the free (F0) tier is fine.

5	 Select a bot template, and choose the Node.js SDK language.

6	 Create a basic bot, as we’ll provide our own sample application code in a later
exercise. This step creates a LUIS app you can use to perform language training
and ML.

7	 Choose the most appropriate region for your LUIS app, and create a new LUIS
account.

8	 Provide a name for the LUIS account, such as azuremol. This LUIS account
handles the user sentiment for our bot.

9	 Choose App Service Plan, and create a new plan. Provide a name, such as
azuremol, and again, select the most appropriate region for you.

10	 Turn off App Insights, because your bot won’t use it. As in earlier chapters on
web apps, for production use you may want to harness the power of App
Insights to gain visibility into the performance of your application by streaming
data and analytics straight from the code.

11	 Accept the option to autocreate the Microsoft app ID and password, accept the
agreement, and then choose Create.

It takes a few minutes to create the web app bot and associated components. A lot hap-
pens behind the scenes:

¡	An Azure App Service plan is created.
¡	A web app is deployed, along with a sample Node.js web application.
¡	A LUIS app is created, and the connection keys are configured with your web

app.
¡	A bot is created with the Microsoft Bot Connector, and the connection keys are

configured from your web app.

17.3.2	 Language and understanding intent with LUIS

One of the Azure Cognitive Service areas that we looked at earlier is language. This
makes sense, because some form of language is often used to interact with an AI. You
can use LUIS to process a message or phrase from the user and determine their
intent. That intent helps your app provide an appropriate response. Let’s extend your
bot with LUIS.

262 Chapter 17  Machine learningand artificial intelligence

Try it now
To build a LUIS app and use ML to train it, complete the following steps

1	 Open a web browser to www.luis.ai, and sign in with the same Microsoft creden-
tials as your Azure subscription.

2	 Select My Apps and then choose your app, such as azuremol. Your LUIS app
name likely has some additional numerical characters appended to it from the
bot name you specified in the Azure portal.

Some prebuilt intents were created, but you want to overwrite the LUIS app
with a more pizza-store-focused sample.

3	 Download the azuremol.json file from GitHub at https://github.com/fouldsy/
azure-mol-samples-2nd-ed/blob/master/17/luisapp/azuremol.json to your local
computer. To make life easier, select the Raw button in GitHub to see only the
contents of the file.

4	 Back in your LUIS app, choose to Manage the app, and then select Versions.

5	 Choose to import a version, browse to and select the azuremol.json file you
downloaded, enter a version name of 1.0, and then select Done.

6	 Go back to Build in the top menu to see the imported intents from the sample
app. Choose one or two of the intents, such as greetings or orderFood, and
look at some of the example phrases a customer could use to communicate with
the bot.

7	 Before you can see the app in action, you must train it. Select Train, and wait a
few seconds for the process to complete. Figure 17.7 shows the ML processes at
work to train your LUIS app.

greetings

showMenu

orderFood

Intents

“One pepperoni”

“A veggie pizza,
please”

Entities

LUIS app data
model

Train Web app bot
Language

understanding and
processing of intent

Figure 17.7  When you train the LUIS app, the intents and entities are input and processed to create a data
model. Then your web app bot uses this data model to process language understanding and intent. The number
of intents and entities input for processing is small, so the data model isn’t perfect. In the real world, many
more intents and entities would be provided, and you’d repeatedly train, test, and refine the data model to
build progressively larger datasets to build an accurate model for processing language and intent.

	 263Building an intelligent bot to help with pizza orders

In a more complex real-world application, it may take longer to complete this
training process as all your intents and entities are processed by the ML algo-
rithms to build the required data model for your app to respond appropriately
to customer communication.

8	 With the LUIS app trained, select Test, and enter a couple of greetings, such as
hi and hello. Below each of your messages is the top-scoring intent, along with
the probability that the message, or utterance, you entered matches the intent.
These basic greetings should match the greetings intent.

9	 Try to enter a different greeting, such as (good) afternoon or (good) evening. The
single-word greeting based on the time of day may return an incorrect top-
scoring intent, such as orderStatus. Try some other phrases until something
doesn’t line up with the expected intent, which indicates that the LUIS app
doesn’t fully understand what you mean. Select one of your incorrect messages,
such as morning, and choose Inspect.

10	 On the Inspect menu, choose to edit the incorrect top-scoring intent. From the
drop-down menu, choose greetings, or whatever the most appropriate intent
is for your incorrect phrase.

11	 You’ve made a change to your app, so choose to Train the LUIS app again. Fig-
ure 17.8 shows how to provide additional inputs for the ML algorithms to pro-
cess the data model and refine the language understanding and intent.

12	 In the test-messages window, reenter the incorrect message, such as morning. This
time, the top-scoring intent should correctly be identified as greetings.

13	 To make the updated LUIS app available to your web app bot, choose the Pub-
lish option from the top menu. Accept all the defaults, and choose to publish to
a production slot. It takes a few seconds to complete the publish process.

Figure 17.8  As you reclassify the
intent of messages and retrain the
LUIS app, the data model is refined as
additional data inputs are provided to
the ML algorithms. When you enter
similar greetings in the future, the
data model will (ideally) be improved
and will respond more appropriately.

greetings

showMenu

orderFood

Intents

“One pepperoni”

“A veggie pizza,
please”

Entities

LUIS app data
model

Train

Reclassify
intent of
message

264 Chapter 17  Machine learningand artificial intelligence

Remember that your bot runs on a web app, so it has production and staging slots, as
you learned way back in chapter 3. In the real world, you should publish to a staging
slot, verify that everything works as expected, and then publish to the production slot.
The same PaaS features that allowed you to test and move web code between develop-
ment and production lifecycles also benefit the lifecycle of your web app bot powered
by LUIS.

In this basic example, ML was able to take your data input of (good) morning as a
greeting and to understand that similar greetings, such as (good) evening, are also greet-
ings. ML works best when a large set of data can be input to the data model, so it’s
important to thoroughly test and help train your app. The AI—in this case, the LUIS
app—is only as good as the size and quality of the data provided to the ML algorithms.

17.3.3	 Building and running a web app bot with LUIS

You now have a basic web app bot in Azure and a LUIS app that handles the language
processing and returns the customer intent. To integrate the two, you need to modify
the code for your bot to use LUIS. SDKs are available for the C# and Node.js program-
ming languages. I find that Node.js makes it a little quicker and easier to understand
what happens in the code, if this is new to you. If you’re familiar with C#, you’re wel-
come to explore the C# SDK when you’re finished with this chapter. For now, let’s use
a basic Node.js app from the GitHub sample repo to see your bot in action with LUIS.

Try it now
To update your web app bot with your trained LUIS bot, complete the following steps:

1	 In the Azure portal, choose Resource Groups from the menu at left, and choose
your resource group, such as azuremolchapter17; then select your web app
bot, such as azuremol.

Let’s use a sample bot from our GitHub samples repo. The sample bot is
written in Node.js, but as with previous sample apps, don’t worry if that’s not
your thing.

2	 To deploy the sample bot, open Cloud Shell. If necessary, clone the GitHub
samples repo in your Cloud Shell as follows:

git clone https://github.com/fouldsy/azure-mol-samples-2nd-ed.git

3	 Change to the directory for chapter 17:

cd azure-mol-samples-2nd-ed/17/webappbot

4	 Initialize the Git repo, and add the bot files:

git init && git add . && git commit -m "Pizza"

5	 To upload the sample bot, create a connection to your web app. The following
command gets the web app repository and configures your local samples Git
repo to connect to it. In previous chapters, I made you dig around for this

	 265Building an intelligent bot to help with pizza orders

address, but by now, I hope you’ve started to explore what else the Azure CLI
can do and realized that much of this information can be obtained quickly.

git remote add webappbot \
$(az webapp deployment source config-local-git \
--resource-group azuremolchapter17 \
--name azuremol \
--output tsv)

6	 Push the sample Node.js bot to your web app with the following command:

git push webappbot master

7	 When prompted, enter the password for the Git user you created and have used
in previous chapters (the account created in chapter 3).

If you didn’t write your Git password on a sticky note
If you’ve forgotten the password, you can reset it. First, get the username of your
local Git deployment account:

az webapp deployment user show --query publishingUserName

To reset the password, enter the name of your account from the previous command,
and then answer the prompts to set a new password. The following example resets
the password for the user account named azuremol:

az webapp deployment user set --user-name azuremol

Let’s look at figure 17.9 to see what you’ve deployed. Now the LUIS app is trained with
ML algorithms, and your data model is ready for the Node.js app to let customers
interact and order pizza.

Microsoft Bot
Connector
Framework

Node.js
app

Web app

App Service plan

Table

Storage account

LUIS app

Language
understanding

and intent

Stores persistent bot
data and session state

Azure subscription

Hungry customer
online wants to

order pizzaCustomer chats with
bot, which is

processed by LUIS

Figure 17.9  Now a customer can access your bot online and ask to view the menu or order pizza. LUIS provides
the language understanding, which allows the bot to process orders and send them to Azure Storage for additional
processing.

266 Chapter 17  Machine learningand artificial intelligence

Back in the Azure portal for your web app bot, select Test in Web Chat. It takes a few
seconds the first time you connect to the bot, but then you should be able to interact,
view the list of pizzas on the menu, and create an order, as shown in figure 17.10. Try
it yourself!

Figure 17.10  With your web app bot running, start a conversation, and try to order a pizza. In this
example dialogue, you can view the menu, order a pizza, and check the order status. The app is basic
and isn’t really creating orders or updating the status beyond what pizza was ordered, but I hope that the
exercise shows how you can quickly deploy a bot in Azure.

	 267Lab: Adding channels for bot communication

I hope that these basic exercises have given you an idea of what Azure can offer for AI
and ML. The web app bot with LUIS can be expanded to include additional Azure
Cognitive Services, such as Spell Check and Translator. These services let you inter-
pret words and phrases if the user spells them incorrectly or let your bot converse in
multiple languages. Or you could use Face and Personalizer to detect which customer
was making an order based on facial recognition from their camera and automatically
suggest pizzas that they may like.

The ML was part of the LUIS app, but many more ML resources and tools are
available in Azure. The ability to process large datasets and compute ML data models
on high-performance Azure compute resources lowers the entry for you to build
applications backed by some serious datasets. The applications are more accurate and
efficient, and there’s no hardware to buy or special tools to install because the DSVMs
include all the components required. Not all applications are a good fit for AI and
ML, but as customers start to expect more intelligent features from your business, these
Azure services can often help differentiate you.

Batch workload processing
Two other areas of Azure that may be of interest in terms of big data and compute
for ML are the Azure Batch and HPC services. Azure Batch lets you perform large,
repetitive compute tasks without the need to manage clusters of schedulers for the
work. Batch runs tasks on VMs with its own management and scheduler to help you,
just as scale sets include autoscale and load balancing for VMs. Although Batch isn’t
directly related to ML, if you need other large compute-processing tasks, Batch is a
great fit.

There are also high-performance computing (HPC) components in Azure for large VM
sizes or access to graphical processing unit (GPU) VMs. Specific tools and suites
such as DataSynapse and Microsoft HPC Pack can also be used to run applications
that demand a large amount of compute power.

Areas such as ML, Azure Batch, and HPC are great examples of how to use cloud
computing providers like Azure to run large compute tasks. You pay only for the com-
pute resources you use, so you don’t need to purchase and maintain expensive
equipment that sees minimal use.

17.4	 Lab: Adding channels for bot communication
In the earlier examples, you communicated with your bot through a test window in
the Azure portal. Channels allow you to expand how you can interact with your bot.
You can allow your bot to communicate with Skype or Facebook Messenger, or with
apps like Microsoft Teams and Slack. The Azure Bot Service simplifies the steps
needed to integrate a bot with those external services:

1	 In the Azure portal, select your web app bot, and then choose Channels.

2	 Pick a channel you like, such as Skype.

268 Chapter 17  Machine learningand artificial intelligence

Other channels often require you to create a developer connection, such as
to Facebook or Slack. Skype lets you copy and paste some HTML code to make
it work.

3	 Provide any required information, such as Bot Application ID. You can find this
ID under Settings for Bot Management.

4	 If needed, use the online code editor to create a basic HTML page, such as
default.htm, in the wwwroot directory, and paste any embedded code for your
channel. You can open your web app from the Azure portal and then select its
URL to open the default.htm page that includes your channel code, such as
http://azuremol.azurewebsites.net/default.htm.

269

18Azure Automation

Where possible, you shouldn’t log in to a server manually and make changes. Soft-
ware doesn’t need to be installed by clicking buttons in a GUI, and updates don’t
need to be made to configuration files in a text editor. These manual actions intro-
duce an opportunity for errors to occur, which can result in misconfigurations and
application failures. If you want to replicate the configuration of a server, can you
remember all the steps that were required to get the existing server up and run-
ning? What if you need to do it again in six months?

In chapter 16, we touched on a way to automatically check for and apply
updates to servers. This magic happened with the use of Azure Automation. In this
chapter, we’ll examine how you can create, run, and edit runbooks, and use Power-
Shell Desired State Configuration to install applications and configure servers auto‑
matically.

18.1	 What is Azure Automation?
An Azure Automation account brings together many elements, as shown in figure
18.1. A core feature is creating and running scripts on demand or on a defined
schedule. You can create scripts in PowerShell or Python and let the Azure plat-
form handle the scheduling and execution of those runbooks. You can share cre-
dentials and connection objects, and automatically apply and report on desired
configurations of servers. Update Management, which we examined in chapter 16,
keeps your servers secure and up to date with the latest host patches and updates
throughout the lifecycle of your application environment.

270 Chapter 18  Azure Automation

Azure Automation

Update Management

• Windows/Linux host updates
• Compliance reports
• Scheduled updates

Runbooks
• Automate tasks with

PowerShell or Python
• Graphical design tools
• Scheduled execution

Desired state configuration
• Defines applications,

configurations, and files
• Applies, reports, and

remediates drift
• Windows + Linux support

Shared resources
• Credentials, certificates,

and connections
• Import additional modules
• Reuse schedules

Figure 18.1  Azure Automation provides many related features. A shared set of resources—such as
credentials, certificates, schedules, and connection objects—can be used to run PowerShell or Python
scripts automatically on target servers. You can define the desired state of a server, and Azure
Automation installs and configures the server appropriately. Host updates and security patches
can be applied automatically. All these features work across both Windows and Linux servers, in
Azure, other cloud providers, and on-premises.

To simplify management across multiple runbooks or desired state configurations in
an Automation account, you can share the following resources:

¡	Schedules let you define a set of times and recurrences that can be applied to
each runbook or Update Management task. If you want to change a regular
occurrence later, you can change one of the shared schedules rather than each
individual runbook or Update Management task that uses it.

¡	Modules extend the core functionality by storing additional PowerShell mod-
ules. The base Windows PowerShell and Azure modules are already available,
but additional modules, such as for Linux management, can be added and used
in runbooks.

¡	Credentials for the different accounts that have permissions to execute various
runbooks are stored as assets, not defined in each runbook. This approach lets
you update and reset credentials as needed, and each runbook that uses them is
updated automatically. Thus credentials aren’t stored in plain text in runbooks,
which increases the security of the runbooks.

¡	Connections define authentication properties to Azure AD service principals.
This is a special type of user account that allows runbooks to access your Azure
resources. These connections typically use digital certificates, not usernames
and passwords, to provide an additional layer of security.

¡	Certificates are often integrated with connection assets to provide a secure way to
verify the identity of a service principal. As with basic credentials, you can update

	 271What is Azure Automation?

these certificates regularly in a central location, and each runbook that uses
them can access the new certificates automatically. You can create and store your
own certificates for use with runbooks or desired state configuration definitions.

¡	Variables provide a central place for runtime values such as names, location
strings, and integers to be stored. When your runbooks are executed, these vari-
ables are injected. This approach limits the amount of hardcoded resources
inside each runbook.

Work smarter, not harder
In chapter 16, we touched on how Azure management services work together to mon
itor and report on servers in Azure, on-premises, or in other cloud providers. You
install and configure the required agents on remote servers, and then provide a way
for them to connect back to the Azure infrastructure.

Azure Automation can also work across platforms and infrastructure. The hybrid run-
book worker can execute Automation runbooks on servers outside Azure, for exam-
ple. You continue to use the shared Automation assets that define credentials,
connections, and certificates, only this time, those assets can be used to define the
authentication components for the different platforms. You can also use desired
state configurations on non-Azure VMs, for both Windows and Linux.

In all cases, a gateway component is installed in the remote environment to act as a
proxy for the Automation commands as they’re sent to the designated targets. This
gateway proxy approach provides a single connection point for Automation into the
remote environments and minimizes any security concerns, because there’s no
direct access to otherwise remote servers.

Runbooks and desired state configuration definitions may need to be edited slightly
to run against on-premises physical servers compared with Azure VMs. As with Azure
Backup, Site Recovery, or Update Management, the advantage of Azure Automation
is that it provides a single management plane and set of tools to deliver automation
across all of your infrastructures and servers.

18.1.1	 Creating an Azure Automation account

Let’s jump in by creating an Azure Automation account and looking at the default
runbooks that are included. The demo runbooks provide a great framework to build
your own runbooks, and there’s also a graphical editor that you can use to drag and
drop building blocks to generate automation scripts.

Try it now
To create an Azure Automation account and sample runbooks, complete the following
steps:

1	 In the Azure portal, select Create a Resource in the top-left corner.

2	 Search for and select Automation, and then select Create.

272 Chapter 18  Azure Automation

The Automation and Control option also creates an Operations Manage-
ment Suite (OMS) workspace and configures the Automation Hybrid Worker
to manage resources outside Azure. OMS is somewhat on the way out, replaced
by the core Azure services we looked at in previous chapters. For now, choose to
create only the automation resource.

3	 Enter a name, such as azuremol, and then create a new resource group, such
as azuremolchapter18.

4	 Select the most appropriate Azure region closest to you, and accept the option
Create Azure Run As Account.

The Create Run As Account option creates additional accounts in Azure AD.
Security certificates are also created to allow the accounts to authenticate in an
automated fashion without the need for user prompts or password saves. You
could create and specify additional regular account credentials, defined as an
Automation asset, to provide more granular control of which accounts are used
to run certain runbooks.

When combined with RBAC, which we looked at in chapter 6, specific Run As accounts
can be created for runbooks, which provide a limited set of permissions needed to
accomplish the tasks each runbook, or set of runbooks, requires. From a security per-
spective, this approach allows you to audit and control how and when these accounts
are used. Avoid the temptation to create a single Run As account that provides admin-
like permissions, because this approach provides little protection against abuse.

18.1.2	 Azure Automation assets and runbooks

The Azure Automation account you created in section 18.1.1 includes some sample
runbooks. Both PowerShell and Python samples are available. Connection assets and
certificates are also added to the Automation account for the Run As accounts that
were created. Let’s explore those shared connection assets.

Try it now
To see the configured assets and sample runbooks, complete the following steps:

1	 In the Azure portal, select Resource Groups at left; choose your group, such as
azuremolchapter18; and select your Azure Automation account, such as
azuremol.

2	 Under Shared Resources in the menu on the left, select Connections.

3	 Select AzureRunAsConnection, as shown in figure 18.2.

4	 Choose Certificates from the main menu on the Automation account under
Shared Resources, and then choose the AzureRunAsCertificate. As shown in fig-
ure 18.3, the digital thumbprint matches RunAsConnection from the preced-
ing step.

	 273What is Azure Automation?

