

Ritesh Modi, Jack Lee, and Rithin Skaria

Create secure, scalable, high-availability
applications on the cloud

Azure for Architects
Third Edition

Azure for Architects Third Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Ritesh Modi, Jack Lee, and Rithin Skaria

Technical Reviewers: Melony Qin and Sanjeev Kumar

Managing Editors: Aditya Datar and Afzal Shaikh

Acquisitions Editor: Shrilekha Inani

Production Editors: Ganesh Bhadwalkar and Deepak Chavan

Editorial Board: Vishal Bodwani, Ben Renow-Clarke, Edward Doxey, Joanne Lovell,
Arijit Sarkar, and Dominic Shakeshaft

First Edition: October 2017

Second Edition: January 2019

Third Edition: June 2020

Production Reference: 3260620

ISBN: 978-1-83921-586-5

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

startHere(Azure);

Learn Azure. Experiment with more
than 100 services.
● Free services
● $200 credit
● Free training
Try Azure for free >

Get help with your project.
Talk to a sales specialist >

Get hands-on
in the cloud

Try Azure for free >

Talk to a sales specialist >

https://aka.ms/AA7s8hy
https://aka.ms/AA7s8i3

Table of Contents

Preface i

Chapter 1: Getting started with Azure 1

Cloud computing ... 2

The advantages of cloud computing ... 3

Why cloud computing? .. 3

Deployment paradigms in Azure ... 5

Understanding Azure ... 6

Azure as an intelligent cloud ... 8

Azure Resource Manager ... 8

The ARM architecture .. 9

Why ARM? ... 9

ARM advantages .. 10

ARM concepts ... 11

Virtualization ... 14

Containers ... 15

Docker .. 17

Interacting with the intelligent cloud ... 17

The Azure portal ... 17

PowerShell .. 18

The Azure CLI .. 18

The Azure REST API .. 19

ARM templates ... 19

Summary .. 20

Chapter 2: Azure solution availability, scalability,
and monitoring 23

High availability ... 24

Azure high availability .. 25

Concepts ... 26

Load balancing ... 29

VM high availability ... 30

Compute high availability ... 30

High-availability platforms ... 32

Load balancers in Azure .. 32

The Azure Application Gateway ... 35

Azure Traffic Manager ... 36

Azure Front Door ... 38

Architectural considerations for high availability .. 38

High availability within Azure regions ... 39

High availability across Azure regions .. 40

Scalability ... 42

Scalability versus performance .. 43

Azure scalability ... 44

PaaS scalability ... 46

IaaS scalability .. 49

VM scale sets ... 50

VMSS architecture .. 51

VMSS scaling ... 51

Upgrades and maintenance .. 54

Application updates ... 56

Guest updates .. 56

Image updates .. 56

Best practices of scaling for VMSSes ... 57

Monitoring ... 58

Azure monitoring ... 59

Azure activity logs .. 59

Azure diagnostic logs ... 60

Azure application logs ... 60

Guest and host OS logs ... 60

Azure Monitor .. 61

Azure Application Insights .. 61

Azure Log Analytics .. 61

Solutions ... 62

Alerts ... 63

Summary .. 67

Chapter 3: Design pattern – Networks, storage, messaging,
and events 69

Azure Availability Zones and Regions .. 70

Availability of resources .. 70

Data and privacy compliance ... 70

Application performance .. 71

Cost of running applications .. 71

Virtual networks ... 71

Architectural considerations for virtual networks .. 72

Benefits of virtual networks ... 76

Virtual network design ... 76

Connecting to resources within the same region and subscription 77

Connecting to resources within the same region in another subscription 77

Connecting to resources in different regions in another subscription 79

Connecting to on-premises datacenters ... 80

Storage ... 84

Storage categories ... 84

Storage types .. 84

Storage features ... 85

Architectural considerations for storage accounts ... 86

Cloud design patterns .. 88

Messaging patterns ... 89

Performance and scalability patterns ... 93

Summary .. 101

Chapter 4: Automating architecture on Azure 103

Automation .. 104

Azure Automation ... 105

Azure Automation architecture .. 105

Process automation .. 107

Configuration management .. 108

Update management ... 109

Concepts related to Azure Automation ... 109

Runbook .. 109

Run As accounts .. 110

Jobs .. 111

Assets ... 112

Credentials ... 112

Certificates ... 113

Creating a service principal using certificate credentials 115

Connections ... 116

Runbook authoring and execution ... 118

Parent and child runbooks .. 119

Creating a runbook ... 120

Using Az modules .. 122

Webhooks .. 125

Invoking a webhook ... 127

Invoking a runbook from Azure Monitor ... 129

Hybrid Workers ... 134

Azure Automation State Configuration ... 136

Azure Automation pricing .. 141

Comparison with serverless automation .. 141

Summary .. 142

Chapter 5: Designing policies, locks, and tags for
Azure deployments 145

Azure management groups ... 146

Azure tags .. 147

Tags with PowerShell .. 150

Tags with Azure Resource Manager templates ... 150

Tagging resource groups versus resources ... 151

Azure Policy ... 152

Built-in policies .. 153

Policy language ... 153

Allowed fields .. 156

Azure locks ... 156

Azure RBAC .. 158

Custom roles .. 161

How are locks different from RBAC? .. 162

Azure Blueprints ... 162

An example of implementing Azure governance features 163

Background .. 163

RBAC for Company Inc ... 163

Azure Policy ... 164

Azure locks ... 165

Summary .. 165

Chapter 6: Cost management for Azure solutions 167

Azure offer details .. 168

Understanding billing ... 169

Invoicing ... 176

The Modern Commerce experience ... 177

Usage and quotas ... 179

Resource providers and resource types .. 180

Usage and Billing APIs .. 182

Azure Enterprise Billing APIs ... 182

Azure Consumption APIs ... 183

Azure Cost Management APIs ... 184

Azure pricing calculator ... 184

Best practices .. 187

Azure Governance .. 187

Compute best practices ... 188

Storage best practices .. 189

PaaS best practices ... 190

General best practices ... 191

Summary .. 191

Chapter 7: Azure OLTP solutions 193

OLTP applications ... 194

Relational databases .. 195

Azure cloud services ... 195

Deployment models ... 196

Databases on Azure Virtual Machines ... 197

Databases hosted as managed services .. 198

Azure SQL Database ... 198

Application features ... 199

Security .. 204

Single Instance .. 210

Elastic pools ... 211

Managed Instance .. 213

SQL database pricing .. 215

DTU-based pricing ... 215

vCPU-based pricing ... 217

How to choose the appropriate pricing model ... 218

Azure Cosmos DB .. 219

Features ... 221

Use case scenarios .. 222

Summary .. 222

Chapter 8: Architecting secure applications on Azure 225

Security .. 226

Security life cycle .. 228

Azure security .. 230

IaaS security .. 231

Network security groups ... 231

Firewalls ... 234

Application security groups ... 235

Azure Firewall .. 236

Reducing the attack surface area ... 237

Implementing jump servers .. 238

Azure Bastion .. 239

Application security .. 239

SSL/TLS ... 239

Managed identities ... 240

Azure Sentinel ... 244

PaaS security ... 245

Azure Private Link ... 245

Azure Application Gateway ... 245

Azure Front Door .. 246

Azure App Service Environment .. 247

Log Analytics .. 247

Azure Storage .. 248

Azure SQL ... 252

Azure Key Vault ... 256

Authentication and authorization using OAuth ... 257

Security monitoring and auditing ... 265

Azure Monitor ... 265

Azure Security Center ... 267

Summary .. 268

Chapter 9: Azure Big Data solutions 271

Big data .. 272

Process for big data .. 273

Big data tools ... 274

Azure Data Factory .. 274

Azure Data Lake Storage .. 274

Hadoop ... 275

Apache Spark .. 276

Databricks .. 276

Data integration .. 276

ETL ... 277

A primer on Azure Data Factory ... 278

A primer on Azure Data Lake Storage ... 279

Migrating data from Azure Storage to Data Lake Storage Gen2 280

Preparing the source storage account ... 280

Provisioning a new resource group .. 280

Provisioning a storage account ... 281

Provisioning the Data Lake Storage Gen2 service .. 283

Provisioning Azure Data Factory .. 284

Repository settings ... 285

Data Factory datasets .. 287

Creating the second dataset ... 289

Creating a third dataset ... 289

Creating a pipeline .. 291

Adding one more Copy Data activity .. 293

Creating a solution using Databricks ... 294

Loading data .. 297

Summary .. 303

Chapter 10: Serverless in Azure – Working with
Azure Functions 305

Serverless ... 306

The advantages of Azure Functions ... 306

FaaS .. 308

The Azure Functions runtime .. 308

Azure Functions bindings and triggers .. 309

Azure Functions configuration .. 312

Azure Functions cost plans .. 314

Azure Functions destination hosts ... 316

Azure Functions use cases ... 316

Types of Azure functions .. 318

Creating an event-driven function .. 318

Function Proxies ... 321

Durable Functions ... 322

Steps for creating a durable function using Visual Studio 324

Creating a connected architecture with functions ... 329

Azure Event Grid ... 332

Event Grid .. 333

Resource events .. 335

Custom events ... 340

Summary .. 343

Chapter 11: Azure solutions using Azure Logic Apps,
Event Grid, and Functions 345

Azure Logic Apps ... 346

Activities ... 346

Connectors ... 346

The workings of a logic app ... 347

Creating an end-to-end solution using serverless technologies 355

The problem statement ... 355

Solution .. 355

Architecture ... 356

Prerequisites ... 357

Implementation .. 357

Testing .. 385

Summary .. 386

Chapter 12: Azure Big Data eventing solutions 389

Introducing events .. 390

Event streaming .. 391

Event Hubs ... 392

Event Hubs architecture .. 395

Consumer groups ... 402

Throughput .. 403

A primer on Stream Analytics ... 403

The hosting environment .. 407

Streaming units ... 408

A sample application using Event Hubs and Stream Analytics 408

Provisioning a new resource group .. 408

Creating an Event Hubs namespace ... 409

Creating an event hub .. 410

Provisioning a logic app ... 411

Provisioning the storage account ... 413

Creating a storage container ... 413

Creating Stream Analytics jobs ... 414

Running the application ... 416

Summary .. 418

Chapter 13: Integrating Azure DevOps 421

DevOps ... 422

The essence of DevOps .. 425

DevOps practices .. 427

Configuration management .. 428

Configuration management tools .. 429

Continuous integration .. 430

Continuous deployment .. 433

Continuous delivery .. 435

Continuous learning ... 435

Azure DevOps .. 436

TFVC .. 439

Git .. 439

Preparing for DevOps ... 440

Azure DevOps organizations ... 441

Provisioning Azure Key Vault ... 442

Provisioning a configuration-management server/service 442

Log Analytics .. 443

Azure Storage accounts ... 443

Docker and OS images ... 443

Management tools .. 443

DevOps for PaaS solutions ... 444

Azure App Service ... 445

Deployment slots .. 445

Azure SQL ... 446

The build and release pipelines .. 446

DevOps for IaaS ... 458

Azure virtual machines .. 458

Azure public load balancers .. 459

The build pipeline ... 459

The release pipeline ... 460

DevOps with containers ... 462

Containers .. 462

The build pipeline ... 463

The release pipeline ... 463

Azure DevOps and Jenkins ... 464

Azure Automation ... 466

Provisioning an Azure Automation account .. 467

Creating a DSC configuration .. 468

Importing the DSC configuration .. 469

Compiling the DSC configuration .. 470

Assigning configurations to nodes ... 470

Validation ... 471

Tools for DevOps ... 471

Summary .. 473

Chapter 14: Architecting Azure Kubernetes solutions 475

Introduction to containers .. 476

Kubernetes fundamentals ... 477

Kubernetes architecture .. 479

Kubernetes clusters .. 480

Kubernetes components .. 481

Kubernetes primitives .. 484

Pod .. 485

Services .. 486

Deployments ... 488

Replication controller and ReplicaSet .. 490

ConfigMaps and Secrets ... 491

AKS architecture ... 492

Deploying an AKS cluster ... 493

Creating an AKS cluster .. 493

Kubectl ... 495

Connecting to the cluster ... 495

AKS networking ... 500

Kubenet .. 501

Azure CNI (advanced networking) .. 503

Access and identity for AKS ... 504

Virtual kubelet ... 505

Virtual nodes ... 506

Summary .. 507

Chapter 15: Cross-subscription deployments using
ARM templates 509

ARM templates .. 510

Deploying resource groups with ARM templates ... 513

Deploying ARM templates ... 515

Deployment of templates using Azure CLI .. 516

Deploying resources across subscriptions and resource groups 517

Another example of cross-subscription and resource group deployments 519

Deploying cross-subscription and resource group deployments
using linked templates ... 522

Virtual machine solutions using ARM templates .. 526

PaaS solutions using ARM templates ... 532

Data-related solutions using ARM templates ... 534

Creating an IaaS solution on Azure with Active Directory and DNS 541

Summary .. 545

Chapter 16: ARM template modular design
and implementation 547

Problems with the single template approach ... 548

Reduced flexibility in changing templates ... 548

Troubleshooting large templates ... 548

Dependency abuse ... 549

Reduced agility .. 549

No reusability .. 549

Understanding the Single Responsibility Principle ... 550

Faster troubleshooting and debugging .. 550

Modular templates ... 550

Deployment resources ... 551

Linked templates .. 552

Nested templates ... 554

Free-flow configurations .. 556

Known configurations .. 556

Understanding copy and copyIndex ... 567

Securing ARM templates .. 569

Using outputs between ARM templates .. 570

Summary .. 573

Chapter 17: Designing IoT solutions 575

IoT ... 576

IoT architecture ... 577

Connectivity ... 579

Identity ... 581

Capture ... 581

Ingestion .. 581

Storage ... 582

Transformation ... 582

Analytics ... 582

Presentation .. 583

Azure IoT .. 584

Connectivity ... 584

Identity ... 585

Capture ... 585

Ingestion .. 585

Storage ... 586

Transformation and analytics ... 586

Presentation .. 587

Azure IoT Hub .. 588

Protocols .. 589

Device registration .. 589

Message management ... 590

Security .. 593

Scalability ... 594

Azure IoT Edge ... 596

High availability ... 596

Azure IoT Central .. 597

Summary .. 598

Chapter 18: Azure Synapse Analytics for architects 601

Azure Synapse Analytics .. 602

A common scenario for architects .. 603

An overview of Azure Synapse Analytics ... 603

What is workload isolation? ... 604

Introduction to Synapse workspaces and Synapse Studio 605

Apache Spark for Synapse ... 607

Synapse SQL .. 608

Synapse pipelines ... 609

Azure Synapse Link for Cosmos DB .. 610

Migrating from existing legacy systems to Azure Synapse Analytics 611

Why you should migrate your legacy data warehouse to
Azure Synapse Analytics .. 611

The three-step migration process .. 613

The two types of migration strategies ... 614

Reducing the complexity of your existing legacy data warehouse
before migrating ... 615

Converting physical data marts to virtual data marts ... 615

Migrating existing data warehouse schemas to Azure Synapse Analytics 616

Migrating historical data from your legacy data warehouse to
Azure Synapse Analytics .. 619

Migrating existing ETL processes to Azure Synapse Analytics 621

Re-developing scalable ETL processes using ADF ... 622

Recommendations for migrating queries, BI reports, dashboards,
and other visualizations ... 622

Common migration issues and resolutions ... 623

Common SQL incompatibilities and resolutions .. 625

SQL DDL differences and resolutions ... 626

SQL DML differences and resolutions .. 627

SQL DCL differences and resolutions ... 627

Extended SQL differences and workarounds .. 631

Security considerations .. 632

Data encryption at rest .. 632

Data in motion .. 632

Tools to help migrate to Azure Synapse Analytics .. 633

ADF .. 633

Azure Data Warehouse Migration Utility ... 634

Microsoft Services for Physical Data Transfer .. 634

Microsoft Services for data ingestion ... 635

Summary .. 636

Chapter 19: Architecting intelligent solutions 639

The evolution of AI ... 640

Azure AI processes .. 641

Data ingestion ... 641

Data transformation ... 641

Analysis .. 641

Data modeling ... 642

Validating the model .. 642

Deployment ... 642

Monitoring ... 642

Azure Cognitive Services .. 643

Vision .. 644

Search ... 644

Language .. 644

Speech .. 644

Decision .. 644

Understanding Cognitive Services .. 645

Consuming Cognitive Services .. 646

Building an OCR service ... 646

Using PowerShell .. 649

Using C# ... 650

The development process .. 652

Building a visual features service using the Cognitive Search .NET SDK 655

Using PowerShell .. 655

Using .NET .. 656

Safeguarding the Cognitive Services key ... 658

Using Azure Functions Proxies .. 658

Consuming Cognitive Services .. 659

Summary .. 659

Index 661

About

This section briefly introduces the authors, the coverage of this book, the technical skills you'll
need to get started, and the hardware and software requirements required to architect solutions
using Azure.

Preface

>

ii | Preface

About Azure for Architects, Third Edition
Thanks to its support for high availability, scalability, security, performance, and
disaster recovery, Azure has been widely adopted to create and deploy different types
of application with ease. Updated for the latest developments, this third edition of Azure
for Architects helps you get to grips with the core concepts of designing serverless
architecture, including containers, Kubernetes deployments, and big data solutions.
You'll learn how to architect solutions such as serverless functions, you'll discover
deployment patterns for containers and Kubernetes, and you'll explore large-scale big
data processing using Spark and Databricks. As you advance, you'll implement DevOps
using Azure DevOps, work with intelligent solutions using Azure Cognitive Services, and
integrate security, high availability, and scalability into each solution. Finally, you'll delve
into Azure security concepts such as OAuth, OpenConnect, and managed identities.

By the end of this book, you'll have gained the confidence to design intelligent Azure
solutions based on containers and serverless functions.

About the Authors

Ritesh Modi is a former Microsoft senior technology evangelist. He has been
recognized as a Microsoft Regional Director for his contributions to Microsoft products,
services, and communities. He is a cloud architect, a published author, a speaker,
and a leader who is popular for his contributions to datacenters, Azure, Kubernetes,
blockchain, cognitive services, DevOps, artificial intelligence, and automation. He is the
author of eight books.

Ritesh has spoken at numerous national and international conferences and is a
published author for MSDN magazine. He has more than a decade of experience in
building and deploying enterprise solutions for customers, and has more than 25
technical certifications. His hobbies are writing books, playing with his daughter,
watching movies, and learning new technologies. He currently lives in Hyderabad, India.
You can follow him on Twitter at @automationnext.

Jack Lee is a senior Azure certified consultant and an Azure practice lead with a
passion for software development, cloud, and DevOps innovations. Jack has been
recognized as a Microsoft MVP for his contributions to the tech community. He
has presented at various user groups and conferences, including the Global Azure
Bootcamp at Microsoft Canada. Jack is an experienced mentor and judge at hackathons
and is also the president of a user group that focuses on Azure, DevOps, and software
development. He is the co-author of Cloud Analytics with Microsoft Azure, published by
Packt Publishing. You can follow Jack on Twitter at @jlee_consulting.

About Azure for Architects, Third Edition | iii

Rithin Skaria is an open source evangelist with over 7 years of experience of managing
open source workloads in Azure, AWS, and OpenStack. He is currently working
for Microsoft and is a part of several open source community activities conducted
within Microsoft. He is a Microsoft Certified Trainer, Linux Foundation Certified
Engineer and Administrator, Kubernetes Application Developer and Administrator,
and also a Certified OpenStack Administrator. When it comes to Azure, he has four
certifications (solution architecture, Azure administration, DevOps, and security), and
he is also certified in Office 365 administration. He has played a vital role in several
open source deployments, and the administration and migration of these workloads
to the cloud. He also co-authored Linux Administration on Azure, published by Packt
Publishing. Connect with him on LinkedIn at @rithin-skaria.

About the Reviewers

Melony Qin is a woman in STEM. Currently working as a Program Manager at
Microsoft, she's a member of the Association for Computing Machinery (ACM) and
Project Management Institute (PMI). She has contributed to serverless computing,
big data processing, DevOps, artificial intelligence, machine learning, and IoT with
Microsoft Azure. She holds all the Azure certifications (both the Apps and Infrastructure
and the Data and AI tracks) as well as Certified Kubernetes Administrator (CKA) and
Certified Kubernetes Application Developer (CKAD), and is mainly working on her
contributions to open-source software (OSS), DevOps, Kubernetes, serverless, big data
analytics, and IoT on Microsoft Azure in the community. She's the author and co-author
of two books, Microsoft Azure Infrastructure and The Kubernetes Workshop, both
published by Packt Publishing. She can be reached out via Twitter at @MelonyQ.

Sanjeev Kumar is a Cloud Solution Architect for SAP on Azure at Microsoft. He
is currently based in Zurich, Switzerland. He has worked with SAP technology
for over 19 years. He has been working with public cloud technologies for about 8 years,
the last 2 years of which have been focused on Microsoft Azure.

In his SAP on Azure cloud architecture advisory role, Sanjeev Kumar has worked
with a number of the world's top financial services and manufacturing companies. His
focus areas include cloud architecture and design to help customers migrate their
SAP systems to Azure and adopt Azure best practices for SAP deployments, especially
by implementing Infrastructure as Code and DevOps. He has also worked in the
areas of containerization and microservices using Docker and Azure Kubernetes
Service, streaming data processing using Apache Kafka, and full stack application
development using Node.js. He has worked on various product development
initiatives spanning IaaS, PaaS, and SaaS. He is also interested in the emerging
topics of artificial intelligence, machine learning, and large-scale data processing
and analytics. He writes on topics related to SAP on Azure, DevOps, and Infrastructure
as Code on LinkedIn, where you can find him at @sanjeevkumarprofile.

iv | Preface

Learning Objectives

By the end of this book, you will be able to:

• Understand the components of the Azure cloud platform

• Use cloud design patterns

• Use enterprise security guidelines for your Azure deployment

• Design and implement serverless and integration solutions

• Build efficient data solutions on Azure

• Understand container services on Azure

Audience

If you are a cloud architect, DevOps engineer, or a developer looking to learn about
the key architectural aspects of the Azure cloud platform, this book is for you. A basic
understanding of the Azure cloud platform will help you grasp the concepts covered in
this book more effectively.

Approach

This book covers each topic with step-by-step explanations of essential concepts,
practical examples, and self-assessment questions. By providing a balance of theory
and practical experience of working through engaging projects, this book will help you
understand how architects work in the real world.

Hardware Requirements

For the optimal experience, we recommend the following configuration:

• Minimum 4 GB RAM

• Minimum 32 GB of free memory

About Azure for Architects, Third Edition | v

Software Requirements

• Visual Studio 2019

• Docker for Windows latest version

• AZ PowerShell module 1.7 and above

• Azure CLI latest version

• Azure subscription

• Windows Server 2016/2019

• Window 10 latest version - 64 bit

Conventions

Code words in the text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, and user inputs are shown as follows:

The DSC configuration still isn't known to Azure Automation. It's available on some
local machines. It should be uploaded to Azure Automation DSC Configurations.
Azure Automation provides the Import-AzureRMAutomationDscConfiguration cmdlet to
import the configuration to Azure Automation:

Import-AzureRmAutomationDscConfiguration -SourcePath "C:\DSC\AA\DSCfiles\
ConfigureSiteOnIIS.ps1" -ResourceGroupName "omsauto" -AutomationAccountName
"datacenterautomation" -Published -Verbose

Download Resources

The code bundle for this book is also hosted on GitHub at: https://github.com/
PacktPublishing/Azure-for-Architects-Third-Edition.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing Check them out!

https://github.com/PacktPublishing/Azure-for-Architects-Third-Edition
https://github.com/PacktPublishing/Azure-for-Architects-Third-Edition
https://github.com/PacktPublishing

Every few years, a technological innovation emerges that permanently changes the
entire landscape and ecosystem around it. If we go back in time, the 1970s and 1980s
were the time of mainframes. These mainframes were massive, often occupying large
rooms, and were solely responsible for almost all computing work. Since the technology
was difficult to procure and time-consuming to use, many enterprises used to place
orders for mainframes one month in advance before they could have an operational
mainframe set up.

Then, the early 1990s witnessed a boom in demand for personal computing and the
internet. As a result, computers became much smaller in size and comparatively easy
to procure for the general public. Consistent innovations on the personal computing
and internet fronts eventually changed the entire computer industry. Many people had
desktop computers that were capable of running multiple programs and connecting
to the internet. The rise of the internet also propagated the rise of client-server
deployments. Now there could be centralized servers hosting applications, and services
could be reached by anyone who had a connection to the internet anywhere on the
globe. This was also a time when server technology gained prominence; Windows NT
was released during this time and was soon followed by Windows 2000 and Windows
2003 at the turn of the century.

Getting started
with Azure

1

2 | Getting started with Azure

The most remarkable innovation of the 2000s was the rise and adoption of portable
devices, especially smartphones, and with these came a plethora of apps. Apps could
connect to centralized servers on the internet and carry out business as usual. Users
were no longer dependent on browsers to do this work; all servers were either self-
hosted or hosted using a service provider, such as an internet service provider (ISP).

Users did not have much control over their servers. Multiple customers and their
deployments were part of the same server, even without customers knowing about it.

However, something else happened in the middle and latter parts of the first decade
of the 2000s. This was the rise of cloud computing, and it again rewrote the entire
landscape of the IT industry. Initially, adoption was slow, and people approached it with
caution, either because the cloud was in its infancy and still had to mature, or because
people had various negative notions about what it was.

To gain a better understanding of the disruptive technology, we will cover the following
topics in this chapter:

• Cloud computing

• Infrastructure as a service (IaaS), platform as a service (PaaS), and Software as a
service (SaaS)

• Understanding Azure

• Azure Resource Manager (ARM)

• Virtualization, containers, and Docker

• Interacting with the intelligent cloud

Cloud computing
Today, cloud computing is one of the most promising upcoming technologies, and
enterprises, no matter how big or small, are adopting it as a part of their IT strategy. It
is difficult these days to have any meaningful conversation about an IT strategy without
including cloud computing in the overall solution discussions.

Cloud computing, or simply the cloud in layman's terms, refers to the availability of
resources on the internet. These resources are made available to users on the internet
as services. For example, storage is available on-demand through the internet for users
to store their files, documents, and more. Here, storage is a service that is offered by a
cloud provider.

Cloud computing | 3

A cloud provider is an enterprise or consortium of companies that provides cloud
services to other enterprises and consumers. They host and manage these services
on behalf of the user. They are responsible for enabling and maintaining the health of
services. There are large datacenters across the globe that have been opened by cloud
providers to cater to the IT demands of users.

Cloud resources consist of hosting services on on-demand infrastructures, such as
computing infrastructures, networks, and storage facilities. This flavor of the cloud is
known as IaaS.

The advantages of cloud computing

Cloud adoption is at an all-time high and is growing because of several advantages, such
as these:

• Pay-as-you-go model: Customers do not need to purchase hardware and software
for cloud resources. There is no capital expenditure for using a cloud resource;
customers simply pay for the time that they use or reserve a resource.

• Global access: Cloud resources are available globally through the internet.
Customers can access their resources on-demand from anywhere.

• Unlimited resources: The scaling capability of cloud technology is unlimited;
customers can provision as many resources as they want, without any constraints.
This is also known as unlimited scalability.

• Managed services: The cloud provider provides numerous services that are
managed by them for customers. This takes away any technical and financial
burden from the customer.

Why cloud computing?

To understand the need for cloud computing, we must understand the industry's
perspective.

4 | Getting started with Azure

Flexibility and agility

Instead of creating a large monolithic application using a big-bang approach
deployment methodology, today, applications comprise smaller services using the
microservices paradigm. Microservices help to create services in an independent
and autonomous manner that can be evolved in isolation without bringing the entire
application down. They offer large amounts of flexibility and agility in bringing changes
to production in a faster and better way. There are many microservices that come
together to create an application and provide integrated solutions for customers. These
microservices should be discoverable and have well-defined endpoints for integration.
The number of integrations with the microservices approach is very high compared
to traditional monolithic applications. These integrations add complexity in both the
development and deployment of applications.

Speed, standardization, and consistency

It follows that the methodology for deployments should also undergo changes to adapt
to the needs of these services, that is, frequent changes and frequent deployments.
For frequent changes and deployments, it is important to use processes that help in
bringing about these changes in a predictable and consistent manner. Automated agile
processes should be used such that smaller changes can be deployed and tested in
isolation.

Staying relevant

Finally, deployment targets should be redefined. Not only should deployment targets
be easily creatable within seconds, but also the environment built should be consistent
across versions, with appropriate binaries, runtimes, frameworks, and configuration.
Virtual machines were used with monolithic applications but microservices need more
agility, flexibility, and a more lightweight option than virtual machines. Container
technology is the preferred mechanism for deployment targets for these services, and
we will cover more about that later in this chapter.

Scalability

Some important tenets of using microservices are that they have an unlimited scaling
capability in isolation, global high availability, disaster recovery with a near-zero
recovery point, and time objectives. These qualities of microservices necessitate
infrastructure that can scale in an unlimited fashion. There should not be any resource
constraints. While this is the case, it is also important that an organization does not pay
for resources up front when they are not utilized.

Cloud computing | 5

Cost-effectiveness

Paying for resources that are being consumed and using them optimally by increasing
and decreasing the resource counts and capacity automatically is the fundamental
tenet of cloud computing. These emerging application requirements demand the cloud
as the preferred platform to scale easily, be highly available, be disaster-resistant, bring
in changes easily, and achieve predictable and consistent automated deployments in a
cost-effective manner.

Deployment paradigms in Azure

There are three different deployment patterns that are available in Azure; they are as
follows:

• IaaS

• PaaS

• SaaS

The difference between these three deployment patterns is the level of control that
is exercised by customers via Azure. Figure 1.1 displays the different levels of control
within each of these deployment patterns:

Figure 1.1: Cloud services—IaaS, PaaS, and SaaS

IaaS PaaS SaaS

Applications Applications Applications

Data Data Data

Runtime Runtime Runtime

Middleware Middleware Middleware

OS OS OS

Virtualization Virtualization Virtualization

Servers Servers Servers

Storage Storage Storage

Networking Networking Networking

Managed by Consumer Managed by Vendor

6 | Getting started with Azure

It is clear from Figure 1.1 that customers have more control when using IaaS
deployments, and this level of control continually decreases as we progress from PaaS
to SaaS deployments.

IaaS

IaaS is a type of deployment model that allows customers to provision their own
infrastructure on Azure. Azure provides several infrastructure resources and customers
can provision them on-demand. Customers are responsible for maintaining and
governing their own infrastructure. Azure will ensure the maintenance of the physical
infrastructure on which these virtual infrastructure resources are hosted. Under
this approach, customers require active management and operations in the Azure
environment.

PaaS

PaaS takes away infrastructure deployment and control from the customer. This is a
higher-level abstraction compared to IaaS. In this approach, customers bring their own
application, code, and data, and deploy them on the Azure-provided platform. These
platforms are managed and governed by Azure and customers are solely responsible for
their applications. Customers perform activities related to their application deployment
only. This model provides faster and easier options for the deployment of applications
compared to IaaS.

SaaS

SaaS is a higher-level abstraction compared to PaaS. In this approach, software and its
services are available for customer consumption. Customers only bring their data into
these services—they do not have any control over these services. Now that we have a
basic understanding of service types in Azure, let's get into the details of Azure and
understand it from the ground up.

Understanding Azure
Azure provides all the benefits of the cloud while remaining open and flexible. Azure
supports a wide variety of operating systems, languages, tools, platforms, utilities,
and frameworks. For example, it supports Linux and Windows, SQL Server, MySQL,
and PostgreSQL. It supports most of the programming languages, including C#,
Python, Java, Node.js, and Bash. It supports NoSQL databases, such as MongoDB and
Cosmos DB, and it also supports continuous integration tools, such as Jenkins and
Azure DevOps Services (formerly Visual Studio Team Services (VSTS)). The whole
idea behind this ecosystem is to enable customers to have the freedom to choose their
own language, platform, operating system, database, storage, and tools and utilities.
Customers should not be constrained from a technology perspective; instead, they
should be able to build and focus on their business solution, and Azure provides them
with a world-class technology stack that they can use.

Understanding Azure | 7

Azure is very much compatible with the customer's choice of technology stack.
For example, Azure supports all popular (open-source and commercial) database
environments. Azure provides Azure SQL, MySQL, and Postgres PaaS services. It
provides the Hadoop ecosystem and offers HDInsight, a 100% Apache Hadoop–based
PaaS. It also provides a Hadoop on Linux virtual machine (VM) implementation for
customers who prefer the IaaS approach. Azure also provides the Redis Cache service
and supports other popular database environments, such as Cassandra, Couchbase, and
Oracle as an IaaS implementation.