Figure 18.2  Information on the Run As account includes an
ApplicationId and TenantId—specific properties for Azure AD that help
identify the credentials for this account. A CertificateThumbprint
matches a digital certificate that we’ll look at in the next step.

Figure 18.3  The thumbprint
of the RunAsCertificate
matches that shown in
RunAsConnection. In your
runbooks, you define which
connection asset to use.
The appropriate certificate
is used to log in to the
Azure account.

274 Chapter 18  Azure Automation

5	 Now that you understand the assets for connections and certificates, let’s look
at one of the sample runbooks. Choose Runbooks from the menu at left in the
Automation account. A few sample runbooks are available.

6	 Choose the PowerShell runbook called AzureAutomationTutorialScript.

7	 Across the top of the sample runbook are options to Start, View, and Edit the
runbook. These options should be self-explanatory!

You also have an option for scheduling, which lets you create or select a
shared resource that defines a schedule to execute the runbook at a given time,
and an option for webhooks, which lets you create a webhook URL to execute
the runbook from some other script or action. Choose View.

Azure Automation and source control with GitHub
Runbooks can be integrated with a source control system, such as GitHub. One of
the great benefits of a source control system for your runbooks is that it provides a
way for change management to be documented and to revert to earlier versions of the
runbooks in the event of a problem.

Each time you save an Azure Automation runbook, a new version is committed to
source control. You don’t need to leave the runbook editor, because the Azure plat-
form and the source control system are configured to work back and forth. If you run into
a problem with the new runbook, you can pull a previous version from source con-
trol that allows jobs to continue to run without delay, and then troubleshoot why the
updated version has an issue.

Using source control also provides a record of what changes occurred and when. If
you need to audit your runbooks or understand how they developed over time, source
control systems provide a great way to see the differences with each revision.

18.2	 Azure Automation sample runbook
Let’s examine how the sample PowerShell runbook, AzureAutomationTutorialScript,
connects to Azure and gathers information about your resources. You can follow
along with the Python sample runbook if you prefer; the layout is similar. PowerShell
and Python are the only languages currently supported in Azure Automation run-
books. The following listing sets up the connection credentials in the runbook.

Listing 18.1  Setting up connection credentials	

$connectionName = "AzureRunAsConnection"
try
{
  # Get the connection "AzureRunAsConnection "
  $servicePrincipalConnection=Get-AutomationConnection -Name
➥$connectionName

Creates an object for $connectionName

Makes the connection request

Creates a service principal object

	 275Azure Automation sample runbook

   "Logging in to Azure..."
   Add-AzureRmAccount `
     -ServicePrincipal `
     -TenantId $servicePrincipalConnection.TenantId `
     -ApplicationId $servicePrincipalConnection.ApplicationId `
     -CertificateThumbprint
➥$servicePrincipalConnection.CertificateThumbprint
}

The code begins by creating an object for $connectionName. In the “Try it now” exer-
cise, you saw that a default connection asset for AzureRunAsConnection was created. As
you create your own runbooks, you may want to create additional Run As accounts and
connection assets to separate the runbooks and the credentials that they use. The con-
nection parts and exception handling that we’ll look at next should be common across
all runbooks. As needed, you can change the Run As connection asset to use.

Next, a try statement is used to make the connection request. A service principal
object named $servicePrincipalConnection is created, based on $connec
tionName. The runbook then logs in to Azure with Add-AzureRmAccount and uses
the $servicePrincipalConnection object to obtain the TenantId, Applica-
tionId, and Certificate-Thumbprint. We discussed these parameters as part of
the connection asset earlier. The certificate asset that matches the thumbprint of
$servicePrincipalConnection is then used to complete the login to Azure.

The next listing shows that if the connection fails, the runbook catches the error
and stops execution.

Listing 18.2  Catching an error and stopping the runbook execution	

catch {
    if (!$servicePrincipalConnection)
    {
       $ErrorMessage = "Connection $connectionName not found."
       throw $ErrorMessage
    } else{
       Write-Error -Message $_.Exception
       throw $_.Exception
    }
}

The catch statement handles any errors as part of the login attempt. If a service prin
cipal connection couldn’t be found, an error is output. This error usually means that
the connection asset you specified can’t be found. Double-check the name and spell-
ing of your connection.

Otherwise, the connection object was found, and the service principal was used to
log in, but that authentication process was unsuccessful. This failure could come from
a certificate that is no longer valid or a Run As account that is no longer being
enabled. This functionality shows how you can revoke an account in Azure AD and
ensure that any runbooks that use the credentials can no longer run.

Logs in
to Azure

276 Chapter 18  Azure Automation

Now the runbook gets a list of all Azure resources.

Listing 18.3  Getting a list of Azure resources	

$ResourceGroups = Get-AzureRmResourceGroup
foreach ($ResourceGroup in $ResourceGroups)
{
   Write-Output ("Showing resources in resource group "
➥+ $ResourceGroup.ResourceGroupName)
   $Resources = Find-AzureRmResource -ResourceGroupNameContains
➥$ResourceGroup.ResourceGroupName |
➥Select ResourceName, ResourceType
   ForEach ($Resource in $Resources)
   {
      Write-Output ($Resource.ResourceName + " of type "
➥+ $Resource.ResourceType)
   }
   Write-Output ("")
}

The final part of the runbook is where your runbook code would go. An object is cre-
ated for $ResourceGroups that gets a list of all available Azure resource groups.
Then a foreach loop goes through the resource groups, finds a list of resources, and
writes out a list of the resource names and types.

This basic example shows how you can interact with Azure when the runbook has
authenticated against the subscription. If you implement RBAC on the Run As account,
only the resource groups that the account has permissions to see are returned. This
approach to RBAC highlights why it’s a good security principle to create and use scoped
Run As accounts to limit runbooks’ access to resources in your Azure environment.
Always try to provide the least privileges necessary.

If all this PowerShell or Python is new to you, don’t worry. Both are great, basic
scripting languages that also can be used to develop complex, powerful applications.
As a developer, you should find either language relatively easy to pick up and use. If
you’re an IT pro, automating tasks helps free time for you to perform all the other
jobs that are stacked up, and both PowerShell or Python are good places to start. Man-
ning Publications has some other great books to help you, too!

18.2.1	 Running and viewing output from a sample runbook

Now that you’ve seen what the sample runbook script contains and how the connec-
tion and certificate assets are used, let’s execute the runbook and look at the output.

Try it now
To see the runbook in action, complete the following steps:

1	 Close the window that shows the content of the runbook, and return to the
overview of AzureAutomationScriptTutorial.

	 277Azure Automation sample runbook

2	 Select Start at the top of the runbook window.

3	 Confirm that you wish to start the runbook, and wait a few seconds for the run-
book to begin to run.

4	 Select Output, as shown in figure 18.4, and watch the console window as the
runbook logs in to Azure, gets a list of resource groups, and loops through and
outputs the list of resources in each group.

Figure 18.4  You can view the output of the runbook, along with any logs that are generated or
errors and warnings. This basic example completes in a few seconds, but more-complex runbooks
may take longer. You can monitor the status of those longer runbooks and stop or pause their
execution as needed.

Automation runbooks don’t need to exist in isolation. One runbook can execute
another runbook. This ability lets you build complex, multistep automation and mini-
mize the duplication of code. As you design and build runbooks, try to break them
down into small, discrete blocks of code. Common functions that you may reuse, such
as logging in to Azure and generating a list of resources or a list of VMs, should be cre-
ated as small runbooks that can be included in larger runbooks. As new PowerShell
cmdlets are released or parameters are changed, you can quickly update a single
shared runbook that includes those cmdlets rather than needing to update multiple
different runbooks. At first, it may not seem that smaller, reusable runbooks are worth

278 Chapter 18  Azure Automation

a little bit of extra work, but as your environment and Automation use grows, you’ll
thank me! A lot of what you’ve done in this book has been in smaller deployments,
but start to think about how to deploy and manage applications at scale.

18.3	 PowerShell Desired State Configuration (DSC)
Chapter 12 introduced the concept of VM extensions. An extension is a small software
component that’s installed in a VM to perform a given task. The VM diagnostics
extension was installed on a VM to allow performance metrics and diagnostic logs to
be reported back to the Azure platform from inside the VM. That’s great, but we also
talked a little about how you can install software automatically.

One way to install software and configure a server is to use PowerShell Desired
State Configuration (DSC). With DSC, you define how you wish a server to be config-
ured—the desired state. You can define packages to be installed, features to be config-
ured, or files to be created, for example. What’s great about DSC is that it goes beyond
the first install-and-configure action. Over time, servers often undergo mainte-
nance or troubleshooting events in which configurations and packages are manually
changed. Then the server would deviate from the desired state that you initially
defined. Figure 18.5 shows how Azure Automation can act as a central server that
stores the DSC definitions, allowing target servers to receive their configurations and
report back on their compliance.

The Local Configuration Manager (LCM) on each target server controls the process
for connecting to the Azure Automation pull server, receiving and parsing the
DSC definition, and applying and reporting on compliance. The LCM engine can
operate without a pull server, where you locally call the process to read and apply a

configuration WebServer {
Node localhost {

WindowsFeature WebServer {
Ensure = "Present"
Name = "Web-Server"

}
}

}

Azure VM On-premises
physical
server Other cloud

provider VM

1. Desired configuration
stored in Azure
Automation

2. Servers configured
to use Automation
DSC pull server

3. Servers pull and apply
desired configuration

Azure Automation
DSC pull server

Figure 18.5  The desired state configuration for a server is created and stored in Azure Automation. The
Automation account acts as a pull server, which allows connected servers to pull the required configuration
from a central location. Different configuration modes can be set for the remediation behavior of the server
if their configuration deviates from the desired state.

	 279PowerShell Desired State Configuration (DSC)

DSC definition. In this mode, where you manually push the configuration to the LCM
engine, you miss out on a lot of the central controls and reports that are often needed
when you manage many servers.

There’s also flexibility in how the target servers process the DSC definitions
received from the Azure Automation pull server. You can configure DSC to operate in
one of three configuration modes:

¡	Apply only—Your desired state is pushed and applied to the target server, and
that’s it. This is like the behavior of the Azure Custom Script Extension in that
any configurations or installations are applied when first deployed, but there
are no processes in place to stop those configurations from manually changing
over the lifecycle of the server.

¡	Apply and monitor—After the server has the desired state applied, DSC contin-
ues to monitor for any changes that cause the server to deviate from that initial
configuration. A central report can be used to view servers that are no longer
compliant with their desired state. This configuration is a good compromise
between the need to keep a server compliant with the desired state and provid-
ing an element of human interaction to decide on remediation options.

¡	Apply and autocorrect—The most automated and self-contained configuration
applies the desired state, monitors for any deviations, and automatically remedi-
ates the server should any changes occur to ensure that it remains compliant.
There’s a danger that legitimate manual changes will be overwritten and
instead returned to the configured desired state, but this configuration mode
makes sure that the settings you assign always take priority.

PowerShell DSC can be used on VMs that run in other cloud providers, as well as on-
premises VMs and physical servers. Thanks to .NET Core, PowerShell DSC can also be
used on Linux servers, so it’s not a Windows-only solution. This cross-provider, multi-
OS support makes PowerShell a powerful choice for configuring and managing serv-
ers at scale.

You can build and maintain your own DSC pull server, but the built-in features of
Azure Automation provide some additional benefits:

¡	Credentials are centrally managed, and certificates are automatically generated.
¡	Communication between the DSC pull server and target servers is encrypted.
¡	Built-in reports are provided for DSC compliance, and there’s integration with

Log Analytics to generate more detailed reports and alerts.

This section is very much a crash course in PowerShell DSC; it’s a powerful compo-
nent by itself and has been widely available for a few years now. When combined with
Azure Automation, DSC is a great choice for automating the installation and configu-
ration of software. Think back to the earlier chapters on virtual machine scale sets, for
example. You can apply a DSC configuration to the scale set with Azure Automation,
and then, as each VM is created in the scale set, it will be configured automatically
with the required components and application files.

280 Chapter 18  Azure Automation

18.3.1	 Defining and using PowerShell DSC
and an Azure Automation pull server

I hope that whirlwind tour of PowerShell DSC has given you an idea of what’s possi-
ble! Let’s use PowerShell DSC to automate the example of installing a basic web server
on a VM.

Try it now
To see PowerShell DSC in action, complete the following steps:

1	 Create a Windows Server 2019 Datacenter VM, and open TCP port 80 for
HTTP traffic. No more hand-holding now that we’re in chapter 18! You can cre-
ate the VM in the Cloud Shell or Azure portal—your choice. Use the resource
group you created in the previous exercises, such as azuremolchapter18. You
can continue with the next few steps as the VM deploys.

2	 On your local computer, create a file named webserver.ps1; enter the following
code; and save and close the file when you’re done:

configuration WebServer {
   Node localhost {
     WindowsFeature WebServer {
       Ensure = "Present"
       Name = "Web-Server"
     }
   }
}

3	 In the Azure portal, select your resource group, and then choose your Automa-
tion account.

4	 At left, choose State Configuration (DSC); select the Configurations tab; and at
the top of the window, choose to Add a configuration.

5	 Browse to and select your webserver.ps1 file. The configuration name must
match the filename, so accept the default name webserver, and then choose OK.

It takes a few moments to upload and create the configuration.

6	 When it’s ready, select the configuration from the list, and then choose
Compile.

Behind the scenes of DSC
Let’s pause to talk about what happens when you compile the configuration, as
shown in the figure in this sidebar. To distribute the DSC definitions, your PowerShell
files are converted to a Managed Object Format (MOF) file. This file type is used for
more than just PowerShell DSC and allows configuration changes on Windows com
ponents in a central, well-understood way. Any DSC definition, not just in Azure Auto
mation, must be compiled before it can be applied to a target server. The LCM engine
accepts and processes only MOF files.

	 281PowerShell Desired State Configuration (DSC)

The Azure Automation DSC pull server automatically compiles the DSC definition you provide
into a Managed Object Format (MOF) file. Digital certificates managed by Automation are used
to encrypt the MOF file. DSC target servers receive the required public digital certificates and
allow the LCM engine to decrypt and process the MOF file. Then the desired state can be
applied to the server.

Because the MOF file defines the complete state of your servers, you should protect
its content. If an attacker knows all the application components installed and the
location of various configuration files and custom code, the chance that your servers
will be compromised increases. Recent versions of PowerShell encrypt the entire
MOF file. Azure Automation automatically generates the required digital certificates
and keys when a target server is configured for DSC, which allows you to use
encrypted MOF files seamlessly. Automation also encrypts the traffic between the
DSC pull server and target nodes, not just the MOF file.

The compile process in Azure Automation both converts the DSC definition you pro-
vide to an MOF file and encrypts the MOF file with the digital certificates and keys.
The process of compiling your DSC definition takes a few seconds but greatly secures
your environment—just another example of Azure securing your resources by default!

7	 To apply the configuration to your VM, select the nodes tab in the State configu-
ration (DSC) windows; select Add; and choose the VM you created in previous
steps.

8	 Choose Connect.

9	 From the Node Configuration Name drop-down menu, choose webserver.local-
host.

10	 Set the configuration mode to ApplyAndMonitor, and select OK.
It can take a minute or two to enable the VM to use the Azure PowerShell

DSC pull server and apply the initial desired state.

11	 When the Azure portal reports that the configuration is applied, select your
resource group; then select the VM you created in the previous steps.

282 Chapter 18  Azure Automation

12	 Did you open TCP port 80 for the VM when you created the VM? If not, create a
network security group rule to allow the traffic and then open the public IP of
the VM in a web browser. The DSC process installs the IIS web server, and the
default web page loads, as shown in figure 18.6.

Figure 18.6  After the VM has been connected to Azure Automation DSC, the desired state is applied,
and the IIS web server is installed.

This basic example of PowerShell DSC only installs the web server feature. You can use
PowerShell DSC to configure the IIS web server or copy your application code to the
VM and run the site. Complex DSC definitions can be used to get the VM ready to
serve traffic to your pizza-store customers with no manual interaction. Again, think
back to how you should design your applications to scale automatically; the VM can’t
wait for someone to log in and install and configure everything manually!

18.4	 Lab: Using DSC with Linux
Just to prove that PowerShell DSC works on Linux servers, let’s create an Ubuntu VM,
install the necessary prerequisites, and then install a basic NGINX web server with
DSC. In production, you could use a custom VM image that already had the manage-
ment components installed, and then apply PowerShell DSC definitions as normal:

	 283Lab: Using DSC with Linux

1	 PowerShell DSC for Linux has a few limitations in the Linux distros that it sup-
ports without additional configuration, so to keep this end-of-chapter lab exer-
cise as simple as possible, create a CentOS 7.7 or later VM, and open port 80.

2	 In your Azure Automation account, choose Modules from the menu on the left.

3	 Select Browse Gallery, and then search for, select, and import the nx module
for managing Linux DSC resources.

4	 On your local computer, create a file name httpd.ps1, and type the following
code:

configuration httpd {
   Import-DSCResource -Module nx
   Node localhost {
     nxPackage httpd {
       Name = "httpd"
       Ensure = "Present"
       PackageManager = "yum"
     }
     nxService httpd {
       Name = "httpd"
       State = "running"
       Enabled = $true
       Controller = "systemd"
     }
   }
}

5	 Add a DSC configuration to the Azure Automation account, upload the
httpd.ps1 file, and compile the configuration.

6	 Add a DSC node to your Azure Automation account, select your CentOS VM,
and then choose your httpd.localhost Node Configuration name.

Again, it takes a minute or two for the VM to apply the desired configuration.
You can view the list of connected VMs and their compliance status in the DSC
nodes window. The VM reports Compliant when the LCM has accepted and
applied the MOF file, but the commands to install and configure the required
httpd packages inside the VM may take another minute or two.

7	 Select your CentOS VM in the Azure portal, get its public IP address, and enter
the IP address of your VM in a web browser to see the web server installed by
DSC. If the website doesn’t load, wait a minute or two for the install process to
finish, and then refresh the page.

If you want to truly experience the brave new world of Microsoft and Linux, you can
install PowerShell on your Linux VM. Complete the quick-setup steps at http://
mng.bz/VgyP to understand how cross-platform PowerShell scripts can be!

284

19Azure containers

Containers, Docker, and Kubernetes have gained a huge following in a few short
years. In the same way that server virtualization started to change how IT depart-
ments ran their data centers in the mid-2000s, modern container tools and orches-
trators are now shaking up how we build and run applications. There’s nothing that
inherently connects the growth of containers with cloud computing, but when com-
bined, they provide a great way to develop applications with a cloud-native approach.
Entire books have been written on Docker and Kubernetes, but let’s go on a whirl-
wind introduction to see how you can quickly run containers in Azure. A powerful
suite of Azure services is dedicated to containers, aligning more with the PaaS
approach. You can focus on how to build and run your applications rather than how
to manage the container infrastructure, orchestration, and cluster components.

In this chapter, we’ll examine what containers are, how Docker got involved,
and what Kubernetes can do for you. To see how to run either a single container
instance or multiple container instances quickly in a cluster, we’ll explore Azure
Container Instances (ACI) and Azure Kubernetes Service (AKS).

19.1	 What are containers?
There’s been a huge wave of interest in adoption of containers over the past few
years, and I’d be impressed if you haven’t at least heard of one company that has
led this charge: Docker. But what is a container, exactly, and what does Docker have
to do with it?

First, let’s discuss a traditional virtualization host that runs VMs. Figure 19.1 is like
the diagram in chapter 1, in which each VM has its own virtual hardware and
guest OS.

	 285What are containers?

Figure 19.1  With a traditional VM infrastructure,
the hypervisor on each virtualization host provides
a layer of isolation by providing each VM its own
set of virtual hardware devices, such as a virtual
CPU, virtual RAM, and virtual NICs. The VM installs
a guest OS, such as Ubuntu Linux or Windows
Server, that can use this virtual hardware. Finally,
you install your application and any required
libraries. This level of isolation makes VMs very
secure but adds a layer of overhead in terms of
compute resources, storage, and startup times.

A container removes the virtual
hardware and guest OS. All
that’s included in a container
are the core applications and
libraries required to run your
app, as shown in figure 19.2.

Many VMs can run on a sin-
gle hypervisor, each VM with its
own virtual guest OS, virtual
hardware, and application
stack. The hypervisor manages
requests from the virtual hard-
ware of each VM, schedules the
allocation and sharing of those
physical hardware resources,
and enforces the security and
isolation of each VM. The work
of the hypervisor is shown in
figure 19.3.

Figure 19.3  In a traditional VM
host, the hypervisor provides the
scheduling of requests from the

virtual hardware in each VM onto
the underlying physical hardware

and infrastructure. The hypervisor
typically has no awareness of what
specific instructions the guest OS
is scheduling on the physical CPU

time—only that CPU time is required.

Linux guest OS

vCPU vRAM vNIC

Core libraries + binaries

Your application code

VM 1

Windows guest OS

vCPU vRAM vNIC

Core libraries + binaries

Your application code

VM 2

Hypervisor

Virtualization host

Core libraries + binaries

Your application code

Container 1

Core libraries + binaries

Your application code

Container 2

Container runtime (such as Docker)

Container host

Figure 19.2  A container contains only the core libraries,
binaries, and application code required to run an app. The
container is lightweight and portable because it removes the
guest OS and virtual hardware layer, which also reduces the
on-disk size of the container and startup times.

Linux guest OS

vCPU vRAM vNIC

VM 1

Windows guest OS

vCPU vRAM vNIC

VM 2

Hypervisor

Virtualization host

Physical CPU Physical RAM Physical NIC

286 Chapter 19  Azure containers

Multiple containers can also run on a single host. The container host receives the vari-
ous system calls from each container and then schedules the allocation and distribu-
tion of those requests across a shared base kernel, OS, and hardware resources.
Containers provide a logical isolation of application processes. The work of the con-
tainer runtime is shown in figure 19.4.

Figure 19.4  Containers have a
common guest OS and kernel. The
container runtime handles the
requests from the containers to the
shared kernel. Each container runs
in an isolated user space, and some
additional security features protect
containers from each other.

Containers are typically much more lightweight than VMs. Containers can start faster
than VMs, often in a matter of seconds rather than minutes. The size of a container
image is typically only tens or hundreds of MBs compared with many tens of GBs for
VMs. Security boundaries and controls are still in place, but it’s important to remem-
ber that each container technically shares the kernel with other containers on the
same host.

Try it now
It takes a few minutes to create an AKS cluster for use in the upcoming exercises,
so complete the following steps and then continue reading the chapter:

1	 Open the Azure portal, and choose the Cloud Shell icon from the top menu.

2	 Create a resource group. Provide a name, such as azuremolchapter19, and a
location, such as eastus. Region availability of AKS may vary, so pick a major
region such as eastus or westeurope. (For an up-to-date list of region availabil-
ity, see https://azure.microsoft.com/regions/services.)

az group create --name azuremolchapter19 --location eastus

Container runtime (such as Docker)

Container host

Guest OS Guest kernel

Core libraries + binaries

Your application code

Container 1

Core libraries + binaries

Your application code

Container 2

Shared guest OS and
kernel requests

	 287The microservices approach to applications

3	 To create a Kubernetes cluster, specify --node-count as 2, and use scale sets
and Availability Zones (which you learned about in previous chapters):

az aks create \
--resource-group azuremolchapter19 \
--name azuremol \
--node-count 2 \
--vm-set-type VirtualMachineScaleSets \
--zones 1 2 3 \
--no-wait

The final --no-wait parameter returns control to Cloud Shell while the rest of your
cluster is created. Keep reading while the cluster is deployed.

Docker joined the container party with a set of tools and standard formats that
defined how to build and run a container. Docker builds on top of existing Linux and
Windows kernel-level features to provide a portable, consistent container experience
across platforms. A developer can build a Docker container on their laptop that runs
macOS; validate and test their app; and then run exactly the same Docker container,
without modification, in a more traditional Linux or Windows-based server cluster on-
premises or in Azure. All the required application binaries, libraries, and configura-
tion files are bundled as part of the container, so the underlying host OS doesn’t
become a design factor or constraint.

The importance of Docker shouldn’t be missed here. The terms container and Docker
are often used interchangeably, although that’s not technically accurate. Docker is a set
of tools that helps developers build and run containers in a consistent, reliable, and
portable manner. The ease of using these tools led to rapid adoption and brought the
underlying container technology that had been around in one shape or another for
more than a decade into the mainstream. Developers embraced containers and the
Docker platform, and IT departments have had to play catch-up ever since.

Docker participates in the Open Container Initiative. The format and specifica-
tions that Docker defined for how a container should be packaged and run were some
of the founding principles for this project. Docker’s work has continued and been
built upon by others. Large contributors in the container space include IBM and Red
Hat, which contributed some of the core designs and code that powers the current
container platforms. The Open Container Initiative and design format for container
packaging and runtimes are important because they let each vendor layer its own
tools on top of the common formats, allowing you to move the underlying container
between platforms and have the same core experience.

19.2	 The microservices approach to applications
If containers offer a concept of isolation similar to VMs, can you run the same kind of
workloads you do in a VM? Well, yes and no. Just because you can do something
doesn’t necessarily mean that you should! Containers can be used to run whatever
workloads you’re comfortable with, and there are benefits in terms of portability and
orchestration features that we’ll examine in section 19.4. To maximize the benefits of

288 Chapter 19  Azure containers

containers and set yourself up for success, take the opportunity to adopt a slightly dif-
ferent mental model when you start working with containers. Figure 19.5 compares
the traditional application model with a microservices approach.

Order
processing

Payment
processing

Account
management

Stock
information

Monolithic application

Order
processing

Payment
processing

Account
management

Stock
information

Microservices

Figure 19.5  In a traditional monolithic application, the entire application runs as
a single application. The application may have various components, but it runs from
a single install, and it’s patched and updated as a single instance. With microservices,
each component is broken down into its own application service and unit of execution.
Each component can be updated, patched, and scaled independently of the others.

A standard VM includes a full guest OS install, such as Ubuntu or Windows Server.
This base OS install includes hundreds of components, libraries, and tools. Then you
install more libraries and applications, such as for the NGINX web server or Microsoft
SQL Server. Finally, you deploy your application code. This VM typically runs a large
part, if not all, of the application. It’s one big application install and running instance.
To improve performance, you may add more memory or CPU to the VM (vertical scal-
ing, discussed in previous chapters) or increase the number of instances that run your
application (horizontal scaling, as with scale sets). Creating multiple application
instances works only if your application is cluster-aware, and it often involves some
form of shared storage to enable a consistent state across the application instances.
This traditional form of deployment is called a monolithic application.

A different approach to how you design, develop, and run applications is to break
things down into smaller, bite-size components. This is a microservices approach to
application development and deployment. Each microservice is responsible for a
small part of the wider application environment. Microservices can grow, scale, and be
updated independently of the rest of the application environment.

Although this model may offer challenges while development and IT teams learn
to adopt a different way to build and deploy applications, containers are a great fit for
the microservice approach. Developers are empowered to deploy smaller, more incre-
mental updates at a quicker pace than in the monolithic approach to application
development. Microservices and containers are also a great fit for continuous integra-
tion and continuous delivery (CI/CD) workflows, which make it easier to build, test,
stage, and deploy updates. Your customers receive new features or bug fixes faster
than they would otherwise, and ideally, your business grows as a result.

	 289Azure Container Instances

Microservices with Azure Service Fabric
This chapter focuses on Docker containers and orchestration with Kubernetes, but a
similar Azure service moves application development toward a microservices model.
Azure Service Fabric has been around for several years and was historically a
Windows-centric approach to building applications in which each component was bro-
ken down into its own microservice. Service Fabric keeps track of where each
microservice component runs in a cluster, allows the services to discover and com
municate with each other, and handles redundancy and scaling.

Many large Azure services use Service Fabric under the hood, including Cosmos DB.
That should give you a sense of how capable and powerful Service Fabric can be! Ser-
vice Fabric itself runs on top of virtual machine scale sets. You know a thing or two
about scale sets by now, right?

The Service Fabric platform has matured, and now it can handle both Windows and
Linux as the guest OS, so you can build your app with any programming language
you’re comfortable with. Here’s another example of choice in Azure: you have the flex
ibility to choose how you want to manage and orchestrate your container applications.
Both Service Fabric and AKS have excellent benefits and use cases.

As a good starting point, if you currently develop, or would like to develop, microser-
vices outside containers, Service Fabric is a great choice. Applications designed
around the actor model are also a great fit, as Service Fabric was originally built with
this programming model in mind. Service Fabric provides a unified approach to
handling both more traditional microservices applications and container-based
applications. If you choose to adopt containers for other workloads, you can use the
same Service Fabric management tools and interface to manage all your application
environments.

For a more container-focused application approach from the get-go, AKS may be a
better choice, with the growth and adoption of Kubernetes providing a first-class con-
tainer experience. You can run with Linux and Windows containers in AKS.

19.3	 Azure Container Instances
Now that you understand a little more about what containers are and how you can use
them, let’s dive in and create a basic instance of the pizza store. This example is the
same one used in earlier chapters, in which you created a basic VM that ran your web-
site or deployed the app to web apps. In both of those cases, you had to create the VM
or web app, connect to it, and then deploy a basic web page to it. Can the power of
containers make your life that much easier? Absolutely!

A neat service called Azure Container Instances (ACI) lets you create and run con-
tainers in a matter of seconds. There are no up-front network resources to create and
configure, and you pay for each container instance by the second. If you’ve never used
containers and don’t want to install anything locally on your computer, ACI is a great
way to try the technology.

290 Chapter 19  Azure containers

To see how you can run your pizza store quickly, let’s create a container instance. It
takes only one command to run a container instance, but figure 19.6 shows how you
bring together many components to make this happen behind the scenes. We’ll look
at the components of a Dockerfile and Docker Hub after you have the container
instance up and running.

FROM nginx:1.17.5

EXPOSE 80:80

COPY index.html
/usr/share/nginx/html

Dockerfile
NGINX:1.17.5

Base image

Map external port 80
-> container port 80

/usr/share/nginx/html

index.html

azuremol

1.

2.

3.

iainfoulds:
azuremol

Docker Hub

azuremol

Azure Container
Instance

Local container image
built from Dockerfile
pushed to public
Docker Hub repo

Deploy

Figure 19.6  A Dockerfile was used to build a complete container image: azuremol. This image was
pushed to an online public registry called Docker Hub. Now you can create a container instance using
this prebuilt public image from Docker Hub, which provides a ready-to-run application image.

Try it now
To create an Azure container instance that runs a basic website, complete the follow-
ing steps:

1	 Open the Azure portal, and choose the Cloud Shell icon from the top menu.

2	 Create a container instance, and specify that you want to have a public IP
address and to open port 80:

az container create \
--resource-group azuremolchapter19 \
--name azuremol \
--image iainfoulds/azuremol \
--ip-address public \
--ports 80

This exercise uses a sample image that I’ve created for you, which we’ll examine
a little more when the container is up and running.

	 291Azure Container Instances

3	 To see what was created, look at the output of the command to create the con‑
tainer.

In the Events section, you can watch as the image is pulled (downloaded)
from Docker Hub, a container is created, and the container is started.

Some CPU and memory reservations are also assigned, which can be
adjusted if needed. A public IP address is shown, along with some information
about the container such as the provisioning state, OS type, and restart policy.

4	 To open the basic website that runs in the container, you can query for just the
assigned public IP address:

az container show \
--resource-group azuremolchapter19 \
--name azuremol \
--query ipAddress.ip \
--output tsv

5	 Open the public IP address of your container instance in a web browser. The
basic pizza store should be displayed, as shown in figure 19.7.

Figure 19.7  When you create a container instance, the pizza-store website
runs without any additional configuration. All the configuration and content are
included within the container image. This quick exercise highlights the portability
and power of containers; when the container image has been prepared, your app is
up and running as soon as a new container instance is deployed.

Let’s examine the container image. I don’t want to get too far into the weeds of Docker
and how to build container images, but it’s important to understand where this image
came from and how it runs the website without any additional configuration.

The image is built from a configuration definition called a Dockerfile. In a Docker-
file, you define what the base platform is, any configuration you wish to apply, and any

292 Chapter 19  Azure containers

commands to run or files to copy. Dockerfiles can be, and often are, more complex
than the following example, which was used to build the azuremol sample container:

FROM nginx:1.17.5

EXPOSE 80:80

COPY index.html /usr/share/nginx/html

When this Dockerfile was used to build a Docker container image, NGINX was used as
the source image, and the sample web page was copied to it. Then this container was
pushed to Docker Hub, an online public repository that Docker provides to share and
deploy containers. To deploy the container instance, you provided iainfoulds/azure-
mol as the container image to use. Azure looked in Docker Hub and found a reposi-
tory named iainfoulds and, within it, an image named azuremol.

Let’s examine each line of the Dockerfile:

¡	FROM nginx:1.17.5—In previous chapters, you created a basic VM, con-
nected to it with SSH, and then manually installed the NGINX web server. In
the example Dockerfile, all of that is accomplished in one line. This line says to
base the container on an existing container image that’s preinstalled with
NGINX. The 1.17.5 is the version of the public NGINX container image to
use; that’s the latest at the time of writing. It’s good practice to include a spe-
cific version number. If you don’t include a version number, the latest version is
always used. This sounds good in theory, but microservices applications can
scale to a pretty large number of active containers, so to make sure that you
have a consistent environment, you want to control the exact version number of
each component in use.

¡	EXPOSE 80:80—To allow access to your VM in previous chapters, you created
an NSG rule that allowed port 80. In the Dockerfile, this line tells the container to
open port 80 and map it to the internal port 80. When you created your con-
tainer instance with az container create, you also specified that the Azure
platform should permit traffic with --ports 80. That’s all the virtual network-
ing you have to think about!

¡	COPY index.html /usr/share/nginx/html—The final part is to get your
application into the container. In previous chapters, you used Git to obtain the
sample pizza-store web page and then push it to your web app. With the Docker-
file, you COPY the index.html file to the local /usr/share/nginx/html directory
in the container. That’s it!

For your own scenarios, you can define a Dockerfile that uses a different base image,
such as Node.js or Python. Then you install any additional supporting libraries or
packages required; pull your application code from source control, such as GitHub;
and deploy your application. This Dockerfile would be used to build container images
that are stored in a private container registry, not a public Docker Hub repo like that
in the example.

	 293Azure Kubernetes Service

Azure Container Registry
You may think that Docker Hub sounds great. Does Azure have such a wonderful
thing? It does! Because you need to create a Dockerfile and build a container image,
unfortunately, it’s not a two-minute exercise, and there’s a lot to cover in this chap-
ter. You can easily integrate Azure Container Registry (ACR) and AKS, so the two ser-
vices work well together. You can build your own images from a Dockerfile in Cloud
Shell, though, and I encourage you to explore this if you have time. Azure Container
Registry (ACR) is the route I’d choose to store my container images, for a couple of
reasons:

¡	It’s a private registry for your container images, so you don’t need to worry
about potential unwanted access to your application files and configuration.
You can apply the same RBAC mechanisms we discussed in chapter 6. RBAC
helps you limit and audit who has access to your images.

¡	Storing your container images in a registry in Azure means that your images are
right there in the same data centers as the infrastructure used to run your con
tainer instances or clusters (which we’ll look at in section 19.4.1). Although
container images should be relatively small (often only tens of MB in size), they
can add up if you keep downloading those images from a remote registry.

ACR also provides built-in replication and redundancy options you can use to place
your containers close to where you deploy and run them for users to access. This
region locality is similar to how you used Cosmos DB global replication in chapter 10
to make those milliseconds count and provide your customers with the quickest pos
sible access time to your applications.

If all this sounds exciting, check out the ACR quick-start page to get up and running
with your own private repository in a few minutes: http://mng.bz/04rj.

19.4	 Azure Kubernetes Service
Running a single container instance is great, but that doesn’t give you much redun-
dancy or ability to scale. Remember how we spent entire chapters earlier in the book
talking about how to run multiple instances of your application, load balance, and
scale them automatically? Wouldn’t it be great to do the same with containers? That’s
where you need a container orchestrator.

As the name implies, a container orchestrator manages your container instances,
monitors their health, and can scale as needed. Orchestrators can, and often do, han-
dle a lot more, but at a high level, a primary focus is handling all the moving parts
involved in running a highly available, scalable, container-based application. There
are a few container orchestrators, such as Docker Swarm and Distributed Cloud
Operating System (DC/OS), but one has risen above the rest to become the go-to
orchestrator of choice: Kubernetes.

Kubernetes started as a Google-led and -sponsored open source project that grew
out of the company’s internal container orchestration tooling. Widely accepted by the
open source community, Kubernetes is one of the largest and fastest-growing open

294 Chapter 19  Azure containers

source projects on GitHub. Many large technology companies, including Red Hat,
IBM, and Microsoft, contribute to the core Kubernetes project.

In this section, let’s take the same sample web app from the previous exercise with
ACI to run a redundant, scalable deployment in Kubernetes. You’ll end up with a few
components, as shown in figure 19.8.

iainfoulds:
azuremol

Docker Hub

Node 1

Azure Kubernetes
Services (AKS)

Run

Node 2

Kubernetes cluster

Pod 1

Pod 2

Kubernetes
deployment

Load balancer
TCP port 80

Kubernetes service

Figure 19.8  Your sample container from Docker Hub runs on a two-node Kubernetes
cluster that you create in AKS. The Kubernetes deployment contains two logical
pods, one on each cluster node, with a container instance running inside each pod.
Then you expose a public load balancer to allow your web app to be viewed online.

19.4.1	 Creating a cluster with Azure Kubernetes Services

In chapter 9, we looked at how virtual machine scale sets reduce the complexity of
deploying and configuring the underlying infrastructure. You say how many VM
instances you want in a scale set, and the rest of the network, storage, and configura-
tion is deployed for you. AKS works in much the same way to offer a resilient, scalable
Kubernetes cluster, with management handled by the Azure platform. Scale sets can
be used for the underlying VMs that run in the AKS cluster, and those VMs can be dis-
tributed across Availability Zones. Azure load balancers, also zone-redundant, are
used. Basically, AKS brings together several of the infrastructure components and best
practices you’ve learned about so far in this book!

Try it now
To view the information on your AKS cluster, complete the following steps:

1	 Open the Azure portal, and choose the Cloud Shell icon from the top menu.

2	 Earlier in the chapter, you created a Kubernetes cluster. The process took a few
minutes, but I hope it’s ready now! Look at the status of the cluster as follows:

az aks show \
--resource-group azuremolchapter19 \
--name azuremol

	 295Azure Kubernetes Service

The provisioningState near the end should report Succeeded.