The number of services is increasing by the day in Azure and the most up-to-date list of
services can be found at https://azure.microsoft.com/services.

Azure also provides a unique cloud computing paradigm known as the hybrid cloud. The
hybrid cloud refers to a deployment strategy in which a subset of services is deployed
on a public cloud, while other services are deployed on an on-premises private cloud
or datacenter. There is a virtual private network (VPN) connection between the public
and private clouds. Azure offers customers the flexibility to divide and deploy their
workload on both the public cloud and an on-premises datacenter.

Azure has datacenters across the globe and combines these datacenters into regions.
Each region has multiple datacenters to ensure that recovery from disasters is quick
and efficient. At the time of writing, there are 58 regions across the globe. This provides
customers with the flexibility to deploy their services in their choice of location. They
can also combine these regions to deploy a solution that is disaster-resistant and
deployed near their customer base.

Note

In China and Germany, the Azure Cloud Services are separate for general use
and for governmental use. This means that the cloud services are maintained in
separate datacenters.

https://azure.microsoft.com/services

8 | Getting started with Azure

Azure as an intelligent cloud
Azure provides infrastructure and services to ingest billions of transactions using
hyper-scale processing. It provides petabytes of storage for data, and it provides a host
of interconnected services that can pass data among themselves. With such capabilities
in place, data can be processed to generate meaningful knowledge and insights. There
are multiple types of insights that can be generated through data analysis, which are as
follows:

• Descriptive: This type of analysis provides details about what is happening or has
happened in the past.

• Predictive: This type of analysis provides details about what is going to happen in
the future.

• Prescriptive: This type of analysis provides details about what should be done to
either enhance or prevent current or future events.

• Cognitive: This type of analysis actually executes actions that are determined by
prescriptive analytics in an automated manner.

While deriving insights from data is good, it is equally important to act on them. Azure
provides a rich platform to ingest large volumes of data, process and transform it,
store and generate insights from it, and display it on real-time dashboards. It is also
possible to take action on these insights automatically. These services are available to
every customer of Azure and they provide a rich ecosystem in which customers can
create solutions. Enterprises are creating numerous applications and services that are
completely disrupting industries because of the easy availability of these intelligent
services from Azure, which are combined to create meaningful value for end customers.
Azure ensures that services that are commercially not viable to implement for small and
medium companies can now be readily consumed and deployed in a few minutes.

Azure Resource Manager
Azure Resource Manager (ARM) is the technology platform and orchestration service
from Microsoft that ties up all the components that were discussed earlier. It brings
Azure's resource providers, resources, and resource groups together to form a cohesive
cloud platform. It makes Azure services available as subscriptions, resource types
available to resource groups, and resource and resource APIs accessible to the portal
and other clients, and it authenticates access to these resources. It also enables features
such as tagging, authentication, role-based access control (RBAC), resource locking,
and policy enforcement for subscriptions and their resource groups. It also provides
deployment and management features using the Azure portal, Azure PowerShell, and
command-line interface (CLI) tools.

Azure Resource Manager | 9

The ARM architecture

The architecture of ARM and its components is shown in Figure 1.2. As we can see, an
Azure Subscription comprises multiple resource groups. Each resource group contains
resource instances that are created from resource types that are available in the
resource provider:

Figure 1.2: The ARM architecture

Why ARM?

Prior to ARM, the framework used by Azure was known as Azure Service Manager
(ASM). It is important to have a small introduction to it so that we can get a clear
understanding of the emergence of ARM and the slow and steady deprecation of ASM.

Resource Group

Microsoft Azure

LOB App

Azure Subscription

laas Workload

REST API Endpoints

Resource Group

Resource Providers

Azure Resource Manager (ARM)

Azure

Azure App
Service

Azure
Storage

Azure SQL
Database

Azure VM
Azure MySQL

ClearDB
Database

Azure
Virtual

Network
Azure

Storage

10 | Getting started with Azure

Limitations of ASM

ASM has inherent constraints. For example, ASM deployments are slow and blocking—
operations are blocked if an earlier operation is already in progress. Some of the
limitations of ASM are as follows:

• Parallelism: Parallelism is a challenge in ASM. It is not possible to execute multiple
transactions successfully in parallel. The operations in ASM are linear and so they
are executed one after another. If multiple transactions are executed at the same
time, there will either be parallel operation errors or the transactions will get
blocked.

• Resources: Resources in ASM are provisioned and managed in isolation of each
other; there is no relation between ASM resources. Grouping services and
resources or configuring them together is not possible.

• Cloud services: Cloud services are the units of deployment in ASM. They are
reliant on affinity groups and are not scalable due to their design and architecture.

Granular and discrete roles and permissions cannot be assigned to resources in ASM.
Customers are either service administrators or co-administrators in the subscription.
They either get full control over resources or do not have access to them at all. ASM
provides no deployment support. Either deployments are done manually, or we need to
resort to writing procedural scripts in .NET or PowerShell. ASM APIs are not consistent
between resources.

ARM advantages

ARM provides distinct advantages and benefits over ASM, which are as follows:

• Grouping: ARM allows the grouping of resources together in a logical container.
These resources can be managed together and go through a common life cycle as
a group. This makes it easier to identify related and dependent resources.

• Common life cycles: Resources in a group have the same life cycle. These
resources can evolve and be managed together as a unit.

• RBAC: Granular roles and permissions can be assigned to resources providing
discrete access to customers. Customers can also have only those rights that are
assigned to them.

Azure Resource Manager | 11

• Deployment support: ARM provides deployment support in terms of templates,
enabling DevOps and infrastructure as code (IaC). These deployments are faster,
consistent, and predictable.

• Superior technology: The cost and billing of resources can be managed as a unit.
Each resource group can provide its usage and cost information.

• Manageability: ARM provides advanced features, such as security, monitoring,
auditing, and tagging, for better manageability of resources. Resources can be
queried based on tags. Tags also provide cost and billing information for resources
that are tagged similarly.

• Migration: Migration and updating resources is easier within and across resource
groups.

ARM concepts

With ARM, everything in Azure is a resource. Examples of resources are VMs, network
interfaces, public IP addresses, storage accounts, and virtual networks. ARM is
based on concepts that are related to resource providers and resource consumers.
Azure provides resources and services through multiple resource providers that are
consumed and deployed in groups.

Resource providers

These are services that are responsible for providing resource types through ARM.
The top-level concept in ARM is the resource provider. These providers are containers
for resource types. Resource types are grouped into resource providers. They are
responsible for deploying and managing resources. For example, a VM resource
type is provided by a resource provider called Microsoft.Compute/virtualMachines
resource. Representational state transfer (REST) API operations are versioned to
distinguish between them. The version naming is based on the dates on which they
are released by Microsoft. It is necessary for a related resource provider to be available
to a subscription to deploy a resource. Not all resource providers are available to a
subscription out of the box. If a resource is not available to a subscription, then we
need to check whether the required resource provider is available in each region. If it is
available, the customer can explicitly register for the subscription.

12 | Getting started with Azure

Resource types

Resource types are an actual resource specification defining the resource's public API
interface and implementation. They implement the working and operations supported
by the resource. Similar to resource providers, resource types also evolve over time
in terms of their internal implementation, and there are multiple versions of their
schemas and public API interfaces. The version names are based on the dates that they
are released by Microsoft as a preview or general availability (GA). The resource types
become available as a subscription after a resource provider is registered to them. Also,
not every resource type is available in every Azure region. The availability of a resource
is dependent on the availability and registration of a resource provider in an Azure
region and must support the API version needed for provisioning it.

Resource groups

Resource groups are units of deployment in ARM. They are containers grouping
multiple resource instances in a security and management boundary. A resource group
is uniquely named in a subscription. Resources can be provisioned on different Azure
regions and yet belong to the same resource group. Resource groups provide additional
services to all the resources within them. Resource groups provide metadata services,
such as tagging, which enables the categorization of resources; the policy-based
management of resources; RBAC; the protection of resources from accidental deletion
or updates; and more. As mentioned before, they have a security boundary, and users
that don't have access to a resource group cannot access resources contained within it.
Every resource instance needs to be part of a resource group; otherwise, it cannot be
deployed.

Resources and resource instances

Resources are created from resource types and are an instance of a resource type. An
instance can be unique globally or at a resource group level. The uniqueness is defined
by both the name of the resource and its type. If we compare this with object-oriented
programming constructs, resource instances can be seen as objects and resource
types can be seen as classes. The services are consumed through the operations that
are supported and implemented by resource instances. The resource type defines
properties and each instance should configure mandatory properties during the
provisioning of an instance. Some are mandatory properties, while others are optional.
They inherit the security and access configuration from their parent resource group.
These inherited permissions and role assignments can be overridden for each resource.
A resource can be locked in such a way that some of its operations can be blocked
and not made available to roles, users, and groups even though they have access to it.
Resources can be tagged for easy discoverability and manageability.

Azure Resource Manager | 13

ARM features

Here are some of the main features that are provided by ARM:

• RBAC: Azure Active Directory (Azure AD) authenticates users to provide access to
subscriptions, resource groups, and resources. ARM implements OAuth and RBAC
within the platform, enabling authorization and access control for resources,
resource groups, and subscriptions based on roles assigned to a user or group.
A permission defines access to the operations in a resource. These permissions
can allow or deny access to the resource. A role definition is a collection of these
permissions. Roles map Azure AD users and groups to particular permissions.
Roles are subsequently assigned to a scope; this can be an individual, a collection
of resources, a resource group, or the subscription. The Azure AD identities (users,
groups, and service principals) that are added to a role gain access to the resource
according to the permissions defined in the role. ARM provides multiple out-of-
the-box roles. It provides system roles, such as the owner, contributor, and
reader. It also provides resource-based roles, such as SQL DB contributor and VM
contributor. ARM also allows the creation of custom roles.

• Tags: Tags are name-value pairs that add additional information and metadata
to resources. Both resources and resource groups can be tagged with multiple
tags. Tags help in the categorization of resources for better discoverability and
manageability. Resources can be quickly searched for and easily identified. Billing
and cost information can also be fetched for resources that have the same tags.
While this feature is provided by ARM, an IT administrator defines its usage and
taxonomy with regard to resources and resource groups. Taxonomy and tags, for
example, can relate to departments, resource usage, location, projects, or any
other criteria that are deemed fit from a cost, usage, billing, or search perspective.
These tags can then be applied to resources. Tags that are defined at the resource
group level are not inherited by their resources.

• Policies: Another security feature that is provided by ARM is custom policies.
Custom policies can be created to control access to resources. Policies are defined
as conventions and rules, and they must be adhered to while interacting with
resources and resource groups. The policy definition contains an explicit denial of
actions on resources or access to resources. By default, every access is allowed if
it is not mentioned in the policy definition. These policy definitions are assigned
to the resource, resource group, and subscription scope. It is important to note
that these policies are not replacements or substitutes for RBAC. In fact, they
complement and work together with RBAC. Policies are evaluated after a user is
authenticated by Azure AD and authorized by the RBAC service. ARM provides
a JSON-based policy definition language for defining policies. Some examples
of policy definitions are that a policy must tag every provisioned resource, and
resources can only be provisioned to specific Azure regions.

14 | Getting started with Azure

• Locks: Subscriptions, resource groups, and resources can be locked to prevent
accidental deletions or updates by an authenticated user. Locks applied at higher
levels flow downstream to the child resources. Alternatively, locks that are applied
at the subscription level lock every resource group and the resources within it.

• Multi-region: Azure provides multiple regions for provisioning and hosting
resources. ARM allows resources to be provisioned at different locations while still
residing within the same resource group. A resource group can contain resources
from different regions.

• Idempotent: This feature ensures predictability, standardization, and consistency
in resource deployment by ensuring that every deployment will result in the same
state of resources and configuration, no matter the number of times it is executed.

• Extensible: ARM provides an extensible architecture to allow the creation and
plugging in of new resource providers and resource types on the platform.

Virtualization
Virtualization was a breakthrough innovation that completely changed the way that
physical servers were looked at. It refers to the abstraction of a physical object into a
logical object.

The virtualization of physical servers led to virtual servers known as VMs. These
VMs consume and share the physical CPU, memory, storage, and other hardware
of the physical server on which they are hosted. This enables the faster and easier
provisioning of application environments on-demand, providing high availability and
scalability with reduced cost. One physical server is enough to host multiple VMs, with
each VM containing its own operating system and hosting services on it.

There was no longer any need to buy additional physical servers for deploying new
applications and services. The existing physical servers were sufficient to host more
VMs. Furthermore, as part of rationalization, many physical servers were consolidated
into a few with the help of virtualization.

Each VM contains the entire operating system, and each VM is completely isolated
from other VMs, including the physical hosts. Although a VM uses the hardware that is
provided by the host physical server, it has full control over its assigned resources and
its environment. These VMs can be hosted on a network such as a physical server with
its own identity.

Azure can create Linux and Windows VMs in a few minutes. Microsoft provides its own
images, along with images from its partners and the community; users can also provide
their own images. VMs are created using these images.

Containers | 15

Containers
Containers are also a virtualization technology; however, they do not virtualize a server.
Instead, a container is operating system–level virtualization. What this means is that
containers share the operating system kernel (which is provided by the host) among
themselves along with the host. Multiple containers running on a host (physical or
virtual) share the host operating system kernel. Containers ensure that they reuse the
host kernel instead of each having a dedicated kernel to themselves.

Containers are completely isolated from their host or from other containers running on
the host. Windows containers use Windows storage filter drivers and session isolation
to isolate operating system services such as the file system, registry, processes, and
networks. The same is true even for Linux containers running on Linux hosts. Linux
containers use the Linux namespace, control groups, and union file system to virtualize
the host operating system.

The container appears as if it has a completely new and untouched operating system
and resources. This arrangement provides lots of benefits, such as the following:

• Containers are fast to provision and take less time to provision compared to
virtual machines. Most of the operating system services in a container are
provided by the host operating system.

• Containers are lightweight and require fewer computing resources than VMs. The
operating system resource overhead is no longer required with containers.

• Containers are much smaller than VMs.

• Containers can help solve problems related to managing multiple application
dependencies in an intuitive, automated, and simple manner.

• Containers provide infrastructure in order to define all application dependencies
in a single place.

16 | Getting started with Azure

Containers are an inherent feature of Windows Server 2016 and Windows 10; however,
they are managed and accessed using a Docker client and a Docker daemon. Containers
can be created on Azure with a Windows Server 2016 SKU as an image. Each container
has a single main process that must be running for the container to exist. A container
will stop when this process ends. Additionally, a container can either run in interactive
mode or in detached mode like a service:

Figure 1.3: Container architecture

Figure 1.3 shows all the technical layers that enable containers. The bottom-most layer
provides the core infrastructure in terms of network, storage, load balancers, and
network cards. At the top of the infrastructure is the compute layer, consisting of either
a physical server or both physical and virtual servers on top of a physical server. This
layer contains the operating system with the ability to host containers. The operating
system provides the execution driver that the layers above use to call the kernel code
and objects to execute containers. Microsoft created Host Container System Shim
(HCSShim) for managing and creating containers and uses Windows storage filter
drivers for image and file management.

Container environment isolation is enabled for the Windows session. Windows Server
2016 and Nano Server provide the operating system, enable the container features,
and execute the user-level Docker client and Docker Engine. Docker Engine uses the
services of HCSShim, storage filter drivers, and sessions to spawn multiple containers
on the server, with each containing a service, application, or database.

Docker | 17

Docker
Docker provides management features to Windows containers. It comprises the
following two executables:

• The Docker daemon

• The Docker client

The Docker daemon is the workhorse for managing containers. It is a Windows service
responsible for managing all activities on the host that are related to containers. The
Docker client interacts with the Docker daemon and is responsible for capturing inputs
and sending them across to the Docker daemon. The Docker daemon provides the
runtime, libraries, graph drivers, and engine to create, manage, and monitor containers
and images on the host server. It also has the ability to create custom images that are
used for building and shipping applications to multiple environments.

Interacting with the intelligent cloud
Azure provides multiple ways to connect, automate, and interact with the intelligent
cloud. All these methods require users to be authenticated with valid credentials before
they can be used. The different ways to connect to Azure are as follows:

• The Azure portal

• PowerShell

• The Azure CLI

• The Azure REST API

The Azure portal

The Azure portal is a great place to get started. With the Azure portal, users can log
in and start creating and managing Azure resources manually. The portal provides
an intuitive and user-friendly user interface through the browser. The Azure portal
provides an easy way to navigate to resources using blades. The blades display all the
properties of a resource, including its logs, cost, relationship with other resources, tags,
security options, and more. An entire cloud deployment can be managed through the
portal.

18 | Getting started with Azure

PowerShell

PowerShell is an object-based command-line shell and scripting language that
is used for the administration, configuration, and management of infrastructure
and environments. It is built on top of .NET Framework and provides automation
capabilities. PowerShell has truly become a first-class citizen among IT administrators
and automation developers for managing and controlling the Windows environment.
Today, almost every Windows environment and many Linux environments can be
managed by PowerShell. In fact, almost every aspect of Azure can also be managed
by PowerShell. Azure provides rich support for PowerShell. It provides a PowerShell
module for each resource provider containing hundreds of cmdlets. Users can use these
cmdlets in their scripts to automate interaction with Azure. The Azure PowerShell
module is available through the web platform installer and through the PowerShell
Gallery. Windows Server 2016 and Windows 10 provide package management and
PowerShellGet modules for the quick and easy downloading and installation of
PowerShell modules from the PowerShell Gallery. The PowerShellGet module provides
the Install-Module cmdlet for downloading and installing modules on the system.

Installing a module is a simple act of copying the module files at well-defined module
locations, which can be done as follows:

Import-module PowerShellGet

Install-Module -Name az -verbose

The Import-module command imports a module and its related functions within the
current execution scope and Install-Module helps in installing modules.

The Azure CLI

Azure also provides Azure CLI 2.0, which can be deployed on Linux, Windows, and
macOS operating systems. Azure CLI 2.0 is Azure's new command-line utility for
managing Azure resources. Azure CLI 2.0 is optimized for managing and administering
Azure resources from the command line, and for building automation scripts that work
against ARM. The CLI can be used to execute commands using the Bash shell or the
Windows command line. The Azure CLI is very famous among non-Windows users as it
allows you to talk to Azure on Linux and macOS. The steps for installing Azure CLI 2.0
are available at https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-
latest.

https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest

Interacting with the intelligent cloud | 19

The Azure REST API

All Azure resources are exposed to users through REST endpoints. REST APIs are
service endpoints that implement HTTP operations (or methods) by providing create,
retrieve, update, or delete (CRUD) access to the service's resources. Users can
consume these APIs to create and manage resources. In fact, the CLI and PowerShell
mechanisms use these REST APIs internally to interact with resources on Azure.

ARM templates

In an earlier section, we looked at deployment features such as multi-service, multi-
region, extensible, and idempotent features that are provided by ARM. ARM templates
are the primary means of provisioning resources in ARM. ARM templates provide
implementation support for ARM's deployment features.

ARM templates provide a declarative model through which resources, their
configuration, scripts, and extensions are specified. ARM templates are based on the
JavaScript Object Notation (JSON) format. They use JSON syntax and conventions to
declare and configure resources. JSON files are text-based, user-friendly, and easily
readable files.

They can be stored in a source code repository and have version control. They are also
a means to represent IaC that can be used to provision resources in an Azure resource
group again and again, predictably and uniformly. A template needs a resource group
for deployment. It can only be deployed to a resource group, and the resource group
should exist before executing a template deployment. A template is not capable of
creating a resource group.

Templates provide the flexibility to be generic and modular in their design and
implementation. Templates provide the ability to accept parameters from users, declare
internal variables, define dependencies between resources, link resources within
the same resource group or different resource groups, and execute other templates.
They also provide scripting language type expressions and functions that make them
dynamic and customizable at runtime.

20 | Getting started with Azure

Deployments

PowerShell allows the following two modes for the deployment of templates:

• Incremental: Incremental deployment adds resources declared in the template
that don't exist in a resource group, leaves resources unchanged in a resource
group that is not part of a template definition, and leaves resources unchanged
in a resource group that exists in both the template and resource group with the
same configuration state.

• Complete: Complete deployment, on the other hand, adds resources declared in a
template to the resource group, deletes resources that do not exist in the template
from the resource group, and leaves resources unchanged that exist in both the
resource group and template with the same configuration state.

Summary
The cloud is a relatively new paradigm and is still in its nascent stage. There will be
a lot of innovation and capabilities added over time. Azure is one of the top cloud
providers today and it provides rich capabilities through IaaS, PaaS, SaaS, and hybrid
deployments. In fact, Azure Stack, which is an implementation of the private cloud from
Microsoft, will be released soon. This will have the same features available on a private
cloud as on the public cloud. They both will, in fact, connect and work seamlessly and
transparently together.

It is very easy to get started with Azure, but developers and architects can also fall
into a trap if they do not design and architect their solutions appropriately. This book
is an attempt to provide guidance and directions for architecting solutions the right
way, using appropriate services and resources. Every service on Azure is a resource. It
is important to understand how these resources are organized and managed in Azure.
This chapter provided context around ARM and groups—which are the core frameworks
that provide the building blocks for resources. ARM offers a set of services to resources
that help provide uniformity, standardization, and consistency in managing them. The
services, such as RBAC, tags, policies, and locks, are available to every resource provider
and resource. Azure also provides rich automation features to automate and interact
with resources. Tools such as PowerShell, ARM templates, and the Azure CLI can be
incorporated as part of release pipelines, continuous deployment, and delivery. Users
can connect to Azure from heterogeneous environments using these automation tools.

The next chapter will discuss some of the important architectural concerns that help to
solve common cloud-based deployment problems and ensure applications are secure,
available, scalable, and maintainable in the long run.

Architectural concerns, such as high availability and scalability, are some of the
highest‑priority items for any architect. This is common across many projects and
solutions. However, this becomes even more important when deploying applications
to the cloud because of the complexity involved. Most of the time, the complexity
does not come from the application, but from the choices available in terms of similar
resources on the cloud. The other complex issue that arises from the cloud is the
constant availability of new features. These new features can almost make an architect's
decisions completely redundant in hindsight.

In this chapter, we will look at an architect's perspective in terms of deploying highly
available and scalable applications on Azure.

Azure solution
availability, scalability,

and monitoring

2

24 | Azure solution availability, scalability, and monitoring

Azure is a mature platform that provides a number of options for implementing high
availability and scalability at multiple levels. It is vital for an architect to know about
them, including the differences between them and the costs involved, and finally, be in
a position to choose an appropriate solution that meets the best solution requirements.
There is no one solution for everything, but there is a good one for each project.

Running applications and systems that are available to users for consumption whenever
they need them is one of the topmost priorities for organizations. They want their
applications to be operational and functional, and to continue to be available to their
customers even when some untoward events occur. High availability is the primary
theme of this chapter. Keeping the lights on is the common metaphor that is used for
high availability. Achieving high availability for applications is not an easy task, and
organizations have to spend considerable time, energy, resources, and money in doing
so. Additionally, there is still the risk that an organization's implementation will not
produce the desired results. Azure provides a lot of high‑availability features for virtual
machines (VMs) and the Platform as a Service (PaaS) service. In this chapter, we will go
through the architectural and design features that are provided by Azure to ensure high
availability for running applications and services.

In this chapter, we will cover the following topics:

• High availability

• Azure high availability

• Architectural considerations for high availability

• Scalability

• Upgrades and maintenance

High availability
High availability forms one of the core non‑functional technical requirements for any
business‑critical service and its deployment. High availability refers to the feature
of a service or application that keeps it operational on a continuous basis; it does
so by meeting or surpassing its promised service level agreement (SLA). Users are
promised a certain SLA based on the service type. The service should be available
for consumption based on its SLA. For example, an SLA can define 99% availability
for an application for the entire year. This means that it should be available for
consumption by users for 361.35 days. If it fails to remain available for this period, that
constitutes a breach of the SLA. Most mission-critical applications define their high-
availability SLA as 99.999% for a year. This means the application should be up, running,
and available throughout the year, but it can only be down and unavailable for 5.2 hours.
If the downtime goes beyond that, you are eligible for credit, which will be calculated
based on the total uptime percentage.

Azure high availability | 25

It is important to note here that high availability is defined in terms of time (yearly,
monthly, weekly, or a combination of these).

A service or application is made up of multiple components and these components are
deployed on separate tiers and layers. Moreover, a service or application is deployed
on an operating system (OS) and hosted on a physical machine or VM. It consumes
network and storage services for various purposes. It might even be dependent
on external systems. For these services or applications to be highly available, it
is important that networks, storage, OSes, VMs or physical machines, and each
component of the application is designed with the SLA and high availability in mind. A
definite application life cycle process is used to ensure that high availability should be
baked in from the start of application planning until its introduction to operations. This
also involves introducing redundancy. Redundant resources should be included in the
overall application and deployment architecture to ensure that if one resource goes
down, another takes over and serves the requests of the customer.

Some of the major factors affecting the high availability of an application are as follows:

• Planned maintenance

• Unplanned maintenance

• Application deployment architecture

We will be looking into each of these factors in the following sections. Let's take a closer
look at how high availability is ensured for deployments in Azure.

Azure high availability
Achieving high availability and meeting high SLA requirements is tough. Azure provides
lots of features that enable high availability for applications, from the host and guest OS
to applications using its PaaS. Architects can use these features to get high availability
in their applications using configuration instead of building these features from scratch
or depending on third‑party tools.

In this section, we will look at the features and capabilities provided by Azure to make
applications highly available. Before we get into the architectural and configuration
details, it is important to understand concepts related to Azure's high availability.

26 | Azure solution availability, scalability, and monitoring

Concepts

The fundamental concepts provided by Azure to attain high availability are as follows:

• Availability sets

• The fault domain

• The update domain

• Availability zones

As you know, it's very important that we design solutions to be highly available. The
workloads might be mission‑critical and require highly available architecture. We will
take a closer look at each of the concepts of high availability in Azure now. Let's start
with availability sets.

Availability sets

High availability in Azure is primarily achieved through redundancy. Redundancy
means that there is more than one resource instance of the same type that takes
control in the event of a primary resource failure. However, just having more similar
resources does not make them highly available. For example, there could be multiple
VMs provisioned within a subscription, but simply having multiple VMs does not make
them highly available. Azure provides a resource known as an availability set, and having
multiple VMs associated with it makes them highly available. A minimum of two VMs
should be hosted within the availability set to make them highly available. All VMs in the
availability set become highly available because they are placed on separate physical
racks in the Azure datacenter. During updates, these VMs are updated one at a time,
instead of all at the same time. Availability sets provide a fault domain and an update
domain to achieve this, and we will discuss this more in the next section. In short,
availability sets provide redundancy at the datacenter level, similar to locally redundant
storage.

It is important to note that availability sets provide high availability within a datacenter.
If an entire datacenter is down, then the availability of the application will be impacted.
To ensure that applications are still available when a datacenter goes down, Azure has
introduced a new feature known as availability zones, which we will learn about shortly.

If you recall the list of fundamental concepts, the next one in the list is the fault domain.
The fault domain is often denoted by the acronym FD. In the next section, we will
discuss what the FD is and how it is relevant while designing highly available solutions.

Azure high availability | 27

The fault domain

Fault domains (FDs) represent a group of VMs that share a common power source
and network switch. When a VM is provisioned and assigned to an availability
set, it is hosted within an FD. Each availability set has either two or three FDs by
default, depending on the Azure region. Some regions provide two, while others
provide three FDs in an availability set. FDs are non-configurable by users.

When multiple VMs are created, they are placed on separate FDs. If the number of VMs
is more than the FDs, the additional VMs are placed on existing FDs. For example, if
there are five VMs, there will be FDs hosted on more than one VM.

FDs are related to physical racks in the Azure datacenter. FDs provide high availability
in the case of unplanned downtime due to hardware, power, and network failure. Since
each VM is placed on a different rack with different hardware, a different power supply,
and a different network, other VMs continue running if a rack snaps off.

The next one in the list is the update domain.

The update domain

An FD takes care of unplanned downtime, while an update domain handles downtime
from planned maintenance. Each VM is also assigned an update domain and all the
VMs within that update domain will reboot together. There can be as many as 20
update domains in a single availability set. Update domains are non-configurable by
users. When multiple VMs are created, they are placed on separate update domains.
If more than 20 VMs are provisioned on an availability set, they are placed in a
round‑robin fashion on these update domains. Update domains take care of planned
maintenance. From Service Health in the Azure portal, you can check the planned
maintenance details and set alerts.

In the next section, we will be covering availability zones.

Availability zones

This is a relatively new concept introduced by Azure and is very similar to zone
redundancy for storage accounts. Availability zones provide high availability within a
region by placing VM instances on separate datacenters within the region. Availability
zones are applicable to many resources in Azure, including VMs, managed disks, VM
scale sets, and load balancers. The complete list of resources that are supported by
availability zones can be found at https://docs.microsoft.com/azure/availability‑
zones/az‑overview#services‑that‑support‑availability‑zones. Being unable to
configure availability across zones was a gap in Azure for a long time, and it was
eventually fixed with the introduction of availability zones.

https://docs.microsoft.com/azure/availability-zones/az-overview#services-that-support-availability-zones
https://docs.microsoft.com/azure/availability-zones/az-overview#services-that-support-availability-zones

28 | Azure solution availability, scalability, and monitoring

Each Azure region comprises multiple datacenters equipped with independent power,
cooling, and networking. Some regions have more datacenters, while others have less.
These datacenters within the region are known as zones. To ensure resiliency, there's a
minimum of three separate zones in all enabled regions. Deploying VMs in an availability
zone ensures that these VMs are in different datacenters and are on different racks and
networks. These datacenters in a region relate to high‑speed networks and there is no
lag in communication between these VMs. Figure 2.1 shows how availability zones are
set up in a region:

Figure 2.1: Availability zones in a region

You can find more information about availability zones at https://docs.microsoft.com/
azure/availability‑zones/az‑overview.

Zone‑redundant services replicate your applications and data across availability zones
to protect from single points of failure.

Azure Region

Availability Zone 1 Availability Zone 2

Availability Zone 3

https://docs.microsoft.com/azure/availability-zones/az-overview
https://docs.microsoft.com/azure/availability-zones/az-overview

Azure high availability | 29

If an application needs higher availability and you want to ensure that it is available
even if an entire Azure region is down, the next rung of the ladder for availability is the
Traffic Manager feature, which will be discussed later in this chapter. Let's now move
on to understanding Azure's take on load balancing for VMs.

Load balancing

Load balancing, as the name suggests, refers to the process of balancing a load among
VMs and applications. With one VM, there is no need for a load balancer because the
entire load is on a single VM and there is no other VM to share the load. However, with
multiple VMs containing the same application and service, it is possible to distribute the
load among them through load balancing. Azure provides a few resources to enable load
balancing:

• Load balancers: The Azure load balancer helps to design solutions with high
availability. Within the Transmission Control Protocol (TCP) stack, it is a layer
4 transport‑level load balancer. This is a layer 4 load balancer that distributes
incoming traffic among healthy instances of services that are defined in a load-
balanced set. Level 4 load balancers work at the transport level and have network‑
level information, such as an IP address and port, to decide the target for the
incoming request. Load balancers are discussed in more detail later in this chapter.

• Application gateways: An Azure Application Gateway delivers high availability to
your applications. They are layer 7 load balancers that distribute the incoming
traffic among healthy instances of services. Level 7 load balancers can work at
the application level and have application‑level information, such as cookies,
HTTP, HTTPS, and sessions for the incoming request. Application gateways are
discussed in more detail later in this chapter. Application gateways are also used
when deploying Azure Kubernetes Service, specifically for scenarios in which
ingress traffic from the internet should be routed to the Kubernetes services in
the cluster.

• Azure Front Door: Azure Front Door is very similar to application gateways;
however, it does not work at the region or datacenter level. Instead, it helps
in routing requests across regions globally. It has the same feature set as that
provided by application gateways, but at the global level. It also provides a web
application firewall for the filtering of requests and provides other security-
related protection. It provides session affinity, TLS termination, and URL-based
routing as some of its features.

• Traffic Manager: Traffic Manager helps in the routing of requests at the global
level across multiple regions based on the health and availability of regional
endpoints. It supports doing so using DNS redirect entries. It is highly resilient and
has no service impact during region failures as well.

30 | Azure solution availability, scalability, and monitoring

Since we've explored the methods and services that can be used to achieve load
balancing, we'll go ahead and discuss how to make VMs highly available.