3	 If your cluster is ready, obtain a credentials file that allows you to use the Kuber-
netes command-line tools to authenticate and manage resources:

az aks get-credentials \
--resource-group azuremolchapter19 \
--name azuremol

That’s all it takes to get Kubernetes up and running in Azure! You may be wondering,
“Can’t I just build my own cluster with VMs or scale sets, and manually install the same
Docker and Kubernetes components?” You absolutely can. The parallel is the IaaS and
PaaS approach of VMs versus web apps. The web app approach offers many benefits:
you worry only about high-level configuration options, and then you upload your
application code. A managed Kubernetes cluster, as offered by AKS, reduces the level
of complexity and management; your focus becomes your applications and your cus-
tomers’ experience.

In the same way that you may choose VMs over web apps, you may choose to deploy
your own Kubernetes cluster rather than use AKS. That’s fine; both approaches end up
using the same Azure services components. VMs, scale sets, load balancers, and NSGs
are all topics you’ve learned about in previous chapters, and all are still present with
AKS clusters, although they’re abstracted away. From a planning and troubleshooting
perspective, you should have the skills to understand what’s happening under the hood
to make the managed Kubernetes offering work. Your comfort level, and how much
time you want to spend managing the infrastructure, will help guide your decision-
making process as you build a new application around containers in Azure.

19.4.2	 Running a basic website in Kubernetes

You created a Kubernetes cluster in section 19.4.1, but there’s no application running.
Let’s change that! You need to create the Kubernetes deployment that you saw earlier
in figure 19.8; see figure 19.9.

iainfoulds:
azuremol

Dockerhub

Node 1

Azure Kubernetes
Services (AKS)

Run

Node 2

Kubernetes cluster

Pod 1

Pod 2

Kubernetes
deployment

Load balancer
TCP port 80

Kubernetes service

Figure 19.9  With the Kubernetes cluster created in AKS, you can create a Kubernetes deployment
and run your app. Your container runs across both nodes, with one logical pod on each node; you need
to create a Kubernetes service that exposes a public load balancer to route traffic to your app.

296 Chapter 19  Azure containers

Try it now
To deploy an application to your Kubernetes cluster, complete the following steps:

1	 You interact with a Kubernetes cluster by using a command-line utility called
kubectl. Use the same iainfoulds/azuremol container image from Docker
Hub that you ran as a container instance:

kubectl run azuremol \
--image=docker.io/iainfoulds/azuremol:latest \
--port=80

It may take a minute or so to download the container image from Docker Hub
and start the application in Kubernetes. The application runs in a pod: a logical
construct in Kubernetes that houses each container.

2	 Pods can contain additional helper components, but for now, monitor the sta-
tus of your container by looking at the pod:

kubectl get pods --watch

Even when the status of the pod reports as Running, you won’t be able to access your
application. The container instance you created earlier could route traffic over a public
IP address directly to that one instance, but what do you think is needed for a Kuber
netes cluster to route traffic to containers? If you guessed a load balancer, congratula-
tions! Right now, you have only one pod: a single container instance. You’ll scale out the
number of pods in the end-of-chapter lab, and for that to work, you need a way to route
traffic to multiple instances. So let’s tell Kubernetes to use a load balancer.

Here’s where the integration between Kubernetes and Azure becomes cool. When
you tell Kubernetes that you want to create a load balancer for your containers, under
the hood, Kubernetes reaches back into the Azure platform and creates an Azure load
balancer. This Azure load balancer is like the one you learned about in chapter 8.
There are frontend and backend IP pools and load-balancing rules, and you can con
figure health probes. As your Kubernetes deployment scales up or down, the load bal-
ancer is automatically updated as needed.

Try it now
To expose your application to the internet, complete the following steps:

1	 Tell Kubernetes that you want to use a load balancer, and add a rule to distrib-
ute traffic on port 80:

kubectl expose deployment/azuremol \
--type=”LoadBalancer” \
--port 80

	 297Azure Kubernetes Service

2	 As before, watch the status of your service deployment:

kubectl get service azuremol --watch

When the external public IP address is assigned, the Azure load balancer has
finished deploying, and the Kubernetes cluster and nodes are connected.

3	 Open the public IP address of your service in a web browser to see your web
application running.

Application deployments in Kubernetes are often much more involved than this basic
example. You typically define a service manifest, similar to a Resource Manager tem-
plate, that defines all the characteristics of your application. These properties can
include the number of instances of your application to run, any storage to attach,
load-balancing methods and network ports to use, and so on. In the real world, you
don’t even do this manually; a CI/CD system like Azure DevOps or Jenkins automates
the deployments of applications and services directly inside the AKS cluster. What’s
great about AKS is that you don’t have to worry about Kubernetes installation and
configuration. As with other PaaS services, such as web apps and Cosmos DB, you
bring your applications, and let the Azure platform handle the underlying infrastruc-
ture and redundancy.

Keeping it clean and tidy
Remember to clean up and delete your resource groups so that you don’t end up con-
suming lots of your free Azure credits. As you start to explore containers, it becomes
even more important to pay attention to what Azure resources you leave turned on. A
single web app doesn’t cost much, but a five-node AKS cluster and a few container
instances with georeplicated Azure Container Registry images sure can!

ACI instances are charged for by the second, and the cost adds up quickly if they’re
left running for days or weeks. An AKS cluster runs a VM for each node, so if you scale
up and run many VMs in your cluster, you’re paying for one VM for each node.

There’s no charge for the number of containers that each of those AKS nodes runs,
but as with any VM, an AKS node gets expensive when left running. What’s great
about Kubernetes is that you can export your service configurations (the definition for
your pods, load balancers, autoscaling, and so on) to deploy them elsewhere. As you
build and test your applications, you don’t need to leave an AKS cluster running; you
can deploy a cluster as needed and deploy your service from a previous configuration.

AKS clusters can scale up and down, as you’ll see in the end-of-chapter lab exercise.
You can also configure autoscaling that does this scaling for you depending on the
load. It’s the same kind of autoscaling we looked at in chapter 9 for scale sets and
web apps. Are you starting to see everything coming together in Azure?

This chapter has been a warp-speed introduction to containers and Kubernetes, so
don’t worry if you feel a little overwhelmed right now! Manning has several great
books, such as Learn Docker in a Month of Lunches, by Elton Stoneman (https://​
livebook.manning.com/book/learn-docker-in-a-month-of-lunches), and Kubernetes in

298 Chapter 19  Azure containers

(continued)
Action, by Marko Luksa (https://livebook.manning.com/book/kubernetes-in-action),
that can help you dive further into Docker, microservices application development,
and Kubernetes. Check them out if this chapter sounds exciting and you want to
explore further!

The examples in this chapter used Linux VMs for the AKS cluster nodes and then ran
Linux containers for NGINX. Containers get a little tricky in that you can run Linux
containers only on Linux nodes, for example. As you learned at the start of the chap-
ter, containers share the guest OS and kernel. So you can’t run Windows containers
on a Linux node. In general, you can’t run Linux containers on a Windows node
either. Some cool technical trickery is involved, but in general, the container and
underlying node OS should match.

What’s great in AKS is that you can run both Linux and Windows nodes, so you can
run both Linux and Windows containers! You do need to pay a little attention to how
these different containers are scheduled on the different node OSes, but this
approach greatly expands what applications and services you can run in AKS.

19.5	 Lab: Scaling your Kubernetes deployments
The basic example in this chapter created a two-node Kubernetes cluster and a single
pod that runs your website. In this lab, explore how you can scale the cluster and num-
ber of container instances. This example is a basic one, but the more nodes you have,
the more container instances you can run, which is especially useful the more applica-
tions you need to run in your cluster.

1	 You can see how many nodes are in your Kubernetes cluster with kubectl get
nodes. Scale up your cluster to three nodes:

az aks scale \
--resource-group azuremolchapter19 \
--name azuremol \
--node-count 3

It takes a minute or two to scale up and add the new node.

2	 Use kubectl again to see the status of your nodes. When you scale up a node,
Kubernetes doesn’t create any additional container instances for your applica-
tions automatically, so you don’t immediately get any benefit from the addi-
tional compute resources the new node provides.

3	 Look at your current deployment with kubectl get deployment azuremol.
Only one instance was created earlier. This sample application isn’t making the
most of the new node you added to the cluster in step 1. Scale up to five
instances, or replicas:

kubectl scale deployment azuremol --replicas 5

	 299Lab: Scaling your Kubernetes deployments

4	 Use kubectl again to examine the deployment. Look at the pods—the running
container instances—with kubectl get pods. Within a matter of seconds, all
those additional replicas were started and connected to the load balancer.

5	 Use kubectl get pods -o wide to see what nodes the pods run on. Look at
the last number in the node name, which indicates what node in the scale set is
used. The pods should be distributed across all nodes in your cluster. As other
applications would scale up the number of containers in a similar way, you can
start to maximize the use of the compute resources across all nodes in the cluster.

300

20Azure and the
Internet of Things

For me, one of the most exciting areas of technology in the past few years is the
Internet of Things (IoT). I don’t quite believe that a dishwasher or fridge needs to
be connected to the internet just yet, and there are valid privacy concerns about a
TV or audio device that’s permanently connected to the internet and always listen-
ing for the sound of your voice to issue a command. There are a lot of a practical
applications for IoT devices, however. You could have manufacturing equipment
report on its health status, generate maintenance alerts, and allow operators to
understand its efficiency across multiple factories around the world. A trucking
company could stream telemetry from its vehicles about loads being carried and
average driving times, and be able to reroute drivers as needed more intelligently.
Shipping companies could track each container and help their customers manage
their supply chain better by knowing where their resources are.

In Azure, you can integrate IoT devices with a range of services. Azure Web
Apps can provide a frontend for your data to be visualized, Storage can be used to
log data streamed from devices, and serverless features such as Azure Logic Apps
(discussed in the next and final chapter) can process the data received.

In this chapter, we’ll examine what IoT is and how to use Azure IoT Hub to cen-
trally manage and collect data from devices. Then you’ll then see how to use an
Azure web app to view real-time data from an IoT device.

20.1	 What is the Internet of Things?
Interest in IoT has grown considerably the past few years, but it’s a vague term that
can be applied to many scenarios. At a basic level, IoT is an approach in which many
interconnected devices—typically, small, low-cost electronic devices—connect to

	 301What is the Internet of Things?

central systems and applications. The connected devices usually report information
that they collect from attached sensors or inputs. Then this information can be pro-
cessed by a central system—perhaps with AI or ML, as discussed in chapter 17—and
carry out appropriate actions. Figure 20.1 shows a high-level approach to IoT.

Central
system

IoT device

IoT device

IoT device

Applications
and services

Messages are sent between
IoT devices and the

central system.

Data collected from IoT
devices is processed, and

instructions may be sent back
to devices or other systems.

Figure 20.1  Messages are sent between many connected IoT devices and a central system. Your
applications and services can process the data received and send device instructions to perform
additional actions in response to their collected data.

Examples of IoT in action include the following:

¡	Parking garage —A small sensor above each parking bay detects whether a vehi-
cle is parked there. A light above each bay can illuminate green if the parking
bay is empty or red if it’s occupied. Drivers entering the parking garage can see
real-time information boards on each floor that let them know how many open
parking spots there are. The red and green lights above each bay help drivers
quickly determine the location of open spots as they drive along each aisle.

¡	Factory—Machinery on a factory floor can report information on operating out-
put, consumable levels, and maintenance needs. Then a central system can
schedule a maintenance technician to repair equipment proactively or resupply
consumables, which reduces any downtime in the production line. When com-
bined with AI and ML, maintenance schedules can be predicted, and the cor-
rect amount of supplies or raw materials can be delivered just before they’re
needed in production.

¡	Transportation—Public transportation buses or trains can include GPS sensors
that report on location and speed. Ticketing information can be collected to
report on how many people are being transported. Passenger information
boards at a train station or bus terminal can provide real-time information
about when each vehicle will arrive. When this technology is combined with AI
and ML, waiting passengers can receive suggestions for alternative routes based
on traffic conditions, delays, or heavy passenger volume.

IoT often works alongside other applications and services. The factory and transporta-
tion scenarios could use AI and ML to better inform production decisions or make

302 Chapter 20  Azure and the Internet of Things

suggestions to passengers. Web applications can use information received from IoT
devices to provide access from mobile devices or generate alerts and notifications. Data
received from IoT devices could be logged to a database system such as Azure Cosmos
DB and then processed by business-intelligence applications and generate reports.

More future-looking ideas for IoT include things like your refrigerator’s sensing
food levels and generating a shopping list or even ordering food from a local grocery
store. Your car could report data to the dealership, which could have any required
parts or consumables ready when you take the vehicle in for service. Or what if, when
your alarm clock goes off to wake you up in the morning, your coffeemaker turns on
and gets ready for breakfast?

One big area of concern with IoT is device security. With so many devices outside
your primary network infrastructure and often connected to the public internet,
being able to provision, maintain, and update those devices is a challenge. Many IoT
devices are low-power, simple electronics that may not have the storage or processing
capabilities to update themselves with security and application updates the way tradi-
tional desktops or laptops do. It’s not enough to deploy a bunch of IoT devices, espe-
cially consumer-level devices, without a plan to secure them adequately and provide
updates and maintenance.

These security concerns shouldn’t stop you from building applications and services
that use IoT devices. IoT brings a new set of challenges to traditional device mainte-
nance, but there are solutions that allow you to provision and maintain devices cen-
trally, as well as provide secure device communication.

By now, I’m sure you may have guessed that Azure has such an IoT solution! It
offers a suite of IoT services. Let’s see how you can start to explore IoT with Azure.

Accelerating your Azure IoT deployments
This chapter focuses on Azure IoT Hub, a service that lets you provision and connect
IoT devices to build your own solutions. You can define how those IoT devices connect,
what users or applications can access their data, and secure connectivity. How to build
and deploy the application infrastructure to connect everything together is up to you.

Azure IoT solution accelerators are prebuilt key scenarios, such as remote monitoring
of devices or a connected factory. Accelerators deploy common Azure services such
as IoT Hub, Web Apps, Cosmos DB, and Storage, and run a sample application that
integrates all these different services.

You still need to customize the application for your own environment, IoT devices in
use, and the data to be collected and monitored, but IoT solution accelerators give
you a great framework to get started. Whereas IoT Hub creates a way for you to con-
nect IoT devices to Azure and then leaves you to deploy any additional services that
you need, IoT solution accelerators deploy prebuilt solutions that use the most com-
mon Azure services you’d use.

If you get hooked on IoT after this chapter and want to learn more, the Azure IoT solu-
tion accelerators are a great way to see the possibilities of what Azure can offer. As

	 303Centrally managing devices with Azure IoT Hub

we’ve discussed throughout this book, Azure is way more than just one or two inde
pendent services. You can deploy many services together to provide the best applica-
tion experience possible for your customers.

20.2	 Centrally managing devices with Azure IoT Hub
Azure IoT Hub lets you centrally manage, update, and stream data from IoT devices.
With this service, you can perform actions such as configuring application routes for
data received from devices, provisioning and managing certificates to secure commu-
nication, and monitoring health with Azure diagnostics and metrics. You can connect
your IoT devices to other Azure services and applications to let them send and receive
data as part of a wider solution. As with all things in Azure, access can be controlled
with RBAC, and diagnostic data can be centrally collected for troubleshooting and
monitoring or alerts. Figure 20.2 outlines how IoT Hub acts as the central place for
IoT devices to connect to the wider Azure services and applications.

Azure IoT
Hub

IoT device

IoT device

IoT device

Azure Web
Apps

Azure
Storage

Azure Logic
AppsDevice-to-cloud and

cloud-to-device
messaging to receive

and send data

Azure Event
Grid

Device
twins

Track configuration,
state, and metadata

Device
provisioning

Automated provisioning
of devices

Route messages to
other Azure services

for processing or
analysis

Monitor,
troubleshoot, and

alert on issues

Azure
Service Bus

Figure 20.2  With an IoT hub, you can centrally provision and manage many IoT devices at scale.
Two-way communication exists between devices and Azure to read and write data. You can process
data received from devices and route it to other Azure services, such as Web Apps and Storage. To
monitor and troubleshoot issues, you can route information to Azure Event Grid, which we’ll look at in
chapter 21, and then link to other monitoring solutions.

You control access to an IoT hub with shared access policies. These policies are like
user accounts and permissions. Default policies exist that allow devices and services to
connect to the IoT hub, or to read and write information from the device registry that
tracks connected IoT devices and security keys. Each policy can be assigned one or
more of the following permissions:

¡	Registry read
¡	Registry write

304 Chapter 20  Azure and the Internet of Things

¡	Service connect
¡	Device connect

Shared access keys are used by applications and services to connect to an IoT hub. As
with Storage (discussed in chapter 4), shared access keys allow you to define connec-
tion strings to identify the host, access policy, and access key. A connection string com-
bines the access key, access policy type, and the IoT hub hostname. Here’s a sample
IoT hub connection string:

HostName=azuremol.azure-devices.net;SharedAccessKeyName=registryRead;
➥SharedAccessKey=6be2mXBVN9B+UkoPUMuwVDtR+7NZVBq+C7A1xCmQGAb=

Primary and secondary keys exist and can be rotated and updated for security pur-
poses, just like updating passwords regularly. Solutions such as Azure Key Vault (dis-
cussed in chapter 15) are great ways to track and store these keys for applications to
obtain when needed. This approach to key management means you can rotate access
keys frequently without the need to also update all of your application code.

Digital certificates can be stored in an IoT hub and automatically provisioned to
IoT devices. Remember that IoT devices are often outside your core infrastructure
and may connect directly over the internet without any form of secure network con
nection, like a VPN. Make sure that all the data between your devices and the IoT hub
is encrypted using SSL/TLS connections. Azure Key Vault can generate and store SSL
certificates that are then added to the IoT hub. Or you can use an existing certificate
authority to request and issue certificates. The important thing is to make sure all
communication between your IoT devices and Azure is encrypted. Otherwise, you’re
likely to receive an error.

IoT hub routes let you send data from IoT devices to other Azure services. You can
define criteria, such as the message content containing a certain keyword or value,
and then route the messages to be stored in Azure Storage or processed by a web app. In
one of the following exercises, you’ll simulate a basic temperature sensor con-
nected to an IoT device. You could define a route in the IoT hub to watch the incom-
ing data and, if the recorded temperature exceeded 30°C, route the data to a logic
app to send an email alert. We’ll discuss the wonderful world of serverless computing
and logic apps in chapter 21.

Living on the Edge
In this chapter, we focus on Azure IoT Hub. Another service, Azure IoT Edge, lets you
run services such as Azure Functions and Stream Analytics in your local environment.
Rather than having all of your IoT devices streaming data processed centrally in
Azure, you can process the data within each location.

Azure IoT Edge runs applications and services in containers (discussed in chapter 19).
The use of containers allows IoT Edge to be portable and consistent in the way it works
across different devices and environments. Prebuilt Azure services can be deployed,
or you can write your own applications and distribute them to edge locations.

	 305Centrally managing devices with Azure IoT Hub

The major benefit of IoT Edge is that you offload some of the data processing and
network data transfers. If you can process data locally in IoT Edge, you can batch
large chunks of data and transmit them back to Azure. Then central applications can
aggregate information from other edge locations to be processed by services such as
AI and ML.

Another great scenario for Azure IoT Edge is remote locations, often found in the oil
and gas or transportation industries, where internet connectivity may not be reliable
enough for all the IoT device data to be streamed back to Azure for central process-
ing. IoT Edge allows those remote locations to continue to operate with some amount
of autonomy, even when there’s no internet connection.

As you plan an application infrastructure that involves IoT devices, examine how you
handle network outages and poor internet connections. If your environment relies on
the internet, plan for redundant internet connections and equipment to route the data.
Or look at IoT Edge to process data locally when it can’t be done centrally in Azure.

Try it now
To get started with IoT and create an IoT hub, complete the following steps:

1	 Open the Azure portal; launch Cloud Shell; and create a resource group, such as
azuremolchapter20:

az group create --name azuremolchapter20 --location eastus

2	 You’ve done a lot of work with the Azure CLI in this book because Cloud Shell
and CLI commands allow you to create and manage resources quickly. As men-
tioned in earlier chapters, the Azure CLI can use additional modules, called
extensions. These extensions add more functionality and often update outside
the regular release cycle of the main Azure CLI. Azure IoT is rapidly expanding
and adding new features, so the main commands to interact with IoT Hub
come from an Azure CLI extension.

To get the full functionality you need for these exercises, install the Azure
CLI IoT extension:

az extension add --name azure-cli-iot-ext

3	 Create an IoT hub, and enter a name, such as azuremol. For these exercises,
you can use a free-tier IoT hub, f1:

az iot hub create \
--resource-group azuremolchapter20 \
--name azuremol \
--sku f1 \
--partition-count 2

NOTE   You can create only one free-tier hub per subscription, but these hubs
are great for testing communication between devices and integrating with

306 Chapter 20  Azure and the Internet of Things

other Azure services. The free-tier hub is currently limited to 8,000 messages
per day and supports a maximum of 500 connected devices. This may sound
like a lot, but depending on what you’re doing, a single device that sends a mes-
sage to the IoT hub approximately every 12 seconds would max out that
8,000-message limit!

Your IoT hub is pretty empty right now. There’s not much you can do with it without
one or more connected IoT devices. A common device used for IoT is the Raspberry
Pi, a low-cost minicomputer that can connect to Wi-Fi networks and use common off-
the-shelf sensors for temperature, humidity, and pressure. You can also use it to con-
trol small motors, lights, and timers. You don’t need to rush out and buy a Raspberry
Pi to work with an IoT hub, though; you can simulate one in your web browser!

20.3	 Creating a simulated Raspberry Pi device
IoT devices are great, but there’s a barrier to entry in that you need an actual device to
use, right? Nope! There are a few ways that you can simulate an IoT device with soft-
ware. This software-based approach lets you focus on building your application
quickly and then transitioning to real hardware. You still need to pay attention to how
your code runs on real IoT hardware, especially low-power devices, because they may
not have access to all the required libraries, or even memory resources, that your sim
ulated application does.

Microsoft provides a free Raspberry Pi simulator through GitHub at https://azure-
samples.github.io/raspberry-pi-web-simulator. A Raspberry Pi is great for testing, but
take care when using cheap off-the-shelf hardware like the Raspberry Pi in production
environments. Plan how you would update and manage such devices. Dedicated IoT
devices, such as Azure Sphere (https://azure.microsoft.com/services/azure-sphere),
provide additional security and management options. For this book and in your own
testing and learning, the Raspberry Pi is a good alternative. In this simulator, a com-
mon BME280 sensor that collects temperature and humidity readings is simulated in
software, along with a simulated LED to show when the device transmits data to the
IoT hub. You can’t customize this much, but you can see how a basic Node.js applica-
tion can run on the Raspberry Pi, poll data from a sensor, and send that back to Azure.

NOTE   If things like the Raspberry Pi, electronics and temperature sensors,
and Node.js seem daunting, don’t worry. As in the chapters on AI and ML,
containers, and Kubernetes, we’re not going to get super-deep into IoT
devices and programming. If you feel like you want to plug in a soldering iron
and geek out with electronics by the end of this chapter, though, you’re more
than welcome to!

Before you can use the Raspberry Pi simulator, you need to create a device assignment
in Azure IoT Hub. This process creates a unique device ID so that your IoT hub
understands which device it’s communicating with and how to process the data. In
more complex scenarios, you could provision additional settings for the device and
push digital certificates. For this exercise, you’ll just create a device identity.

	 307Creating a simulated Raspberry Pi device

Try it now
To create a simulated Raspberry Pi IoT device, complete the following steps:

1	 In the Azure Cloud Shell, create a device identity in your IoT hub, such as
azuremol, and provide a name for the device, such as raspberrypi:

az iot hub device-identity create \
--hub-name azuremol \
--device-id raspberrypi

2	 Remember the shared access policies from section 20.2? Each IoT device also
has its own access key and connection string, which are used to identify it when
it communicates back to your IoT hub. This key feature of Azure IoT secures
devices and minimizes the risk of exposure if one device is compromised.

To use your device with the Raspberry Pi simulator, you need the informa-
tion for the device connection string. This unique identifier includes the host-
name of your IoT hub, the ID of the device, and an access key:

az iot hub device-identity show-connection-string \
--hub-name azuremol \
--device-id raspberrypi \
--output tsv

3	 Copy the contents of your connection string; you’ll need it in step 4. The out-
put is similar to the following:

HostName=azuremol.azure-devices.net;DeviceId=raspberrypi;
➥SharedAccessKey=oXVvK40qYYI3M4u6ZLxoyR/PUKV7A7RF/JR9WcsRYSI=

4	 Now comes the fun part! Open the Raspberry Pi simulator in your web browser:
https://azure-samples.github.io/raspberry-pi-web-simulator. Look in the code
section at right in the simulator. Around line 15, there should be a
connectionString variable, which already prompts you for [Your IoT hub
device connection string]. Copy and paste your connection string from step 3, as
shown in figure 20.3.

5	 Select the Run button just below the code window to start the simulator.
Every two seconds, the console window displays a message that shows the data

sent to the IoT hub. The red LED on the circuit diagram also flashes when this
happens to simulate how outputs connected to the Raspberry Pi can be con-
trolled. The output message in the console window is similar to the following:

Sending message: {"messageId":1,"deviceId":"Raspberry Pi Web
➥Client","temperature":24.207095037347923,
➥"humidity":69.12946775681091}

Where did the temperature and humidity readings come from? This device is a
simulated Raspberry Pi, and there’s no real BME280 sensor, so the application
generates these values in software. If you look at the rest of the code in the

308 Chapter 20  Azure and the Internet of Things

Figure 20.3  Copy and paste the connection string for your Azure IoT device to the Raspberry Pi simulator.
The connectionString variable is used to connect to transmit the simulated sensor data to Azure.

simulator window, around line 99, the application defines the sensor. Then the
simulator replicates how the real sensor would act and generates data returned
from the sensor to the application. This example is basic, so think what else you
could read in here: revolutions per minute (RPM) of a motor or engine, GPS
coordinates of a shipping container or truck, and so on. There’s a balance
between simulating a device in software and building a functional application
with real hardware and sensor data. At some point, you need to purchase or
borrow equipment if you want to get into more depth with Azure IoT.

6	 To confirm that your simulated device messages are being received by your IoT
hub, examine the quota status. Provide the name of your IoT hub, such as
azuremol:

az iot hub show-quota-metrics --name azuremol

The output is similar to the following example, which shows that 5 messages out
of the maximum 8,000 total messages per day have been received and that
there’s 1 connected device from a maximum of 500 total devices. It may take a
few minutes for these metrics to populate, so don’t worry if you don’t see any
data right away:

[
  {
   "currentValue": 5,

	 309Streaming Azure IoT hub data into Azure web apps

   "maxValue": 8000,
   "name": "TotalMessages"
  },
  {
   "currentValue": 1,
   "maxValue": 500,
   "name": "TotalDeviceCount"
  }
]

You can also look in the Azure portal: choose your resource group, and then select
your IoT hub. On the Overview page, the hub usage reports the number of mes-
sages received and connected devices. Again, it may take a minute or two for the
messages to appear and be recorded against the quota. Any applications would
be able to use the messages received immediately, as we’ll see in section 20.4.

Trouble in paradise
If you don’t receive any messages in your IoT hub, check the output window of your
simulated Raspberry Pi device. One of the first things the application does is connect
to Azure IoT Hub. A connection error is shown if your connection string is wrong. Make
sure that you correctly copy and paste the entire connection string. The connection
string starts with HostName, and the last character in every access key is always an
equal sign (=).

If the output window reports an error, copy the error text into your favorite search
engine, and search for a matching result. Make sure you didn’t change any of the
other lines of code, which would cause a problem! The only thing you need to change
in the code window is the line for your connection string.

Because the simulated Raspberry Pi device runs in a web browser, you could have a
generic website problem. Try to refresh the page, or access the simulator in a differ-
ent browser (https://azure-samples.github.io/raspberry-pi-web-simulator).

20.4	 Streaming Azure IoT hub data into Azure web apps
A device that connects to an IoT hub isn’t useful if you can’t do anything with the
data. This is where you can start to integrate many of the services and features you’ve
learned about in this book. Want to stream to Azure Storage tables or queues? You can
do that. Process data from IoT devices in Azure VMs or containers? Go right ahead!
Use Azure Cosmos DB to replicate your data, and then access it with globally redun-
dant Azure web apps and Traffic Manager? Sure!

In the example scenario, the IoT hub is the connection mechanism and entry
point for your IoT devices into Azure. The hub itself doesn’t do anything with the data
directly. A default endpoint exists for events, which is a big bucket for any messages
received from the IoT device. Your simulated Raspberry Pi device sends messages to
the IoT hub, and these messages hit this events endpoint. The flow of messages from
devices through the IoT hub to an endpoint is shown in figure 20.4.

310 Chapter 20  Azure and the Internet of Things

Azure IoT
Hub

IoT device

IoT device

IoT device

Endpoint

Messages are sent from IoT
devices to Azure IoT Hub.

Messages are sent to
a defined endpoint.

Figure 20.4  An IoT hub receives messages from connected IoT devices and sends the messages
to an endpoint. These endpoints can be used by other Azure services to consume data from the
IoT devices. A default endpoint for events exists, and services like web apps can read from it.

You can create custom endpoints that route messages directly to Azure services such as
Storage and Service Bus. In chapter 4, we looked at Azure Storage queues as a way to
pass messages back and forth between applications. A more robust and scalable enter-
prise messaging platform is Azure Service Bus. Messages can be added to the service
bus, such as data received from IoT devices; then other applications can listen for
these messages and respond accordingly.

If you don’t need the complexity of reading messages from something like a ser-
vice bus, you can use consumer groups with the default events endpoint. A con-
sumer group allows services such as Azure Web Apps to read data from the endpoint,
as shown in figure 20.5. Each service reading from Azure IoT Hub should have its own
consumer group. Multiple services, each with its own consumer group, can receive the
same messages and process them as needed.

Azure IoT
Hub

IoT device

IoT device

IoT device

Endpoint

Consumer
group

events

msg msg
msg msg

Web Apps

Messages sent from IoT devices through
Azure IoT Hub to an endpoint

A consumer group allows other services such as
Azure Web Apps to access the messages

received by an endpoint.

Figure 20.5  Messages are sent from IoT devices to the IoT hub, which directs the messages to an endpoint. In
each endpoint, consumer groups can be created. These consumer groups allow other Azure services to access the
device messages, which they otherwise wouldn’t have access to. With consumer groups, you don’t have to use
message queues to allow external applications to read IoT device data.

Let’s create an Azure web app that uses a consumer group to read message data in
real time from your simulated Raspberry Pi device. This basic example shows how you
can stream data from IoT devices and access them from web applications.

	 311Streaming Azure IoT hub data into Azure web apps

Try it now
To create an Azure web app that reads data from IoT devices, complete the following
steps:

1	 Create an Azure App Service plan for your web app in Cloud Shell, and provide
a name, such as azuremol. For these exercises, the free tier (f1) is good
enough and keeps costs down:

az appservice plan create \
--resource-group azuremolchapter20 \
--name azuremol \
--sku f1

2	 Create your web app. Provide a name, such as molwebapp, and enable it for use
with Git so that you can deploy the sample application. As with other publicly
accessible Azure resources, you need to provide your own globally unique name.

az webapp create \
--resource-group azuremolchapter20 \
--plan azuremol \
--name molwebapp \
--deployment-local-git

3	 Define the consumer group for your IoT hub, along with some web app appli
cation settings. These settings let your web app connect to your IoT hub. Figure
20.6 shows what you build in the next few steps.

Application setting
consumergroup=molwebapp

Application setting
iot=$iotconnectionstring

WebSockets enabled
true

Azure Web App

Application code

Web browser

Application settings are passed
to your application code. The
consumer group name and
connection string are not

hardcoded into your application.

Consumer
group

Azure IoT Hub
endpoint

msg msg
msg msg

Messages received by Azure IoT Hub endpoint are read by a web
app. A WebSocket connection is used to automatically push

updates to connected web browsers.

Figure 20.6  To let your web app read the data from your simulated Raspberry Pi IoT device, you create a
consumer group in the IoT hub. Then define two application settings for your web app that let you connect to the
consumer group. To let your web browser automatically receive the stream of data from the Raspberry Pi as new
data is received, you also enable a setting for WebSockets.

312 Chapter 20  Azure and the Internet of Things

4	 Create a consumer group that allows your web app to access the event data
streamed from your IoT device. Provide your IoT hub, such as azuremol, and
then enter a name for your consumer group, such as molwebapp. Make sure to
use your own name throughout the next few steps. Your consumer group is cre-
ated in the default events endpoint:

az iot hub consumer-group create \
--hub-name azuremol \
--name molwebapp

5	 You need to tell your web app what the consumer group is called. Create a web
app application setting that’s used by the sample application you’ll deploy at
the end of the exercise. Application settings in web apps allow you to define
specific settings, such as the consumer group name and connection string, with-
out those values being hardcoded into your application.

Provide the name of the consumer group you created in step 4, such as mol-
webapp:

az webapp config appsettings set \
--resource-group azuremolchapter20 \
--name molwebapp \
--settings consumergroup=molwebapp

6	 To connect to your IoT hub, your web app needs to know the connection string
for the hub. This connection string is different from the one you copied for
your simulated Raspberry Pi device in the previous exercise. Remember that
there’s a connection string for your IoT hub, which uses shared access policies
to define access permissions; also, there’s a connection string for each IoT
device. Your web app needs to read from the IoT hub endpoint consumer
group, so you must define a connection string for the IoT hub itself.

7	 Get the IoT hub connection string, and assign it to a variable named iot
connectionstring, which is used in the step 8:

iotconnectionstring=$(az iot hub show-connection-string \
--hub-name azuremol \
--output tsv)

8	 Create another web app application setting, this time for the IoT hub connec-
tion string. The variable defined in step 7 is used to let the sample application
connect to and read data from the IoT device:

az webapp config appsettings set \
--resource-group azuremolchapter20 \
--name molwebapp \
--settings iot=$iotconnectionstring

9	 Enable WebSockets. A WebSocket is a two-way means of communication between
a browser and server. The sample application automatically updates the web
browser with the data received from the Raspberry Pi device. To perform this

	 313Streaming Azure IoT hub data into Azure web apps

automated update, the application uses WebSockets. Then the server can push
data to the browser and cause it to update automatically:

az webapp config set \
--resource-group azuremolchapter20 \
--name molwebapp \
--web-sockets-enabled

Let’s pause here to discuss what you’ve done so far. You’ve worked with web
apps in many of the previous chapters, but the web app application settings and
WebSockets are new. Figure 20.7 recaps how your web app and IoT hub are
connected.

Application setting
consumergroup=molwebapp

Application setting
iot=$iotconnectionstring

WebSockets enabled
true

Azure Web App

Application code

Web browser

Application settings are passed
to your application code. The
consumer group name and
connection string are not

hardcoded into your application.

Consumer
group

Azure IoT Hub
endpoint

msg msg
msg msg

Messages received by Azure IoT Hub endpoint are read by a web
app. A WebSocket connection is used to automatically push

updates to connected web browsers.

Figure 20.7  As messages are sent from IoT devices, they pass through the IoT hub to an endpoint. Your
application code reads in web app application settings that define the IoT hub connection string and consumer
group to use. Once the application is connected to the IoT hub, the consumer group allows web apps to read the
IoT device messages. Each time a new message is received from an IoT device, your web app uses a WebSocket
connection with web browsers that access your site to push updates automatically. This connection allows you
to view real-time data streamed from IoT devices, such as temperature and humidity information, from your
simulated Raspberry Pi device.

Now let’s finish the exercise and deploy the sample application from the
GitHub repo to your web app. You can then open the web app in your browser
and see the real-time data streamed from your simulated Raspberry Pi!

10	 If necessary, clone the GitHub samples repo in your Cloud Shell as follows:

git clone https://github.com/fouldsy/azure-mol-samples-2nd-ed.git

11	 Change to the directory for chapter 20:

cd azure-mol-samples-2nd-ed/20

314 Chapter 20  Azure and the Internet of Things

12	 Initialize the Git repo, and add the basic web page:

git init && git add . && git commit -m "Pizza"

13	 To upload the sample application, create a connection to your web app. The
following command gets the web app repository and configures your local sam-
ples Git repo to connect to it:

git remote add molwebapp \
$(az webapp deployment source config-local-git \
--resource-group azuremolchapter20 \
--name molwebapp \
--output tsv)

In previous chapters, I made you dig around for this address; but by now I hope
you’ve started to explore what else the Azure CLI can do and realized that
much of this information can be obtained quickly.

14	 Push the HTML sample site to your web app with the following command:

git push molwebapp master

15	 When prompted, enter the password for the Git user you created and have used
in previous chapters (the account created in chapter 3).

If you didn’t write your Git password on a sticky note
If you’ve forgotten the password, you can reset it. First, get the username of your
local Git deployment account:

az webapp deployment user show --query publishingUserName

To reset the password, enter the name of your account from the previous command,
and then answer the prompts to set a new password. The following example resets
the password for the user account named azuremol:

az webapp deployment user set --user-name azuremol

16	 View the hostname for your web app, and then open the address in a web
browser:

az webapp show \
--resource-group azuremolchapter20 \
--name molwebapp \
--query defaultHostName \
--output tsv

The first time you open the site in your web browser, it may take a few seconds
for the web app to connect to your IoT hub, start the WebSocket connection,
and wait for the first device message to be received. Every two seconds, the web
browser should update automatically with the latest simulated data from the
Raspberry Pi device, as shown in figure 20.8.

	 315Azure IoT component review

Figure 20.8  The sample application uses a WebSocket connection
between your web browser and web app to update automatically every two
seconds with the latest data from your simulated Raspberry Pi device.

If your web app instance doesn’t show any data, make sure that the Raspberry Pi simu-
lated device is still running. If necessary, start the simulated device and make sure that
it connects to Azure IoT and sends messages. The data should begin to appear in your
web app instance.

20.5	 Azure IoT component review
I hope the exercises in this chapter have given you an idea of what services are avail-
able in Azure for IoT solutions:

¡	Azure IoT Hub provides a great way to provision, connect, and manage many IoT
devices and then integrate with other Azure services.

¡	Azure IoT solution accelerators provide prebuilt scenarios that automatically inte-
grate many Azure services to provide a complete application environment.

¡	Azure IoT Edge lets you deploy Azure services in your local environment to pro-
cess data from IoT devices without the need to stream all the data centrally back
to Azure.

To really dig into Azure IoT and IoT devices in general, I recommend that you purchase
a basic Raspberry Pi or similar device. These devices are relatively cheap, often come
with a few basic sensors or electrical components to test different ideas, and give you a
great learning platform as you see what’s possible when integrating hardware and soft-
ware. Just remember the warnings in chapter 17 about AI and ML and building Skynet!
Manning also has some excellent books, such as Building the Web of Things, by Domi-
nique D. Guinard and Vlad M. Trifa (https://www.manning.com/books/building-the​
-web-of-things) and JavaScript on Things, by Lyza Danger Gardner (https://www.​
manning.com/books/javascript-on-things), that go into more depth on the Raspberry
Pi, IoT best practices, and JavaScript and Node.js programming on IoT devices.