VM high availability

VMs provide compute capabilities. They provide processing power and hosting for
applications and services. If an application is deployed on a single VM and that machine
is down, then the application will not be available. If the application is composed
of multiple tiers and each tier is deployed in its own single instance of a VM, even
downtime for a single instance of VM can render the entire application unavailable.
Azure tries to make even single VM instances highly available for 99.9% of the time,
particularly if these single‑instance VMs use premium storage for their disks. Azure
provides a higher SLA for those VMs that are grouped together in an availability set. It
provides a 99.95% SLA for VMs that are part of an availability set with two or more VMs.
The SLA is 99.99% if VMs are placed in availability zones. In the next section, we will be
discussing high availability for compute resources.

Compute high availability

Applications demanding high availability should be deployed on multiple VMs in the
same availability set. If applications are composed of multiple tiers, then each tier
should have a group of VMs on their dedicated availability set. In short, if there are
three tiers of an application, there should be three availability sets and a minimum of six
VMs (two in each availability set) to make the entire application highly available.

So, how does Azure provide an SLA and high availability to VMs in an availability set
with multiple VMs in each availability set? This is the question that might come to mind
for you.

Here, the use of concepts that we considered before comes into play—that is, the fault
and update domains. When Azure sees multiple VMs in an availability set, it places those
VMs on a separate FD. In other words, these VMs are placed on separate physical racks
instead of the same rack. This ensures that at least one VM continues to be available
even if there is a power, hardware, or rack failure. There are two or three FDs in an
availability set and, depending on the number of VMs in an availability set, the VMs are
placed in separate FDs or repeated in a round‑robin fashion. This ensures that high
availability is not impacted because of the failure of the rack.

Azure also places these VMs on a separate update domain. In other words, Azure tags
these VMs internally in such a way that these VMs are patched and updated one after
another, such that any reboot in an update domain does not affect the availability of the
application. This ensures that high availability is not impacted because of the VM and
host maintenance. It is important to note that Azure is not responsible for OS‑level and
application maintenance.

Azure high availability | 31

With the placement of VMs in separate fault and update domains, Azure ensures that all
VMs are never down at the same time and that they are alive and available for serving
requests, even though they might be undergoing maintenance or facing physical
downtime challenges:

Figure 2.2: VM distribution across fault and update domains

Figure 2.2 shows four VMs (two have Internet Information Services (IIS) and the
other two have SQL Server installed on them). Both the IIS and SQL VMs are part of
availability sets. The IIS and SQL VMs are in separate FDs and different racks in the
datacenter. They are also in separate update domains.

Figure 2.3 shows the relationship between fault and update domains:

Figure 2.3: Layout of update domains and FDs in an availability set

UD 0

FD 0 FD 2

UD 1

FD 1

UD 2

32 | Azure solution availability, scalability, and monitoring

So far, we have discussed achieving high availability for compute resources. In the next
section, you will learn how high availability can be implemented for PaaS.

High-availability platforms

Azure has provided a lot of new features to ensure high availability for PaaS. Some of
them are listed here:

• Containers in app services

• Azure Container Instances groups

• Azure Kubernetes Service

• Other container orchestrators, such as DC/OS and Swarm

Another important platform that brings high availability is Service Fabric. Both Service
Fabric and container orchestrators that include Kubernetes ensure that the desired
number of application instances are always up and running in an environment. What
this means is that even if one of the instances goes down in the environment, the
orchestrator will know about it by means of active monitoring and will spin up a
new instance on a different node, thereby maintaining the ideal and desired number
of instances. It does this without any manual or automated interference from the
administrator.

While Service Fabric allows any type of application to become highly available,
orchestrators such as Kubernetes, DC/OS, and Swarm are specific to containers.
Also, it is important to understand that these platforms provide features that help in
rolling updates, rather than a big bank update that might affect the availability of the
application.

When we were discussing high availability for VMs, we took a brief look at what load
balancing is. Let's take a closer look at it to better understand how it works in Azure.

Load balancers in Azure

Azure provides two resources that have the functionality of a load balancer. It provides
a level 4 load balancer, which works at the transport layer within the TCP OSI stack, and
a level 7 load balancer (application gateway), which works at the application and session
levels.

Although both application gateways and load balancers provide the basic features of
balancing a load, they serve different purposes. There are a number of use cases in
which it makes more sense to deploy an application gateway than a load balancer.

An application gateway provides the following features that are not available with Azure
load balancers:

Azure high availability | 33

• Web application firewall: This is an additional firewall on top of the OS firewall
and it gives the ability to peek into incoming messages. This helps in identifying
and preventing common web‑based attacks, such as SQL injection, cross‑site
scripting attacks, and session hijacks.

• Cookie-based session affinity: Load balancers distribute incoming traffic to
service instances that are healthy and relatively free. A request can be served by
any service instance. However, there are applications that need advanced features
in which all subsequent requests following the first request should be processed
by the same service instance. This is known as cookie-based session affinity. An
application gateway provides cookie-based session affinity to keep a user session
on the same service instance using cookies.

• Secure Sockets Layer (SSL) offload: The encryption and decryption of request
and response data is performed by SSL and is generally a costly operation. Web
servers should ideally be spending their resources on processing and serving
requests, rather than the encryption and decryption of traffic. SSL offload helps in
transferring this cryptography process from the web server to the load balancer,
thereby providing more resources to web servers serving users. The request from
the user is encrypted but gets decrypted at the application gateway instead of
the web server. The request from the application gateway to the web server is
unencrypted.

• End-to-end SSL: While SSL offload is a nice feature for certain applications, there
are certain mission‑critical secure applications that need complete SSL encryption
and decryption even if traffic passes through load balancers. An application
gateway can be configured for end-to-end SSL cryptography as well.

• URL-based content routing: Application gateways are also useful for redirecting
traffic to different servers based on the URL content of incoming requests. This
helps in hosting multiple services alongside other applications.

Azure load balancers

An Azure load balancer distributes incoming traffic based on the transport-level
information that is available to it. It relies on the following features:

• An originating IP address

• A target IP address

• An originating port number

• A target port number

• A type of protocol—either TCP or HTTP

34 | Azure solution availability, scalability, and monitoring

An Azure load balancer can be a private load balancer or a public load balancer. A
private load balancer can be used to distribute traffic within the internal network. As
this is internal, there won't be any public IPs assigned and they cannot be accessed
from the internet. A public load balancer has an external public IP attached to it and can
be accessed via the internet. In Figure 2.4, you can see how internal (private) and public
load balancers are incorporated into a single solution to handle internal and external
traffic, respectively:

Figure 2.4: Distributing traffic using Azure load balancers

In Figure 2.4, you can see that external users are accessing the VMs via the public load
balancer, and then the traffic from the VM is distributed across another set of VMs
using an internal load balancer.

We have done a comparison of how Azure load balancers differ from Application
Gateways. In the next section, we will discuss application gateways in more detail.

Virtual Network

Public Load
Balancer

Internal Load
Balancer

Web Tier
Subnet

Business
Tier

Subnet

Azure high availability | 35

The Azure Application Gateway

An Azure load balancer helps us to enable solutions at the infrastructure level. However,
there are times when using a load balancer requires advanced services and features.
These advanced services include SSL termination, sticky sessions, advanced security,
and more. An Azure application gateway provides these additional features; the Azure
application gateway is a level 7 load balancer that works with the application and
session payload in a TCP OSI stack.

Application gateways have more information compared to Azure load balancers in order
to make decisions on request routing and load balancing between servers. Application
gateways are managed by Azure and are highly available.

An application gateway sits between the users and the VMs, as shown in Figure 2.5:

Figure 2.5: An Azure application gateway

Application gateways are a managed service. They use Application Request
Routing (ARR) to route requests to different services and endpoints. Creating an
application gateway requires a private or public IP address. The application gateway
then routes the HTTP/HTTPS traffic to configured endpoints.

An application gateway is similar to an Azure load balancer from a configuration
perspective, with additional constructs and features. Application gateways can be
configured with a front-end IP address, a certificate, a port configuration, a back-end
pool, session affinity, and protocol information.

Another service that we discussed in relation to high availability for VMs was Azure
Traffic Manager. Let's try to understand more about this service in the next section.

Application Gateway
(AdatumAppGateway)

User

36 | Azure solution availability, scalability, and monitoring

Azure Traffic Manager

After gaining a good understanding of both Azure load balancers and application
gateways, it's time to get into the details of Traffic Manager. Azure load balancers
and application gateways are much‑needed resources for high availability within
a datacenter or region; however, to achieve high availability across regions and
datacenters, there is a need for another resource, and Traffic Manager helps us in
this regard.

Traffic Manager helps us to create highly available solutions that span multiple
geographies, regions, and datacenters. Traffic Manager is not similar to load balancers.
It uses the Domain Name Service (DNS) to redirect requests to an appropriate endpoint
determined by the health and configuration of the endpoint. Traffic Manager is not a
proxy or a gateway, and it does not see the traffic passing between the client and the
service. It simply redirects requests based on the most appropriate endpoints.

Azure Traffic Manager helps to control the traffic that is distributed across application
endpoints. An endpoint can be termed as any internet‑facing service hosted inside or
outside of Azure.

Endpoints are internet‑facing, reachable public URLs. Applications are provisioned
within multiple geographies and Azure regions. Applications deployed to each region
have a unique endpoint referred to by DNS CNAME. These endpoints are mapped to the
Traffic Manager endpoint. When a Traffic Manager instance is provisioned, it gets an
endpoint by default with a .trafficmanager.net URL extension.

When a request arrives at the Traffic Manager URL, it finds the most appropriate
endpoint in its list and redirects the request to it. In short, Azure Traffic Manager acts
as a global DNS to identify the region that will serve the request.

However, how does Traffic Manager know which endpoints to use and redirect client
requests to? There are two aspects that Traffic Manager considers to determine the
most appropriate endpoint and region.

Firstly, Traffic Manager actively monitors the health of all endpoints. It can monitor the
health of VMs, cloud services, and app services. If it determines that the health of an
application deployed to a region is not suitable for redirecting traffic, it redirects the
requests to a healthy endpoint.

Azure high availability | 37

Secondly, Traffic Manager can be configured with routing information. There are six
traffic routing methods available in Traffic Manager, which are as follows:

• Priority: This should be used when all traffic should go to a default endpoint, and
backups are available in case the primary endpoints are unavailable.

• Weighted: This should be used to distribute traffic across endpoints evenly, or
according to defined weights.

• Performance: This should be used for endpoints in different regions, and users
should be redirected to the closest endpoint based on their location. This has a
direct impact on network latency.

• Geographic: This should be used to redirect users to an endpoint (Azure, external,
or nested) based on the nearest geographical location. This can help in adhering
to compliance related to data protection, localization, and region-based traffic
collection.

• Subnet: This is a new routing method and it helps in providing clients with
different endpoints based on their IP addresses. In this method, a range of IP
addresses are assigned to each endpoint. These IP address ranges are mapped
to the client IP address to determine an appropriate returning endpoint. Using
this routing method, it is possible to provide different content to different people
based on their originating IP address.

• Multivalue: This is also a new method added in Azure. In this method, multiple
endpoints are returned to the client and any of them can be used. This ensures
that if one endpoint is unhealthy, then other endpoints can be used instead. This
helps in increasing the overall availability of the solution.

It should be noted that after Traffic Manager determines a valid healthy endpoint,
clients connect directly to the application. Let's now move on to understand Azure's
capabilities in routing user requests globally.

In the next section, we will be discussing another service, called Azure Front Door.
This service is like Azure Application Gateway; however, there is a small difference that
makes this service distinct. Let's go ahead and learn more about Azure Front Door.

38 | Azure solution availability, scalability, and monitoring

Azure Front Door

Azure Front Door is the latest offering in Azure that helps route requests to services
at a global level instead of a local region or datacenter level, as in the case of Azure
Application Gateway and load balancers. Azure Front Door is like Application Gateway,
with the difference being in the scope. It is a layer 7 load balancer that helps in routing
requests to the nearest best‑performing service endpoint deployed in multiple regions.
It provides features such as TLS termination, session affinity, URL-based routing,
and multiple site hosting, along with a web application firewall. It is similar to Traffic
Manager in that it is, by default, resilient to entire region failures and it provides
routing capabilities. It also conducts endpoint health probes periodically to ensure that
requests are routed to healthy endpoints only.

It provides four different routing methods:

• Latency: Requests will route to endpoints that will have the least latency end to
end.

• Priority: Requests will route to a primary endpoint and to a secondary endpoint in
the case of the failure of the primary.

• Weighted: Requests will route based on weights assigned to the endpoints.

• Session Affinity: Requests in a session will end up with the same endpoint to make
use of session data from prior requests. The original request can end up with any
available endpoint.

Deployments looking for resilience at the global level should include Azure Front Door
in their architecture, alongside application gateways and load balancers. In the next
section, you will see some of the architectural considerations that you should account
for while designing highly available solutions.

Architectural considerations for high availability
Azure provides high availability through various means and at various levels. High
availability can be at the datacenter level, the region level, or even across Azure. In this
section, we will go through some of the architectures for high availability.

Architectural considerations for high availability | 39

High availability within Azure regions

The architecture shown in Figure 2.6 shows a high‑availability deployment within a
single Azure region. High availability is designed at the individual resource level. In
this architecture, there are multiple VMs at each tier connected through either an
application gateway or a load balancer, and they are each part of an availability set. Each
tier is associated with an availability set. These VMs are placed on separate fault and
update domains. While the web servers are connected to application gateways, the rest
of the tiers, such as the application and database tiers, have internal load balancers:

Figure 2.6: Designing high availability within a region

40 | Azure solution availability, scalability, and monitoring

Now that you know how to design highly available solutions in the same region, let's
discuss how an architecture that is similar, but spread across Azure regions, can be
designed.

High availability across Azure regions

This architecture shows similar deployments in two different Azure regions. As shown
in Figure 2.7, both regions have the same resources deployed. High availability is
designed at the individual resource level within these regions. There are multiple VMs
at each tier, connected through load balancers, and they are part of an availability set.
These VMs are placed on separate fault and update domains. While the web servers
are connected to external load balancers, the rest of the tiers, such as the application
and database tiers, have internal load balancers. It should be noted that application
load balancers can be used for web servers and the application tier (instead of Azure
load balancers) if there is a need for advanced services, such as session affinity, SSL
termination, advanced security using a web application firewall (WAF), and path‑
based routing. The databases in both regions are connected to each other using virtual
network peering and gateways. This is helpful in configuring log shipping, SQL Server
Always On, and other data synchronization techniques.

The endpoints of the load balancers from both regions are used to configure Traffic
Manager endpoints, and traffic is routed based on the priority load-balancing method.
Traffic Manager helps in routing all requests to the East US region and, after failover, to
West Europe in the case of the non-availability of the first region:

Architectural considerations for high availability | 41

Figure 2.7: Designing high availability across Azure regions

In the next section, we will be exploring scalability, which is another advantage of
the cloud.

42 | Azure solution availability, scalability, and monitoring

Scalability
Running applications and systems that are available to users for consumption is
important for architects of any business‑critical application. However, there is another
equally important application feature that is one of the top priorities for architects, and
this is the scalability of the application.

Imagine a situation in which an application is deployed and obtains great performance
and availability with a few users, but both availability and performance decrease as the
number of users begin to increase. There are times when an application performs well
under a normal load, but suffers a drop in performance with an increase in the number
of users. This can happen if there is a sudden increase in the number of users and the
environment is not built for such a large number of users.

To accommodate such spikes in the number of users, you might provision the hardware
and bandwidth for handling spikes. The challenge with this is that the additional
capacity is not used for the majority of the year, and so does not provide any return on
investment. It is provisioned for use only during the holiday season or sales. I hope that
by now you are becoming familiar with the problems that architects are trying to solve.
All these problems are related to capacity sizing and the scalability of an application.
The focus of this chapter is to understand scalability as an architectural concern and to
check out the services that are provided by Azure for implementing scalability.

Capacity planning and sizing are a couple of the top priorities for architects and
their applications and services. Architects must find a balance between buying and
provisioning too many resources and buying and provisioning too few resources. Having
too few resources can lead to you not being able to serve all users, resulting in them
turning to a competitor. On the other hand, having too many resources can hurt your
budget and return on investment because most of the resources will remain unused
most of the time. Moreover, the problem is amplified by the varying level of demand at
different times. It is almost impossible to predict the number of users of an application
over a day, let alone a year. However, it is possible to find an approximate number using
past information and continuous monitoring.

Scalability refers to the ability to handle a growing number of users and provide them
with the same level of performance as when there are fewer users utilizing resources
for application deployment, processes, and technology. Scalability might mean serving
more requests without a decrease in performance, or it might mean handling larger and
more time‑consuming work without any loss of performance in both cases.

Scalability | 43

Capacity planning and sizing exercises should be undertaken by architects at the
very beginning of a project and during the planning phase to provide scalability to
applications.

Some applications have stable demand patterns, while it is difficult to predict others.
Scalability requirements are known for stable‑demand applications, while discerning
them can be a more involved process for variable‑demand applications. Autoscaling, a
concept that we will review in the next section, should be used for applications whose
demands cannot be predicted.

People often tend to confuse scalability with performance. In the next section, you will
see a quick comparison of these two terms.

Scalability versus performance

It is quite easy to get confused between scalability and performance when it comes to
architectural concerns, because scalability is all about ensuring that irrespective of the
number of users consuming the application, all users receive the same predetermined
level of performance.

Performance relates to ensuring that an application caters to predefined response
times and throughput. Scalability refers to having provisions for more resources when
needed in order to accommodate more users without sacrificing performance.

It is better to understand this using an analogy: the speed of a train directly relates to
the performance of a railway network. However, getting more trains to run in parallel at
the same or at higher speeds represents the scalability of the railway network.

Now that you know what the difference between scalability and performance is, let's
discuss how Azure provides scalability.

44 | Azure solution availability, scalability, and monitoring

Azure scalability

In this section, we will look at the features and capabilities provided by Azure to make
applications highly available. Before we get into the architecture and configuration
details, it is important to understand Azure's high‑availability concepts, in other words,
scaling.

Scaling refers to either increasing or decreasing the amount of resources that are
used to serve requests from users. Scaling can be automatic or manual. Manual scaling
requires an administrator to manually initiate the scaling process, while automatic
scaling refers to an automatic increase or decrease in resources based on the events
available from the environment and ecosystem, such as memory and CPU availability.
Resources can be scaled up or down, or out and in, which will be explained later in this
section.

In addition to rolling updates, the fundamental constructs provided by Azure to achieve
high availability are as follows:

• Scaling up and down

• Scaling out and in

• Autoscaling

Scaling up

Scaling a VM or service up entails the addition of further resources to existing servers,
such as CPU, memory, and disks. It aims to increase the capacity of existing physical
hardware and resources.

Scaling down

Scaling a VM or service down entails the removal of existing resources from existing
servers, such as CPU, memory, and disks. It aims to decrease the capacity of existing
physical and virtual hardware and resources.

Scalability | 45

Scaling out

Scaling out entails adding further hardware, such as additional servers and capacity.
This typically involves adding new servers, assigning them IP addresses, deploying
applications on them, and making them part of the existing load balancers such that
traffic can be routed to them. Scaling out can be automatic or manual as well. However,
for better results, automation should be used:

Figure 2.8: Scaling out

Scaling in

Scaling in refers to the process of removing the existing hardware in terms of existing
servers and capacity. This typically involves removing existing servers, deallocating
their IP addresses, and removing them from the existing load balancer configuration
such that traffic cannot be routed to them. Like scaling out, scaling in can be automatic
or manual.

Autoscaling

Autoscaling refers to the process of either scaling up/down or scaling out/in
dynamically based on application demand, and this happens using automation.
Autoscaling is useful because it ensures that a deployment always consists of an ideal
number of server instances. Autoscaling helps in building applications that are fault
tolerant. It not only supports scalability, but also makes applications highly available.
Finally, it provides the best cost management. Autoscaling makes it possible to have
the optimal configuration for server instances based on demand. It helps in not over-
provisioning servers, only for them to end up being underutilized, and removes servers
that are no longer required after scaling out.

So far, we've discussed scalability in Azure. Azure offers scalability options for most of
its services. Let's explore scalability for PaaS in Azure in the next section.

46 | Azure solution availability, scalability, and monitoring

PaaS scalability

Azure provides App Service for hosting managed applications. App Service is a PaaS
offering from Azure. It provides services for the web and mobile platforms. Behind the
web and mobile platforms is a managed infrastructure that is managed by Azure on
behalf of its users. Users do not see or manage any infrastructure; however, they have
the ability to extend the platform and deploy their applications on top of it. In doing
so, architects and developers can concentrate on their business problems instead
of worrying about the base platform and infrastructure provisioning, configuration,
and troubleshooting. Developers have the flexibility to choose any language, OS, and
framework to develop their applications. App Service provides multiple plans and, based
on the plans chosen, various degrees of scalability are available. App Service provides
the following five plans:

• Free: This uses shared infrastructure. It means that multiple applications will
be deployed on the same infrastructure from the same or multiple tenants. It
provides 1 GB of storage free of charge. However, there is no scaling facility in this
plan.

• Shared: This also uses shared infrastructure and provides 1 GB of storage free
of charge. Additionally, custom domains are also provided as an extra feature.
However, there is no scaling facility in this plan.

• Basic: This has three different stock keeping units (SKUs): B1, B2, and B3. They
each have increasing units of resources available to them in terms of CPU and
memory. In short, they provide improved configuration of the VMs backing these
services. Additionally, they provide storage, custom domains, and SSL support.
The basic plan provides basic features for manual scaling. There is no autoscaling
available in this plan. A maximum of three instances can be used to scale out an
application.

• Standard: This also has three different SKUs: S1, S2, and S3. They each have
increasing units of resources available to them in terms of CPU and memory. In
short, they provide improved configuration of the VMs backing these services.
Additionally, they provide storage, custom domains, and SSL support that is
similar to that of the basic plan. This plan also provides a Traffic Manager instance,
staging slots, and one daily backup as an additional feature on top of the basic
plan. The standard plan provides features for automatic scaling. A maximum of 10
instances can be used to scale out the application.

Scalability | 47

• Premium: This also has three different SKUs: P1, P2, and P3. They each have
increasing units of resources available to them in terms of CPU and memory. In
short, they provide improved configuration of the VMs backing these services.
Additionally, they provide storage, custom domains, and SSL support that is similar
to the basic plan. This plan also provides a Traffic Manager instance, staging
slots, and 50 daily backups as an additional feature on top of the basic plan. The
standard plan provides features for autoscaling. A maximum of 20 instances can be
used to scale out the application.

We have explored the scalability tiers available for PaaS services. Now, let's see how
scaling can be done in the case of an App Service plan.

PaaS – scaling up and down

Scaling up and down services that are hosted by App Service is quite simple. The Azure
app services Scale Up menu opens a new pane with all plans and their SKUs listed.
Choosing a plan and SKU will scale a service up or down, as shown in Figure 2.9:

Figure 2.9: Different plans with their SKUs

48 | Azure solution availability, scalability, and monitoring

PaaS – scaling out and in

Scaling out and in services hosted in App Service is also quite simple. The Azure
app services Scale Out menu item opens a new pane with scaling configuration options.

By default, autoscaling is disabled for both premium and standard plans. It can be
enabled using the Scale Out menu item and by clicking on the Enable autoscale button,
as shown in Figure 2.10:

Figure 2.10: Enabling the autoscale option

Manual scaling does not require configuration, but autoscaling helps in configuring with
the aid of the following properties:

• Mode of scaling: This is based on a performance metric such as CPU or memory
usage, or users can simply specify a number of instances for scaling.

• When to scale: Multiple rules can be added that determine when to scale out
and in. Each rule can determine criteria such as CPU or memory consumption,
whether to increase or decrease the number of instances, and how many instances
to increase or decrease to at a time. At least one rule for scaling out and one rule
for scaling in should be configured. Threshold definitions help in defining the
upper and lower limits that should trigger the autoscale—by either increasing or
decreasing the number of instances.

• How to scale: This specifies how many instances to create or remove in each
scale‑out or scale‑in operation:

Scalability | 49

Figure 2.11: Setting the instance limits

This is quite a good feature to enable in any deployment. However, you should enable
both scaling out and scaling in together to ensure that your environment is back to
normal capacity after scaling out.

Since we have covered the scalability in PaaS, let's move on and discuss scalability in
IaaS next.

IaaS scalability

There are users who will want to have complete control over their base infrastructure,
platform, and application. They will prefer to consume IaaS solutions rather than PaaS
solutions. When such customers create VMs, they are also responsible for capacity
sizing and scaling. There is no out-of-the-box configuration for manually scaling or
autoscaling VMs. These customers will have to write their own automation scripts,
triggers, and rules to achieve autoscaling. With VMs comes the responsibility of
maintaining them. The patching, updating, and upgrading of VMs is the responsibility
of owners. Architects should think about both planned and unplanned maintenance.
How these VMs should be patched, the order, grouping, and other factors must be
considered to ensure that neither the scalability nor the availability of an application is
compromised. To help alleviate such problems, Azure provides VM scale sets (VMSS) as
a solution, which we will discuss next.

50 | Azure solution availability, scalability, and monitoring

VM scale sets
VMSSes are Azure compute resources that you can use to deploy and manage a set
of identical VMs. With all VMs configured in the same way, scale sets are designed
to support true autoscaling, and no pre‑provisioning of VMs is required. It helps in
provisioning multiple identical VMs that are connected to each other through a virtual
network and subnet.

A VMSS consists of multiple VMs, but they are managed at the VMSS level. All VMs are
part of this unit and any changes made are applied to the unit, which, in turn, applies it
to those VMs that are using a predetermined algorithm:

Figure 2.12: A VM scale set

This enables these VMs to be load balanced using an Azure load balancer or an
application gateway. The VMs could be either Windows or Linux VMs. They can run
automated scripts using a PowerShell extension and they can be managed centrally
using a state configuration. They can be monitored as a unit, or individually using Log
Analytics.

VMSSes can be provisioned from the Azure portal, the Azure CLI, Azure Resource
Manager templates, REST APIs, and PowerShell cmdlets. It is possible to invoke REST
APIs and the Azure CLI from any platform, environment, or OS, and in any language.

Many of Azure's services already use VMSSes as their underlying architecture. Among
them are Azure Batch, Azure Service Fabric, and Azure Container Service. Azure
Container Service, in turn, provisions Kubernetes and DC/OS on these VMSSes.

VM scale sets | 51

VMSS architecture

VMSSes allow the creation of up to 1,000 VMs in a scale set when using a platform
image, and 100 VMs if using a custom image. If the number of VMs is less than 100 in a
scale set, they are placed in a single availability set; however, if the number is greater
than 100, multiple availability sets are created (known as placement groups), and
VMs are distributed among these availability sets. We know from Chapter 1, Getting
started with Azure, that VMs in an availability set are placed on separate fault and
update domains. Availability sets related to VMSSes have five fault and update domains
by default. VMSSes provide a model that holds metadata information for the entire set.
Changing this model and applying changes impacts all VM instances. This information
includes the maximum and minimum number of VM instances, the OS SKU and version,
the current number of VMs, fault and update domains, and more. This is demonstrated
in Figure 2.13:

Figure 2.13: VMs in an availability set

VMSS scaling

Scaling refers to increasing or decreasing compute and storage resources. A VMSS is
a feature-rich resource that makes scaling easy and efficient. It provides autoscaling,
which helps in scaling up or down based on external events and data such as CPU and
memory usage. Some of the VMSS scaling features are given here.

Horizontal versus vertical scaling

Scaling can be horizontal or vertical, or both. Horizontal scaling is another name for
scaling out and in, while vertical scaling refers to scaling up and down.

52 | Azure solution availability, scalability, and monitoring

Capacity

VMSSes have a capacity property that determines the number of VMs in a scale set. A
VMSS can be deployed with zero as a value for this property. It will not create a single
VM; however, if you provision a VMSS by providing a number for the capacity property,
that number of VMs are created.

Autoscaling

The autoscaling of VMs in a VMSS refers to the addition or removal of VM instances
based on the configured environment in order to meet the performance and scalability
demands of an application. Generally, in the absence of a VMSS, this is achieved using
automation scripts and runbooks.

VMSSes help in this automation process with the support of configuration. Instead of
writing scripts, a VMSS can be configured for autoscaling up and down.

Autoscaling uses multiple integrated components to achieve its end goal. Autoscaling
entails continuously monitoring VMs and collecting telemetry data about them.
This data is stored, combined, and then evaluated against a set of rules to determine
whether autoscaling should be triggered. The trigger could be to scale out or scale in. It
could also be to scale up or down.

The autoscaling mechanism uses diagnostic logs for collecting telemetry data from
VMs. These logs are stored in storage accounts as diagnostic metrics. The autoscaling
mechanism also uses the Application Insights monitoring service, which reads these
metrics, combines them, and stores them in a storage account.

Background autoscaling jobs run continually to read Application Insights' storage data,
evaluate it based on all the rules configured for autoscaling, and, if any of the rules or
combination of rules are met, run the process of autoscaling. The rules can take into
consideration the metrics from guest VMs and the host server.

The rules defined using the property descriptions are available at https://docs.
microsoft.com/azure/virtual‑machine‑scale‑sets/virtual‑machine‑scale‑sets‑
autoscale‑overview.

https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-autoscale-overview
https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-autoscale-overview
https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-autoscale-overview

VM scale sets | 53

The VMSS autoscale architecture is shown in Figure 2.14:

Figure 2.14: VMSS autoscale architecture

Autoscaling can be configured for scenarios that are more complex than general
metrics available from environments. For example, scaling could be based on any of the
following:

• A specific day

• A recurring schedule such as weekends

• Weekdays versus weekends

• Holidays and one‑off events

• Multiple resource metrics

54 | Azure solution availability, scalability, and monitoring

These can be configured using the schedule property of Application Insights resources,
which help in registering rules.

Architects should ensure that at least two actions—scale out and scale in—are
configured together. Scaling a configuration in or out will not help in achieving the
scaling benefits provided by VMSSes.

To summarize, we have covered the scalability options in Azure and the detailed
scaling features in the case of IaaS and PaaS to meet your business requirements. If
you recall the shared responsibility model, you'll remember that platform upgrades and
maintenance should be done by the cloud provider. In this case, Microsoft takes care of
upgrades and maintenance related to the platform. Let's see how this is achieved in the
next section.

Upgrades and maintenance
After a VMSS and applications are deployed, they need to be actively maintained.
Planned maintenance should be conducted periodically to ensure that both the
environment and application are up to date with the latest features, from a security and
resilience point of view.

Upgrades can be associated with applications, the guest VM instance, or the image
itself. Upgrades can be quite complex because they should happen without affecting the
availability, scalability, and performance of environments and applications. To ensure
that updates can take place one instance at a time using rolling upgrade methods, it is
important that a VMSS supports and provides capabilities for these advanced scenarios.

There is a utility provided by the Azure team to manage updates for VMSSes. It's a
Python‑based utility that can be downloaded from https://github.com/gbowerman/
vmssdashboard. It makes REST API calls to Azure to manage scale sets. This utility can
be used to start, stop, upgrade, and reimage VMs on in an FD or group of VMs, as shown
in Figure 2.15:

https://github.com/gbowerman/vmssdashboard
https://github.com/gbowerman/vmssdashboard

Upgrades and maintenance | 55

Figure 2.15: Utility for managing VMSS updates

Since you have a basic understanding of upgrade and maintenance, let's see how
application updates are done in VMSSes.

56 | Azure solution availability, scalability, and monitoring

Application updates

Application updates in VMSSes should not be executed manually. They must be run as
part of the release management and pipelines that use automation. Moreover, an update
should happen one application instance at a time and not affect the overall availability
and scalability of an application. Configuration management tools, such as Desired
State Configuration (DSC), should be deployed to manage application updates. The DSC
pull server can be configured with the latest version of the application configuration
and it should be applied on a rolling basis to each instance.

In the next section, we will focus on how the updates are done on the guest OS.

Guest updates

Updates to VMs are the responsibility of the administrator. Azure is not responsible
for patching guest VMs. Guest updates are in preview mode and users should control
patching manually or use custom automation methods, such as runbooks and scripts.
However, rolling patch upgrades are in preview mode and can be configured in the
Azure Resource Manager template using an upgrade policy, as follows:

"upgradePolicy": {
"mode": "Rolling",
"automaticOSUpgrade": "true" or "false",
 "rollingUpgradePolicy": {
 "batchInstancePercent": 20,
 "maxUnhealthyUpgradedInstanceCount": 0,
 "pauseTimeBetweenBatches": "PT0S"
 }
}

Now that we know how guest updates are managed in Azure, let's see how image
updates are accomplished.