Remember that I said “Always delete your resource groups”?
The best practice throughout this book has been to delete your resource groups at
the end of each chapter. This approach ensures that you don’t leave services and
applications in use that cost money when you don’t need them.

316 Chapter 20  Azure and the Internet of Things

(continued)
Azure IoT gives you a great platform to stream data into Azure. You typically need to
process that data, not just display it in a web app as you did in the exercises. Chapter
21 examines serverless computing with the Logic Apps and Functions services.

To show how these Azure services work well together, don’t delete the resource group
and services you deployed in this chapter. You’ll use them right away at the start of
chapter 21 to see how you can take actions based on the data received from your IoT
devices. Just make sure you go back to your simulated Raspberry Pi device and select
the Stop button; otherwise, that 8,000-message limit will be used up pretty quickly!

20.6	 Lab: Exploring use cases for IoT
This chapter discussed a lot of new stuff, and without a real IoT device, you’re limited
in what you can do. Chapter 21 builds on Azure IoT Hub and the simulated Raspberry
Pi, so I don’t want to configure too much more right now. Here are a few things you
can do to think further about IoT:

1	 What areas can you think of in which IoT devices could benefit your business? If
you don’t work in a business right now, think about the fictional Azure Month of
Lunches pizza store.

2	 What could you do to improve things for customers with IoT?

3	 Would you use Azure IoT Edge? Why or why not?

4	 What other Azure services would you likely integrate to run your applications?

5	 If you have time left in your lunch break, try one of the Azure IoT solution
accelerators at www.azureiotsolutions.com/Accelerators. There’s a Device Simu-
lation scenario that creates a VM and simulated sensors, which is like the simu-
lated Raspberry Pi device but much bigger! It takes a few minutes to provision
all the required resources, but then look around in the Azure portal to see what
was created and how all the parts work together.

6	 Can you see how services from earlier chapters, such as Storage and Cosmos
DB, are used?

7	 What other IoT solution accelerators are available? Do any of them align with
ideas you’ve had for your own applications?

317

21Serverless computing

In this final chapter, let’s gaze into the future with serverless computing. If you’re a
developer, the idea of containers (examined in chapter 19) may be appealing
because there’s less need to configure the underlying infrastructure for your appli-
cations. If so, you’re going to love the Azure serverless components! And if you’re an
IT administrator who suddenly wonders what your job will include if there are no
servers in the future, don’t worry! Serverless computing may be more of a marketing
term, as many of the server and infrastructure skills you have will continue to apply!

In Azure, two main offerings provide serverless compute features: Azure Logic
Apps and Azure Function Apps. In this chapter, we’ll explore what each service
offers and how they can work together. To make sure your serverless applications
can communicate and pass data around, we’ll also discuss messaging services such as
Azure Event Grid, Service Bus, and Event Hubs.

21.1	 What is serverless computing?
To say that serverless computing is without a server is just plain wrong: a server
somewhere runs some code for you. The difference from IaaS application work-
loads like Azure VMs and PaaS workloads in web apps is that serverless applications
are usually broken down into smaller discrete units of an application. You don’t run
a single large application; instead, you run bite-size application components. If this
sounds like the containers and microservices that we discussed in chapter 19, don’t
worry that you’re going crazy: serverless computing has a lot of overlap with those
topics in terms of how you design your applications. You could arguably create
microservices by using the serverless approaches that we’ll look at in this chapter.

Figure 21.1 shows how an application is broken into small components that run
on a serverless computing provider and provide small units of output.

318 Chapter 21  Serverless computing

Application outputSmall application
function

Small application
function

Small application
function

Application output

Application output

Serverless
computing

provider

Figure 21.1  In a serverless computing environment, each application is broken into small, discrete units
of application components. Each component runs on a serverless computing provider, such as Azure
Function Apps, and output is produced that can be consumed by other serverless application components
or other Azure services such as Azure IoT or Azure Storage.

In Azure, serverless computing covers two primary services:

¡	Azure Logic Apps—To respond to certain inputs and triggers, logic apps let you
visually build workflows that can process and generate additional actions in a
point-and-click, no-code-required way. Logic apps can be built by users with no
programming or IT infrastructure background. A simple logic app outline is
shown in figure 21.2.

Figure 21.2  In a logic app, an input
could be when a tweet is posted, a
file is uploaded, or a message is
received from an IoT device. The logic
app applies rules and filters to the
data and determines if the message
meets criteria you define. Then
output actions, such as generating
an email, are completed. All this logic
involves no programming or
application infrastructure other than
an Azure subscription.

There are no security updates to maintain and no design requirements for high
availability or the ability to scale. The Azure platform automatically handles
these chores. Hundreds of prebuilt connectors exist for logic apps to integrate
with services such as Twitter, Office 365, SharePoint, and Outlook. You can
respond to public tweets about your company or product, email an alert when a
file is uploaded to SharePoint, or send a notification when a message is received
from an IoT device.

¡	Azure Function Apps—To run small blocks of code, function apps let you use
common programming languages such as C#, Node.js, and Python without any

Input message

Check message content

Apply logic to content

Generate output action

Message received from IoT device

Data within the message extracted

Check if temperature above threshold

Email sent

	 319Azure messaging platforms

additional infrastructure management. Your code runs in a secure, isolated
environment, and you’re billed based on memory consumption per second.
Figure 21.3 outlines the basic process for a function app.

Small unit of code

C#, Node.js, Python

Azure Function Apps
Event

notification
Execution

output

An event, such as
a message received from

an Azure IoT device,
triggers a function app.

A small unit of code is executed,
and output is provided that may

integrate with other services
or applications.

Figure 21.3  As with a logic app, an event notification or trigger usually starts an Azure function.
The function app contains a small unit of code that executes a specific task. There’s no
infrastructure to configure or maintain. Only your small code block is required. When code
execution is complete, the output can be integrated with another Azure service or application.

There’s no VM to maintain, and no web app is required. You don’t have to
worry about high availability or scale because the Azure Function Apps service
handles these tasks for you. All you provide is your code, and the Azure plat-
form makes sure that whenever you need to run that code, resources are avail-
able to process your request.

Logic apps require no code, so they have a wider potential user base. Business applica-
tion owners or finance and accounting teams, for example, can build their own logic
apps without having to write code. Function apps provide more control and flexibility,
and let you handle events in a specific way and better integrate with other application
components.

Both logic apps and function apps provide a way for you to carry out actions based
on triggers without having to maintain any application environment or infrastructure.
A server somewhere in Azure runs your logic app or function, but from your perspec-
tive as the IT administrator or developer, these technologies are serverless.

21.2	 Azure messaging platforms
In chapter 12, we looked at how to monitor and troubleshoot Azure resources, and in
chapter 16 we saw how to use Azure Security Center to detect issues and perform
update management. Both features rely on streams of data, such as the Azure VM
diagnostics extension, to inform the platform about what’s happening in the VM. The
Azure diagnostics and monitoring platform are great, and other services—such as
Web Apps, Azure Container Instances, and Azure IoT Hub—can also stream service
diagnostics for central analysis.

320 Chapter 21  Serverless computing

With serverless applications, you often need a way to exchange messages and trans-
mit actual application data, not just troubleshoot diagnostics or status updates. That’s
when you need a messaging platform.

21.2.1	 Azure Event Grid

What if you just want to report on certain actions or activities being completed? In
automation workflows and serverless computing, the ability to carry out an action in
response to an event is useful, as shown in figure 21.4.

Azure FunctionsAzure IoT

Azure Storage
blobs

Resource groups

Azure Event
Grid

Azure Automation

Webhooks

As services or resource actions
are carried out, notifications

can be sent to
Azure Event Grid.

Azure services or external providers
can be configured to respond to

these events.

Figure 21.4  Azure services such as Azure IoT and Azure Storage can send notifications to Azure Event
Grid. These notifications may happen when a message is received from an IoT device or a file is uploaded
to storage. Azure Event Grid allows other services and providers to subscribe to these notifications to
perform additional actions in response to events.

Let’s examine a couple of scenarios that you may be able to use in your pizza store:
¡	Message received in an IoT hub—An IoT device connected to an IoT hub may

report a temperature reading in an oven or a delivery vehicle’s location. The
IoT hub is configured to forward a notification to Azure Event Grid.

An Azure function is subscribed to the Event Grid notifications for an IoT
hub and runs a small serverless application component to log the information
to Azure Cosmos DB and send an email notification. You could also use Logic
Apps instead of Azure Function Apps, depending on how complex the applica-
tion response needs to be.

¡	File uploaded to Azure storage—The marketing department may upload to storage
a promotional coupon to save money on a pizza order. When a new file is cre-
ated, a notification is sent to Event Grid.

A webhook is subscribed to Event Grid and posts a copy of the image from
storage to Twitter. This tweet lets customers know about the deal of the week or
money-saving coupon.

	 321Azure messaging platforms

These scenarios are for truly hands-off serverless computing scenarios, but Event
Grid can also integrate with more traditional resources, such as VMs and web apps. A
resource group can be configured to send notifications to Event Grid, for example.
There are many ways to create a VM, such as in the portal, with the Azure CLI, or with
a Resource Manager template, so you want to make sure the VM is configured cor-
rectly for Update Management through Security Center. An Azure Automation run-
book could be subscribed to Event Grid for notifications about VM create operations;
then it would on-board the VM to the Update Management service and install
required security or application updates.

21.2.2	 Azure Event Hubs and Service Bus

Event Grid can work with many Azure resources, and it’s well suited to serverless com-
puting with logic apps or function apps. But logic apps and function apps can run based
on other data inputs, such as event hubs or a service bus. Let’s look at the differences
among these various messaging services so that you can decide when to use them:

¡	Azure Event Hubs lets you receive a stream of data, such as from IoT devices or
application telemetry. Event hubs provide a low-latency messaging platform
capable of handling millions of events per second from multiple concurrent
providers. Event hubs are a data store rather than a queue of messages, and the
client or application checks for events in the hub at whatever frequency you
wish. Then the data received in the event hub can be processed by other ser-
vices, as shown in figure 21.5.

¡	Azure Service Bus allows application components to exchange message data, such
as the storage queues that we examined in chapter 4. Storage queues are an ear-
lier, more basic implementation of a messaging platform in Azure. A service bus

Azure IoT
Hub

Azure
Event Hubs

Azure
HDInsight

Multiple IoT devices
connect to Azure IoT Hub
and stream sensor data.

Data is streamed to Azure Event
Hubs, which can handle many

simultaneous large data streams
and events.

Event Hubs data streams can be
processed by big-data compute
services such as HDInsight and

frameworks like Hadoop
and Spark.

IoT device

IoT device

IoT device

Figure 21.5  IoT devices connect to the IoT Hub and can stream all their sensor data. There could be hundreds
or thousands of connected IoT devices. Azure Event Hubs handles all these separate data streams and allows
services such as Azure HDInsight to process the raw data in Hadoop or Spark clusters to analyze and generate
reports.

322 Chapter 21  Serverless computing

provides more advanced features, such as guaranteed ordering of messages,
atomic operations, and sending messages in batches. Figure 21.6 outlines a
common scenario for a service bus.

Frontend
application

Middleware
application

Backend
application

Azure Service Bus
Msg Msg

Application
component places
message data on

Service Bus queue.
Message is available to other

connected application
components.

Message is picked up
from Service Bus queue

and processed by
another application

component.

Figure 21.6  Messages are placed in a service bus queue by application components—a frontend
app, in this example. Other middleware or backend applications can pick up these messages and
process them as needed. Here, a backend application picks up the message and processes it.
Advanced messaging features include guaranteeing the order of messages on the queue, locking
messages, timeouts, and relays.

With three services that let you transmit, receive, and process data among applications
and services in Azure, which one do you use, and when? Table 21.1 provides a high-
level recap of the Event Grid, Event Hubs, and Service Bus services.

Table 21.1  Each service is designed to cover a different scenario. Event Grid lets you react to events,
Event Hubs lets you stream large amounts of data, and Service Bus lets you transmit messages between
services and application components.

Azure Logic Apps and Function Apps can be trigged by all three messaging platforms.
Let’s create a service bus that can be used to trigger a logic app.

21.2.3	 Creating a service bus and integrating it
with an IoT hub

In this scenario, let’s use a service bus to transmit messages received from an IoT hub.
Your simulated Raspberry Pi device from chapter 20 generates temperature readings
and transmits them to your IoT hub. If the temperature is higher than 30°C, another

	 323Azure messaging platforms

piece of data is included in the message from the IoT device: temperature-Alert =
true. Figure 21.7 outlines how you can integrate an IoT hub with the service bus to
process messages with this temperature alert.

Azure Logic Apps

Azure Service Bus
Msg

Azure IoT Hub

Msg

IoT device sends
data with a

temperature alert;
message placed on
Service Bus queue.

The message is available to
other connected application

components.

The message is picked up
from the Service Bus

queue and triggers the
logic app.

Figure 21.7  When your simulated Raspberry Pi IoT device sends message data, a temperature reading
of 30°C or more generates an alert. Messages tagged with this alert are placed on a service bus. Then
these messages can be used to trigger logic apps.

Try it now
To create a service bus, complete the following steps:

1	 Open the Azure portal, and choose Create a Resource at top left in the menu.

2	 Search for and select Service Bus, and then choose Create.

3	 Provide a name, such as azuremol, and then select the basic pricing tier.

4	 Create a new resource group, and provide a name, such as azuremol-
chapter21. Make sure that the location is the same as for the resources cre-
ated in chapter 20, such as East US. The interaction among a service bus queue,
a logic app, and a function app may have issues if you aren’t consistent with
your locations.

5	 Accept the other defaults, and choose to create the service bus.

6	 When the resource has been created, select your resource group, and choose
the service bus you created in step 5.

7	 Select Queues; add a new queue; and enter a name, such as azuremol.

8	 Accept all the other defaults, and choose Create.

With a service bus and a queue created, how do you configure an IoT hub to use
them? In the IoT hub, you define endpoints as the destinations for messages received
from IoT devices. A default endpoint exists in the IoT hub for all messages that don’t
meet the defined criteria. You can configure the service bus as an endpoint to receive
messages. Then a route is defined that includes criteria for which messages should be

324 Chapter 21  Serverless computing

directed to an endpoint. In this example, that route requires any message that con-
tains temperatureAlert = true in the message body to be routed to the service
bus endpoint, as shown in figure 21.8.

IoT device
Service

bus

An IoT device sends a
message that indicates a
temperature warning has

been generated.

The IoT hub routes messages to
a specific endpoint if a criterion

is met, such as a
temperature alert.

Msg
temperatureAlert = true

Endpoint

IoT hub

The service bus is configured as
an endpoint that receives

messages with a
temperature alert.

Route

Figure 21.8  As messages are transmitted from IoT devices to an IoT hub, they can be
routed to specific endpoints based on criteria you define. Messages that contain a
temperature alert in the message body can be routed to an endpoint that uses the service
bus queue. Then messages placed on the service bus queue that contain a temperature
alert can be used to trigger things like Azure logic apps or function apps.

Try it now
To configure an IoT hub to route temperature alert messages to the service bus, com-
plete the following steps:

1	 Select your resource group from chapter 20, such as azuremolchapter20,
and then choose the IoT hub.

2	 Under Messaging in the navigation bar on the left, select Message Routing,
and choose to add a custom endpoint for a service bus queue.

3	 Provide an endpoint name, such as azuremol.

4	 Select your service bus queue namespace, such as azuremol, and then select
your actual queue.

5	 To direct messages to this endpoint, create a route. In the Message Routing sec-
tion in the navigation bar on the left, select Routes, and choose to add a new route.

6	 Provide a name, such as temperatureAlert.

7	 Choose the service bus endpoint you created in earlier step, such as azuremol.

8	 For the routing query, enter the following:

temperatureAlert = "true"

9	 When you’re ready, save the route.

	 325Creating an Azure logic app

Now you have a simulated Raspberry Pi device that sends data to the IoT hub, as well
as a route to place messages that contain a temperature alert on a service bus message
queue. You don’t really have an application yet, though; there’s nothing you can do
with the data on the service bus queue. What might you want to do with a temperature
alert? Sending an email notification is a common example, so let’s see how you can
trigger a logic app each time a message is placed on the service bus queue.

21.3	 Creating an Azure logic app
As you saw when we discussed logic apps in section 21.1, a message received from a
service bus queue can be used as a trigger to start the execution process. You use the
IoT hub to process the messages received from IoT devices and route only to the ser-
vice bus queue endpoint messages that contain temperatureAlert = true in the
message body. With this approach, your logic app runs only when a temperature alert
is generated.

Figure 21.9 outlines what your logic app does. When a message is placed on the
service bus queue, the logic app runs and sends an email alert.

Msg

Service bus queue

Email inbox
IoT hub

The IoT hub routes
messages to the

service bus
endpoint.

Each message on the
service bus queue triggers

the logic app.

An email is sent via a mail-
provider connector that alerts

you about the high temperature
from the IoT device.

Email
connector

Logic app

Figure 21.9  Each message received on the service bus queue from the IoT hub triggers the logic app.
When the logic app runs, it sends an email notification through a defined mail provider.

Try it now
To create a logic app, complete the following steps:

1	 In the Azure portal, choose Create a Resource at top left in the menu.

2	 Search for and select Logic App, and then choose Create.

3	 Provide a name, such as azuremol, and select your resource group, such as
azuremolchapter21. Again, choose the same location as your other IoT
resources from chapter 20.

4	 Accept the other defaults, and choose Create.

5	 When the resource has been created, select your resource group, and then
open the logic app. For the option “Add common triggers,” choose “When a
message is received in a Service Bus queue.”

326 Chapter 21  Serverless computing

6	 Provide a name, such as azuremol; then select your service bus queue, such as
azuremol.

7	 Choose the default service bus policy listed, such as RootManageSharedAccess-
Key, and create the connection.

8	 Select Continue; then choose your service bus queue name, such as azuremol.

9	 Accept the defaults, such as the frequency to check for messages.

10	 Choose to add a new step to the logic app.

11	 To add an action, search for what you want to do. In this exercise, search for
email. Select your provider, such as Gmail - Send an Email, Outlook.com - Send
an Email, or SMTP - Send an Email, as shown in figure 21.10.

Figure 21.10  Search for and select your current email provider, such as
Gmail or Outlook.com. You can also choose SMTP - Send an Email to configure
a different provider manually.

12	 Sign in to your email provider to authorize mail routing, and confirm that you
wish to grant logic apps permissions to send email.

	 327Creating an Azure logic app

13	 Provide a recipient email address at which you receive email; an email subject,
such as Temperature alert; and a message body, such as High temperature
detected on IoT device.

14	 Save the logic app.

Let’s pause to review what you’ve built in the last few exercises, as shown in figure
21.11. This basic serverless application design doesn’t include any controls that limit
the number of messages to be sent. In the logic app, you could define that you want to
send a maximum of five email alerts and then wait for 30 minutes before sending
more. As part of your application design, you should consider how you want to be
notified of situations like this one. You could also configure the logic app to read in
the message data from the service bus queue and include the timestamp of the IoT
device message and the actual recorded temperature. We’ll discuss how to do this in
the next exercise.

Simulated
Raspberry Pi

Msg
temperatureAlert = true Endpoint

IoT hub

Msg

Service bus

Email
connector

Logic app

Email

1. Message sent
from IoT device

2. IoT hub routes message
to service bus endpoint.

3. Message on service
bus queue triggers
logic app to run.

4. Logic app sends
email notification
about temperature
alert.

Route

Figure 21.11  The simulated Raspberry Pi device sends a message to the IoT hub every two seconds
that contains temperature sensor readings. If the temperature is above 30°C, a temperature alert is noted.
The IoT hub routes any messages that contain a temperature alert to a service bus queue. Messages on
this queue trigger an Azure logic app to run. The logic app is connected to an email provider, such as
Outlook or Gmail, and sends an email notification about the temperature warning from the IoT device.

Let’s see this basic serverless application in action.

Try it now
To run your simulated Raspberry Pi device and test your logic app, complete the fol
lowing steps:

1	 Open a web browser to the simulated Raspberry Pi IoT device from chapter 20
(https://azure-samples.github.io/raspberry-pi-web-simulator).

2	 Verify that your IoT hub connection string is still added in the code window
that you configured in chapter 20.

328 Chapter 21  Serverless computing

3	 Choose to run the app.
Simulated temperature and humidity sensor readings are generated every

two seconds, and a message is sent to the IoT hub. It may take a few messages
for a simulated temperature reading of 30°C to be generated and shown in the
output window.

The IoT hub routes any messages that contain temperatureAlert: true
to the service bus endpoint. As these messages are placed on the service bus
queue, the logic app picks them up and sends an email through the defined
provider. Then you receive an email notifying you of a high temperature read-
ing. This process should take only a few seconds end to end.

4	 The simulated Raspberry Pi device generates messages every two seconds, so
stop the app unless you like a lot of email alerts!

When you receive email alerts, the message doesn’t contain a lot of information. Your
logic app doesn’t extract the message contents from the service bus and format the
information. It would be great if the alert email could include the IoT device name or
the temperature recorded. How can you process each message and perform some
analysis on it? What about the other Azure serverless service we’ve looked at: Azure
Function Apps?

21.4	 Creating an Azure function app to analyze IoT device data
To extend your current serverless application, you can trigger an Azure function app
from within your logic app. Message data from the service bus can be sent to a func-
tion app for analysis of the recorded temperature. Then the email notification sent by
the logic app can include information about the IoT device name and the recorded
temperature. The interaction between the logic app and the function app is shown in
figure 21.12.

Service bus msg

Logic app Receive message
Parse data

Extract temperature reading
Return to logic app

Function app

1. Logic app triggers
function app and passes

message from
service bus queue

2. Function app runs code
to parse message, extract
data, and return value to

logic app

Figure 21.12  The logic app triggers the function app. The message received on the
service bus queue is passed into the function. Code in the function app parses the
message, extracts the temperature, and returns that value to the logic app. It takes
a few milliseconds for the function app to run this code, so the cost of performing
these compute tasks is a fraction of a cent.

	 329Creating an Azure function app to analyze IoT device data

Try it now
To create a function app and trigger it from the logic app, complete the following
steps:

1	 In the Azure portal, select Create a Resource at top left in the menu.

2	 Search for and select Function App, and then choose Create.

3	 Select your resource group, such as azuremolchapter21, and provide a
name, such as azuremol. You want to be in the same region as your previous
resources.

You want to publish code, but note that you can also publish a Docker con-
tainer image (chapter 19). You wouldn’t even need to create a container
instance or any additional infrastructure; a short-lived container would run as
needed and then stop.

4	 For this basic application, choose the Node.js runtime, as we use some simple
JavaScript.

5	 You have three hosting-plan options. A consumption plan lets you pay per execu-
tion, and the resources you require are assigned dynamically at runtime. For
more consistent, production-ready applications, you can use a premium or dedi-
cated hosting plan that provide a more fixed, predictable cost. Premium plans
provide additional features, such as securing connectivity to a defined set of
Azure virtual networks and always having an instance ready to prevent some
delays in a cold-start scenario for your app. For this exercise, choose a consump-
tion plan.

6	 Accept the other defaults to create a named storage account and Application
Insights, and then choose Review + Create.

7	 When you’re ready, create the function app. It takes a minute or two to create
the function app.

8	 When the resource has been created, select your resource group, open your
logic app from the previous exercise, and select Edit.

9	 In the Logic Apps Designer, choose to add a new step.

10	 Search for and select Azure Functions, choose the function created in the previ-
ous steps (such as azuremol), and then choose Create New Function.

11	 Provide a function name, such as analyzeTemperature.

12	 Delete any existing code, replace it with the code from the following listings,
and then choose Create.

This code is also available in the GitHub repo at w.

330 Chapter 21  Serverless computing

Listing 21.1  analyzeTemperature JavaScript code for a function app

module.exports = function (context, req) {
  var buffer = new Buffer(req.body.ContentData, 'base64')
  var decodedString = buffer.toString();
  var objects = JSON.parse(decodedString);
  var temperature = objects["temperature"];
  context.res = {
    body: {
     analysis: "Recorded temperature was " + temperature + "!"
    }
  };
  context.log("Recorded temperature was " + temperature);
  context.done();
};

13	 Back in the Logic Apps Designer for your function step, select the Request
Body text box, and choose Service Bus Message from the list of dynamic con-
tent on the right side.

14	 In the Logic Apps Designer, drag and drop to reorder the steps so that the Send
an Email action is below the analyzeTemperature function app step, as
shown in figure 21.13.

15	 Select the Send an Email action, and choose the text box for the body of the
email message.

Figure 21.13  Drag the Send an Email action below the analyzeTemperature function. Select the
end of the message Body, and the Dynamic content dialog appears. To insert the temperature value
computed by the function app, select the message Body from the analyzeTemperature function.

Creates the function. Every JavaScript function app starts
with exporting a function that contains a context object.
This context object is used to pass data back and forth.

Reads in message content
from the service bus

Decodes
from

base64

Creates a JSON
object of decoded
service bus
messages

Extracts the recorded
temperature from
the IoT device

Builds a response
to send back to
the Logic App

Outputs the
temperature

to the
console log

Ends the function. Every JavaScript function app
must end with a call to context.done, which tells
the function app that your code is finished.

	 331Creating an Azure function app to analyze IoT device data

16	 From the analyzeTemperature function, select the Body response, as shown
in figure 21.13.

17	 In the Logic Apps Designer, choose Save.
Your serverless application has a lot of moving parts. Let’s examine what

you’ve built before you run the simulated Raspberry Pi IoT device to generate
email alerts that include the temperature reading as computed by the function
app. Figure 21.14 provides an overview of all the components now in use in the
serverless application.

Simulated
Raspberry Pi

Msg
temperatureAlert = true Endpoint

IoT hub

Msg

Service bus

Email
connector

Logic app

Email

1. Message sent
from IoT device

2. IoT hub routes message
to service bus endpoint.

3. Message on service
bus queue triggers

logic app to run.

5. Logic app sends email
notification about
temperature alert.

Function app
trigger

JavaScript code

Function app

4. Function app processes data
in message from service bus,

extracts and returns
temperature value to logic app.

Route

Figure 21.14  As messages are received from the simulated Raspberry Pi device, any messages that contain
a temperature alert are routed to the service bus queue endpoint. Messages on the service bus queue trigger a
logic app, which passes the message to a function app. A JavaScript function parses the temperature reading
and returns it to the logic app, which sends an email notification that includes the temperature recorded by a
sensor on the IoT device.

18	 Open your simulated Raspberry Pi device in a web browser, and run the applica-
tion. Each time the temperature alert is generated, the logic app triggers the
function app to extract the temperature data from the message body and
include that in the email notification. It may take a few moments for a tempera-
ture reading to be higher than 30°C, which then flags the message with a tem-
perature alert. When that alert is sent and the messaged is processed, you
receive an email notification that reports that temperature.

Take a deep breath, and pat yourself on the back. That was a lot to do on your lunch
break!

332 Chapter 21  Serverless computing

Authentication errors from your logic app to the function app
You can see the run history in the overview window of your logic app in the Azure por-
tal. If you get a lot of repeated errors, select one of the errors to see more about
where it’s failing.

A common issue is that the logic app isn’t automatically authorized to talk to the func-
tion app. Redeploying the logic app usually fixes this error, but the real resolution is
probably to add what’s called the function key to the header of your logic app.

To get this key, select your function app, and then choose the function you created,
such as analyzeTemperature. Under the Manage option, the default function key
can be viewed and copied. Copy this key, go back to your logic app, and open the
designer.

In the analyzeTemperature function, choose to add a parameter, and then to add
a header. You want to send a little bit of information at the start of the call to the
function app that sends the key. The process is a little backward as you enter the key
pair, but enter x-functions-key for the key, and then paste your actual function
key as the value.

It takes a few moments to update the logic app/function app integration. After that,
the run history for the logic app should show the events working correctly, and the
email notifications should start being delivered.

21.5	 Don’t stop learning
This chapter contained a lot of new concepts. In fact, the past few chapters contained
many new ideas and technologies! Don’t worry if you’re struggling to understand how
you can begin to implement all these Azure services, such as containers, AI and ML,
and serverless computing. These chapters were designed to show you what’s possible
in Azure and prove that you aren’t limited to performing a lift and shift of legacy
applications. As you start to build and run applications in Azure, take the opportunity
to modernize applications and review management or deployment workflows. Many
Azure services simplify and speed up the application lifecycle, so don’t feel like you
have to stick with running VMs because that’s what the business is comfortable using.

Yes, Azure offers lots of shiny new services, but they all largely build on core infra-
structure components discussed in part 1 of this book. Developers can start to use the
latest application design approaches that involve Kubernetes or serverless computing,
and admins can reuse their on-premises data center knowledge with cloud computing
fundamentals and troubleshooting techniques. As your business needs grow, Azure
can support them.

In chapter 1, I was open and honest, stating that I wouldn’t cover every service in
Azure. There are many more Azure services to learn about, and you can get into a lot
more depth than we did in the book. I hope you’ve found at least a few areas that
interest you and motivate you to explore some more. My favorites include virtual
machine scale sets, Cosmos DB, and Azure Kubernetes Service.

	 333Don’t stop learning

21.5.1	 Additional learning materials

I’m biased, but I think that a great place to continue learning about Azure is https://
docs.microsoft.com/azure. This web page has the core Azure service documentation,
architecture guides, reference and SDK resources, and samples. Each Azure service
has its own set of quick-starts, tutorials, and samples, along with conceptual informa-
tion and individual how-to guides.

If you get serious, you can investigate certification options for Azure. Individual
exams include Microsoft Azure Administrator (AZ-104), Microsoft Azure Architect Technologies
and Design (AZ-303 and AZ-304), and Microsoft Azure Security Technologies (AZ-500). This
book and the lab exercises you completed covered a lot of the areas those exams test
your knowledge on, but you’d need to study some additional areas of Azure AD and
design best practices before taking the exams. The Microsoft Learn site at https://​
docs.microsoft.com/learn provides some additional learning paths for the different
Azure certification options to help you prepare.

21.5.2	 GitHub resources

Throughout this book, you’ve used code samples, templates, and sample applications
from https://github.com/fouldsy/azure-mol-samples-2nd-edition. These samples
should stay updated as new versions of the Azure CLI are released; the GitHub repo
also includes PowerShell examples and templates for all the exercises. This book
focuses on the Azure CLI in the Azure Cloud Shell, but feel free to explore what each
exercise looks like in PowerShell or a template.

If you notice any problems with the samples, please create an issue in GitHub at
https://github.com/fouldsy/azure-mol-samples-2nd-edition/issues. Things move fast
in Azure, and I want to make sure that you always have the latest working samples
to learn from. Feel free to make suggestions too! All the Azure docs at https://docs​
.microsoft.com/azure also accept feedback, issues, and edits, so as you explore the rest
of what’s on offer in Azure, feel free to get involved and help others learn and grow.

21.5.3	 One final thought

Take a deep breath, and realize that change is normal. New features and services release
almost daily. Azure, like all major cloud computing providers, may look and feel ever so
slightly different from the last time you used it (an hour ago). If you have the funda-
mental skills and understanding that I hope you’ve learned in this book, you can adapt
and grow with all the new opportunities Azure offers. You always have something new
to learn, and I’d love to hear what you end up building and running in Azure!

335

Symbols
&& character  27
$ResourceGroups object  276
$servicePrincipalConnection object  275

A
-A parameter  121
Access Control (IAM) button  79
access_token variable  226
accounts

in Azure Automation, creating  271–272
in Cosmos DB

adding global redundancy to  149–152
creating  145–149, 152
populating  145–149

ACI (Azure Container Instance)  284, 290, 292
ACR (Azure Container Registry)  293
agents  180
AI (artificial intelligence)  253–268

Azure Cognitive Services  259–260
LUIS  261–264
machine learning and  254–259
overview of  254–255
Web App bots

building with LUIS  264–267
creating  260
running with LUIS  264–267

AKS (Azure Kubernetes Service)  284, 293–297
creating clusters with  294–295
running websites in Kubernetes  295–297
viewing information on  294

alerts  178–182
alias records  160

AllowAzureLoadBalancerInBound rule  67
AllowVnetInBound rule  67
Amazon Web Services (AWS)  191
anycast networking  160
APIs (application programming interfaces)  31
App Service environments  36
App Service plans   35–38
Application Gateway  107–108
Application security group level  185
Apply and autocorrect mode, DSC  279
Apply and monitor mode, DSC  279
Apply only mode, DSC  279
apps

Function Apps  328–331
life cycles of  76–77
Logic Apps  325–328
service plans  38

apps. See also Azure Web Apps
APT (Advanced Packing Tool)  27
artificial intelligence. See AI
assets, in Azure Automation  272–274
authentication errors  332
Auto Swap  46
Automation Hybrid Worker  272
autoscale rules  133–136
Availability Sets  91

distributing VMs across  98–101
viewing distribution of VMs across  101–102
VM redundancy with  96–102

fault domains  96–97
update domains  97–98

Availability Zones  91
creating network resources across  94–95
creating VMs in  95
infrastructure redundancy with  95

AWS (Amazon Web Services)  191

index

index336

az cosmosdb show command  152
az group create command  131
az keyvault create command  212
az keyvault secret show command  221
az storage account create command  210
az vm command  95
az vm create command  51, 95, 197
az vm disk attach command  51
az vm list-sizes command  127
az vm resize command  127, 129
az vm show command  105
Azure account, creating  5–7
Azure AD (Azure Active Directory)  222
Azure Application Gateway  108
Azure Application Insights  180
Azure Automation  243, 269–283

assets  272–274
creating accounts in  271–272
overview of  179, 269–274
PowerShell DSC  278–282

Azure Automation pull servers and  280–282
defining  280–282

runbooks  272–274
running  276–277
sample of  274–277
viewing output from  276–277

Azure Backup  191–201, 243
Backup schedules  196–198
policies and retention  193–196

RPO (recovery point objective)  194–195
RTO (recovery time objective)  195–196

restoring VMs  198–201
complete VM restore  199–201
file-level restore  199

Azure Bastion  24, 115
Azure CLI  7, 12–13, 28, 31, 81–82, 152, 161
Azure Cloud Shell  12–13
Azure Cognitive Services  259–260
Azure Container Instance. See ACI
Azure Container Registry. See ACR
Azure DevOps utilities  7
Azure DNS (Domain Name Service)  158–162
Azure DNS record types  160
Azure Event Grid  320–321
Azure Event Hubs  321–322
Azure Firewall  238
Azure Front Door  163–164
Azure Function Apps  318
Azure IoT (Internet of Things)  300–316

creating function apps to analyze device
data  328–331

Hub, centrally managing devices with  303–309
integrating with Service Bus  322–325
overview of  300–302

review of components  315
streaming hub data into web apps  309–315

Azure IoT Edge 304–305
Azure Key Vault  216–233, 304

creating certificates  229–232
injecting certificates  229–232
MSIs (managed service identities)  221–229
overview of  211
securing information in clouds  216–221

creating key vaults and secrets  219–221
software vaults and HSMs  217–218

storing encryption keys in  211–213
Azure Kubernetes Service. See AKS
Azure Logic Apps  318
Azure Machine Learning service  258
Azure Monitor  243
Azure Network Watcher  182–188

capturing network packets  186–188
verifying IP flows  183–184
viewing effective NSG rules  184–186

Azure Networking  58–72
building sample web applications with secure

traffic  68–72
creating remote access network

connections  68–69
creating VMs  69–70
using SSH agents to connect to VMs  70–72

securing and controlling traffic with NSGs  64–68
associating NSGs with subnets  66–67
creating NSG filtering rules  67–68
creating NSGs  64–65

virtual network components  58–64
creating subnets  59
creating virtual networks  59
DNS resolution  62–64
public IP addresses  62–64
virtual network interface cards  61

Azure platform
management tools  11–13

Azure Cloud Shell  12–13
Azure portal  12
Azure PowerShell  13
local Azure CLI  13

overview of  8–13
storage in  18
troubleshooting  31–32
virtualization in  10–11

Azure portal  12
Azure PowerShell  11, 13, 31, 81–82, 161
Azure Quickstart templates  7
Azure Resource Manager  75–89

approach to  75–81
designing around application life cycle  76–77
managing and grouping resources with

tags  80–81

index 	 337

protecting resources with locks  79–80
securing and controlling resources  78–79

templates for  81–87
creating  82–84
creating multiples of resource types  84–85
storing  87
tools to build  85–86

Azure Security Center  234, 249
Azure Service Bus  310, 321–322
Azure Service Fabric  289
Azure Site Recovery  201–204, 243
Azure Storage  47–57

adding disks to VMs  50–52
benefits of  52–57

queue storage  55–56
redundancy  56–57
storage availability  56–57
table storage  53–54

VM storage  47–50
data disks  49–50
disk-caching options  50
standard vs. premium storage  48–49
temporary disks  49–50

Azure Traffic Manager. See Traffic Manager
Azure Update Management  241–249

OMS (Operations Management Suite)  243
reviewing and applying updates  245–249

Azure Web Apps  33–45
building bots with LUIS  264–267
building with secure traffic  68–72

creating remote access network
connections  68–69

creating VMs  69–70
using SSH agents to connect to VMs  70–72

creating  37–42
creating basic web apps  37
deploying sample HTML sites  39–42

creating bots  260
deploying application to web app running multi-

ple instances  140
deployment slots and  35, 44–46
diagnostic logs, viewing  42–44
managing  42–44
overview of  34–35
running bots with LUIS 264–267
scaling 127–139
streaming Azure IoT hub data into  309–315
supported languages and environments  34–35
Azure-to-Azure replication  203

B
B-series VM  18
backend IP pool, in load balancers  107
backend pools  107, 116–119

backslash character  40, 68
Backup schedules 196–198
backups  191–204

Azure Backup  191–201
Backup schedules  196–198
policies and retention  193–196
restoring VMs  198–201

Azure Site Recovery  201–204
Bash shell  12
Basic service plan  36
bastion host  23–24
Bing Autosuggest service  259
Bing Custom Search service  259
Blob storage  52
boot diagnostics  175–177
bots for web apps

building with LUIS  264–267
creating  260
running with LUIS  264–267

branches, in Git  41
Building the Web of Things (Guinard and Trifa) 315

C
capturing network packets  186–188
caret symbol  27
CD (continuous delivery)  75
certificates  270

creating  229–232
injecting  229–232

CI (continuous integration)  75
CLI (command-line interface)  12
clouds, securing information in  216–221

creating key vaults and secrets  219–221
software vaults and HSMs  217–218

clusters with AKS 294–295 collections  146
command-line interface (CLI)  12
commands, wrapping long lines  40
compute-optimized VM sizes  17
Computer Vision service  259
concat function, Resource Manager  85
configuring

health probes  110–112
VMs with load balancers  119–122

connections  270
connectionString variable  307
container orchestrator  293
containers  146, 284–299