Image updates

A VMSS can update the OS version without any downtime. OS updates involve changing
the version or SKU of the OS or changing the URI of a custom image. Updating without
downtime means updating VMs one at a time or in groups (such as one FD at a time)
rather than all at once. By doing so, any VMs that are not being upgraded can keep
running.

So far, we have discussed updates and maintenance. Let's now examine what the best
practices of scaling for VMSSes are.

Upgrades and maintenance | 57

Best practices of scaling for VMSSes

In this section, we will go through some of the best practices that applications should
implement to take advantage of the scaling capability provided by VMSSes.

The preference for scaling out

Scaling out is a better scaling solution than scaling up. Scaling up or down means
resizing VM instances. When a VM is resized, it generally needs to be restarted, which
has its own disadvantages. First, there is downtime for the machine. Second, if there
are active users connected to the application on that instance, they might face a lack of
availability of the application, or they might even lose transactions. Scaling out does not
impact existing VMs; rather, it provisions newer machines and adds them to the group.

New instances versus dormant instances

Scaling new instances can take two broad approaches: creating the new instance
from scratch, which requires installing applications, configuring, and testing them;
or starting the dormant, sleeping instances when they are needed due to scalability
pressure on other servers.

Configuring the maximum and minimum number of instances appropriately

Setting a value of two for both the minimum and maximum instance counts, with the
current instance count being two, means no scaling action can occur. There should be
an adequate difference between the maximum and minimum instance counts, which
are inclusive. Autoscaling always scales between these limits.

Concurrency

Applications are designed for scalability to focus on concurrency. Applications should
use asynchronous patterns to ensure that client requests do not wait indefinitely
to acquire resources if resources are busy serving other requests. Implementing
asynchronous patterns in code ensures that threads do not wait for resources and
that systems are exhausted of all available threads. Applications should implement the
concept of timeouts if intermittent failures are expected.

Designing stateless applications

Applications and services should be designed to be stateless. Scalability can
become a challenge to achieve with stateful services, and it is quite easy to scale
stateless services. With states comes the requirement for additional components
and implementations, such as replication, centralized or decentralized repository,
maintenance, and sticky sessions. All these are impediments on the path to scalability.
Imagine a service maintaining an active state on a local server. Irrespective of the
number of requests on the overall application or the individual server, the subsequent
requests must be served by the same server. Subsequent requests cannot be processed
by other servers. This makes scalability implementation a challenge.

58 | Azure solution availability, scalability, and monitoring

Caching and the Content Distribution Network (CDN)

Applications and services should take advantage of caching. Caching helps
eliminate multiple subsequent calls to either databases or filesystems. This helps in
making resources available and free for more requests. The CDN is another mechanism
that is used to cache static files, such as images and JavaScript libraries. They are
available on servers across the globe. They also make resources available and free for
additional client requests—this makes applications highly scalable.

N+1 design

N+1 design refers to building redundancy within the overall deployment for each
component. It means to plan for some redundancy even when it is not required. This
could mean additional VMs, storage, and network interfaces.

Considering the preceding best practices while designing workloads using VMSSes
will improve the scalability of your applications. In the next section, we will explore
monitoring.

Monitoring
Monitoring is an important architectural concern that should be part of any solution,
big or small, mission‑critical or not, cloud‑based or not—it should not be neglected.

Monitoring refers to the act of keeping track of solutions and capturing various
telemetry information, processing it, identifying the information that qualifies for
alerts based on rules, and raising them. Generally, an agent is deployed within the
environment and monitors it, sending telemetry information to a centralized server,
where the rest of the processing of generating alerts and notifying stakeholders takes
place.

Monitoring takes both proactive and reactive actions and measures against a solution.
It is also the first step toward auditing a solution. Without the ability to monitor log
records, it is difficult to audit a system from various perspectives, such as security,
performance, and availability.

Monitoring helps us identify availability, performance, and scalability issues before
they arise. Hardware failure, software misconfiguration, and patch update challenges
can be discovered well before they impact users through monitoring, and performance
degradation can be fixed before it happens.

Monitoring reactively logs pinpoint areas and locations that are causing issues,
identifies the issues, and enables faster and better repairs.

Monitoring | 59

Teams can identify patterns of issues using monitoring telemetry information and
eliminate them by innovating new solutions and features.

Azure is a rich cloud environment that provides multiple rich monitoring features
and resources to monitor not only cloud‑based deployment but also on‑premises
deployment.

Azure monitoring

The first question that should be answered is, "What must we monitor?" This question
becomes more important for solutions that are deployed on the cloud because of the
constrained control over them.

There are some important components that should be monitored. They include the
following:

• Custom applications

• Azure resources

• Guest OSes (VMs)

• Host OSes (Azure physical servers)

• Azure infrastructure

There are different Azure logging and monitoring services for these components, and
they are discussed in the following sections.

Azure activity logs

Previously known as audit logs and operational logs, activity logs are control‑plane
events on the Azure platform. They provide information and telemetry information at
the subscription level, instead of the individual resource level. They track information
about all changes that happen at the subscription level, such as creating, deleting,
and updating resources using Azure Resource Manager (ARM). Activity logs help
us discover the identity of (such as service principal, users, or groups), and perform
actions on (such as write or update), resources (for example, storage, virtual machines,
or SQL databases) at any given point in time. They provide information about resources
that are modified in their configuration, but not their inner workings and execution. For
example, you can get the logs for starting a VM, resizing a VM, or stopping a VM.

The next topic that we are going to discuss is diagnostic logs.

60 | Azure solution availability, scalability, and monitoring

Azure diagnostic logs

The information originating within the inner workings of Azure resources is captured
in what are known as diagnostic logs. They provide telemetry information about the
operations of resources that are inherent to the resources. Not every resource provides
diagnostic logs, and resources that provide logs on their own content are completely
different from other resources. Diagnostic logs are configured individually for each
resource. Examples of diagnostic logs include storing a file in a container in a blob in a
storage account.

The next type of log that we are going to discuss is application logs.

Azure application logs

Application logs can be captured by Application Insights resources and can be managed
centrally. They get information about the inner workings of custom applications, such
as their performance metrics and availability, and users can get insights from them in
order to manage them better.

Lastly, we have guest and host OS logs. Let's understand what these are.

Guest and host OS logs

Both guest and host OS logs are offered to users using Azure Monitor. They provide
information about the statuses of host and guest OSes:

Figure 2.16: Logging in Azure

Monitoring | 61

The important Azure resources related to monitoring are Azure Monitor, Azure
Application Insights, and Log Analytics, previously known as Operational Insights.

There are other tools, such as System Center Operations Manager (SCOM), that are
not part of the cloud feature but can be deployed on IaaS‑based VMs to monitor any
workload on Azure or an on‑premises datacenter. Let's discuss the three monitoring
resources in the following section.

Azure Monitor

Azure Monitor is a central tool and resource that provides complete management
features that allow you to monitor an Azure subscription. It provides management
features for activity logs, diagnostic logs, metrics, Application Insights, and Log
Analytics. It should be treated as a dashboard and management resource for all other
monitoring capabilities.

Our next topic is Azure Application Insights.

Azure Application Insights

Azure Application Insights provides centralized, Azure‑scale monitoring, logs, and
metrics capabilities to custom applications. Custom applications can send metrics, logs,
and other telemetry information to Azure Application Insights. It also provides rich
reporting, dashboarding, and analytics capabilities to get insights from incoming data
and act on them.

Now that we have covered Application Insights, let's look at another similar service
called Azure Log Analytics.

Azure Log Analytics

Azure Log Analytics enables the centralized processing of logs and generates insights
and alerts from them. Activity logs, diagnostic logs, application logs, event logs, and
even custom logs can send information to Log Analytics, which can further provide rich
reporting, dashboarding, and analytics capabilities to get insights from incoming data
and act on them.

Now that we know the purpose of Log Analytics, let's discuss how logs are stored in a
Log Analytics workspace and how they can be queried.

Logs

A Log Analytics workspace provides search capabilities to search for specific log entries,
export all telemetry data to Excel and/or Power BI, and search a query language called
Kusto Query Language (KQL), which is similar to SQL.

62 | Azure solution availability, scalability, and monitoring

The Log Search screen is shown here:

Figure 2.17: Log search in a Log Analytics workspace

In the next section, we will be covering Log Analytics solutions, which are like additional
capabilities in a Log Analytics workspace.

Solutions

Solutions in Log Analytics are further capabilities that can be added to a workspace,
capturing additional telemetry data that is not captured by default. When these
solutions are added to a workspace, appropriate management packs are sent to all the
agents connected to the workspace so that they can configure themselves to capture
solution-specific data from VMs and containers and then send it to the Log Analytics
workspace. Monitoring solutions from Microsoft and partners are available from Azure
Marketplace.

Monitoring | 63

Azure provides lots of Log Analytics solutions for tracking and monitoring different
aspects of environments and applications. At a minimum, a set of solutions that are
generic and applicable to almost any environment should be added to the workspace:

• Capacity and performance

• Agent health

• Change tracking

• Containers

• Security and audit

• Update management

• Network performance monitoring

Another key aspect of monitoring is alerts. Alerts help to notify the right people during
any monitored event. In the next section, we will cover alerts.

Alerts

Log Analytics allows us to generate alerts in relation to ingested data. It does so by
running a pre-defined query composed of conditions for incoming data. If it finds
any records that fall within the ambit of the query results, it generates an alert. Log
Analytics provides a highly configurable environment for determining the conditions
for generating alerts, time windows in which the query should return the records, time
windows in which the query should be executed, and actions to be taken when the
query returns an alert:

Figure 2.18: Configuring alerts through Log Analytics

64 | Azure solution availability, scalability, and monitoring

Let's go through the steps for configuring alerts through Log Analytics:

1. The first step in configuring an alert is to add a new alert rule from the Azure
portal or automation from the alert menu of the Log Analytics resource.

2. From the resultant panel, select a scope for the alert rule. The scope determines
which resource should be monitored for alerts—it could be a resource instance,
such as an Azure storage account, a resource type, such as an Azure VM, a
resource group, or a subscription:

Figure 2.19: Selecting a resource for the alert

Monitoring | 65

3. Following resource selection, conditions must be set for the alert. The condition
determines the rule that is evaluated against the logs and metrics on the selected
resource, and only after the condition turns true is an alert generated. There
are a ton of metrics and logs available for generating conditions. In the following
example, an alert is created with a static threshold value of 80% for Percentage
CPU (Avg) and the data is to be collected every five minutes and evaluated every
minute:

Figure 2.20: Creating an alert for Percentage CPU (Avg)

Alerts also support dynamic thresholds, which use machine learning to learn the
historical behavior of metrics and detect irregularities that could indicate service
issues.

66 | Azure solution availability, scalability, and monitoring

4. Finally, create an action group or reuse an existing group that determines
notifications regarding alerts to stakeholders. The Action Groups section allows
you to configure things that should follow an alert. Generally, there should be a
remedial and/or notification action. Log Analytics provides eight different ways
to create a new action. They can be combined in any way you like. An alert will
execute any or all of the following configured actions:

• Email/SMS/push/voice notification: This sends an email/SMS/push/voice
notification to the configured recipients.

• Webhooks: A webhook runs an arbitrary external process using an HTTP POST
mechanism. For example, a REST API can be executed, or the Service Manager/
ServiceNow APIs can be invoked to create a ticket.

• Azure Functions: This runs an Azure function, passing the necessary payload
and running the logic that the payload contains.

• Logic Apps: This executes a custom Logic Apps workflow.

• Email Azure Resource Manager Role: This emails a holder of an Azure Resource
Manager role, such as an owner, contributor, or reader.

• Secure webhook: A webhook runs an arbitrary external process using an HTTP
POST mechanism. Webhooks are protected using an identity provider, such as
Azure Active Directory.

• Automation runbooks: This action executes Azure Automation runbooks.

• ITSM: ITSM solutions should be provisioned before using this option. It helps
with connecting and sending information to ITSM systems.

5. After all of this configuration, you need to provide the Name, Description,
and Severity values for the alert rule to generate it.

As mentioned at the beginning of this section, alerts play a vital role in monitoring that
helps authorized personnel to take necessary actions based on the alert that's triggered.

Summary | 67

Summary
High availability and scalability are crucially important architectural concerns.
Almost every application and every architect try to implement high availability. Azure
is a mature platform that understands the need for these architectural concerns
in applications and provides resources to implement them at multiple levels.
These architectural concerns are not an afterthought, and they should be part of
the application development life cycle, starting from the planning phase itself.

Monitoring is an important architectural aspect of any solution. It is also the first step
toward being able to audit an application properly. It enables operations to manage
a solution, both reactively and proactively. It provides the necessary records for
troubleshooting and fixing the issues that might arise from platforms and applications.
There are many resources in Azure that are specific to implementing monitoring
for Azure, other clouds, and on‑premises datacenters. Application Insights and Log
Analytics are two of the most important resources in this regard. Needless to say,
monitoring is a must for making your solutions and products better by innovating based
on insights derived from monitoring data.

This chapter was purely about the availability, scalability, and monitoring of solutions;
the next chapter is about design patterns related to virtual networks, storage accounts,
regions, availability zones, and availability sets. While designing solutions in the cloud,
these principles are very important in building cost‑effective solutions with increased
productivity and availability.

In the previous chapter, you got an overview of the Azure cloud and learned about some
of the important concepts related to it. This chapter is about Azure cloud patterns
that are related to virtual networks, storage accounts, regions, Availability Zones, and
Availability Sets. These are important constructs that affect the final architecture
delivered to customers in terms of cost, efficiencies, and overall productivity. The
chapter also briefly discusses the cloud patterns that help us to implement scalability
and performance for an architecture.

In this chapter, we'll cover the following topics:

• Azure Virtual Network design

• Azure Storage design

• Azure Availability Zones, regions, and Availability Sets

• Azure design patterns related to messaging, performance, and scalability

Design pattern –
Networks, storage,

messaging, and events

3

70 | Design pattern – Networks, storage, messaging, and events

Azure Availability Zones and Regions
Azure is backed up by large datacenters interconnected into a single large network. The
datacenters are grouped together, based on their physical proximity, into Azure regions.
For example, datacenters in Western Europe are available to Azure users in the West
Europe region. Users cannot choose their preferred datacenter. They can select their
Azure region and Azure will allocate an appropriate datacenter.

Choosing an appropriate region is an important architectural decision as it affects:

• The availability of resources

• Data and privacy compliance

• The performance of the application

• The cost of running applications

Let's discuss each of these points in detail.

Availability of resources

Not all resources are available in every Azure region. If your application architecture
demands a resource that is not available in a region, choosing that region will not help.
Instead, a region should be chosen based on the availability of the resources required
by the application. It might be that the resource is not available while developing
the application architecture, and it could be on Azure's roadmap to make it available
subsequently.

For example, Log Analytics is not available in all regions. If your data sources are in
Region A and the Log Analytics workspace is in Region B, you need to pay for the
bandwidth, which is the data egress charges from Region A to B. Similarly, some
services can work with resources that are located in the same region. For instance, if
you would like to encrypt the disks of your virtual machine that is deployed in Region
A, you need to have Azure Key Vault deployed in Region A to store the encryption
keys. Before deploying any services, you need to check whether your dependency
services are available in that region. A good source to check the availability of Azure
products across regions is this product page: https://azure.microsoft.com/global-
infrastructure/services.

Data and privacy compliance

Each country has its own rules for data and privacy compliance. Some countries are
very specific about storing their citizens' data in their own territories. Hence, such legal
requirements should be taken into consideration for every application's architecture.

https://azure.microsoft.com/global-infrastructure/services
https://azure.microsoft.com/global-infrastructure/services

Virtual networks | 71

Application performance

The performance of an application is dependent on the network route taken by
requests and responses to get to their destinations and back again. The location that
is geographically closer to you may not always be the region with the lowest latency.
We calculate distance in kilometers or miles, but latency is based on the route the
packet takes. For example, an application deployed in Western Europe for Southeast
Asian users will not perform as well as an application deployed to the East Asia region
for users in that region. So, it's very important that you architect your solutions in the
closest region to provide the lowest latency and thus the best performance.

Cost of running applications

The cost of Azure services differs from region to region. A region with an overall lower
cost should be chosen. There is a complete chapter on cost management in this book
(Chapter 6, Cost management for Azure solutions), and it should be referred to for more
details on cost.

So far, we have discussed how to choose the right region to architect our solution. Now
that we have a suitable region in mind for our solution, let's discuss how to design our
virtual networks in Azure.

Virtual networks
Virtual networks should be thought of like a physical office or home LAN network
setup. Conceptually, they are the same, although Azure Virtual Network (VNet) is
implemented as a software-defined network backed up by a giant physical network
infrastructure.

A VNet is required to host a virtual machine. It provides a secure communication
mechanism between Azure resources so that they can connect to each other. The
VNets provide internal IP addresses to the resources, facilitate access and connectivity
to other resources (including virtual machines on the same virtual network), route
requests, and provide connectivity to other networks.

A virtual network is contained within a resource group and is hosted within a region,
for example, West Europe. It cannot span multiple regions but can span all datacenters
within a region, which means we can span virtual networks across multiple Availability
Zones in a region. For connectivity across regions, virtual networks can be connected
using VNet-to-VNet connectivity.

72 | Design pattern – Networks, storage, messaging, and events

Virtual networks also provide connectivity to on-premises datacenters, enabling hybrid
clouds. There are multiple types of VPN technologies that you can use to extend your
on-premises datacenters to the cloud, such as site-to-site VPN and point-to-site VPN.
There is also dedicated connectivity between Azure VNet and on-premises networks
through the use of ExpressRoute.

Virtual networks are free of charge. Every subscription can create up to 50 virtual
networks across all regions. However, this number can be increased by reaching out to
Azure Support. You will not be charged if data does not leave the region of deployment.
At the time of writing, inbound and outbound data transfers within Availability Zones
from the same region don't incur charges; however, billing will commence from
July 1, 2020.

Information about networking limits is available in the Microsoft documentation at
https://docs.microsoft.com/azure/azure-resource-manager/management/azure-
subscription-service-limits.

Architectural considerations for virtual networks

Virtual networks, like any other resource, can be provisioned using ARM templates,
REST APIs, PowerShell, and the CLI. It is quite important to plan the network topology
as early as possible to avoid troubles later in the development life cycle. This is because
once a network is provisioned and resources start using it, it is difficult to change it
without having downtime. For example, moving a virtual machine from one network to
another will require the virtual machine to be shut down.

Let's look at some of the key architectural considerations while designing a
virtual network.

Regions

VNet is an Azure resource and is provisioned within a region, such as West Europe.
Applications spanning multiple regions will need separate virtual networks, one per
region, and they also need to be connected using VNet-to-VNet connectivity. There is a
cost associated with VNet-to-VNet connectivity for both inbound and outbound traffic.
There are no charges for inbound (ingress) data, but there are charges associated with
outbound data.

https://docs.microsoft.com/azure/azure-resource-manager/management/azure-subscription-service-limits
https://docs.microsoft.com/azure/azure-resource-manager/management/azure-subscription-service-limits

Virtual networks | 73

Dedicated DNS

VNet by default uses Azure's DNS to resolve names within a virtual network, and
it also allows name resolution on the internet. If an application wants a dedicated
name resolution service or wants to connect to on-premises datacenters, it should
provision its own DNS server, which should be configured within the virtual network
for successful name resolution. Also, you can host your public domain in Azure and
completely manage the records from the Azure portal, without the need to manage
additional DNS servers.

Number of virtual networks

The number of virtual networks is affected by the number of regions, bandwidth usage
by services, cross-region connectivity, and security. Having fewer but larger VNets
instead of multiple smaller VNets will eliminate the management overhead.

Number of subnets in each virtual network

Subnets provide isolation within a virtual network. They can also provide a security
boundary. Network security groups (NSGs) can be associated with subnets, thereby
restricting or allowing specific access to IP addresses and ports. Application
components with separate security and accessibility requirements should be placed
within separate subnets.

IP ranges for networks and subnets

Each subnet has an IP range. The IP range should not be so large that IPs are
underutilized, but conversely shouldn't be so small that subnets become suffocated
because of a lack of IP addresses. This should be considered after understanding the
future IP address needs of the deployment.

Planning should be done for IP addresses and ranges for Azure networks, subnets,
and on-premises datacenters. There should not be an overlap to ensure seamless
connectivity and accessibility.

74 | Design pattern – Networks, storage, messaging, and events

Monitoring

Monitoring is an important architectural facet and must be included within the overall
deployment. Azure Network Watcher provides logging and diagnostic capabilities with
insights on network performance and health. Some of the capabilities of the Azure
Network Watcher are:

• Diagnosing network traffic filtering problems to or from a virtual machine

• Understanding the next hop of user-defined routes

• Viewing the resources in a virtual network and their relationships

• Communication monitoring between a virtual machine and an endpoint

• Traffic capture from a virtual machine

• NSG flow logs, which log information related to traffic flowing through an NSG.
This data will be stored in Azure Storage for further analysis

It also provides diagnostic logs for all the network resources in a resource group.

Network performance can be monitored through Log Analytics. The Network
Performance Monitor management solution provides network monitoring capability. It
monitors the health, availability, and reachability of networks. It is also used to monitor
connectivity between public cloud and on-premises subnets hosting various tiers of a
multi-tiered application.

Security considerations

Virtual networks are among the first components that are accessed by any resource
on Azure. Security plays an important role in allowing or denying access to a resource.
NSGs are the primary means of enabling security for virtual networks. They can
be attached to virtual network subnets, and every inbound and outbound flow is
constrained, filtered, and allowed by them.

User-defined routing (UDR) and IP forwarding also helps in filtering and routing
requests to resources on Azure. You can read more about UDR and forced tunneling at
https://docs.microsoft.com/azure/virtual-network/virtual-networks-udr-overview.

Azure Firewall is a fully managed Firewall as a Service offering from Azure. It can help
you protect the resources in your virtual network. Azure Firewall can be used for packet
filtering in both inbound and outbound traffic, among other things. Additionally, the
threat intelligence feature of Azure Firewall can be used to alert and deny traffic from
or to malicious domains or IP addresses. The data source for IP addresses and domains
is Microsoft's threat intelligence feed.

https://docs.microsoft.com/azure/virtual-network/virtual-networks-udr-overview

Virtual networks | 75

Resources can also be secured and protected by deploying network appliances (https://
azure.microsoft.com/solutions/network-appliances) such as Barracuda, F5, and other
third-party components.

Deployment

Virtual networks should be deployed in their own dedicated resource groups. Network
administrators should have the owner's permission to use this resource group, while
developers or team members should have contributor permissions to allow them to
create other Azure resources in other resource groups that consume services from the
virtual network.

It is also a good practice to deploy resources with static IP addresses in a dedicated
subnet, while dynamic IP address–related resources can be on another subnet.

Policies should not only be created so that only network administrators can delete the
virtual network, but also should also be tagged for billing purposes.

Connectivity

Resources in a region on a virtual network can talk seamlessly. Even resources on
other subnets within a virtual network can talk to each other without any explicit
configuration. Resources in multiple regions cannot use the same virtual network. The
boundary of a virtual network is within a region. To make a resource communicate
across regions, we need dedicated gateways at both ends to facilitate conversation.

Having said that, if you would like to initiate a private connection between two
networks in different regions, you can use Global VNet peering. With Global VNet
peering, the communication is done via Microsoft's backbone network, which means no
public internet, gateway, or encryption is required during the communication. If your
virtual networks are in the same region with different address spaces, resources in one
network will not be able to communicate with the other. Since they are in the same
region, we can use virtual network peering, which is similar to Global VNet peering; the
only difference is that the source and destination virtual networks are deployed in the
same region.

As many organizations have a hybrid cloud, Azure resources sometimes need
to communicate or connect with on-premises datacenters or vice versa. Azure
virtual networks can connect to on-premises datacenters using VPN technology
and ExpressRoute. In fact, one virtual network is capable of connecting to multiple
on-premises datacenters and other Azure regions in parallel. As a best practice, each of
these connections should be in their dedicated subnets within a virtual network.

Now that we have explored several aspects of virtual networking, let's go ahead and
discuss the benefits of virtual networks.

https://azure.microsoft.com/solutions/network-appliances
https://azure.microsoft.com/solutions/network-appliances

76 | Design pattern – Networks, storage, messaging, and events

Benefits of virtual networks

Virtual networks are a must for deploying any meaningful IaaS solution. Virtual
machines cannot be provisioned without virtual networks. Apart from being almost a
mandatory component in IaaS solutions, they provide great architectural benefits, some
of which are outlined here:

• Isolation: Most application components have separate security and bandwidth
requirements and have different life cycle management. Virtual networks help to
create isolated pockets for these components that can be managed independently
of other components with the help of virtual networks and subnets.

• Security: Filtering and tracking the users that are accessing resources is an
important feature provided by virtual networks. They can stop access to malicious
IP addresses and ports.

• Extensibility: Virtual networks act like a private LAN on the cloud. They can
also be extended into a Wide Area Network (WAN) by connecting other virtual
networks across the globe and can be extensions to on-premises datacenters.

We have explored the benefits of virtual networks. Now the question is how we can
leverage these benefits and design a virtual network to host our solution. In the next
section, we will look at the design of virtual networks.

Virtual network design
In this section, we will consider some of the popular designs and use case scenarios of
virtual networks.

There can be multiple usages of virtual networks. A gateway can be deployed at each
virtual network endpoint to enable security and transmit packets with integrity and
confidentiality. A gateway is a must when connecting to on-premises networks;
however, it is optional when using Azure VNet peering. Additionally, you can make use
of the Gateway Transit feature to simplify the process of extending your on-premises
datacenter without deploying multiple gateways. Gateway Transit allows you to share
an ExpressRoute or VPN gateway with all peered virtual networks. This will make it easy
to manage and reduce the cost of deploying multiple gateways.

In the previous section, we touched on peering and mentioned that we don't use
gateways or the public internet to establish communication between peered networks.
Let's move on and explore some of the design aspects of peering, and which peering
needs to be used in particular scenarios.

Virtual network design | 77

Connecting to resources within the same region and subscription

Multiple virtual networks within the same region and subscription can be connected
to each other. With the help of VNet peering, both networks can be connected and
use the Azure private network backbone to transmit packets to each other. Virtual
machines and services on these networks can talk to each other, subject to network
traffic constraints. In the following diagram, VNet1 and VNet2 both are deployed in the
West US region. However, the address space for VNet1 is 172.16.0.0/16, and for VNet2
it is 10.0.0.0/16. By default, resources in VNet1 will not be able to communicate with
resources in VNet2. Since we have established VNet peering between the two, the
resources will be able to communicate with each other via the Microsoft backbone
network:

Figure 3.1: VNet peering for resources with the same subscription

Connecting to resources within the same region in another subscription

This scenario is very similar to the previous one except that the virtual networks are
hosted in two different subscriptions. The subscriptions can be part of the same tenant
or from multiple tenants. If both the resources are part of the same subscription and
from the same region, the previous scenario applies. This scenario can be implemented
in two ways: by using gateways or by using virtual network peering.

West US
VNet1

172.16.0.0/16

West US
VNet2

10.0.0.0/16

VNet peering

78 | Design pattern – Networks, storage, messaging, and events

If we are using gateways in this scenario, we need to deploy a gateway at both ends to
facilitate communication. Here is the architectural representation of using gateways to
connect two resources with different subscriptions:

Figure 3.2: VNet peering for resources with different subscriptions using gateways

However, the deployment of gateways incurs some charges. We will discuss VNet
peering, and after that we will compare these two implementations to see which is best
for our solution.

While using peering, we are not deploying any gateways. Figure 3.3 represents how
peering is done:

Figure 3.3: VNet peering across subscriptions

VNet peering provides a low-latency, high-bandwidth connection, and, as shown in
the diagram, we are not deploying any gateways to make the communication happen.
This is useful for scenarios such as data replication or failover. As mentioned earlier,
peering uses the Microsoft backbone network, which eliminates the need for the
public internet.

West US

Virtual Network B

Azure

Subscription B

West US

Virtual Network A

Azure

Subscription A

West US

Virtual Network B

Azure

Subscription B

West US

Virtual Network A

Azure

Subscription A

VNet peering

Virtual network design | 79

Gateways are used in scenarios where encryption is needed and bandwidth is not a
concern, as this will be a limited-bandwidth connection. However, this doesn't mean
that there is a constraint on bandwidth. Also, this approach is used where customers
are not so latency-sensitive.

So far, we have looked at resources in the same region across subscriptions. In the next
section, we will explore how to establish a connection between virtual networks in two
different regions.

Connecting to resources in different regions in another subscription

In this scenario, we have two implementations again. One uses a gateway and the other
uses Global VNet peering.

Traffic will pass through the public network, and we will have gateways deployed at
both ends to facilitate an encrypted connection. Figure 3.4 explains how
it's done:

Figure 3.4: Connecting resources in different regions with different subscriptions

We will take a similar approach using Global VNet peering. Figure 3.5 shows how Global
VNet peering is done:

Figure 3.5: Connecting resources in different regions using Global VNet peering

Virtual Network A

West US
10.0.0.0/16

Virtual Network B

East US
172.0.0.0/16

VNet peering

80 | Design pattern – Networks, storage, messaging, and events

The considerations in choosing gateways or peering have already been discussed. These
considerations are applicable in this scenario as well. So far, we have been connecting
virtual networks across regions and subscriptions; we haven't talked about connecting
an on-premises datacenter to the cloud yet. In the next section, we will discuss ways to
do this.

Connecting to on-premises datacenters

Virtual networks can be connected to on-premises datacenters so that both Azure and
on-premises datacenters become a single WAN. An on-premises network needs to be
deployed on gateways and VPNs on both sides of the network. There are three different
technologies available for this purpose.

Site-to-site VPN

This should be used when both the Azure network and the on-premises datacenter
are connected to form a WAN, where any resource on both networks can access any
other resource on the networks irrespective of whether they are deployed on Azure or
an on-premises datacenter. VPN gateways are required to be available on both sides of
networks for security reasons. Also, Azure gateways should be deployed on their own
subnets on virtual networks connected to on-premises datacenters. Public IP addresses
must be assigned to on-premises gateways for Azure to connect to them over the
public network:

Figure 3.6: Site-to-site VPN architecture

Virtual network design | 81

Point-to-site VPN

This is similar to site-to-site VPN connectivity, but there is a single server or computer
attached to the on-premises datacenter. It should be used when there are very few
users or clients that would connect to Azure securely from remote locations. Also, there
is no need for public IPs and gateways on the on-premises side in this case:

Figure 3.7: Point-to-site VPN architecture

82 | Design pattern – Networks, storage, messaging, and events

ExpressRoute

Both site-to-site and point-to-site VPNs work using the public internet. They encrypt
the traffic on the networks using VPN and certificates technology. However, there are
applications that want to be deployed using hybrid technologies—some components on
Azure, with others on an on-premises datacenter—and at the same time do not want
to use the public internet to connect to Azure and on-premises datacenters. Azure
ExpressRoute is the best solution for them, although it's a costly option compared to
the two other types of connection. It is also the most secure and reliable provider, with
higher speed and reduced latency because the traffic never hits the public internet.
Azure ExpressRoute can help to extend on-premises networks into Azure over a
dedicated private connection facilitated by a connectivity provider. If your solution is
network intensive, for example, a transactional enterprise application such as SAP, use
of ExpressRoute is highly recommended.

Figure 3.8: ExpressRoute network architecture

Customer’s
Network Partner

Edge
Microsoft

Edge

Primary Connection

Secondary Connection

ExpressRoute Circuit

Microsoft Peering for Office 365, Dynamics 365,
Azure Public services (Public IPs)
Azure Private Peering for Virtual Networks

Virtual network design | 83

Figure 3.9 shows all three types of hybrid networks:

Figure 3.9: Different types of hybrid networks

It is a good practice for virtual networks to have separate subnets for each logical
component with separate deployments, from a security and isolation perspective.

All the resources we deploy in Azure require networking in one way or another, so a
deep understanding of networking is required when architecting solutions in Azure.
Another key element is storage. In the next section, you will be learning more about
storage.

84 | Design pattern – Networks, storage, messaging, and events

Storage
Azure provides a durable, highly available, and scalable storage solution through storage
services.

Storage is used to persist data for long-term needs. Azure Storage is available on the
internet for almost every programming language.

Storage categories

Storage has two categories of storage accounts:

• A standard storage performance tier that allows you to store tables, queues, files,
blobs, and Azure virtual machine disks.

• A premium storage performance tier supporting Azure virtual machine disks, at
the time of writing. Premium storage provides higher performance and IOPS than
standard general storage. Premium storage is currently available as data disks for
virtual machines backed up by SSDs.

Depending on the kind of data that is being stored, the storage is classified into
different types. Let's look at the storage types and learn more about them.

Storage types

Azure provides four types of general storage services:

• Azure Blob storage: This type of storage is most suitable for unstructured data,
such as documents, images, and other kinds of files. Blob storage can be in the
Hot, Cool, or Archive tier. The Hot tier is meant for storing data that needs to be
accessed very frequently. The Cool tier is for data that is less frequently accessed
than data in the Hot tier and is stored for 30 days. Finally, the Archive tier is for
archival purposes where the access frequency is very low.

• Azure Table storage: This is a NoSQL key-attribute data store. It should be used
for structured data. The data is stored as entities.

• Azure Queue storage: This provides reliable message storage for storing large
numbers of messages. These messages can be accessed from anywhere via HTTP
or HTTPS calls. A queue message can be up to 64 KB in size.

• Azure Files: This is shared storage based on the SMB protocol. It is typically
used for storing and sharing files. It also stores unstructured data, but its main
distinction is that it is sharable via the SMB protocol.

• Azure disks: This is block-level storage for Azure Virtual Machines.

Storage | 85

These five storage types cater to different architectural requirements and cover almost
all types of data storage facilities.

Storage features

Azure Storage is elastic. This means that you can store as little as a few megabytes or as
much as petabytes of data. You do not need to pre-block the capacity, and it will grow
and shrink automatically. Consumers just need to pay for the actual usage of storage.
Here are some of the key benefits of using Azure Storage:

• Azure Storage is secure. It can only be accessed using the SSL protocol. Moreover,
access should be authenticated.

• Azure Storage provides the facility to generate an account-level Secure Access
Signature (SAS) token that can be used by storage clients to authenticate
themselves. It is also possible to generate individual service-level SAS tokens for
blobs, queues, tables, and files.

• Data stored in Azure storage can be encrypted. This is known as secure data at
rest.

• Azure Disk Encryption is used to encrypt the OS and data disks in IaaS virtual
machines. Client-Side Encryption (CSE) and Storage Service Encryption (SSE)
are both used to encrypt data in Azure Storage. SSE is an Azure Storage setting
that ensures that data is encrypted while data is being written to storage and
decrypted while it is read by the storage engine. This ensures that no application
changes are required to enable SSE. In CSE, client applications can use the Storage
SDK to encrypt data before it is sent and written to Azure Storage. The client
application can later decrypt this data while it is read. This provides security for
both data in transit and data at rest. CSE is dependent on secrets from Azure Key
Vault.

• Azure Storage is highly available and durable. What this means is that Azure
always maintains multiple copies of Azure accounts. The location and number of
copies depend on the replication configuration.

86 | Design pattern – Networks, storage, messaging, and events

Azure provides the following replication settings and data redundancy options:

• Locally redundant storage (LRS): Within a single physical location in the
primary region, there will be three replicas of your data synchronously. From a
billing standpoint, this is the cheapest option; however, it's not recommended
for solutions that require high availability. LRS provides a durability level of
99.999999999% for objects over a given year.

• Zone-redundant storage (ZRS): In the case of LRS, the replicas were stored
in the same physical location. In the case of ZRS, the data will be replicated
synchronously across the Availability Zones in the primary region. As each of
these Availability Zones is a separate physical location in the primary region, ZRS
provides better durability and higher availability than LRS.

• Geo-redundant storage (GRS): GRS increases the high availability by
synchronously replicating three copies of data within a single primary region
using LRS. It also copies the data to a single physical location in the secondary
region.

• Geo-zone-redundant storage (GZRS): This is very similar to GRS, but instead
of replicating data within a single physical location in the primary region, GZRS
replicates it synchronously across three Availability Zones. As we discussed in the
case of ZRS, since the Availability Zones are isolated physical locations within the
primary region, GZRS has better durability and can be included in highly available
designs.

• Read-access geo-redundant storage (RA-GRS) and read-access geo-zone-
redundant storage: The data replicated to the secondary region by GZRS or GRS
is not available for read or write. This data will be used by the secondary region in
the case of the failover of the primary datacenter. RA-GRS and RA-GZRS follow the
same replication pattern as GRS and GZRS respectively; the only difference is that
the data replicated to the secondary region via RA-GRS or RA-GZRS can be read.

Now that we have understood the various storage and connection options available on
Azure, let's learn about the underlying architecture of the technology.

Architectural considerations for storage accounts

Storage accounts should be provisioned within the same region as other application
components. This would mean using the same datacenter network backbone without
incurring any network charges.

Storage | 87

Azure Storage services have scalability targets for capacity, transaction rate, and
bandwidth associated with each of them. A general storage account allows 500 TB
of data to be stored. If there is a need to store more than 500 TB of data, then either
multiple storage accounts should be created, or premium storage should be used.

General storage performs at a maximum of 20,000 IOPS or 60 MB of data per second.
Any requirements for higher IOPS or data managed per second will be throttled. If this
is not enough for your applications from a performance perspective, either premium
storage or multiple storage accounts should be used. For an account, the scalability
limit for accessing tables is up to 20,000 (1 KB each) entries. The count of entities being
inserted, updated, deleted, or scanned will contribute toward the target. A single queue
can process approximately 2,000 messages (1 KB each) per second, and each of the
AddMessage, GetMessage, and DeleteMessage counts will be treated as a message. If these
values aren't sufficient for your application, you should spread the messages across
multiple queues.

The size of virtual machines determines the size and capacity of the available data disks.
While larger virtual machines have data disks with higher IOPS capacity, the maximum
capacity will still be limited to 20,000 IOPS and 60 MB per second. It is to be noted
that these are maximum numbers and so generally lower levels should be taken into
consideration when finalizing storage architecture.

At the time of writing, GRS accounts offer a 10 Gbps bandwidth target in the US for
ingress and 20 Gbps if RA-GRS/GRS is enabled. When it comes to LRS accounts, the
limits are on the higher side compared to GRS. For LRS accounts, ingress is 20 Gbps and
egress is 30 Gbps. Outside the US, the values are lower: the bandwidth target is 10 Gbps
and 5 Gbps for egress. If there is a requirement for a higher bandwidth, you can reach
out to Azure Support and they will be able to help you with further options.

Storage accounts should be enabled for authentication using SAS tokens. They should
not allow anonymous access. Moreover, for blob storage, different containers should be
created with separate SAS tokens generated based on the different types and categories
of clients accessing those containers. These SAS tokens should be periodically
regenerated to ensure that the keys are not at risk of being cracked or guessed. You
will learn more about SAS tokens and other security options in Chapter 8, Architecting
secure applications on Azure.

Generally, blobs fetched for blob storage accounts should be cached. We can determine
whether the cache is stale by comparing its last modified property to re-fetch the
latest blob.

88 | Design pattern – Networks, storage, messaging, and events

Storage accounts provide concurrency features to ensure that the same file and data is
not modified simultaneously by multiple users. They offer the following:

• Optimistic concurrency: This allows multiple users to modify data simultaneously,
but while writing, it checks whether the file or data has changed. If it has, it tells
the users to re-fetch the data and perform the update again. This is the default
concurrency for tables.

• Pessimistic concurrency: When an application tries to update a file, it places a
lock, which explicitly denies any updates to it by other users. This is the default
concurrency for files when accessed using the SMB protocol.

• Last writer wins: The updates are not constrained, and the last user updates
the file irrespective of what was read initially. This is the default concurrency for
queues, blobs, and files (when accessed using REST).

By this point, you should know what the different storage services are and how they can
be leveraged in your solutions. In the next section, we will look at design patterns and
see how they relate to architectural designs.

Cloud design patterns
Design patterns are proven solutions to known design problems. They are reusable
solutions that can be applied to problems. They are not reusable code or designs
that can be incorporated as is within a solution. They are documented descriptions
and guidance for solving a problem. A problem might manifest itself in different
contexts, and design patterns can help to solve it. Azure provides numerous services,
with each service providing specific features and capabilities. Using these services
is straightforward, but creating solutions by weaving multiple services together can
be a challenge. Moreover, achieving high availability, super scalability, reliability,
performance, and security for a solution is not a trivial task.

Azure design patterns provide ready solutions that can be tailored to individual
problems. They help us to make highly available, scalable, reliable, secure, and
performance-centric solutions on Azure. Although there are many patterns and some
of the patterns are covered in detail in subsequent chapters, some of the messaging,
performance, and scalability patterns are mentioned in this chapter. Also, links are
provided for detailed descriptions of these patterns. These design patterns deserve a
complete book by themselves. They have been mentioned here to make you aware of
their existence and to provide references for further information.

Cloud design patterns | 89

Messaging patterns

Messaging patterns help connect services in a loosely coupled manner. What this
means is that services never talk to each other directly. Instead, a service generates and
sends a message to a broker (generally a queue) and any other service that is interested
in that message can pick it and process it. There is no direct communication between
the sender and receiver service. This decoupling not only makes services and the
overall application more reliable but also more robust and fault tolerant. Receivers can
receive and read messages at their own speed.

Messaging helps the creation of asynchronous patterns. Messaging involves sending
messages from one entity to another. These messages are created and forwarded by a
sender, stored in durable storage, and finally consumed by recipients.

The top architectural concerns addressed by messaging patterns are as follows:

• Durability: Messages are stored in durable storage, and applications can read
them after they are received in case of a failover.

• Reliability: Messages help implement reliability as they are persisted on disk and
never lost.

• Availability of messages: The messages are available for consumption by
applications after the restoration of connectivity and before downtime.

Azure provides Service Bus queues and topics to implement messaging patterns within
applications. Azure Queue storage can also be used for the same purpose.

Choosing between Azure Service Bus queues and Queue storage is about deciding on
how long the message should be stored, the size of the message, latency, and cost.
Azure Service Bus provides support for 256 KB messages, while Queue storage provides
support for 64 KB messages. Azure Service Bus can store messages for an unlimited
period, while Queue storage can store messages for 7 days. The cost and latency are
higher with Service Bus queues.

Depending on your application's requirements and needs, the preceding factors
should be considered before deciding on the best queue. In the next section, we will be
discussing different types of messaging patterns.

90 | Design pattern – Networks, storage, messaging, and events

The Competing Consumers pattern

A single consumer of messages works in a synchronous manner unless the application
implements the logic of reading messages asynchronously. The Competing Consumers
pattern implements a solution in which multiple consumers are ready to process
incoming messages, and they compete to process each message. This can lead to
solutions that are highly available and scalable. This pattern is scalable because with
multiple consumers, it is possible to process a higher number of messages in a smaller
period. It is highly available because there should be at least one consumer to process
messages even if some of the consumers crash.

This pattern should be used when each message is independent of other messages.
The messages by themselves contain all the information required for a consumer to
complete a task. This pattern should not be used if there is any dependency among
messages. The consumers should be able to complete the tasks in isolation. Also, this
pattern is applicable if there is variable demand for services. Additional consumers can
be added or removed based on demand.

A message queue is required to implement the Competing Consumers pattern. Here,
patterns from multiple sources pass through a single queue, which is connected to
multiple consumers at the other end. These consumers should delete each message
after reading so that they are not re-processed:

Figure 3.10: The Competing Consumers pattern

Refer to the Microsoft documentation at https://docs.microsoft.com/azure/
architecture/patterns/competing-consumers to learn more about this pattern.

https://docs.microsoft.com/azure/architecture/patterns/competing-consumers
https://docs.microsoft.com/azure/architecture/patterns/competing-consumers

Cloud design patterns | 91

The Priority Queue pattern

There is often a need to prioritize some messages over others. This pattern is important
for applications that provide different service-level agreements (SLAs) to consumers,
which provide services based on differential plans and subscriptions.

Queues follow the first-in, first-out pattern. Messages are processed in a sequence.
However, with the help of the Priority Queue pattern, it is possible to fast-track the
processing of certain messages due to their higher priority. There are multiple ways to
implement this. If the queue allows you to assign priority and re-order messages based
on priority, then even a single queue is enough to implement this pattern:

Figure 3.11: The single Priority Queue pattern

92 | Design pattern – Networks, storage, messaging, and events

However, if the queue cannot re-order messages, then separate queues can be created
for different priorities, and each queue can have separate consumers associated with it:

Figure 3.12: Using separate message queues for different priorities

In fact, this pattern can use the Competing Consumer pattern to fast-track the
processing of messages from each queue using multiple consumers. Refer to the
Microsoft documentation at https://docs.microsoft.com/azure/architecture/patterns/
priority-queue to read more about the Priority Queue pattern.

https://docs.microsoft.com/azure/architecture/patterns/priority-queue
https://docs.microsoft.com/azure/architecture/patterns/priority-queue

Cloud design patterns | 93

The Queue-Based Load Leveling pattern

The Queue-Based Load Leveling pattern reduces the impact of peaks in demand on
the availability and alertness of both tasks and services. Between a task and a service, a
queue will act as a buffer. It can be invoked to handle the unexpected heavy loads that
can cause service interruption or timeouts. This pattern helps to address performance
and reliability issues. To prevent the service from getting overloaded, we will introduce
a queue that will store a message until it's retrieved by the service. Messages will be
taken from the queue by the service in a consistent manner and processed.

Figure 3.13 shows how the Queue-Based Load Leveling pattern works:

Figure 3.13: The Queue-Based Load Leveling pattern

Even though this pattern helps to handle spikes of unexpected demand, it is not the
best choice when you are architecting a service with minimal latency. Talking of latency,
which is a performance measurement, in the next section we will be focusing on
performance and scalability patterns.

Performance and scalability patterns

Performance and scalability go together. Performance is the measure of how quickly
a system can execute an action within a given time interval in a positive manner. On
the other hand, scalability is the ability of a system to handle unexpected load without
affecting the performance of the system, or how quickly the system can be expanded
with the available resources. In this section, a couple of design patterns related to
performance and scalability will be described.

94 | Design pattern – Networks, storage, messaging, and events

The Command and Query Responsibility Segregation (CQRS) pattern

CQRS is not an Azure-specific pattern but a general pattern that can be applied in any
application. It increases the overall performance and responsiveness of an application.

CQRS is a pattern that segregates the operations that read data (queries) from the
operations that update data (commands) by using separate interfaces. This means that
the data models used for querying and updates are different. The models can then be
isolated, as shown in Figure 3.14, although that's not an absolute requirement.

This pattern should be used when there are large and complex business rules executed
while updating and retrieving data. Also, this pattern has an excellent use case in which
one team of developers can focus on the complex domain model that is part of the write
model, and another team can focus on the read model and the user interfaces. It is also
wise to use this pattern when the ratio of read to write is skewed. The performance of
data reads should be fine-tuned separately from the performance of data writes.

CQRS not only improves the performance of an application, but it also helps the design
and implementation of multiple teams. Due to its nature of using separate models,
CQRS is not suitable if you are using model and scaffolding generation tools:

Figure 3.14: The CQRS pattern

Refer to the Microsoft documentation at https://docs.microsoft.com/azure/
architecture/patterns/cqrs to read more about this pattern.

https://docs.microsoft.com/azure/architecture/patterns/cqrs
https://docs.microsoft.com/azure/architecture/patterns/cqrs

Cloud design patterns | 95

The Event Sourcing pattern

As most applications work with data and as the users are working with it, the classic
approach for the application would be to maintain and update the current state of the
data. Reading data from the source, modifying it, and updating the current state with
the modified value is the typical data processing approach. However, there are some
limitations:

• As the update operations are directly made against the data store, this will slow
down the overall performance and responsiveness.

• If there are multiple users working on and updating the data, there may be
conflicts and some of the relevant updates may fail.

The solution for this is to implement the Event Sourcing pattern, where the changes
will be recorded in an append-only store. A series of events will be pushed by the
application code to the event store, where they will be persisted. The events persisted
in an event store act as a system of record about the current state of data. Consumers
will be notified, and they can handle the events if needed once they are published.

The Event Sourcing pattern is shown in Figure 3.15:

Figure 3.15: The Event Sourcing pattern

96 | Design pattern – Networks, storage, messaging, and events

More information about this pattern is available at https://docs.microsoft.com/azure/
architecture/patterns/event-sourcing.

The Throttling pattern

At times, there are applications that have very stringent SLA requirements from a
performance and scalability perspective, irrespective of the number of users consuming
the service. In these circumstances, it is important to implement the Throttling pattern
because it can limit the number of requests that are allowed to be executed. The load
on applications cannot be predicted accurately in all circumstances. When the load
on an application spikes, throttling reduces pressure on the servers and services by
controlling the resource consumption. The Azure infrastructure is a very good example
of this pattern.

This pattern should be used when meeting the SLA is a priority for applications to
prevent some users from consuming more resources than allocated, to optimize spikes
and bursts in demand, and to optimize resource consumption in terms of cost. These
are valid scenarios for applications that have been built to be deployed on the cloud.

There can be multiple strategies for handling throttling in an application. The Throttling
strategy can reject new requests once the threshold is crossed, or it can let the user
know that the request is in the queue and it will get the opportunity to be executed
once the number of requests is reduced.

Figure 3.16 illustrates the implementation of the Throttling pattern in a multi-tenant
system, where each tenant is allocated a fixed resource usage limit. Once they cross
this limit, any additional demand for resources is constrained, thereby maintaining
enough resources for other tenants:

https://docs.microsoft.com/azure/architecture/patterns/event-sourcing
https://docs.microsoft.com/azure/architecture/patterns/event-sourcing

Cloud design patterns | 97

Figure 3.16: The Throttling pattern

Read more about this pattern at https://docs.microsoft.com/azure/architecture/
patterns/throttling.

https://docs.microsoft.com/azure/architecture/patterns/throttling
https://docs.microsoft.com/azure/architecture/patterns/throttling

98 | Design pattern – Networks, storage, messaging, and events

Retry pattern

The Retry pattern is an extremely important pattern that makes applications and
services more resilient to transient failures. Imagine you are trying to connect to and
use a service, and the service is not available for some reason. If the service is going to
become available soon, it makes sense to keep trying to get a successful connection.
This will make the application more robust, fault tolerant, and stable. In Azure, most of
the components are running on the internet, and that internet connection can produce
transient faults intermittently. Since these faults can be rectified within seconds, an
application should not be allowed to crash. The application should be designed in a
manner that means it can try to use the service again repeatedly in the case of failure
and stop retrying when either it is successful or it eventually determines that there is a
fault that will take time to rectify.

This pattern should be implemented when an application could experience transient
faults as it interacts with a remote service or accesses a remote resource. These faults
are expected to be short-lived, and repeating a request that has previously failed could
succeed on a subsequent attempt.

The Retry pattern can adopt different retry strategies depending on the nature of the
errors and the application:

• Retry a fixed number of times: This denotes that the application will try to
communicate with the service a fixed number of times before determining that
there's been a failure and raising an exception. For example, it will retry three
times to connect to another service. If it is successful in connecting within these
three tries, the entire operation will be successful; otherwise, it will raise an
exception.

• Retry based on schedule: This denotes that the application will try to
communicate with the service repeatedly for a fixed number of seconds or
minutes and wait for a fixed number of seconds or minutes before retrying. For
example, the application will try to connect to the service every three seconds for
60 seconds. If it is successful in connecting within this time, the entire operation
will be successful. Otherwise, it will raise an exception.

• Sliding and delaying the retry: This denotes that the application will try to
communicate with the service repeatedly based on the schedule and keep adding
an incremental delay in subsequent tries. For example, for a total of 60 seconds,
the first retry happens after a second, the second retry happens two seconds after
the previous retry, the third retry happens four seconds after the previous retry,
and so on. This reduces the overall number of retries.

Cloud design patterns | 99

Figure 3.17 illustrates the Retry pattern. The first request gets an HTTP 500 response,
the second retry again gets an HTTP 500 response, and finally the request is successful
and gets HTTP 200 as the response:

Figure 3.17: The Retry pattern

Refer to this Microsoft documentation at https://docs.microsoft.com/azure/
architecture/patterns/retry to find out more about this pattern.

The Circuit Breaker pattern

This is an extremely useful pattern. Imagine again that you are trying to connect to and
use a service, and the service is not available for some reason. If the service is not going
to become available soon, there is no use continuing to retry the connection. Moreover,
keeping other resources occupied while retrying wastes a lot of resources that could
potentially be used elsewhere.

The Circuit Breaker pattern helps eliminate this waste of resources. It can prevent
applications from repeatedly trying to connect to and use a service that is not available.
It also helps applications to detect whether a service is up and running again, and allow
applications to connect to it.

To implement the Circuit Breaker pattern, all requests to the service should pass
through a service that acts as a proxy to the original service. The purpose of this proxy
service is to maintain a state machine and act as a gateway to the original service. There
are three states that it maintains. There could be more states included, depending on
the application's requirements.

https://docs.microsoft.com/azure/architecture/patterns/retry
https://docs.microsoft.com/azure/architecture/patterns/retry

100 | Design pattern – Networks, storage, messaging, and events

The minimal states needed to implement this pattern are as follows:

• Open: This denotes that the service is down and the application is shown as an
exception immediately, instead of allowing it to retry or wait for a timeout. When
the service is up again, the state is transitioned to Half-Open.

• Closed: This state denotes that the service is healthy and the application can go
ahead and connect to it. Generally, a counter shows the number of failures before
it can transition to the Open state.

• Half-Open: At some point, when the service is up and running, this state allows
a limited number of requests to pass through it. This state is a litmus test that
checks whether the requests that pass through are successful. If the requests are
successful, the state is transitioned from Half-Open to Closed. This state can also
implement a counter to allow a certain number of requests to be successful before
it can transition to Closed.

The three states and their transitions are illustrated in Figure 3.18:

Figure 3.18: The Circuit Breaker pattern

Summary | 101

Read more this pattern in the Microsoft documentation at https://docs.microsoft.com/
azure/architecture/patterns/circuit-breaker.

In this section, we discussed design patterns that can be used to architect reliable,
scalable, and secure applications in the cloud. There are other patterns, though, which
you can explore at https://docs.microsoft.com/azure/architecture/patterns.

Summary
There are numerous services available on Azure, and most of them can be combined
to create real solutions. This chapter explained the three most important services
provided by Azure—regions, storage, and networks. They form the backbone of the
majority of solutions deployed on any cloud. This chapter provided details about these
services and how their configuration and provisioning can affect design decisions.

Important considerations for both storage and networks were detailed in this chapter.
Both networks and storage provide lots of choices, and it is important to choose an
appropriate configuration based on your requirements.

Finally, some of the important design patterns related to messaging, such as Competing
Consumers, Priority Queue, and Load Leveling, were described. Patterns such as CQRS
and Throttling were illustrated, and other patterns, such as Retry and Circuit Breaker,
were also discussed. We will keep these patterns as the baseline when we deploy
our solutions.

In the next chapter, we will be discussing how to automate the solutions we are going
to architect. As we move ahead in the world of automation, every organization wants
to eliminate the overhead of creating resources one by one, which is very demanding.
Since automation is the solution for this, in the next chapter you will learn more
about it.

https://docs.microsoft.com/azure/architecture/patterns/circuit-breaker
https://docs.microsoft.com/azure/architecture/patterns/circuit-breaker
https://docs.microsoft.com/azure/architecture/patterns

Every organization wants to reduce manual effort and error in their pursuits, and
automation plays an important role in bringing about predictability, standardization,
and consistency in both building a product and in operations. Automation has been the
focus of almost every Chief information officer (CIO) and digital officer to ensure that
their systems are highly available, scalable, reliable, and able to cater to the needs of
their customers.

Automation became more prominent with the advent of the cloud because new
resources can be provisioned on the fly without the procurement of hardware
resources. Hence, cloud companies want automation in almost all of their activities to
reduce misuse, errors, governance, maintenance, and administration.

Automating
architecture on Azure

4

104 | Automating architecture on Azure

In this chapter, we will evaluate Azure Automation as a major service that provides
automation capabilities, along with its differentiating capabilities compared to other
apparently similar-looking services. This chapter will cover the following:

• The Azure Automation landscape

• The Azure Automation service

• Resources for Azure Automation services

• Writing Azure Automation runbooks

• Webhooks

• Hybrid Workers

Let's get started with Azure Automation, a cloud service for process automation.

Automation
Automation is needed for the provisioning, operations, management, and
deprovisioning of IT resources within an organization. Figure 4.1 gives you a closer look
at what each of these use cases represents:

Figure 4.1: Use cases of automation

Before the advent of the cloud, IT resources were primarily on-premises, and manual
processes were often used for these activities. However, since cloud adoption has
increased, automation has found increased focus and attention. The primary reason
is that cloud technology's agility and flexibility provide an opportunity to provision,
deprovision, and manage these resources on the fly in a tiny fraction of the time it
used to take. Along with this flexibility and agility come the requirements to be more
predictable and consistent with the cloud because it has become easy for organizations
to create resources.

Provisioning

• Data centers

• PaaS services

• Application
deployments

• Environment
and application

Operations

• Backups and
restores

• Monitoring
• Performance
• Disaster

recovery
• Availability
• Scalability
• Stop-start-

pause-resume

Management

• Access
management

• Resource
locking

• Policies

• Tagging

• Cost

• releases

Deprovisioning

• Delete and
tear down
resources

• Soft delete
of application

• Transfer

Azure Automation | 105

Microsoft has a great tool for IT automation known as System Center Orchestrator. It is
a great tool for automation for on-premises and cloud environments, but it is a product
and not a service. It should be licensed and deployed on servers, and then runbooks can
be executed to effect changes on cloud and on-premises environments.

Microsoft realized that an automation solution was required that could be provided
to customers as a service rather than bought and deployed as a product. Enter Azure
Automation.

Azure Automation
Azure provides a service called Azure Automation, which is an essential service for the
automation of processes, activities, and tasks not only on Azure but also on-premises
as well. Using Azure Automation, organizations can automate their processes and tasks
related to processing, tear-down, operations, and the management of their resources
across the cloud, IT environments, platforms, and languages. In Figure 4.2, we can see
some features of Azure Automation:

Figure 4.2: Features of Azure Automation

Azure Automation architecture
Azure Automation comprises multiple components, and each of these components is
completely decoupled from the others. Most of the integration happens at the data
store level, and no components talk to each other directly.

When an Automation account is created on Azure, it is managed by a management
service. The management service is a single point of contact for all activities within
Azure Automation. All requests from the portal, including saving, publishing, and
creating runbooks, to execution, stopping, suspending, starting, and testing are sent
to the automation management service and the service writes the request data to its
data store. It also creates a job record in the data store and, based on the status of the
runbook workers, assigns it to a worker.

Cross-cloud Cross-environment Cross-platform Cross-language

• Azure

• Other clouds

• Any combination

• Cloud

• On-premises

• Hybrid

• Linux

• Windows

• PowerShell

• Python

• Bash

106 | Automating architecture on Azure

Figure 4.3: Azure Automation architecture

The worker keeps polling the database for any new jobs assigned to it. Once it finds
a job assignment, it fetches the job information and starts executing the job using
its execution engine. The results are written back to the database, read by the
management service, and displayed back on the Azure portal.

The Hybrid Workers that we will read about later in this chapter are also runbook
workers, although they're not shown in Figure 4.3.

The first step in getting started with Azure Automation is to create a new account.
Once the account is created, all other artifacts are created within the account.

The account acts as the main top-level resource that can be managed using Azure
resource groups and its own control plane.

The account should be created within a region, and all automation within this account
gets executed on servers in that region.

It is important to choose the region wisely, preferably close to other Azure resources
that the Automation account integrates or manages, to reduce the network traffic and
latency between the regions.

The Automation account also supports a couple of Run As accounts, which can be
created from the Automation account. As these Run As accounts are analogous to a
service account, we mostly create them to execute actions. Even though we generally
say Run As account, there are two types of Run As account: one is called the Azure
Classic Run As account, and the other one is simply the Run As account, and both of
them are used to connect to Azure subscriptions. The Azure Classic Run As account
is for connecting to Azure using the Azure Service Management API, and the Run As
account is for connecting to Azure using the Azure Resource Management (ARM) API.

Both of these accounts use certificates to authenticate with Azure. These accounts can
be created while creating the Automation account, or you can opt to create them at a
later stage from the Azure portal.

Azure Automation architecture | 107

It is recommended to create these Run As accounts later instead of creating them
while creating the Automation account because if they are created while setting
up the Automation account, Automation will generate the certificates and service
principals behind the scenes with the default configuration. If more control and custom
configuration is needed for these Run As accounts, such as using an existing certificate
or service principal, then the Run As accounts should be created after the Automation
account.

Once the Automation account is created, it provides a dashboard through which
multiple automation scenarios can be enabled.

Some of the important scenarios that can be enabled using an Automation account are
related to:

• Process automation

• Configuration management

• Update management

Automation is about writing scripts that are reusable and generic so that they can be
reused in multiple scenarios. For example, an automation script should be generic
enough to start and stop any VM in any resource group in any subscription and
management group. Hardcoding VM server information, along with resource group,
subscription, and management group names, will result in the creation of multiple
similar scripts, and any change in one will undoubtedly result in changing all the scripts.
It is better to create a single script for this purpose by using scripting parameters and
variables, and you should ensure that the values are supplied by the executor for these
artifacts.

Let's take a closer look at each of the aforementioned scenarios.

Process automation

Process automation refers to the development of scripts that reflect real-world
processes. Process automation comprises multiple activities, where each activity
performs a discrete task. Together, these activities form a complete process. The
activities might be executed on the basis of whether the previous activity executed
successfully or not.

108 | Automating architecture on Azure

There are some requirements that any process automation requires from the
infrastructure it is executed on. Some of them are as follows:

• The ability to create workflows

• The ability to execute for a long duration

• The ability to save the execution state when the workflow is not complete, which
is also known as checkpointing and hydration

• The ability to resume from the last saved state instead of starting from the
beginning

The next scenario we are going to explore is configuration management.

Configuration management

Configuration management refers to the process of managing the system configuration
throughout its life cycle. Azure Automation State Configuration is the Azure
configuration management service that allows users to write, manage, and compile
PowerShell DSC configuration for cloud nodes and on-premises datacenters.

Azure Automation State Configuration lets us manage Azure VMs, Azure Classic VMs,
and physical machines or VMs (Windows/Linux) on-premises, and it also provides
support for VMs in other cloud providers.

One of the biggest advantages of Azure Automation State Configuration is it provides
scalability. We can manage thousands of machines from a single central management
interface. We can assign configurations to machines with ease and verify whether they
are compliant with the desired configuration.

Another advantage is that Azure Automation can be used as a repository to store your
Desired State Configuration (DSC) configurations, and at the time of need they can be
used.

In the next section, we will be talking about update management.

Concepts related to Azure Automation | 109

Update management

As you already know, update management is the responsibility of the customer to
manage updates and patches when it comes to IaaS. The Update Management feature
of Azure Automation can be used to automate or manage updates and patches for your
Azure VMs. There are multiple methods by which you can enable Update Management
on your Azure VM:

• From your Automation account

• By browsing the Azure portal

• From a runbook

• From an Azure VM

Enabling it from an Azure VM is the easiest method. However, if you have a large
number of VMs and need to enable Update Management, then you have to consider a
scalable solution such as a runbook or from an Automation account.

Now that you are clear about the scenarios, let's explore the concepts related to Azure
Automation.

Concepts related to Azure Automation
You now know that Azure Automation requires an account, which is called an Azure
Automation account. Before we dive deeper, let's examine the concepts related to Azure
Automation. Understanding the meaning of each of these terms is very important, as we
are going to use these terms throughout this chapter. Let's start with runbook.

Runbook

An Azure Automation runbook is a collection of scripting statements representing a
single step in process automation or a complete process automation. It is possible to
invoke other runbooks from a parent runbook, and these runbooks can be authored in
multiple scripting languages. The languages that support authoring runbooks are as
follows:

• PowerShell

• Python 2 (at the time of writing)

• PowerShell workflows

• Graphical PowerShell

• Graphical PowerShell workflows

110 | Automating architecture on Azure

Creating an Automation account is very easy and can be done from the Azure portal. In
the All Services blade, you can find Automation Account, or you can search for it in the
Azure portal. As mentioned before, during creation you will get an option to create a
Run As account. Figure 4.4 shows the inputs required to create an Automation account:

Figure 4.4: Creating an Automation account

Run As accounts

Azure Automation accounts, by default, do not have access to any resources included in
any Azure subscription, including the subscription in which they are hosted. An account
needs access to an Azure subscription and its resources in order to manage them. A
Run As account is one way to provide access to subscriptions and the resources within
them.