ACI (Azure Container Instance)  289–292
AKS (Azure Kubernetes Service)  293–297

creating clusters with  294–295
running websites in Kubernetes  295–297

overview of  284–288
Content Moderator service  259

index338

continuous delivery (CD)  75
continuous integration (CI)  75
Contributor role  78
controlling

resources  78–79
traffic with NSGs  64–68

associating NSGs with subnets  66–67
creating NSG filtering rules  67–68
creating NSGs  64–65

copy function, Resource Manager  84
copyIndex() function  84, 98, 102, 104
Cosmos DB  141–157

accessing globally distributed data  152–156
adding global redundancy to  149–152
creating accounts and databases  145–152
creating and populating databases  145–149
deploying web app using  156–157
overview of  141–144

scaling databases  143–144
structured (SQL) databases  142
unstructured (NoSQL) databases  142–143

crash dumps  180
credentials  270
curl request  226–227
Custom Script Extension  179
custom SSL certificates  207

D
data center operating system  (DC/OS) 293
data disks  49–50
data rests  208
data science virtual machines (DSVMs)  258
data scientists, tools for  257–259
database servers, vertical scale for  126
database_password variable  228
databases

in Cosmos DB
adding global redundancy to  149–152
creating  145, 149–152
populating  145–149

scaling  143–144
DC/OS (data center operating system)  293
DDoS (distributed denial of service)  182
Decision service  259
default quotas  102
default-allow-ssh rule  241
delegating real domains  160–162
deleting protected VMs  205
deny state  238
DenyAll rules  185
DenyAllInBound rule  67, 184
dependencies  82
dependsOn  104
Deploy to Azure button  98

deploying HTML sites  39–42
deployment slots  44–46
diagnostic logs  42–44
direct traffic, routing 114–116
disaster recovery (DR)  201
disks

adding to VMs  50–52
caching options  50
data disks  49–50
temporary  49–50

distributed denial of service (DDoS)  182
DKIM (DomainKeys Identified Mail)  160
DNS resolution  62–64, 158
Docker  284, 287
Docker Swarm  293
Dockerfiles  291–292
DomainKeys Identified Mail (DKIM)  160
domains

fault  96–97
real, delegating to Azure DNS  160–162
update  97–98

DR (disaster recovery)  201
DSC (Desired State Configuration)  179, 278,

282–283
DSVMs (data science virtual machines)  258
dynamic assignment  62

E
enableHttpsTrafficOnly parameter  210
encryption  206–215

at rest  208–209
of VMs  211–214
overview of  206–208
SSE (Storage Service Encryption)  209–210
storing keys in Azure Key Vault  211–213

endpoint discovery  153
endpoint locations  153
endpoint monitor protocol  168
endpoint probing interval  168
endpoints  323
error messages  31
ETW (Event Tracing for Windows)  180
events endpoint  310, 312
ExpressRoute  19, 183
extensions  305

F
Face service  259
fault domains  96–97
Federal Information Processing Standard

(FIPS)  218
File storage  53
file-level restore  199

index 	 339

filtering  67–68
FIPS (Federal Information Processing

Standard)  218
forum, for this book  5
FQDN (fully qualified domain name)  63
Free/Shared service plan  36
frontend IP pools  107–110
Function Apps  328–331
function key  332

G
Gardner, Lyza Danger  315
general-purpose VM sizes  17
geographic routing  163–164
georedundant storage (GRS)  56
Git  12

deploying sample HTML site using  39–42
learning  37
password for, resetting  314

git push azure master command  156
git push dev master command  45
GitHub

account for, creating  7
Azure Automation and source control with  274
Azure quick-start samples on  87
overview of  39
repo for this book  5
resources  333

global redundancy  149–152
global routing, with Traffic Manager  162–173

creating Traffic Manager profiles  164–166
globally distributing traffic to closest

instance  167–173
globally distributed data  152–156
Google Maps example  256
GPU (graphical processing unit)  267
GPU VM sizes  17
grouping resources  80–81
GRS (georedundant storage)  56
Guinard, Dominique D.  315

H
HashiCorp  86
health probes

configuring  110–112
creating  110–112
overview of  107

high-performance SSDs  18
HPC (high-performance computing)  267
HSMs (hardware security modules)  212, 217–218
HTML sites, deploying  39–42
HTTP  20, 168, 206

HTTP path-based mode, health probes  110
HTTPS  20, 168, 206
Hyper-V  15

I
IaaS (Infrastructure as a Service)  9, 14, 33–34
IaC (infrastructure as code)  82
IIS (Internet Information Services)  29, 233
images, VM  16–17
IMDS (Instance Metadata Service)  222
incremental backups  193
Infrastructure as a Service (IaaS)  9, 14, 33
infrastructure as code (IaC)  82
infrastructure redundancy, with Availability

Zones  95
creating network resources across Availability

Zones  94–95
creating VMs in Availability Zones  95

injecting certificates  229–232
install command  27
installing web servers  24–27
Instance Metadata Service (IMDS)  222
instances, creating  290–292
interactive boot-console access  176
interface cards  61
internal load balancer  108
Internet Information Services (IIS)  29, 233
internet load balancer  108
interval parameter, health probes  111
iotconnectionstring variable  312
IP address ranges  60
IP flows, verifying  183–184
IP pools  107
IPv4 addresses  109
IPv4 host records  160
IPv6 addresses  109
IPv6 host records  160
isolated environments  36

J
JavaScript on Things (Gardner)  315
JIT (just-in-time) updates  237–249
jq parser  226
JSON (JavaScript Object Notation)  82–83, 86
JWT (JSON Web Token)  226

K
key pairs  20
keys

creating key vaults  219–221
storing encryption keys in Azure Key Vault

211–213

index340

Kubernetes  293, 295–299
See also AKS

Kubernetes in Action (Luksa)  298

L
LAMP web server  27, 72
Language service  259
languages supported  34–35
LCM (Local Configuration Manager)  278
Learn Docker in a Month of Lunches (Stoneman)  297
Learn Git in a Month of Lunches (Umali)  37
learning materials  333
Let’s Encrypt project  207
life cycles of apps  76–77
Linux

running Web Apps on  34
using DSC with  282–283

load balancers  94
components of  106–119

assigning groups of VMs to backend pools
116–119

creating frontend IP pools  108–110
defining traffic distribution with load-

balancer rules  112–114
health probes  110–112
routing direct traffic with Network Address

Translation rules  114–116
creating and configuring VMs with  119–122
defining traffic distribution with rules  112–114
in action  120–122

load-balancing applications  106–123
Local Configuration Manager (LCM)  278
locally redundant storage (LRS)  56
locks  79–80
Log Analytics workspaces  243
logic apps  35, 182, 325–328
logs. See diagnostic logs
Long Term Support (LTS)  22
LRS (locally redundant storage)  56
LTS (Long Term Support)  22
LUIS (Language Understanding Intelligent Ser-

vice)
building Web App bots with  264–267
overview of  257–264
running Web App bots with  264–267

Luksa, Marko  298

M
machine learning. See ML
managed disks  18
Managed Object Format (MOF) file  280
Marketplace, Azure  7

Maven  12
memory (vRAM)  11
memory-optimized VM sizes  17
Message Analyzer, Microsoft  186
Message Text property  56
messaging platforms  319–325

Azure Event Grid  320–321
Azure Event  Hubs 321–322
 Azure Service Bus  321–322
creating service bus  322–325
integrating Service Bus with IoT hubs  322–325

metric alerts  182
Microsoft’s Message Analyzer  186
ML (machine learning)  253–268

artificial intelligence and  254, 256
Azure Cognitive Services  259–260
LUIS (Language Understanding Intelligent

Service)  261–264
overview of  255–256
relationship with artificial intelligence  257–259
tools for data scientists  257–259
Web App bots

building with LUIS  264–267
creating  260
running with LUIS  264–267

modules  270
MOF (Managed Object Format) file  280
monitoring  175

alerts  178–182
Azure Network Watcher  182–188

capturing network packets  186–188
verifying IP flows  183–184
viewing effective NSG rules  184–186

performance metrics  178–182
VM diagnostics  175–177

monolithic application  288
MSIs (managed service identities)  221–229

N
name server records  160
NAT (Network Address Translation)  107, 114–116
network connectivity (vNIC)  11
network interface cards (NICs)  61
network packets  186–188
network resources  94–95
network security groups. See NSGs
network traffic

managing  158–174
routing  158–174

Network Watcher  184
networking. See Azure Networking
NICs (network interface cards)  61, 117
--no-self-perms parameter  220

index 	 341

NoSQL (unstructured databases)  142–143
NSGs (network security groups)  20

associating with subnets  66–67
creating  64–65, 118
creating filtering rules  67–68
in Azure Security Center  234
overview of  112
securing and controlling traffic with  64–68
viewing effective rules  184–186

numbering systems, zero-based  99
nx module  283

O
OMS (Operations Management Suite)  243, 272
Owner role  78

P
PaaS (Platform as a Service)  10, 33, 37, 137
parallel VMs  102
parameters  82, 84, 89
performance conditions, alerts for  181–182
performance metrics  178–182, 188
performance routing  163–164
Perl programming language  34
Personalizer service  259
PHP  34
Platform as a Service (PaaS)  10, 33
pointer records  160
policies  193–196

RPO (recovery point objective)  194–195
RTO (recovery time objective)  195–196

pools
backend  116–119
frontend IP pools  108–110

populating databases  145–149
port-based mode, health probes  110
PowerShell DSC (Desired State

Configuration)  278–282
Azure Automation pull servers and  179, 280–282
defining  280–282

PowerShell. See Azure PowerShell
Premium service plan  36
premium SSD (solid-state drive) disks  18–19
Priority routing method, Traffic Manager  163
private IP addresses  108
private key, of SSH key pair  71
production slot  46
profiles, in Traffic Manager  164–166
protected VMs, deleting  205
protecting resources  79–80
public IP addresses  20, 62–64, 94, 108
public key, of SSH key pair  20–22, 71
pull servers  280–282
Python programming language  28, 34

Q
Queue storage  53, 55–56
quotas  102, 132

R
RA-GRS (read-access georedundant storage)  57
Raspberry Pi  306–309
RBAC (role-based access controls)  78, 161, 184,

211
RDP (Remote Desktop Protocol) connection  20, 71
read-access georedundant storage (RA-GRS)  57
read-only cache policy  50
read/write caching  50
Reader role  78
readLocations  153
recovery points  193
recovery time objective (RTO)  193
redundancy

benefits of  90–91
of VMs with Availability Sets  96–102
overview of  56–57

redundancy. See also infrastructure redundancy,
with Availability Zones

remote access network connections  68–69
Remote Desktop Protocol (RDP) connection  20, 71
remotes  41
Representational State Transfer (REST)  31
resizing VMs  126–127
resolution, with Traffic Manager  162–173

creating Traffic Manager profiles  164–166
globally distributing traffic to closest

instance  167–173
resource groups  315
resource types  84–85
resources  5, 7

cleaning up  30
controlling  78–79
protecting with locks  79–80
scaling horizontally  128–129
securing  78–79
with tags

grouping  80–81
managing  80–81

REST (Representational State Transfer)  31
REST APIs  161
restoring virtual machines  198–201

complete VM restore  199–201
file-level restore  199

retention  193–196
RPO (recovery point objective)  194–195
RTO (recovery time objective)  195–196

reviewing updates  245–249
role separation  62

index342

role-based access control (RBAC)  78, 161, 211
routing direct traffic with Network Address Trans-

lation rules  114–116
RPO (recovery point objective)  193–195
RTO (recovery time objective)  193, 195–196
Run As accounts  272
runbooks, for Azure Automation  274–277

executing  182
overview of  272–274
running  276–277
viewing output from  276–277

S
SaaS (Software as a Service)  10
SAS (shared access signature) token  87
scalable apps  124–140

benefits of  124–129
scaling resources horizontally  128–129
scaling VMs vertically  125–127
scaling web apps vertically  127–128

scaling web apps  136–139
VM scale sets  129–136

creating  131–133
creating autoscale rules  133–136

scale sets, for VMs  129–136
creating  131–133
creating autoscale rules  133–136

scaling
databases  143–144
down VMs  127
resources horizontally  128–129
VMs vertically  125–127

resizing VMs  126–127
scaling down  127

Web Apps
overview of  136–139
vertically  127–128

schedules  134, 270
Search service  259
secrets

creating  219–221
obtaining from within VMs with MSIs  224–229

secure traffic, building web apps with  68–72
creating remote access network

connections  68–69
creating VMs  69–70
using SSH agents to connect to VMs  70–72

securing
resources  78–79
traffic with NSGs  64–68

associating NSGs with subnets  66–67
creating NSG filtering rules  67–68
creating NSGs (network security groups) 

64–65

security  115
Security Center Overview window  236
Sender Protection Framework (SPF)  160
serial VMs  102
Server Message Block (SMB)  53
serverless computing  317–333

creating function apps to analyze IoT device
data  328–331

creating logic apps  325–328
GitHub resources  333
messaging platforms  319–325

Azure Event Grid  320–321
Azure Event Hubs  321–322
Azure Service Bus  321–322
creating service bus  322–325
integrating Service Bus with IoT hubs

322–325
overview of  317–319

Service Bus
creating  322–325
integrating with IoT hubs  322–325

service endpoints  146
service plans for apps  35–38
service principal  222
service records  160
service-level agreements (SLAs)  247
servicePrincipalName  224
session affinity mode  112–113
shared access signature (SAS) token  87
single-VM scale set  130
sinks  180
SLAs (service-level agreements)  247
SMB (Server Message Block)  53
Software as a Service (SaaS)  10
software vaults  217–218
SONiC (Software for Open Networking in the

Cloud)  11
source code  5
Speaker Recognition service  259
Speech service  259
SPF (Sender Protection Framework)  160
SQL (Structured Query Language)  53, 142
SQL structured databases  142
SSE (Storage Service Encryption)  209–210
SSH (Secure Socket Shell)

agents to connect to VMs  70–72
connecting to VMs with  24–27

SSH key pairs  20–22
ssh-keygen command  21
SSL certificate  207
staging  41
standard HDD disks  18
Standard service plan  36
standard SSDs  18–19

index 	 343

start-of-authority (SOA) records  160
static assignment  63
storage

availability of  56–57
in Azure  18
in VMs  47–50

data disks  49–50
disk-caching options  50
standard vs. premium storage  48–49
temporary disks  49–50

queue storage  55–56
redundancy  56–57

storage (vDisk)  11
storage-optimized VM sizes  17
storing templates  87
streaming IoT hub data  309–315
streaming log files  43
structured data  144
Structured Query Language (SQL)  53, 142
Subnet level  185
subnets

associating NSGs with  66–67
creating  59

swap with preview  46
system-assigned managed identities  222

T
Table storage 52  tags

grouping resources with  80–81
managing resources with  80–81

templates, for Azure Resource Manager  81–87
creating  82–84
creating multiples of resource types  84–85
storing  87
tools to build  85–86

temporary disks  49–50
Terraform  86
Test in Web Chat option  266
third-party tools  86
threshold parameter, health probes  111
Time to Live (TTL)  167
traffic

defining distribution with load-balancer
rules  112–114

globally distributing to closest instances
167–173

routing direct traffic with Network Address
Translation rules  114–116

securing and controlling with NSGs  64–68
associating NSGs with subnets  66–67
creating NSG filtering rules  67–68
creating NSGs  64–65

Traffic Manager
creating profiles in  164–166
deploying web apps to  174
global routing and resolution with  162–173
globally distributing traffic to closest

instances  167–173
Troubleshoot area  183

Translator Text service  259
Trifa, Vlad M.  315
troubleshooting  175

alerts  178–182
Azure Network Watcher  182–188

capturing network packets  186–188
verifying IP flows  183–184
viewing effective NSG rules  184–186

Azure platform  31–32
performance metrics  178–182
VM diagnostics  175–177

TTL (Time to Live)  167

U
Ubuntu Linux  14, 26
Umali, Rick  37
Universal Coordinated Time (UTC)  196
Unmount Disks option  199
unstructured data  144
update domains  96
Update Management Overview window  243
updates  234–249

Azure Security Center NSGs  234
Azure Update Management  241–249

OMS (Operations Management Suite)  243
reviewing and applying updates  245–249

JIT (just-in-time)  237–241, 249
User access administrator role  78
user-assigned managed identities  222
UTC (Universal Coordinated Time)  196

V
variables  82, 84, 89, 271
vaults, key  219–221
verifying IP flows  183–184
VHD (virtual hard disk)  53
virtual CPU (vCPU)  11
virtual hard disk (VHD)  53
Virtual Machine Contributor role  79
virtual machines. See VMs
virtual networks  58–64

creating  59
creating subnets  59
DNS resolution  62–64
interface cards  61
public IP addresses  62–64

index344

Virtual NIC level  185
virtual private networks (VPNs)  19, 36, 38
virtualization  10–11
Vision service  259
Visual Studio editor  85–86
VMs (virtual machines)

adding disks to  50–52
allowing web traffic to reach  27–29

creating rules to allow web traffic  28
viewing web server in action  28–29

assigning groups of to backend pools  116–119
configuration  15–20

Azure storage  18–19
virtual networking  19–20
VM images and  16–17
VM sizes  17–18

configuring with load balancers  119–122
connecting to  120–122

with SSH  24–27
with SSH agents  70–72

creating  14–32, 69–70
cleaning up resources  30
cost savings and  18
from web browsers  22
in Availability Zones  95
troubleshooting Azure  31–32
Windows VM  29–30
with load balancers  119–122

deallocating  30
deleting  30
deploying from templates  102–105
diagnostic extensions  178
diagnostics  175–177
distributing across Availability Sets  98–101
encryption of  211–214

lab  214–215
storing encryption keys in Azure Key

Vault  211–213
installing web servers  24–27
obtaining secrets from with MSIs  224–229
redundancy with Availability Sets  96–102

fault domains  96–97
update domains  97–98

resizing  126–127
restoring  198–201

complete VM restore  199–201

file-level restore  199
scale sets  129–136

creating  131–133
creating autoscale rules  133–136
installing applications on  139

scaling down  127
scaling vertically  125–127
sizes of  17
SSH key pair, creating for authentication  20–22
storage  47–50

data disks  49–50
disk-caching options  50
standard vs. premium storage  48–49
temporary disks  49–50

viewing distribution across Availability Sets
101–102

VMware  15
VPNs (virtual private networks)  19, 36, 38, 183

W
web browsers, creating VMs from  22

Azure storage  18
VM sizes  17

web servers
in action  28–29
installing  24–27

web traffic
allowing to reach VMs  27–29
creating rules to allow  28

webhooks  274
Website Contributor role  79
websites, running in Kubernetes  295–297
WebSockets  312
Weighted routing method, Traffic Manager  163
Windows, running Web Apps on  34

Z
zero-based numbering system  99
zonal services  93
--zone parameter  95
zone-redundant services  93
ZRS (zone-redundant storage) 56

By developers,
for developers
Microsoft.Source newsletter

Get technical articles, sample
code, and information on
upcoming events in
Microsoft.Source, the
curated monthly developer
community newsletter.

● Keep up on the latest
technologies

● Connect with your peers
at community events

● Learn with
hands-on resources

Sign up