This is an optional exercise. There can be at most one Run As account for each classic
and resource manager-based subscription; however, an Automation account might
need to connect to numerous subscriptions. In such cases, it is advisable to create
shared resources for each of the subscriptions and use them in runbooks.

Concepts related to Azure Automation | 111

After creating the Automation account, navigate to the Run as accounts view on the
portal and you will see that two types of accounts can be created. In Figure 4.5, you can
see that the option to create an Azure Run As Account and an Azure Classic Run As
Account is available in the Run as accounts blade:

Figure 4.5: Azure Run As Account options

These Run As accounts can be created using the Azure portal, PowerShell, and the CLI.
For information about creating these accounts using PowerShell, visit https://docs.
microsoft.com/azure/automation/manage-runas-account.

In the case of the ARM Run As account, this script creates a new Azure AD service
principal and a new certificate and provides contributor RBAC permissions to the newly
created service principal on the subscription.

Jobs

The submission of a job request is not linked directly to the execution of the job request
because of Azure Automation's decoupled architecture. The linkage between them
is indirect using a data store. When a request to execute a runbook is received by
Automation, it creates a new record in its database with all the relevant information.
There is another service running on multiple servers, known as Hybrid Runbook
Worker, within Azure, which looks for any new entries added to the database for the
execution of a runbook. Once it sees a new record, it locks the record so that no other
service can read it and then executes the runbook.

https://docs.microsoft.com/azure/automation/manage-runas-account
https://docs.microsoft.com/azure/automation/manage-runas-account

112 | Automating architecture on Azure

Assets

Azure Automation assets refer to shared artifacts that can be used across runbooks.
They are shown in Figure 4.6:

Figure 4.6: Shared artifacts in Azure Automation

Credentials

Credentials refers to the secrets, such as the username/password combination,
that can be used to connect to other integration services that need authentication.
These credentials can be used within runbooks using the Get-AutomationPSCredential
PowerShell cmdlet along with its associated name:

$myCredential = Get-AutomationPSCredential -Name 'MyCredential'

The Python syntax requires that we import the automationassets module and use the
get_automation_credential function along with the associated credential name:

import automationassets

cred = automationassets.get_automation_credential("credtest")

Concepts related to Azure Automation | 113

Certificates

Certificates refers to the X.509 certificate that can be purchased from certificate
authorities or can be self-signed. Certificates are used for identification purposes
in Azure Automation. Every certificate has a pair of keys known as private/public
keys. The private key is used for creating a certificate asset in Azure Automation,
and the public key should be available in the target service. Using the private key, the
Automation account can create a digital signature and append it to the request before
sending it to the target service. The target service can fetch the details (the hash) from
the digital signature using the already available public key and ascertain the identity of
the sender of the request.

Certificate assets store certificate information and keys in Azure Automation. These
certificates can be used directly within runbooks, and they are also used by the
connection's assets. The next section shows the way to consume certificates in a
connection asset. The Azure service principal connection asset uses a certificate
thumbprint to identify the certificate it wants to use, while other types of connection
use the name of the certificate asset to access the certificate.

A certificate asset can be created by providing a name and uploading a certificate. It
is possible to upload public certificates (.cer files) as well as private certificates (.pfx
files). The private part of the certificate also has a password that should be used before
accessing the certificate.

Figure 4.7: Adding a certificate to Azure Automation

114 | Automating architecture on Azure

Creating a certificate involves providing a name and a description, uploading the
certificate, providing a password (in the case of .pfx files), and informing the user
whether the certificate is exportable or not.

There should be a certificate available before this certificate asset can be created.
Certificates can be purchased from certificate authorities or can be generated.
Generated certificates are known as self-signed certificates. It is always a good practice
to use certificates from certificate authorities for important environments such as
production environments. It is fine to use self-signing certificates for development
purposes.

To generate a self-signed certificate using PowerShell, use this command:

$cert = New-SelfSignedCertificate -CertStoreLocation "Cert:\CurrentUser\my"
-KeySpec KeyExchange -Subject "cn=azureforarchitects"

This will create a new certificate in the current user certificate store in your personal
folder. Since this certificate also needs to be uploaded to the Azure Automation
certificate asset, it should be exported to the local file system, as shown in Figure 4.8:

Figure 4.8: Exporting the certificate

When exporting the certificate, the private key should also be exported, so Yes, export
the private key should be selected.

Select the Personal Information Exchange option, and the rest of the values should
remain as the defaults.

Concepts related to Azure Automation | 115

Provide a password and the filename C:\azureforarchitects.pfx, and the export should
be successful.

Connecting to Azure can be done in multiple ways. However, the most secure is by
way of a certificate. A service principal is created on Azure using the certificate. The
service principal can be authenticated against using the certificate. The private key of
the certificate is with the user and the public part is with Azure. In the next section, a
service principal will be created using the certificate created in this section.

Creating a service principal using certificate credentials

A service principal can be created using the Azure portal, Azure CLI, or Azure
PowerShell. The script for creating a service principal using Azure PowerShell is
available in this section.

After logging into Azure, the certificate created in the previous section is converted
into base64 encoding. A new service principal, azureforarchitects, is created, and the
certificate credential is associated with the newly created service principal. Finally, the
new service principal is provided contributor role-based access control permissions on
the subscription:

Login-AzAccount

$certKey = [system.Convert]::ToBase64String($cert.GetRawCertData())

$sp = New-AzADServicePrincipal -DisplayName "azureforarchitects"

New-AzADSpCredential -ObjectId $sp.Id -CertValue $certKey -StartDate
$cert.NotBefore -EndDate $cert.NotAfter

New-AzRoleAssignment -RoleDefinitionName contributor -ServicePrincipalName
$sp.ApplicationId

Get-AzADServicePrincipal -ObjectId $sp.Id

$cert.Thumbprint

Get-AzSubscription

116 | Automating architecture on Azure

To create a connection asset, the application ID can be obtained using the
Get-AzADServicePrincipal cmdlet, and the result is shown in Figure 4.9:

Figure 4.9: Checking the service principal

The certificate thumbprint can be obtained using the certificate reference along with
SubscriptionId, which can be obtained using the Get-AzSubscription cmdlet.

Connections

Connection assets are used for creating connection information to external services. In
this regard, even Azure is considered as an external service. Connection assets hold all
the necessary information needed for successfully connecting to a service. There are
three connection types provided out of the box by Azure Automation:

• Azure

• Azure classic certificate

• Azure service principal

It is a good practice to use Azure service principal to connect to Azure Resource
Manager resources and to use the Azure classic certificate for Azure classic resources.
It is important to note that Azure Automation does not provide any connection type to
connect to Azure using credentials such as a username and password.

Azure and Azure classic certificates are similar in nature. They both help us connect to
Azure Service management API-based resources. In fact, Azure Automation creates an
Azure classic certificate connection while creating a Classic Run As account.

Azure service principal is used internally by Run As accounts to connect to Azure
Resource Manager-based resources.

Concepts related to Azure Automation | 117

A new connection asset of type AzureServicePrincipal is shown in Figure 4.10. It needs:

• The name of the connection. It is mandatory to provide a name.

• A description of the connection. This value is optional.

• Select an appropriate Type. It is mandatory to select an option;
AzureServicePrincipal is selected for creating a connection asset for all purposes
in this chapter.

• ApplicationId, also known as clientid, is the application ID generated during
the creation of a service principal. The next section shows the process of
creating a service principal using Azure PowerShell. It is mandatory to provide an
application ID.

• TenantId is the unique identifier of the tenant. This information is available from
the Azure portal or by using the Get-AzSubscription cmdlet. It is mandatory to
provide a tenant identifier.

• CertificateThumbprint is the certificate identifier. This certificate should already
be uploaded to Azure Automation using the certificate asset. It is mandatory to
provide a certificate thumbprint.

• SubscriptionId is the identifier of the subscription. It is mandatory to provide a
subscription ID.

You can add a new connection using the Connections blade in the Automation account,
as shown in Figure 4.10:

Figure 4.10: Adding a new connection to the Automation Account

118 | Automating architecture on Azure

Runbook authoring and execution
Azure Automation allows the creation of automation scripts known as runbooks.
Multiple runbooks can be created using the Azure portal or PowerShell ISE. They
can also be imported from Runbook Gallery. The gallery can be searched for specific
functionality, and the entire code is displayed within the runbook.

A runbook can accept parameter values just like a normal PowerShell script. The next
example takes a single parameter named connectionName of type string. It is mandatory
to supply a value for this parameter when executing this runbook:

param(

 [parameter(mandatory=$true)]

 [string] $connectionName

)

$connection = Get-AutomationConnection -name $connectionName

$subscriptionid = $connection.subscriptionid

$tenantid = $connection.tenantid

$applicationid = $connection.applicationid

$cretThumbprint = $connection.CertificateThumbprint

Login-AzureRMAccount -CertificateThumbprint $cretThumbprint
-ApplicationId $applicationid -ServicePrincipal -Tenant $tenantid

Get-AzureRMVM

The runbook uses the Get-AutomationConnection cmdlet to reference the shared
connection asset. The name of the asset is contained within the parameter value. Once
the reference to the connection asset has been made, the values from the connection
reference are populated into the $connection variable, and subsequently, they are
assigned to multiple other variables.

The Login-AzureRMAccount cmdlet authenticates with Azure, and it supplies the values
obtained from the connection object. It uses the service principal created earlier in this
chapter for authentication.

Finally, the runbook invokes the Get-AzureRMVm cmdlet to list all the VMs in the
subscription.

Runbook authoring and execution | 119

By default, Azure Automation still provides AzureRM modules for working with Azure. It
does not install Az modules by default. Later we will install an Az module manually in the
Azure Automation account and use cmdlets in runbooks.

Parent and child runbooks

Runbooks have a life cycle, from being authored to being executed. These life cycles can
be divided into authoring status and execution status.

The authoring life cycle is shown in Figure 4.11.

When a new runbook is created, it has the New status and as it is edited and saved
multiple times, it takes the In edit status, and finally, when it is published, the status
changes to Published. It is also possible to edit a published runbook, and in that case, it
goes back to the In edit status.

Figure 4.11: Authoring life cycle

The execution life cycle is described next.

The life cycle starts with the beginning of a runbook execution request. A runbook can
be executed in multiple ways:

• Manually from the Azure portal

• By using a parent runbook as a child runbook

• By means of a webhook

It does not matter how a runbook is initiated; the life cycle remains the same. A request
to execute the runbook is received by the Automation engine. The Automation engine
creates a job and assigns it to a runbook worker. Currently, the runbook has a status of
Queued.

There are multiple runbook workers, and the chosen one picks up the job request and
changes the status to Starting. At this stage, if there are any scripting and parsing
issues in the script, the status changes to Failed and the execution is halted.

Once the runbook execution is started by the worker, the status is changed to Running.
The runbook can have multiple different statuses once it is running.

The runbook will change its status to Completed if the execution happens without any
unhandled and terminating exceptions.

120 | Automating architecture on Azure

The running runbook can be manually stopped by the user, and it will have the Stopped
status.

Figure 4.12: The execution life cycle for runbooks

The user can also suspend and resume the execution of the runbook.

Creating a runbook

A runbook can be created from the Azure portal by going to the Runbook menu item
in the left navigation pane. A runbook has a name and type. The type determines
the scripting language used for creating the runbook. We have already discussed
the possible languages, and in this chapter, PowerShell will be used primarily for all
examples.

Creating a PowerShell runbook is exactly the same as creating a PowerShell script. It
can declare and accept multiple parameters—the parameters can have attributes such
as data types, which are mandatory (just like any PowerShell parameter attributes). It
can invoke PowerShell cmdlets whose modules are available and already loaded and
declared, and it can invoke functions and return output.

A runbook can also invoke another runbook. It can invoke a child runbook inline within
the original process and context or in a separate process and context.

Invoking a runbook inline is similar to invoking a PowerShell script. The next example
invokes a child runbook using the inline approach:

.\ConnectAzure.ps1 -connectionName "azureforarchitectsconnection"

Get-AzSqlServer

Runbook authoring and execution | 121

In the preceding code, we saw how the ConnectAzure runbook accepts a parameter
named connectionName and an appropriate value is supplied to it. This runbook creates a
connection to Azure after authenticating with it using a service principal. Check out the
syntax for invoking the child runbook. It is very similar to invoking a general PowerShell
script along with parameters.

The next line of code, Get-AzVm, fetches the relevant information from Azure and lists
the VM details. You will notice that although the authentication happens within a child
runbook, the Get-AzVm cmdlet succeeds and lists all the VMs in the subscription because
the child runbook executes in the same job as that of the parent runbook, and they
share the context.

Alternatively, a child runbook can be invoked using the Start-AzurermAutomationRunbook
cmdlet provided by Azure Automation. This cmdlet accepts the name of the Automation
account, the resource group name, and the name of the runbook along with parameters,
as mentioned here:

$params = @{"connectionName"="azureforarchitectsconnection"}

$job = Start-AzurermAutomationRunbook '

 –AutomationAccountName 'bookaccount' '

 –Name 'ConnectAzure' '

 -ResourceGroupName 'automationrg' -parameters $params

if($job -ne $null) {

 Start-Sleep -s 100

 $job = Get-AzureAutomationJob -Id $job.Id -AutomationAccountName
'bookaccount'

 if ($job.Status -match "Completed") {

 $jobout = Get-AzureAutomationJobOutput '

 -Id $job.Id '

 -AutomationAccountName 'bookaccount' '

 -Stream Output

 if ($jobout) {Write-Output $jobout.Text}

 }

}

Using this approach creates a new job that's different from the parent job, and they run
in different contexts.

122 | Automating architecture on Azure

Using Az modules
So far, all examples have used AzureRM modules. The previously shown runbooks will be
re-written to use cmdlets from the Az module.

As mentioned before, Az modules are not installed by default. They can be installed
using the Modules gallery menu item in Azure Automation.

Search for Az in the gallery and the results will show multiple modules related to it. If
the Az module is selected to be imported and installed, it will throw an error saying
that its dependent modules are not installed and that they should be installed before
installing the current module. The module can be found on the Modules gallery blade
by searching for Az, as shown in Figure 4.13:

Figure 4.13: Finding the Az module on the Modules gallery blade

Instead of selecting the Az module, select Az.Accounts and import the module by
following the wizard, as shown in Figure 4.14:

Figure 4.14: Importing the Az.Accounts module

Using Az modules | 123

After installing Az.Accounts, the Az.Resources module can be imported. Azure virtual
machine-related cmdlets are available in the Az.Compute module, and it can also be
imported using the same method as we used to import Az.Accounts.

Once these modules are imported, the runbooks can use the cmdlets provided by these
modules. The previously shown ConnectAzure runbook has been modified to use the Az
module:

param(

 [parameter(mandatory=$true)]

 [string] $connectionName

)

$connection = Get-AutomationConnection -name $connectionName

$subscriptionid = $connection.subscriptionid

$tenantid = $connection.tenantid

$applicationid = $connection.applicationid

$cretThumbprint = $connection.CertificateThumbprint

Login-AzAccount -CertificateThumbprint $cretThumbprint
-ApplicationId $applicationid -ServicePrincipal
-Tenant $tenantid -SubscriptionId $subscriptionid

Get-AzVm

The last two lines of the code are important. They are using Az cmdlets instead of
AzureRM cmdlets.

124 | Automating architecture on Azure

Executing this runbook will give results similar to this:

Figure 4.15: The Az.Accounts module successfully imported

In the next section, we will work with webhooks.

Webhooks | 125

Webhooks
Webhooks became famous after the advent of REST endpoints and JSON data payloads.
Webhooks are an important concept and architectural decision in the extensibility
of any application. Webhooks are placeholders that are left within special areas of
an application so that the user of the application can fill those placeholders with
endpoint URLs containing custom logic. The application will invoke the endpoint URL,
automatically passing in the necessary parameters, and then execute the login available
therein.

Azure Automation runbooks can be invoked manually from the Azure portal. They can
also be invoked using PowerShell cmdlets and the Azure CLI. There are SDKs available
in multiple languages that are capable of invoking runbooks.

Webhooks are one of the most powerful ways to invoke a runbook. It is important to
note that runbooks containing the main logic should never be exposed directly as a
webhook. They should be called using a parent runbook, and the parent runbook should
be exposed as a webhook. The parent runbook should ensure that appropriate checks
are made before invoking the main child runbook.

The first step in creating a webhook is to author a runbook normally, as done previously.
After a runbook has been authored, it will be exposed as a webhook.

A new PowerShell-based runbook named exposedrunbook is created. This runbook takes
a single parameter, $WebhookData, of the object type. It should be named verbatim. This
object is created by the Azure Automation runtime and is supplied to the runbook.
The Azure Automation runtime constructs this object after obtaining the HTTP
request header values and body content and fills in the RequestHeader and RequestBody
properties of this object:

param(

 [parameter(mandatory=$true)]

 [object] $WebhookData

)

$webhookname = $WebhookData.WebhookName

$headers = $WebhookData.RequestHeader

$body = $WebhookData.RequestBody

Write-output "webhook header data"

126 | Automating architecture on Azure

Write-Output $webhookname

Write-output $headers.message

Write-output $headers.subject

 $connectionname = (ConvertFrom-Json -InputObject $body)

./connectAzure.ps1 -connectionName $connectionname[0].name

The three important properties of this object are WebhookName, RequestHeader, and
RequestBody. The values are retrieved from these properties and sent to the output
stream by the runbook.

The header and body content can be anything that the user supplies when invoking the
webhook. These values get filled up into the respective properties and become available
within the runbook. In the previous example, there are two headers set by the caller,
namely message and status header. The caller will also supply the name of the shared
connection to be used as part of the body content.

After the runbook is created, it should be published before a webhook can be created.
After publishing the runbook, clicking on the Webhook menu at the top starts the
process of creating a new webhook for the runbook, as shown in Figure 4.16:

Figure 4.16: Creating a webhook

A name for the webhook should be provided. This value is available within the runbook
using the WebhookData parameter with the WebhookName property name.

Webhooks | 127

The webhook can be in the enabled or disabled state, and it can expire at a given date
and time. It also generates a URL that is unique for this webhook and runbook. This URL
should be provided to anyone who wishes to invoke the webhook.

Invoking a webhook

Webhooks are invoked as HTTP requests using the POST method. When a webhook
is invoked, the HTTP request lands up with Azure Automation to start a runbook. It
creates the WebHookData object, filling it with the incoming HTTP header and body data,
and creates a job to be picked up by a runbook worker. This call uses the webhook URL
generated in the previous step.

The webhook can be invoked using Postman, by any code having the capability of calling
a REST endpoint using the POST method. In the next example, PowerShell will be used to
invoke the webhook:

$uri = "https://s16events.azure-automation.net/
webhooks?token=rp0w93L60fAPYZQ4vryxl%2baN%2bS1Hz4F3qVdUaKUDzgM%3d"

$connection = @(

 @{ name="azureforarchitectsconnection"}

)

$body = ConvertTo-Json -InputObject $ connection

$header = @{ subject="VMS specific to Ritesh";message="Get all virtual
machine details"}

$response = Invoke-WebRequest -Method Post -Uri $uri -Body $body -Headers
$header

$jobid = (ConvertFrom-Json ($response.Content)).jobids[0]

The PowerShell code declares the URL for the webhook and constructs the body in
JSON format, with name set to azureforarchitectsconnection and a header with two
header name-value pairs – subject and message. Both the header and body data can be
retrieved in the runbook using the WebhookData parameter.

The invoke-webrequest cmdlet raises the request on the previously mentioned endpoint
using the POST method, supplying both the header and the body.

128 | Automating architecture on Azure

The request is asynchronous in nature, and instead of the actual runbook output, the
job identifier is returned as an HTTP response. It is also available within the response
content. The job is shown in Figure 4.17:

Figure 4.17: Checking the job

Clicking on WEBHOOKDATA shows the values that arrived in the runbook automation
service in the HTTP request:

Figure 4.18: Verifying the output

Clicking on the output menu shows the list of VMs and SQL Server in the subscription.

The next important concepts in Azure Automation are Azure Monitor and Hybrid
Workers, and the next sections will explain them in detail.

Webhooks | 129

Invoking a runbook from Azure Monitor

Azure Automation runbooks can be invoked as responses to alerts generated within
Azure. Azure Monitor is the central service that manages logs and metrics across
resources and resource groups in a subscription. You can use Azure Monitor to create
new alert rules and definitions that, when triggered, can execute Azure Automation
runbooks. They can invoke an Azure Automation runbook in its default form or a
webhook that in turn can execute its associated runbook. This integration between
Azure Monitor and the ability to invoke runbooks opens numerous automation
opportunities to autocorrect the environment, scale up and down compute resources,
or take corrective actions without any manual intervention.

Azure alerts can be created and configured in individual resources and resource
levels, but it is always a good practice to centralize alert definitions for easy and better
maintenance and administration.

Let's go through the process of associating a runbook with an alert and invoking the
runbook as part of the alert being raised.

The first step is to create a new alert, as shown in Figure 4.19:

Figure 4.19: Creating an alert rule

Select a resource that should be monitored and evaluated for alert generation. A
resource group has been selected from the list, and it automatically enables all
resources within the resource group. It is possible to remove the resource selections
from the resource group:

130 | Automating architecture on Azure

Figure 4.20: Selecting the scope of the alert

Configure the condition and rules that should get evaluated. Select the Power Off
Virtual Machine signal name after selecting Activity Log as the Signal type:

Figure 4.21: Selecting the signal type

Webhooks | 131

The resultant window will allow you to configure the Alert logic/condition. Select
critical for Event Level, and set Status to Succeeded:

Figure 4.22: Setting up the alert logic

After determining the alert condition comes the most important configuration, which
configures the response to the alert by invoking a runbook. We can use Action groups
to configure the response to an alert. It provides numerous options to invoke an Azure
function, webhook, or Azure Automation runbook, as well as to send emails and SMS.

Create an action group by providing a name, a short name, its hosting subscription,
a resource group, and an Action name. Corresponding to Action name select the
Automation Runbook option as Action Type:

Figure 4.23 Configuring the action group

132 | Automating architecture on Azure

Selecting an automation runbook will open another blade for selecting an appropriate
Azure Automation account and runbook. Several runbooks are available out of the box,
and one of them has been used here:

Figure 4.24 Creating the runbook

Webhooks | 133

Finally, provide a name and hosting resource group to create a new alert.

If the VM is deallocated manually, the alert condition gets satisfied and it will raise an
alert:

Figure 4.25 Testing alerts

If you check the details of the VM after a few seconds, you should see that the VM is
being deleted:

Figure 4.26 Verifying the results

134 | Automating architecture on Azure

Hybrid Workers

So far, all the execution of runbooks has primarily been on infrastructure provided
by Azure. The runbook workers are Azure compute resources that are provisioned
by Azure with appropriate modules and assets deployed in them. Any execution of
runbooks happens on this compute. However, it is possible for users to bring their
own compute and execute the runbook on this user-provided compute rather than on
default Azure compute.

This has multiple advantages. The first and foremost is that the entire execution and
its logs are owned by the user with Azure having no visibility of it. Second, the user-
provided compute could be on any cloud, as well as on-premises.

Adding a Hybrid Worker involves multiple steps

• First and foremost, an agent needs to be installed on the user-provided
compute. Microsoft provides a script that can download and configure the agent
automatically. This script is available from https://www.powershellgallery.com/
packages/New-OnPremiseHybridWorker/1.6.

The script can also be executed from PowerShell ISE as an administrator from
within the server that should be part of the Hybrid Worker using the following
command:

Install-Script -Name New-OnPremiseHybridWorker -verbose

• After the script is installed, it can be executed along with parameters related to
the Azure Automation account details. A name is also provided for the Hybrid
Worker. If the name does not exist already, it will be created; if it exists, the server
will be added to the existing Hybrid Worker. It is possible to have multiple servers
within a single Hybrid Worker, and it is possible to have multiple Hybrid Workers
as well:

New-OnPremiseHybridWorker.ps1 -AutomationAccountName bookaccount
-AAResourceGroupName automationrg '
-HybridGroupName "localrunbookexecutionengine" '
-SubscriptionID xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

https://www.powershellgallery.com/packages/New-OnPremiseHybridWorker/1.6
https://www.powershellgallery.com/packages/New-OnPremiseHybridWorker/1.6

Webhooks | 135

• Once the execution finishes, navigating back to the portal will show an entry for a
Hybrid Worker, as shown in Figure 4.27:

Figure 4.27: Checking user Hybrid Worker groups

• If, at this time, an Azure runbook is executed that has a dependency on the Az
module and a custom certificate uploaded to the certificate asset, it will fail with
errors related to the Az module and the certificate not being found:

Figure 4.28: Checking errors

• Install the Az module using the following command on the server:

Install-module -name Az -AllowClobber -verbose

It is also important to have the .pfx certificate available on this server. The
previously exported certificate should be copied to the server and installed
manually.

136 | Automating architecture on Azure

• After installation of the Az module and certificate, re-executing the runbook on
the Hybrid Worker is shown in Figure 4.29, and it should show the list of VMs in
the subscription:

Figure 4.29: Setting up a runbook to run on a Hybrid Worker

When we discussed different scenarios, we talked about configuration management.
In the next section, we will be discussing configuration management with Azure
Automation in more detail.

Azure Automation State Configuration
Azure Automation provides a Desired State Configuration (DSC) pull server along
with every Azure Automation account. The pull server can hold configuration scripts
that can be pulled by servers across clouds and on-premises. This means that Azure
Automation can be used to configure any server hosted anywhere in the world.

The DSC needs a local agent on these servers, also known as a local configuration
manager (LCM). It should be configured with the Azure Automation DSC pull server so
it can download the required configuration and autoconfigure the server.

The autoconfiguration can be scheduled to be periodic (by default it is half an hour),
and if the agent finds any deviation in the server configuration compared to the one
available in the DSC script, it will autocorrect and bring back the server to the desired
and expected state.

Azure Automation State Configuration | 137

In this section, we will configure one server hosted on Azure, and the process will
remain the same irrespective of whether the server is on a cloud or on-premises.

The first step is to create a DSC configuration. A sample configuration is shown here,
and complex configurations can be authored similarly:

configuration ensureiis {

import-dscresource -modulename psdesiredstateconfiguration

node localhost {

 WindowsFeature iis {

 Name = "web-server"

 Ensure = "Present"

 }

 }

}

The configuration is quite simple. It imports the PSDesiredStateConfiguration base DSC
module and declares a single-node configuration. This configuration is not associated
with any specific node and can be used to configure any server. The configuration is
supposed to configure an IIS web server and ensure that it is present on any server to
which it is applied.

This configuration is not yet available on the Azure Automation DSC pull server, and so
the first step is to import the configuration into the pull server. This can be done using
the Automation account Import-AzAutomationDscConfiguration cmdlet, as shown next:

Import-AzAutomationDscConfiguration -SourcePath "C:\Ritesh\ensureiis.ps1"
-AutomationAccountName bookaccount -ResourceGroupName automationrg -Force
-Published

There are a few important things to note here. The name of the configuration should
match the filename, and it must only contain alphanumeric characters and underscores.
A good naming convention is to use verb/noun combinations. The cmdlets need the
path of the configuration file and the Azure Automation account details to import the
configuration script.

138 | Automating architecture on Azure

At this stage, the configuration is visible on the portal:

Figure 4.30: Adding configuration

Once the configuration script is imported, it is compiled and stored within the DSC pull
server using the Start-AzAutomationDscCompilationJob cmdlet, as shown next:

Start-AzAutomationDscCompilationJob -ConfigurationName 'ensureiis'
-ResourceGroupName 'automationrg' -AutomationAccountName 'bookaccount'

The name of the configuration should match the one that was recently uploaded, and
the compiled configuration should be available now on the Compiled configurations
tab, as shown in Figure 4.31:

Figure 4.31: Listing compiled configurations

Azure Automation State Configuration | 139

It is important to note that the Node Count in Figure 4.31 is 0. It means that a node
configuration called ensureiss.localhost exists but it is not assigned to any node. The
next step is to assign the configuration to the node.

By now, we have a compiled DSC configuration available on the DSC pull server, but
there are no nodes to manage. The next step is to onboard the VMs and associate them
with the DSC pull server. This is done using the Register-AzAutomationDscNode cmdlet:

Register-AzAutomationDscNode -ResourceGroupName 'automationrg'
-AutomationAccountName 'bookaccount' -AzureVMLocation "west
Europe" -AzureVMResourceGroup 'spark' -AzureVMName 'spark'
-ConfigurationModeFrequencyMins 30 -ConfigurationMode 'ApplyAndAutoCorrect'

This cmdlet takes the name of the resource group for both the VM and the
Azure Automation account. It also configures the configuration mode and the
configurationModeFrequencyMins property of the local configuration manager of the
VM. This configuration will check and autocorrect any deviation from the configuration
applied to it every 30 minutes.

If VMresourcegroup is not specified, the cmdlet tries to find the VM in the same resource
group as the Azure Automation account, and if the VM location value is not provided,
it tries to find the VM in the Azure Automation region. It is always better to provide
values for them. Notice that this command can only be used for Azure VMs as it asks
for AzureVMname explicitly. For servers on other clouds and on-premises, use the
Get-AzAutomationDscOnboardingMetaconfig cmdlet.

Now, a new node configuration entry can also be found in the portal, as shown in
Figure 4.32:

Figure 4.32: Verifying node status

140 | Automating architecture on Azure

The node information can be obtained as follows:

$node = Get-AzAutomationDscNode -ResourceGroupName 'automationrg'
-AutomationAccountName 'bookaccount' -Name 'spark'

And a configuration can be assigned to the node:

Set-AzAutomationDscNode -ResourceGroupName 'automationrg'
-AutomationAccountName 'bookaccount' -NodeConfigurationName 'ensureiis.
localhost' -NodeId $node.Id

Once the compilation is complete, it can be assigned to the nodes. The initial status is
Pending, as shown in Figure 4.33:

Figure 4.33: Verifying node status

After a few minutes, the configuration is applied to the node, the node becomes
Compliant, and the status becomes Completed:

Figure 4.34: Verifying if the node is compliant

Azure Automation pricing | 141

Later, logging into the server and checking if the web server (IIS) is installed confirms
that it is installed, as you can see in Figure 4.35:

Figure 4.35: Checking whether the desired state has been achieved

In the next section, Azure Automation pricing will be discussed.

Azure Automation pricing
There is no cost for Azure Automation if no runbooks are executed on it. The cost of
Azure Automation is charged per minute for execution of runbook jobs. This means
that if the total number of runbook execution minutes is 10,000, the cost of Azure
Automation would be $0.002 per minute multiplied by 9,500, as the first 500 minutes
are free.

There are other costs involved in Azure Automation depending on features consumed.
For example, a DSC pull server does not cost anything within Azure Automation; neither
does onboarding Azure VMs on to the pull server. However, if non-Azure servers are
onboarded, typically from other clouds or on-premises, then the first five servers are
free and anything on top of that costs $6 per server per month in the West US region.

Pricing may vary from region to region, and it's always a good practice to verify the
pricing on the official pricing page: https://azure.microsoft.com/pricing/details/
automation.

You might ask, why do we need an Automation account when we can deploy serverless
applications via Azure Functions? In the next section, we will explore the key
differences between Azure Automation and serverless automation.

Comparison with serverless automation
Azure Automation and Azure serverless technologies, especially Azure Functions, are
quite similar and overlap in terms of functionality. However, these are separate services
with different capabilities and pricing.

It is important to understand that Azure Automation is a complete suite for process
automation and configuration management, while Azure Functions is meant for
implementing business functionality.

https://azure.microsoft.com/pricing/details/automation
https://azure.microsoft.com/pricing/details/automation

142 | Automating architecture on Azure

Azure Automation is used for automating the processes of provisioning, deprovisioning,
management, and operations of infrastructure and configuration management
thereafter. On the other hand, Azure Functions is meant for the creation of services,
implementing functionality that can be part of microservices and other APIs.

Azure Automation is not meant for unlimited scale, and the load is expected to be
moderate, while Azure Functions can handle unlimited traffic and scale automatically.

There are a host of shared assets, such as connections, variables, and modules, that can
be reused across runbooks in Azure Automation; however, there is no out-of-the-box
shared concept in Azure Functions.

Azure Automation can manage intermediate state by way of checkpointing and
continue from the last saved state, while Azure functions are generally stateless and do
not maintain any state.

Summary
Azure Automation is an important service within Azure and the only service for process
automation and configuration management. This chapter covered a lot of important
concepts related to Azure Automation and process automation, including shared assets
such as connection, certificates, and modules.

It covered the creation of runbooks, including invoking runbooks in different ways,
such as parent-child relationships, webhooks, and using the portal. The chapter also
discussed the architecture and life cycle of runbooks.

We also looked at the usage of Hybrid Workers and, toward the end of the chapter,
explored configuration management using a DSC pull server and a local configuration
manager. Finally, we made comparisons with other technologies, such as Azure
Functions.

In the next chapter, we will explore designing policies, locks, and tags for Azure
deployments.

Azure is a versatile cloud platform. Customers can not only create and deploy their
applications; they can also actively manage and govern their environments. Clouds
generally follow a pay-as-you-go paradigm, where a customer subscribes and can then
deploy virtually anything to the cloud. It could be as small as a basic virtual machine,
or it could be thousands of virtual machines with higher stock-keeping units (SKUs).
Azure will not stop any customer from provisioning the resources they want to
provision. Within an organization, there could be a large number of people with access
to the organization's Azure subscription. There needs to be a governance model in
place so that only necessary resources are provisioned by people who have the right to
create them. Azure provides resource management features, such as Azure Role-Based
Access Control (RBAC), Azure Policy, management groups, blueprints, and resource
locks, for managing and providing governance for resources.

Designing policies,
locks, and tags for

Azure deployments

5

146 | Designing policies, locks, and tags for Azure deployments

Other major aspects of governance include cost, usage, and information management.
An organization's management team always wants to be kept up to date about cloud
consumption and costs. They would like to identify what team, department, or unit is
using what percentage of their total cost. In short, they want to have reports based on
various dimensions of consumption and cost. Azure provides a tagging feature that can
help provide this kind of information on the fly.

In this chapter, we will cover the following topics:

• Azure management groups

• Azure tags

• Azure Policy

• Azure locks

• Azure RBAC

• Azure Blueprints

• Implementing Azure governance features

Azure management groups
We are starting with Azure management groups because, in most of the upcoming
sections, we will be referencing or mentioning management groups. Management
groups act as a level of scope for you to effectively assign or manage roles and policies.
Management groups are very useful if you have multiple subscriptions.

Management groups act as a placeholder for organizing subscriptions. You can also
have nested management groups. If you apply a policy or access at the management
group level, it will be inherited by the underlying management groups and
subscriptions. From the subscription level, that policy or access will be inherited by
resource groups and then finally by the resources.

Azure tags | 147

The hierarchy of management groups is shown here:

Figure 5.1: Hierarchy of Azure management groups

In Figure 5.1, we are using management groups to separate the operations of different
departments, such as marketing, IT, and HR. Inside each of these departments,
there are nested management groups and subscriptions, which helps to organize
resources into a hierarchy for policy and access management. Later, you will see how
management groups are used as a scope for governance, policy management, and
access management.

In the next section, we will be discussing Azure tags, which play another vital role in the
logical grouping of resources.

Azure tags
Azure allows the tagging of resource groups and resources with name-value pairs.
Tagging helps in the logical organization and categorization of resources. Azure
also allows the tagging of 50 name-value pairs for a resource group and its resources.
Although a resource group acts as a container or a placeholder for resources, tagging
a resource group does not mean the tagging of its constituent resources. Resource
groups and resources should be tagged based on their usage, which will be explained
later in this section. Tags are bound to a subscription, resource group, or resource.
Azure accepts any name-value pair, and so it is important for an organization to define
both the names and their possible values.

148 | Designing policies, locks, and tags for Azure deployments

But why is tagging important? In other words, what problems can be solved using
tagging? Tagging has the following benefits:

• Categorization of resources: An Azure subscription can be used by multiple
departments within an organization. It is important for the management team
to identify the owners of any resources. Tagging helps in assigning identifiers to
resources that can be used to represent departments or roles.

• Information management for Azure resources: Again, Azure resources can be
provisioned by anyone with access to the subscription. Organizations like to
have a proper categorization of resources in place to comply with information
management policies. Such policies can be based on application life cycle
management, such as the management of development, testing, and production
environments. They could also be based on usage or any other priorities. Each
organization has its own way of defining information categories, and Azure caters
for this with tags.

• Cost management: Tagging in Azure can help in identifying resources based
on their categorization. Queries can be executed against Azure to identify cost
per category, for instance. For example, the cost of resources in Azure for the
development of an environment for the finance department and the marketing
department can be easily ascertained. Moreover, Azure also provides billing
information based on tags. This helps in identifying the consumption rates of
teams, departments, or groups.

Tags in Azure do have certain limitations, however:

• Azure allows a maximum of 50 tag name-value pairs to be associated with
resource groups.

• Tags are non-inheritable. Tags applied to a resource group do not apply to the
individual resources within it. However, it is quite easy to forget to tag resources
when provisioning them. Azure Policy provides the mechanism to use to ensure
that tags are tagged with the appropriate value during provision time. We will
consider the details of such policies later in this chapter.

Tags can be assigned to resources and resource groups using PowerShell, the Azure
CLI 2.0, Azure Resource Manager templates, the Azure portal, and the Azure Resource
Manager REST APIs.

Azure tags | 149

An example of information management categorization using Azure tags is shown here:

Figure 5.2: Information management categorization using Azure tags

In this example, the Department, Project, Environment, Owner, Approver, Maintainer,
Start Date, Retire Date, and Patched Date name-value pairs are used to tag resources.
It is extremely easy to find all the resources for a particular tag or a combination of tags
using PowerShell, the Azure CLI, or REST APIs. The next section will discuss ways to use
PowerShell to assign tags to resources.

Project

Environment

Owner

Department

Start DatePatched
Date

Retire Date

Maintainer

Approver

Azure
Resource

150 | Designing policies, locks, and tags for Azure deployments

Tags with PowerShell

Tags can be managed using PowerShell, Azure Resource Manager templates, the Azure
portal, and REST APIs. In this section, PowerShell will be used to create and apply tags.
PowerShell provides a cmdlet for retrieving and attaching tags to resource groups and
resources:

• To retrieve tags associated with a resource using PowerShell,
the Get-AzResource cmdlet can be used:

(Get-AzResource -Tag @{ "Environment"="Production"}).Name

• To retrieve tags associated with a resource group using PowerShell, the following
command can be used:

Get-AzResourceGroup -Tag @{"Environment"="Production"}

• To set tags to a resource group, the Update-AzTag cmdlet can be used:

$tags = @{"Dept"="IT"; "Environment"="Production"}
$resourceGroup = Get-AzResourceGroup -Name demoGroup
New-AzTag -ResourceId $resourceGroup.ResourceId -Tag $tags

• To set tags to a resource, the same Update-AzTag cmdlet can be used:

$tags = @{"Dept"="Finance"; "Status"="Normal"}
$resource = Get-AzResource -Name demoStorage -ResourceGroup demoGroup
New-AzTag -ResourceId $resource.id -Tag $tags

• You can update existing tags using the Update-AzTag command; however, you need
to specify the operation as Merge or Replace. Merge will append the new tags you
are passing into the existing tags; however, the Replace operation will replace
all the old tags with the new ones. Here is one example of updating the tags in a
resource group without replacing the existing ones:

$tags = @{"Dept"="IT"; "Environment"="Production"}
$resourceGroup = Get-AzResourceGroup -Name demoGroup
Update-AzTag -ResourceId $resourceGroup.ResourceId -Tag $tags -Operation
Merge

Let's now look at tags with Azure Resource Manager templates.

Tags with Azure Resource Manager templates

Azure Resource Manager templates also help in defining tags for each resource. They
can be used to assign multiple tags to each resource, as follows:

Azure tags | 151

{

 "$schema": "https://schema.management.azure.com/schemas/2019-04-01/
deploymentTemplate.json#",

 "contentVersion": "1.0.0.0",

 "resources": [

 {

 "apiVersion": "2019-06-01",

 "type": "Microsoft.Storage/storageAccounts",

 "name": "[concat('storage', uniqueString(resourceGroup().id))]",

 "location": "[resourceGroup().location]",

 "tags": {

 "Dept": "Finance",

 "Environment": "Production"

 },

 "sku": {

 "name": "Standard_LRS"

 },

 "kind": "Storage",

 "properties": { }

 }

]

}

In the previous example, a couple of tags, Dept and Environment, were added to a storage
account resource using Azure Resource Manager templates.

Tagging resource groups versus resources

It is a must for architects to decide the taxonomy and information architecture for
Azure resources and resource groups. They should identify the categories by which
resources will be classified based on the query requirements. However, they must also
identify whether tags should be attached to individual resources or to resource groups.

152 | Designing policies, locks, and tags for Azure deployments

If all resources within a resource group need the same tag, then it is better to tag the
resource group, even though tags don't inherit the resources in the resource group.
If your organization requires tags to be passed to all the underlying resources, then
you can consider writing a PowerShell script to get the tags from the resource group
and update the tags for the resources in the resource group. It is important to take
queries on tags into consideration before deciding whether tags should be applied
at the resource level or the resource group level. If the queries relate to individual
resource types across a subscription and across resource groups, then assigning tags
to individual resources makes more sense. However, if identifying resource groups is
enough for your queries to be effective, then tags should be applied only to resource
groups. If you are moving resources across resource groups, the tags applied at the
resource group level will be lost. If you are moving resources, consider adding the
tags again.

Azure Policy
In the previous section, we talked about applying tags for Azure deployments. Tags
are great for organizing resources; however, there is one more thing that was not
discussed: how do organizations ensure that tags are applied for every deployment?
There should be automated enforcement of Azure tags to resources and resource
groups. There is no check from Azure to ensure that appropriate tags are applied to
resources and resource groups. This is not just specific to tags—this applies to the
configuration of any resource on Azure. For example, you may wish to restrict where
your resources can be provisioned geographically (to only the US-East region, for
instance).

You might have guessed by now that this section is all about formulating a governance
model on Azure. Governance is an important element in Azure because it ensures that
everyone accessing the Azure environment is aware of organizational priorities and
processes. It also helps to bring costs under control. It helps in defining organizational
conventions for managing resources.

Each policy can be built using multiple rules, and multiple policies can be applied to
a subscription or resource group. Based on whether the rules are satisfied, policies
can execute various actions. An action could be to deny an ongoing transaction, to
audit a transaction (which means writing to logs and allowing it to finish), or to append
metadata to a transaction if it's found to be missing.

Policies could be related to the naming convention of resources, the tagging of
resources, the types of resources that can be provisioned, the location of resources, or
any combination of those.

Azure provides numerous built-in policies and it is possible to create custom policies.
There is a policy language based on JSON that can be used to define custom policies.

Azure Policy | 153

Now that you know the purpose and use case of Azure Policy, let's go ahead and discuss
built-in policies, policy language, and custom policies.

Built-in policies

Azure provides a service for the creation of custom policies; however, it also provides
some out-of-the-box policies that can be used for governance. These policies relate to
allowed locations, allowed resource types, and tags. More information for these built-in
policies can be found at https://docs.microsoft.com/azure/azure-resource-manager/
resource-manager-policy.

Policy language

Policies in Azure use JSON to define and describe policies. There are two steps in policy
adoption. The policy should be defined and then it should be applied and assigned.
Policies have scope and can be applied at the management group, subscription, or
resource group level.

Policies are defined using if...then blocks, similar to any popular programming
language. The if block is executed to evaluate the conditions, and based on the result of
those conditions, the then block is executed:

{

 "if": {

 <condition> | <logical operator>

 },

 "then": {

 "effect": "deny | audit | append"

 }

}

The policies not only allow simple if conditions but also allow multiple if conditions
to be joined together logically to create complex rules. These conditions can be joined
using AND, OR, and NOT operators:

• The AND syntax requires all conditions to be true.

• The OR syntax requires one of the conditions to be true.

• The NOT syntax inverts the result of the condition.

https://docs.microsoft.com/azure/azure-resource-manager/resource-manager-policy
https://docs.microsoft.com/azure/azure-resource-manager/resource-manager-policy

154 | Designing policies, locks, and tags for Azure deployments

The AND syntax is shown next. It is represented by the allOf keyword:

"if": {

 "allOf": [

 {

 "field": "tags",

 "containsKey": "application"

 },

 {

 "field": "type",

 "equals": "Microsoft.Storage/storageAccounts"

 }

]

},

The OR syntax is shown next. It is represented by the anyOf keyword:

"if": {

 "anyOf": [

 {

 "field": "tags",

 "containsKey": "application"

 },

 {

 "field": "type",

 "equals": "Microsoft.Storage/storageAccounts"

 }

]

},

The NOT syntax is shown next. It is represented by the not keyword:

"if": {

 "not": [

 {

 "field": "tags",

Azure Policy | 155

 "containsKey": "application"

 },

 {

 "field": "type",

 "equals": "Microsoft.Storage/storageAccounts"

 }

]

},

In fact, these logical operators can be combined together, as follows:

"if": {

 "allOf": [

 {

 "not": {

 "field": "tags",

 "containsKey": "application"

 }

 },

 {

 "field": "type",

 "equals": "Microsoft.Storage/storageAccounts"

 }

]

},

This is very similar to the use of if conditions in popular programming languages such
as C# and Node.js:

If ("type" == "Microsoft.Storage/storageAccounts") {

 Deny

}

It is important to note that there is no allow action, although there is a Deny action. This
means that policy rules should be written with the possibility of denial in mind. Rules
should evaluate conditions and Deny the action if the conditions are met.

156 | Designing policies, locks, and tags for Azure deployments

Allowed fields

The fields that are allowed in conditions while defining policies are as follows:

• Name: The name of the resource for applying the policy to. This is very specific and
applicable to a resource by its usage.

• Type: The type of resource, such as Microsoft.Compute/VirtualMachines. That
would apply the policy to all instances of virtual machines, for example.

• Location: The location (that is, the Azure region) of a resource.

• Tags: The tags associated with a resource.

• Property aliases: Resource-specific properties. These properties are different for
different resources.

In the next section, you will learn more about safekeeping resources in production
environments.

Azure locks
Locks are mechanisms for stopping certain activities on resources. RBAC provides
rights to users, groups, and applications within a certain scope. There are out-of-the-
box RBAC roles, such as owner, contributor, and reader. With the contributor role, it is
possible to delete or modify a resource. How can such activities be prevented despite
the user having a contributor role? Enter Azure locks.

Azure locks can help in two ways:

• They can lock resources such that they cannot be deleted, even if you have owner
access.

• They can lock resources in such a way that they can neither be deleted nor have
their configuration modified.

Locks are typically very helpful for resources in production environments that should
not be modified or deleted accidentally.

Locks can be applied at the levels of subscription, resource group, management group,
and individual resource. Locks can be inherited between subscriptions, resource
groups, and resources. Applying a lock at the parent level will ensure that those
resources at the child level will also inherit it. Resources that are added later in the
sub-scope also inherit the lock configuration by default. Applying a lock at the resource
level will also prevent the deletion of the resource group containing the resource.

Azure locks | 157

Locks are applied only to operations that help in managing a resource, rather than
operations that are within a resource. Users need either
Microsoft.Authorization/* or Microsoft.Authorization/locks/* RBAC permissions
to create and modify locks.

Locks can be created and applied through the Azure portal, Azure PowerShell, the
Azure CLI, Azure Resource Manager templates, and REST APIs.

Creating a lock using an Azure Resource Manager template is done as follows:

{

 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/
deploymentTemplate.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "lockedResource": {

 "type": "string"

 }

 },

 "resources": [

 {

 "name": "[concat(parameters('lockedResource'), '/Microsoft.
Authorization/myLock')]",

 "type": "Microsoft.Storage/storageAccounts/providers/locks",

 "apiVersion": "2019-06-01",

 "properties": {

 "level": "CannotDelete"

 }

 }

]

}

The resources section of the Azure Resource Manager template code consists of a list of
all the resources to be provisioned or updated within Azure. There is a storage account
resource, and the storage account has a lock resource. A name for the lock is provided
using dynamic string concatenation, and the lock that's applied is of the CannotDelete
type, which means that the storage account is locked for deletion. The storage account
can only be deleted after the removal of the lock.

158 | Designing policies, locks, and tags for Azure deployments

Creating and applying a lock to a resource using PowerShell is done as follows:

New-AzResourceLock -LockLevel CanNotDelete -LockName LockSite '

 -ResourceName examplesite -ResourceType Microsoft.Web/sites '

 -ResourceGroupName exampleresourcegroup

Creating and applying a lock to a resource group using PowerShell is done as follows:

New-AzResourceLock -LockName LockGroup -LockLevel CanNotDelete '

 -ResourceGroupName exampleresourcegroup

Creating and applying a lock to a resource using the Azure CLI is done as follows:

az lock create --name LockSite --lock-type CanNotDelete \

 --resource-group exampleresourcegroup --resource-name examplesite \

 --resource-type Microsoft.Web/sites

Creating and applying a lock to a resource group using the Azure CLI is done as follows:

az lock create --name LockGroup --lock-type CanNotDelete \ --resource-group
exampleresourcegroup

To create or delete resource locks, the user should have access to the
Microsoft.Authorization/* or Microsoft.Authorization/locks/* actions. You can
further give granular permissions as well. Owners and user access administrators will
have access to creating or deleting locks by default.

If you are wondering what the Microsoft.Authorization/* and
Microsoft.Authorization/locks/* keywords are, you will get to know more about them
in the next section.

Let's now look at Azure RBAC.

Azure RBAC
Azure provides authentication using Azure Active Directory for its resources. Once
an identity has been authenticated, the resources the identity will be allowed to
access should be decided. This is known as authorization. Authorization evaluates the
permissions that have been afforded to an identity. Anybody with access to an Azure
subscription should be given just enough permissions so that their specific job can be
performed, and nothing more.

Authorization is popularly also known as RBAC. RBAC in Azure refers to the assigning
of permissions to identities within a scope. The scope could be a management group, a
subscription, a resource group, or individual resources.

Azure RBAC | 159

RBAC helps in the creation and assignment of different permissions to different
identities. This helps in segregating duties within teams, rather than everyone having
all permissions. RBAC helps in making people responsible for their job only, because
others might not even have the necessary access to perform it. It should be noted that
providing permissions at a greater scope automatically ensures that child resources
inherit those permissions. For example, providing an identity with read access to a
resource group means that the identity will have read access to all the resources within
that group, too.

Azure provides three general-purpose, built-in roles. They are as follows:

• The owner role, which has full access to all resources

• The contributor role, which has access to read/write resources

• The reader role, which has read-only permissions to resources

There are more roles provided by Azure, but they are resource-specific, such as the
network contributor and security manager roles.

To get all roles provided by Azure for all resources, execute
the Get-AzRoleDefinition command in the PowerShell console.

Each role definition has certain allowed and disallowed actions. For example, the owner
role has all actions permitted; no action is prohibited:

PS C:\Users\riskaria> Get-AzRoleDefinition -Name "Owner"

Name : Owner

Id : 8e3af657-a8ff-443c-a75c-2fe8c4bcb635

IsCustom : False

Description : Lets you manage everything, including access to resources.

Actions : {*}

NotActions : {}

DataActions : {}

NotDataActions : {}

AssignableScopes : {/}

Each role comprises multiple permissions. Each resource provides a list of
operations. The operations supported by a resource can be obtained using
the Get-AzProviderOperation cmdlet. This cmdlet takes the name of the provider and
resource to retrieve the operations:

160 | Designing policies, locks, and tags for Azure deployments

PS C:\Users\riskaria> Get-AzProviderOperation -OperationSearchString
"Microsoft.Insights/*" | select Operation

This will result in the following output:

PS C:\Users\riskaria> Get-AzProviderOperation -OperationSearchString
"Microsoft.Insights/*" | select Operation

Operation

Microsoft.Insights/Metrics/Action

Microsoft.Insights/Register/Action

Microsoft.Insights/Unregister/Action

Microsoft.Insights/ListMigrationDate/Action

Microsoft.Insights/MigrateToNewpricingModel/Action

Microsoft.Insights/RollbackToLegacyPricingModel/Action

.

.

.

.

.

.

.

.

Microsoft.Insights/PrivateLinkScopes/PrivateEndpointConnectionProxies/Read

Microsoft.Insights/PrivateLinkScopes/PrivateEndpointConnectionProxies/Write

Microsoft.Insights/PrivateLinkScopes/PrivateEndpointConnectionProxies/Delete

Microsoft.Insights/PrivateLinkScopeOperationStatuses/Read

Microsoft.Insights/DiagnosticSettingsCategories/Read

The output shown here provides all the actions available within the Microsoft.Insights
resource provider across its associated resources. The resources include Metrics,
Register, and others, while the actions include Read, Write, and others.

Let's now look at custom roles.

Azure RBAC | 161

Custom roles

Azure provides numerous out-of-the-box generic roles, such as owner, contributor,
and reader, as well as specialized resource-specific roles, such as virtual machine
contributor. Having a reader role assigned to a user/group or service principal will
mean reader permissions being assigned to the scope. The scope could be a resource,
resource group, or a subscription. Similarly, a contributor would be able to read as well
as modify the assigned scope. A virtual machine contributor would be able to modify
virtual machine settings and not any other resource settings. There are, however, times
when existing roles might not suit our requirements. In such cases, Azure allows the
creation of custom roles. They can be assigned to users, groups, and service principals
and are applicable to resources, resource groups, and subscriptions.

Custom roles are created by combining multiple permissions. For example, a custom
role can consist of operations from multiple resources. In the next code block, a new
role definition is being created, but instead of setting all properties manually, one
of the existing "Virtual Machine Contributor" roles is retrieved because it almost
matches with the configuration of the new custom role. Avoid using the same name
as built-in roles, as that would create conflict. Then, the ID property is nullified and a
new name and description is provided. The code also clears all the actions, adds some
actions, adds a new scope after clearing the existing scope, and finally creates a new
custom role:

$role = Get-AzRoleDefinition "Virtual Machine Contributor"

$role.Id = $null

$role.Name = "Virtual Machine Operator"

$role.Description = "Can monitor and restart virtual machines."

$role.Actions.Clear()

$role.Actions.Add("Microsoft.Storage/*/read")

$role.Actions.Add("Microsoft.Network/*/read")

$role.Actions.Add("Microsoft.Compute/*/read")

$role.Actions.Add("Microsoft.Compute/virtualMachines/start/action")

$role.Actions.Add("Microsoft.Compute/virtualMachines/restart/action")

$role.Actions.Add("Microsoft.Authorization/*/read")

$role.Actions.Add("Microsoft.Resources/subscriptions/resourceGroups/read")

$role.Actions.Add("Microsoft.Insights/alertRules/*")

$role.Actions.Add("Microsoft.Support/*")

$role.AssignableScopes.Clear()

$role.AssignableScopes.Add("/subscriptions/548f7d26-b5b1-468e-ad45-

162 | Designing policies, locks, and tags for Azure deployments

6ee12accf7e7")

New-AzRoleDefinition -Role $role

There is a preview feature available in the Azure portal that you can use to create
custom RBAC roles from the Azure portal itself. You have the option to create roles
from scratch, clone an existing role, or start writing the JSON manifest. Figure 5.3 shows
the Create a custom role blade, which is available at IAM > +Add section:

Figure 5.3: Creating custom roles from the Azure portal

This makes the process of custom role creation hassle-free.

How are locks different from RBAC?

Locks are not the same as RBAC. RBAC helps in allowing or denying permissions for
resources. These permissions relate to performing operations, such as read, write,
and update operations on resources. Locks, on the other hand, relate to disallowing
permissions to configure or delete resources.

In the next section, we will be discussing Azure Blueprints, which helps us with the
orchestration of artifacts, such as role assignments, policy assignments, and more, that
we have discussed so far.

Azure Blueprints
You will be familiar with the word blueprint, which refers to the plan or drawing that
is used by an architect to architect a solution. Similarly, in Azure, cloud architects can
leverage Azure Blueprints to define a set of repeatable Azure resources that adheres to
an organization's standards, processes, and patterns.

An example of implementing Azure governance features | 163

Blueprints allows us to orchestrate the deployment of various resources and other
artifacts, such as:

• Role assignments

• Policy assignments

• Azure Resource Manager templates

• Resource groups

Azure blueprint objects are replicated to multiple regions and are backed by Azure
Cosmos DB. The replication helps in providing consistent access to resources and
maintaining the organization's standards irrespective of which region you are
deploying to.

Azure Blueprints comprises various artifacts, and you can find the list of supported
artifacts here: https://docs.microsoft.com/azure/governance/blueprints/
overview#blueprint-definition.

Blueprints can be created from the Azure portal, Azure PowerShell, the Azure CLI, REST
APIs, or ARM templates.

In the next section, we will look at an example of implementing Azure governance
features. Services and features such as RBAC, Azure Policy, and Azure resource locks
will be used in the example.

An example of implementing Azure governance features
In this section, we will go through a sample architecture implementation for a fictitious
organization that wants to implement Azure governance and cost management
features.

Background

Company Inc is a worldwide company that is implementing a social media solution
on an Azure IaaS platform. They use web servers and application servers deployed on
Azure virtual machines and networks. Azure SQL Server acts as the backend database.

RBAC for Company Inc

The first task is to ensure that the appropriate teams and application owners can access
their resources. It is recognized that each team has different requirements. For the
sake of clarity, Azure SQL is deployed in a separate resource group to the Azure IaaS
artifacts.

https://docs.microsoft.com/azure/governance/blueprints/overview#blueprint-definition
https://docs.microsoft.com/azure/governance/blueprints/overview#blueprint-definition

164 | Designing policies, locks, and tags for Azure deployments

The administrator assigns the following roles for the subscription:

Table 5.1: Different roles with access details

Azure Policy

The company should implement Azure Policy to ensure that its users always provision
resources according to the company guidelines.

The policies in Azure govern various aspects related to the deployment of resources.
The policies will also govern updates after the initial deployment. Some of the policies
that should be implemented are given in the following section.

Deployments to certain locations

Azure resources and deployments can only be executed for certain chosen locations. It
would not be possible to deploy resources in regions outside of the policy. For example,
the regions that are allowed are West Europe and East US. It should not be possible to
deploy resources in any other region.

Tags of resources and resource groups

Every resource in Azure, including the resource groups, will mandatorily
have tags assigned to it. The tags will include, as a minimum, details about the
department, environment, creation data, and project name.

Diagnostic logs and Application Insights for all resources

Every resource deployed on Azure should have diagnostic logs and application logs
enabled wherever possible.

Role Assigned to Description

Owner Administrator Manages all resource groups and the subscription

Security
Manager

Security
administrators

This role allows users to look at Azure Security Center and
the status of the resources.

Contributor Infrastructure
management

Managing virtual machines and other resources.

Reader Developers Can view resources but cannot modify them. Developers are
expected to work in their development/testing environments.

Summary | 165

Azure locks

A company should implement Azure locks to ensure that crucial resources are not
deleted accidentally. Every resource that is crucial for the functioning of a solution
needs to be locked down. This means that even the administrators of the services
running on Azure do not have the capability to delete these resources; the only way to
delete a resource is to remove the lock first.

You should also note that:

All production and pre-production environments, apart from the development and
testing environments, would be locked for deletion.

All development and testing environments that have single instances would also be
locked for deletion.

All resources related to the web application would be locked for deletion for all
production environments.

All shared resources would be locked for deletion irrespective of the environment.

Summary
In this chapter, you learned that governance and cost management are among the
top priorities for companies moving to the cloud. Having an Azure subscription with a
pay-as-you-go scheme can harm the company budget, because anyone with access to
the subscription can provision as many resources as they like. Some resources are free,
but others are expensive.

You also learned that it is important for organizations to remain in control of their
cloud costs. Tags help in generating billing reports. These reports could be based
on departments, projects, owners, or any other criteria. While cost is important,
governance is equally important. Azure provides locks, policies, and RBAC to implement
proper governance. Policies ensure that resource operations can be denied or audited,
locks ensure that resources cannot be modified or deleted, and RBAC ensures that
employees have the right permissions to perform their jobs. With these features,
companies can have sound governance and cost control for their Azure deployments.

In the next chapter, we will be discussing cost management in Azure. We will go
through different optimization methods, cost management, and billing APIs.

In the previous chapter, we discussed tags, policies, and locks and how they can
be leveraged from a compliance standpoint. Tags allow us to add metadata to our
resources; they also help us in the logical management of resources. In the Azure
portal, we can filter resources based on tags. If we assume there is a large number of
resources, which is quite common in enterprises, filtering will help us to easily manage
our resources. Another benefit of tags is that they can be used to filter our billing
reports or usage reports in terms of tags. In this chapter, we are going to explore cost
management for Azure solutions.

The primary reason why corporations are moving to the cloud is to save on cost. There
is no upfront cost for having an Azure subscription. Azure provides a pay-as-you-go
subscription, where billing is based on consumption. Azure measures resource usage
and provides monthly invoices. There is no upper limit for Azure consumption. As we
are on a public cloud, Azure (like any other service provider) has some hard and soft
limits on the number of resources that can be deployed. Soft limits can be increased
by working with Azure Support. There are some resources that have a hard limit. The
service limits can be found at https://docs.microsoft.com/azure/azure-resource-
manager/management/azure-subscription-service-limits, and the default limit varies
based on the type of subscription you have.

Cost management for
Azure solutions

6

https://docs.microsoft.com/azure/azure-resource-manager/management/azure-subscription-service-limits
https://docs.microsoft.com/azure/azure-resource-manager/management/azure-subscription-service-limits

168 | Cost management for Azure solutions

It is important for companies to keep a close watch on Azure consumption and usage.
Although they can create policies to set organizational standards and conventions,
there is also a need to keep track of billing and consumption data. Moreover, they
should employ best practices for consuming Azure resources so that the return is
maximized. For this, architects need to know about Azure resources and features, their
corresponding costs, and the cost/benefit analysis of features and solutions.

In this chapter, we will cover the following topics:

• Azure offer details

• Billing

• Invoicing

• Usage and quotas

• Usage and Billing APIs

• Azure pricing calculator

• Best practices for cost optimization

Let's go ahead and discuss each of these points.

Azure offer details
Azure has different offers that you can purchase. So far, we have discussed pay-as-
you-go, but there are others, such as Enterprise Agreements (EAs), Azure Sponsorship,
and Azure in CSP. We will cover each of these as they are very important for billing:

• Pay-as-you-go: This is a commonly known offering, where customers pay based
on the consumption and the rates are available in the public-facing documentation
of Azure. Customers receive an invoice every month for usage from Microsoft and
they can pay via credit card or an invoice payment method.

• EAs: EAs entail a monetary commitment with Microsoft, which means that
organizations sign an agreement with Microsoft and promise that they will use
x amount of Azure resources. If the usage goes above the agreed amount, the
customer will receive an overage invoice. Customers can create multiple accounts
under an EA and have multiple subscriptions inside these accounts. There are two
types of EA: Direct EA and Indirect EA. Direct EA customers have a direct billing
relationship with Microsoft; on the other hand, with Indirect EA, the billing is
managed by a partner. EA customers will get better offers and discounts because
of the commitment they make with Microsoft. The EA is managed via a portal
called the EA portal (https://ea.azure.com), and you need to have enrolment
privileges to access this portal.

https://ea.azure.com

Understanding billing | 169

• Azure in CSP: Azure in CSP is where a customer reaches out to a Cloud Solution
Provider (CSP) partner, and this partner provisions a subscription for the
customer. The billing will be completely managed by the partner; the customer
will not have a direct billing relationship with Microsoft. Microsoft invoices the
partner and the partner invoices the customer, adding their margin.

• Azure Sponsorship: Sponsorship is given by Microsoft to start-ups, NGOs, and
other non-profit organizations to use Azure. The sponsorship is for a fixed term
and a fixed amount of credit. If the term expires or credit gets exhausted, the
subscription will be converted to a pay-as-you-go subscription. If organizations
want to renew their sponsorship entitlement, they have to work with Microsoft.

We have just outlined a few of Azure's offerings. The complete list is available at https://
azure.microsoft.com/support/legal/offer-details, which includes other offerings, such
as Azure for Students, Azure Pass, and Dev/Test subscriptions.

Next, let's discuss billing in Azure.

Understanding billing
Azure is a service utility that has the following features:

• No upfront costs

• No termination fees

• Billing per second, per minute, or per hour depending on the type of resource

• Payment based on consumption-on-the-go

In such circumstances, it is very difficult to estimate the upfront cost of consuming
Azure resources. Every resource in Azure has its own cost model and charge based on
storage, usage, and time span. It is very important for management, administration, and
finance departments to keep track of usage and costs. Azure provides usage and billing
reporting capabilities to help upper management and administrators generate cost and
usage reports based on multiple criteria.

The Azure portal provides detailed billing and usage information through the Cost
Management + Billing feature, which can be accessed from the master navigation
blade, as shown in Figure 6.1:

https://azure.microsoft.com/support/legal/offer-details
https://azure.microsoft.com/support/legal/offer-details

170 | Cost management for Azure solutions

Figure 6.1: Cost Management + Billing service in the Azure portal

Please note that if your billing is managed by a CSP, you will not have access to this
feature. CSP customers can view their costs in the pay-as-you-go scheme if they
transition their CSP legacy subscriptions to the Azure plan. We will discuss the Azure
plan and the Modern Commerce platform later in the chapter.

Cost Management + Billing shows all the subscriptions and the billing scopes you have
access to, as shown in Figure 6.2:

Figure 6.2: Billing overview of user subscriptions

Understanding billing | 171

The Cost Management section has several blades, such as:

• Cost analysis for analyzing the usage of a scope.

• Budgets for settings budgets.

• Cost alerts for notifying administrators when the usage exceeds a certain
threshold.

• Advisor recommendations for getting advice on how to make potential savings.
We will discuss Azure Advisor in the last section of this chapter.

• Exports for automating usage exports to Azure Storage.

• Cloudyn, which is a tool used by CSP partners to analyze costs, as they don't have
access to Cost Management.

• Connectors for AWS for connecting your AWS consumption data to Azure Cost
Management.

The different options available in Azure Cost Management are shown in Figure 6.3:

Figure 6.3: Cost Management overview

172 | Cost management for Azure solutions

Clicking on the Cost analysis menu on this blade provides a comprehensive interactive
dashboard, using which cost can be analyzed with different dimensions and measures:

Figure 6.4: Analyzing subscription costs through the Cost analysis option

The dashboard not only shows the current cost but also forecasts the cost and breaks
it down based on multiple dimensions. Service name, Location, and Resource group
name are provided by default, but they can be changed to other dimensions as well.
There will be always a scope associated with every view. Some of the available scopes
are billing account, management group, subscription, and resource group. You can
switch the scope depending on the level you want to analyze.

The Budget menu on the left allows us to set up the budget for better cost management
and provides alerting features in case the actual cost is going to breach the budget
estimates:

Understanding billing | 173

Figure 6.5: Creating a budget

Cost Management also allows us to fetch cost data from other clouds, such as AWS,
within the current dashboards, thereby managing costs for multiple clouds from a
single blade and dashboard. However, this feature is in preview at the time of writing.
This connector will become chargeable after August 25, 2020.

174 | Cost management for Azure solutions

You need to fill in your AWS role details and other details to pull the cost information, as
shown in Figure 6.5. If you are unsure how to create the policy and role in AWS, refer to
https://docs.microsoft.com/azure/cost-management-billing/costs/aws-integration-
set-up-configure#create-a-role-and-policy-in-aws:

Figure 6.6: Creating an AWS connector in Cost Management

The cost reports can also be exported to a storage account on a scheduled basis.

Some of the cost analysis is also available in the Subscriptions blade. In the Overview
section, you can see resources and their cost. Also, there is another graph, where you
can see your current spend, forecast, and balance credit (if you are using a credit-based
subscription).

https://docs.microsoft.com/azure/cost-management-billing/costs/aws-integration-set-up-configure#create-a-role-and-policy-in-aws
https://docs.microsoft.com/azure/cost-management-billing/costs/aws-integration-set-up-configure#create-a-role-and-policy-in-aws

Understanding billing | 175

Figure 6.7 shows cost information:

Figure 6.7: Cost analysis for the subscription

Clicking on any of the costs in Figure 6.7 will redirect you to the Cost Management –
Cost Analysis section. There are a lot of dimensions in Cost Management with which
you can group the data for analysis. The available dimensions will vary based on the
scope you have selected. Some of the commonly used dimensions are as follows:

• Resource types

• Resource group

• Tag

• Resource location

• Resource ID

• Meter category

• Meter subcategory

• Service

176 | Cost management for Azure solutions

At the beginning of the chapter, we said that tags can be used for cost management. For
example, let's say you have a tag called Department with values of IT, HR, and Finance.
Tagging the resources appropriately will help you understand the cost incurred by each
department. You can also download the cost report as a CSV, Excel, or PNG file using
the Download button.

Additionally, Cost Management supports multiple views. You can create your own
dashboard and save it. EA customers get the added benefit of the Cost Management
connector or Power BI. With the connector, users can pull the usage statistics to Power
BI and create visualizations.

Up to this point, we have been discussing how we can keep track of our usage using
Cost Management. In the next section, we will explore how invoicing works for the
services we have used.

Invoicing
Azure's billing system also provides information about invoices that are generated
monthly.

Depending on the offer type, the method of invoicing may vary. For pay-as-you-go
users, the invoices will be sent monthly to the account administrator. However, for EA
customers, the invoice will be sent to the contact on the enrollment.

Clicking on the Invoices menu brings up a list of all the invoices generated, and clicking
on any of the invoices provides details about that invoice. Figure 6.8 shows how the
invoices are shown in the Azure portal:

Figure 6.8: List of invoices and their details

Invoicing | 177

There are two types of invoices: one is for Azure services such as SQL, Virtual
Machines, and Networking. Another type is for Azure Marketplace and Reservations.
Azure Marketplace provides partner services from different vendors for customers. We
will be talking about Azure Reservations later on.

By default, for a pay-as-you-go subscription, the account admin has access to
the invoices. If they want, they can delegate access to other users, such as the
organization's finance team, by choosing the Access invoice option in Figure 6.8.
Additionally, the account admin can opt for email addresses where they want to send
out the copies of the invoices.

The Email Invoice option is not available for Support Plan now. Alternatively, you can
visit the Accounts portal and download the invoice. Microsoft is slowly moving away
from this portal, and most of the features are getting deprecated as they are integrated
into the Azure portal.

So far, we have discussed subscriptions and how invoicing is done. Something new
that has been introduced by Microsoft is Modern Commerce. With this new commerce
experience, the purchase process and experience has been simplified. Let's take a
closer look at Modern Commerce and learn how it is different from the legacy platform
that we have discussed so far.

The Modern Commerce experience

If your organization is already working with Microsoft, you will know that there are
multiple agreements involved for each offer, such as Web Direct, EAs, CSP, Microsoft
Service and Product Agreement (MSPA), Server Cloud Enrollments (SCE), and so on.
Along with this, each of them has its own portal; for example, EAs have the EA portal,
CSP has the Partner Center portal, and Volume Licensing has its own portal too.

Each offer comes with a different set of terms and conditions, and the customers need
to go through them every time they make a purchase. The transition from one offer
to another is not very easy as each offer has a different set of terms and conditions.
Let's imagine that you already have an EA subscription and would like to convert it
to a CSP subscription; you may have to delete some of the partner services as they
are not supported in CSP. For each product, each offer will have different rules. From
a customer standpoint, it's very hard to understand what supports what and how
rules differ.

Addressing this issue, Microsoft has recently issued a new agreement called Microsoft
Customer Agreement (MCA). This will act as the basic terms and conditions. You can
make amendments to it whenever required when you sign up for a new program.

178 | Cost management for Azure solutions

For Azure, there will be three Go-To-Market (GTM) programs:

• Field Led: Customers will interact directly with the Microsoft Accounts Team and
the billing will be directly managed by Microsoft. Eventually, this will replace EAs.

• Partner Led: This is equivalent to the Azure-in-CSP program, where a partner
manages your billing. There are different partners across the world. A quick web
search will help you find the partners around you. This program will replace the
Azure-in-CSP program. As the first step to Modern Commerce, a partner will sign
a Microsoft Partner Agreement (MPA) with Microsoft and transition their existing
customers by making them sign the MCA. At the time of writing this book, many
partners have transitioned their customers to Modern Commerce, and the new
commerce experience is available in 139 countries.

• Self Service: This will be a replacement for Web Direct. It doesn't require any
involvement from the partner or the Microsoft Accounts Team. Customers can
directly purchase from microsoft.com and they will sign the MCA during the
purchase.

In Azure, the billing will be done on the Azure Plan, and the billing will be always aligned
with the calendar month. Buying an Azure Plan is very similar to buying any other
subscription. The difference is that the MCA will be signed during the process.

Azure Plan can host multiple subscriptions, and it will act as a root-level container. All
the usage is tied back to a single Azure Plan. All the subscriptions inside the Azure Plan
will act as containers to host services, such as Virtual Machines, SQL Database, and
Networking.

Some of the changes and advancements we could observe after the introduction of
Modern Commerce are as follows:

• Eventually, the portals will be deprecated. For example, earlier EA customers were
only able to download the enrollment usage information from the EA portal. Now
Microsoft has integrated it into Azure Cost Management with a richer experience
than the EA portal.

• Pricing will be done in USD and billed in the local currency. If your currency is not
USD, then the foreign exchange (FX) rate will be applied and is available in your
invoice. Microsoft uses FX rates from Thomson Reuters, and these rates will be
assigned on the first of every month. This value will be consistent throughout the
month, irrespective of what the market rate is.

• CSP customers who transition to the new Azure Plan will be able to use Cost
Management. Access to Cost Management opens a new world of cost tracking, as
it provides access to all native Cost Management features.

http://microsoft.com

Usage and quotas | 179

All the subscriptions that we have discussed so far will eventually be moved to an Azure
Plan, which is the future of Azure. Now that you understand the basics of Modern
Commerce, let's discuss another topic that has a very important role when we are
architecting solutions. Most services have limits by default; some of these limits can be
increased while some are hard limits. When we are architecting a solution, we need to
make sure that there is ample quota. Capacity planning is a vital part of architectural
design. In the next section, you will learn more about limits on subscriptions.

Usage and quotas
As mentioned in the previous section, capacity planning needs to be one of the first
steps when we architect a solution. We need to verify whether the subscription has
enough quota to accommodate the new resources we are architecting. If not, during
the deployment, we may face issues.

Each subscription has a limited quota for each resource type. For example, there
could be a maximum of 10 public IP addresses provisioned with an MSDN Microsoft
account. Similarly, all resources have a maximum default limit for each resource type.
These resource type numbers for a subscription can be increased by contacting Azure
Support or clicking on the Request Increase button in the Usage + Quota blade on the
Subscription page.

Considering the number of resources in each region, it'll be a challenge to go through
the list. The portal provides options to filter the dataset and look for what we want. In
Figure 6.9, you can see that if we filter the location to Central US and set the resource
provider to Microsoft.Storage, we can confirm which quotas are available for storage
accounts:

Figure 6.9: Usage and quota for a given location and resource provider

180 | Cost management for Azure solutions

You can clearly see in Figure 6.9 that we haven't created any storage accounts in Central
US, and that leaves us with a quota of 250 accounts. If the solution we are architecting
requires more than 250 accounts, we need to click on Request Increase, which would
contact Azure Support.

This blade gives us the freedom to perform capacity planning prior to deployment.

When filtering the report, we used the term resource provider and selected Microsoft.
Storage. In the next section, will take a closer look at what this term means.

Resource providers and resource types
Whether you are interacting with the Azure portal, filtering services, or filtering the
billing usage report, you might need to work with resource providers and resource
types. For example, when you are creating a virtual machine, you are interacting with
the Microsoft.Compute resource provider and the virtualMachines resource type. The
create button that you click on to create the virtual machines communicates with the
resource provider via an API to get your deployment done. This is always denoted in
the format {resource-provider}/{resource-type}. So, the resource type for the virtual
machine is Microsoft.Compute/virtualMachines. In short, resource providers help to
create resource types.

Resource providers need to be registered with an Azure subscription. Resource types
will not be available in a subscription if resource providers are not registered. By
default, most providers are automatically registered; having said that, there will be
scenarios where we must manually register.

To get a list of providers that are available, the ones that are registered and the ones
that are not registered, and to register non-registered providers or vice versa, the
dashboard shown in Figure 6.10 can be used. For this operation, you need to have the
necessary roles assigned—Owner or Contributor roles will suffice. Figure 6.10 shows
what the dashboard looks like:

Resource providers and resource types | 181

Figure 6.10: List of registered and non-registered resource providers

In the previous section, we discussed how to download invoices and usage information.
If you need to download the data programmatically and save it, then you can use APIs.
The next section is all about Azure Billing APIs.

182 | Cost management for Azure solutions

Usage and Billing APIs
Although the portal is a great way to find usage, billing, and invoice information
manually, Azure also provides the following APIs to programmatically retrieve details
and create customized dashboards and reports. The APIs vary depending on the kind
of subscription you are using. As there are many APIs, we will be sharing the Microsoft
documentation with each API so that you can explore them all.

Azure Enterprise Billing APIs

EA customers have a dedicated set of APIs available for them to work with billing data.
The following APIs use the API key from the EA portal for authentication; tokens from
Azure Active Directory will not work with them:

• Balance and Summary API: As we discussed earlier, EA works with a monetary
commitment, and it is very important to track the balance, overage, credit
adjustments, and Azure Marketplace charges. Using this API, customers can pull
the balance and summary for a billing period.

• Usage Details API: The Usage Details API will help you to get daily usage
information about the enrollment with granularity down to the instance level. The
response of this API will be like the usage report that can be downloaded from the
EA portal.

• Marketplace Store Charge API: This is a dedicated API for extracting the charges
for Marketplace purchases.

• Price Sheet API: Each enrollment will have a special price sheet, and discounts
vary from customers to customers. The Price Sheet API can pull the price list.

• Reserved Instance Details API: We haven't discussed Azure Reservations so far,
but it will be discussed by the end of this chapter. Using this API, you can get
usage information about the reservations and a list of the reservations in the
enrollment.

Here is the link to the documentation for the EA APIs: https://docs.microsoft.com/
azure/cost-management-billing/manage/enterprise-api.

Let's take a look at the Azure Consumption APIs now.

https://docs.microsoft.com/azure/cost-management-billing/manage/enterprise-api
https://docs.microsoft.com/azure/cost-management-billing/manage/enterprise-api

Usage and Billing APIs | 183

Azure Consumption APIs

Azure Consumption APIs can be used with EA as well as Web Direct (with some
exceptions) subscriptions. This requires a token, which needs to be generated by
authenticating against Azure Active Directory. Since these APIs also support EA, don't
confuse this token with the EA API key that we mentioned in the previous section. Here
are the key APIs that are self-explanatory:

• Usage Details API

• Marketplace Charges API

• Reservation Recommendations API

• Reservation Details and Summary API

EA customers have additional support for the following APIs:

• Price sheet

• Budgets

• Balances

Documentation is available here: https://docs.microsoft.com/azure/cost-management-
billing/manage/consumption-api-overview.

Additionally, there is another set of APIs that can be only used by Web Direct customers:

• Azure Resource Usage API: This API can be used with an EA or pay-as-you-go
subscription to download the usage data.

• Azure Resource RateCard API: This is only applicable to Web Direct; EAs are not
supported. Web Direct customers can use this to download price sheets.

• Azure Invoice Download API: This is only applicable to Web Direct customers. It's
used to download invoices programmatically.

The names may look familiar, and the difference is only the endpoint that we are calling.
For Azure Enterprise Billing APIs, the URL will start with https://consumption.azure.com,
and for Azure Consumption APIs, the URL starts with https://management.azure.com.
This is how you can differentiate them. In the next section, you will be seeing a new set
of APIs that are specifically used by Cost Management.

https://docs.microsoft.com/azure/cost-management-billing/manage/consumption-api-overview
https://docs.microsoft.com/azure/cost-management-billing/manage/consumption-api-overview

184 | Cost management for Azure solutions

Azure Cost Management APIs

With the introduction of Azure Cost Management, a new set of APIs are available for the
customer to use. These APIs are the backbone of Cost Management, which we used in
the Azure portal earlier. The key APIs are as follows:

• Query Usage API: This is the same API used by Cost Analysis in the Azure portal.
We can customize the response with what we need using a payload. It's very useful
when we want a customized report. The date range cannot exceed 365 days.

• Budgets API: Budgets is another feature of Azure Cost Management, and this API
lets us interact with the budgets programmatically.

• Forecast API: This can be used to get a forecast of a scope. The Forecast API is
only available for EA customers now.

• Dimensions API: Earlier, when we were discussing Cost Management, we said that
Cost Management supports multiple dimensions based on the scope. If you would
like to get the list of dimensions supported based on a specific scope, you can use
this API.

• Exports API: Another feature of Cost Management is that we can automate the
report export to a storage account. The Exports API can be used to interact with
the export configuration, such as the name of the storage account, customization,
frequency, and so on.

Check out the official documentation at https://docs.microsoft.com/rest/api/cost-
management.

Since Modern Commerce is expanding MCA, there's a whole new set of APIs that can be
explored here: https://docs.microsoft.com/rest/api/billing.

You may have noticed that we haven't mentioned CSP in any of these scenarios. In CSP,
the customer doesn't have access to the billing as it's managed by a partner, hence
the APIs are not exposed. However, a transition to an Azure Plan would let the CSP
customer use the Azure Cost Management APIs to see the retail rates.

Any programming or scripting language can be used to use these APIs and mix them
together to create complete comprehensive billing solutions. In the next section,
we will be focusing on the Azure pricing calculator, which will help the customer or
architect to understand the cost of a deployment.

Azure pricing calculator
Azure provides a cost calculator for users and customers to estimate their cost and
usage. This calculator is available at https://azure.microsoft.com/pricing/calculator:

https://docs.microsoft.com/rest/api/cost-management
https://docs.microsoft.com/rest/api/cost-management
https://docs.microsoft.com/rest/api/billing
https://azure.microsoft.com/pricing/calculator

Azure pricing calculator | 185

Figure 6.11: Azure pricing calculator

Users can select multiple resources from the left menu, and they will be added to the
calculator. In the following example, a virtual machine is added. Further configuration
with regard to virtual machine region, operating system, type, tier, instance size,
number of hours, and count should be provided to calculate costs:

Figure 6.12: Providing configuration details to calculate resource costs

186 | Cost management for Azure solutions

Similarly, the cost for Azure Functions, which relates to virtual machine memory size,
execution time, and executions per seconds, is shown in Figure 6.13:

Figure 6.13: Calculating costs for Azure Functions

 Azure provides different levels and support plans:

• Default support: free

• Developer support: $29 per month

• Standard support: $300 per month

• Profession direct: $1,000 per month

To see a complete comparison of the support plans, please refer to https://azure.
microsoft.com/support/plans.

You can select the support that you want depending on your requirements. Finally, the
overall estimated cost is displayed:

https://azure.microsoft.com/support/plans
https://azure.microsoft.com/support/plans

Best practices | 187

Figure 6.14: Cost estimation for selected support plan

It is important that architects understand every Azure feature used in their architecture
and solution. The success of the Azure calculator depends on the resources that are
selected and how they are configured. Any misrepresentation would lead to biased and
incorrect estimates and would be different than the actual billing.

We have reached the last section of this chapter. We have covered the basics of billing,
and now it's time to learn the best practices. Following the best practices will help you
achieve cost optimization.

Best practices
Architects need to understand their architecture and the Azure components that are
utilized. Based on the active monitoring, audits, and usage, they should determine the
best offering from Microsoft in terms of SKU, size, and features. This section will detail
some of the best practices to be adopted from a cost optimization perspective.

Azure Governance

Azure Governance can be defined as a set of processes or mechanisms that can be
leveraged to maintain complete control over the resources deployed in Azure. Some of
the key points are as follows:

• Set up a naming convention for all resource types and resource groups. Ensure
that the naming convention is followed consistently and comprehensively across
all resources and resource groups. This can be done by establishing Azure policies.

188 | Cost management for Azure solutions

• Set up a logical organization and multiple taxonomies for resources, resource
groups, and subscriptions by applying tags to them. Tags categorize resources
and can also help evaluate costs from different perspectives. This can be done by
establishing Azure policies, and multiple policies can be combined into initiatives.
These initiatives can be applied, which in turn will apply all policies for compliance
checks and reporting.

• Use Azure Blueprints instead of ARM templates directly. This will ensure that
the deployment of new environments, resources, and resource groups can be
standardized according to corporate standards, including naming conventions and
the use of tags.

Compute best practices

Compute refers to services that help in the execution of services. Some of the best
compute practices that Azure architects should follow for optimal utilization of
resources and cost efficiency are as follows:

• Leverage Azure Advisor to see the available options to save costs on your virtual
machines and to find out whether a virtual machine is underutilized. Advisor uses
machine learning patterns and artificial intelligence to analyze your usage and
provide recommendations. These recommendations play an important role in cost
optimization.

• Use Azure Reserved Instances (RI). RIs can get you potential savings on compute
costs by paying the cost of the virtual machine upfront or monthly. The term
of the RI can be a year or three years. If you buy an RI, that will cut down the
compute cost and you will only be seeing the disk, network, and license (if any)
charges for a virtual machine. If you have five virtual machines, you can opt for five
RIs to suppress the cost of compute completely. RIs automatically look for virtual
machines with the matching SKU and attaches to it. Potential savings may vary
from 20% to 40% depending on the size of the virtual machine.

• Using Azure Hybrid Benefit (AHUB), you can use your own Windows Server or
SQL licenses to reduce the license cost. Combining RIs and AHUB can give you
immense savings.

• Choose the best location for your compute services, such as virtual machines.
Choose a location where all the Azure features are together in the same region.
This will avoid egress traffic.

• Choose the optimal size for virtual machines. A large virtual machine costs more
than a small one, and a large virtual machine might not be required at all.

Best practices | 189

• Resize virtual machines during times of demand and reduce their size when
demand subsides. Azure releases new SKUs quite frequently. If a new size suits
your needs better, then it must be used.

• Shut down compute services during off-hours or when they are not needed. This
is for non-production environments.

• Deallocate virtual machines instead of shutting them down. This will release all
their resources, and the meter for their consumption will stop.

• Use dev/test labs for development and testing purposes. They provide policies,
auto-shutdown, and auto-start features.

• With virtual machine scale sets, start with a small number of virtual machines and
scale out when demand increases.

• Choose the correct size (small, medium, or large) for application gateways. They
are backed up by virtual machines and can help reduce costs.

• Choose a Basic tier application gateway if the web application firewall is not
needed.

• Choose the correct tiers for VPN gateways (Basic VPN, Standard, High
performance, and Ultra performance).

• Reduce network traffic between Azure regions.

• Use a load balancer with a public IP to access multiple virtual machines rather
than assigning a public IP to each virtual machine.

• Monitor virtual machines and calculate performance and usage metrics. Based
on those calculations, determine whether you want to upscale or downscale your
virtual machines. This could result in downsizing and reducing the number of
virtual machines.

Considering these best practices while architecting will inevitably lead to cost savings.
Now that we have covered compute, let's take a similar approach to storage.

Storage best practices

Since we are hosting our applications in the cloud, Azure Storage will be used to store
the data related to these applications. If we don't follow the right practices, things may
go wrong. Some of the best practices for storage are as follows:

• Choose an appropriate storage redundancy type (GRS, LRS, RA-GRS). GRS is
costlier than LRS.

190 | Cost management for Azure solutions

• Archive storage data to the cool or archive access tier. Keep data that is frequently
accessed in the hot tier.

• Remove blobs that are not required.

• Delete virtual machine operating system disks explicitly after deleting virtual
machines if they are not needed.

• Storage accounts should be metered based on their size, write, read, list, and
container operations.

• Prefer standard disks over premium disks; use premium disks only if your business
requires it.

• Using CDN and caching for static files instead of fetching them from storage every
time.

• Azure offers reserved capacity to save costs on blob data.

Keeping these best practices handy will help you to architect cost-effective storage
solutions. In the next section, we are going to discuss the best practices involved in the
deployment of PaaS services.

PaaS best practices

There are many PaaS services offered by Azure and if they are misconfigured, the
chances are that you might end up with unexpected charges in the invoice. To avoid
this scenario, you can leverage the following best practices:

• Choose an appropriate Azure SQL tier (Basic, Standard, Premium RS, or Premium)
and appropriate performance levels.

• Choose appropriately between a single database and an elastic database. If there
are a lot of databases, it is more cost efficient to use elastic databases than single
databases.

• Re-architect your solution to use PaaS (serverless or microservices with
containers) solutions instead of IaaS solutions. These PaaS solutions take away
maintenance costs and are available on a per-minute consumption basis. If you do
not consume these services, there is no cost, despite your code and services being
available around the clock.

There are resource-specific cost optimizations, and it is not possible to cover all of
them in a single chapter. You are advised to read the documentation related to each
feature's cost and usage.

Summary | 191

General best practices

So far, we have looked at service-specific best practices, and we will wind up this
section with some general guidelines:

• The cost of resources is different across regions. Try an alternate region, provided
it's not creating any performance or latency issues.

• EAs offer better discounts than other offers. You can speak to the Microsoft
Account Team and see what benefits you can get if you sign up to an EA.

• If Azure costs can be pre-paid, then you get discounts for all kinds of
subscriptions.

• Delete or remove unused resources. Figure out resources that are underutilized
and reduce their SKU or size. If they aren't needed, delete them.

• Use Azure Advisor and take its recommendations seriously.

As mentioned earlier, these are some generic guidelines and as you architect more
solutions, you'll be able to create a set of best practices for yourself. But to begin with,
you can consider these ones. Nevertheless, each component in Azure has its own best
practices, and referring to the documentation while you are architecting will help you
to create a cost-effective solution.

Summary
In this chapter, we learned the importance of cost management and administration
when working in a cloud environment. We also covered the various Azure pricing
options and various price optimization capabilities that Azure offers. Managing a
project's cost is paramount primarily because the monthly expense could be very low
but could rise if the resources are not monitored periodically. Cloud architects should
design their applications in a cost-effective manner. They should use appropriate Azure
resources, appropriate SKUs, tiers, and sizes, and know when to start, stop, scale up,
scale out, scale down, scale in, transfer data, and more. Proper cost management will
ensure that the actual expense meets the budgetary expenses.

In the next chapter, we will look at various Azure features related to data services, such
as Azure SQL, Cosmos DB, and sharding.

Azure provides both Infrastructure as a Service (IaaS) and Platform as a Service (PaaS)
services. These types of services provide organizations with different levels
and controls over storage, compute, and networks. Storage is the resource used when
working with the storage and transmission of data. Azure provides lots of options
for storing data, such as Azure Blob storage, Table storage, Cosmos DB, Azure SQL
Database, Azure Data Lake Storage, and more. While some of these options are meant
for big data storage, analytics, and presentation, there are others that are meant for
applications that process transactions. Azure SQL is the primary resource in Azure that
works with transactional data.

Azure OLTP solutions

7

194 | Azure OLTP solutions

This chapter will focus on various aspects of using transactional data stores, such as
Azure SQL Database and other open-source databases that are typically used in Online
Transaction Processing (OLTP) systems, and will cover the following topics:

• OLTP applications

• Relational databases

• Deployment models

• Azure SQL Database

• Single Instance

• Elastic pools

• Managed Instance

• Cosmos DB

We will start this chapter by looking at what OLTP applications are and listing the OLTP
services of Azure and their use cases.

OLTP applications
As mentioned earlier, OLTP applications are applications that help in the processing and
management of transactions. Some of the most prevalent OLTP implementations can be
found in retail sales, financial transaction systems, and order entry. These applications
perform data capture, data processing, data retrieval, data modification, and data
storage. However, it does not stop here. OLTP applications treat these data tasks as
transactions. Transactions have a few important properties and OLTP applications
account for these properties. These properties are grouped under the acronym ACID.
Let's discuss these properties in detail:

• Atomicity: This property states that a transaction must consist of statements
and either all statements should complete successfully or no statement should be
executed. If multiple statements are grouped together, these statements form a
transaction. Atomicity means each transaction is treated as the lowest single unit
of execution that either completes successfully or fails.

• Consistency: This property focuses on the state of data in a database. It
dictates that any change in state should be complete and based on the rules and
constraints of the database, and that partial updates should not be allowed.

Azure cloud services | 195

• Isolation: This property states that there can be multiple concurrent transactions
executed on a system and each transaction should be treated in isolation. One
transaction should not know about or interfere with any other transaction. If the
transactions were to be executed in sequence, by the end, the state of data should
be the same as before.

• Durability: This property states that the data should be persisted and available,
even after failure, once it is committed to the database. A committed transaction
becomes a fact.

Now that you know what OLTP applications are, let's discuss the role of relational
databases in OLTP applications.

Relational databases

OLTP applications have generally relied on relational databases for their transaction
management and processing. Relational databases typically come in a tabular format
consisting of rows and columns. The data model is converted into multiple tables where
each table is connected to another table (based on rules) using relationships. This
process is also known as normalization.

There are multiple services in Azure that support OLTP applications and the
deployment of relational databases. In the next section, we will take a look at the
services in Azure that are related to OLTP applications.

Azure cloud services
A search for sql in the Azure portal provides multiple results. I have marked some of
them to show the resources that can be used directly for OLTP applications:

Figure 7.1: List of Azure SQL services

196 | Azure OLTP solutions

Figure 7.1 shows the varied features and options available for creating SQL Server–based
databases on Azure.

Again, a quick search for database in the Azure portal provides multiple resources, and
the marked ones in Figure 7.2 can be used for OLTP applications:

Figure 7.2: List of Azure services used for OLTP applications

Figure 7.2 shows resources provided by Azure that can host data in a variety of
databases, including the following:

• MySQL databases

• MariaDB databases

• PostgreSQL databases

• Cosmos DB

Next, let's discuss deployment models.

Deployment models
Deployment models in Azure are classified based on the level of management or
control. It's up to the user to select which level of management or control they prefer;
either they can go for complete control by using services such as Virtual Machines, or
they can use managed services where things will be managed by Azure for them.

There are two deployment models for deploying databases on Azure:

• Databases on Azure Virtual Machines (IaaS)

• Databases hosted as managed services (PaaS)

Deployment models | 197

We will now try to understand the difference between deployment on Azure Virtual
Machines and managed instances. Let's start with Virtual Machines.

Databases on Azure Virtual Machines

Azure provides multiple stock keeping units (SKUs) for virtual machines. There are
high-compute, high-throughput (IOPS) machines that are also available along with
general-use virtual machines. Instead of hosting a SQL Server, MySQL, or any other
database on on-premises servers, it is possible to deploy these databases on these
virtual machines. The deployment and configuration of these databases are no different
than that of on-premises deployments. The only difference is that the database is
hosted on the cloud instead of using on-premises servers. Administrators must perform
the same activities and steps that they normally would for an on-premises deployment.
Although this option is great when customers want full control over their deployment,
there are models that can be more cost-effective, scalable, and highly available
compared to this option, which will be discussed later in this chapter.

The steps to deploy any database on Azure Virtual Machines are as follows:

1. Create a virtual machine with a size that caters to the performance requirements
of the application.

2. Deploy the database on top of it.

3. Configure the virtual machine and database configuration.

This option does not provide any out-of-the-box high availability unless multiple
servers are provisioned. It also does not provide any features for automatic scaling
unless custom automation supports it.

Disaster recovery is also the responsibility of the customer. Servers should be
deployed on multiple regions connected using services like global peering, VPN
gateways, ExpressRoute, or Virtual WAN. It is possible for these virtual machines to be
connected to an on-premises datacenter through site-to-site VPNs or ExpressRoute
without having any exposure to the outside world.

These databases are also known as unmanaged databases. On the other hand,
databases hosted with Azure, other than virtual machines, are managed by Azure and
are known as managed services. In the next section, we will cover these in detail.

198 | Azure OLTP solutions

Databases hosted as managed services

Managed services mean that Azure provides management services for the databases.
These managed services include the hosting of the database, ensuring that the
host is highly available, ensuring that the data is replicated internally for availability
during disaster recovery, ensuring scalability within the constraint of a chosen SKU,
monitoring the hosts and databases and generating alerts for notifications or executing
actions, providing log and auditing services for troubleshooting, and taking care of
performance management and security alerts.

In short, there are a lot of services that customers get out of the box when using
managed services from Azure, and they do not need to perform active management
on these databases. In this chapter, we will look at Azure SQL Database in depth and
provide information on other databases, such as MySQL and Postgres. Also, we will
cover non-relational databases such as Cosmos DB, which is a NoSQL database.

Azure SQL Database
Azure SQL Server provides a relational database hosted as a PaaS. Customers can
provision this service, bring their own database schema and data, and connect their
applications to it. It provides all the features of SQL Server when deployed on a virtual
machine. These services do not provide a user interface to create tables and its schema,
nor do they provide any querying capabilities directly. SQL Server Management Studio
and the SQL CLI tools should be used to connect to these services and directly work
with them.

Azure SQL Database comes with three distinct deployment models:

• Single Instance: In this deployment model, a single database is deployed on a
logical server. This involves the creation of two resources on Azure: a SQL logical
server and a SQL database.

• Elastic pool: In this deployment mode, multiple databases are deployed on a
logical server. Again, this involves the creation of two resources on Azure: a SQL
logical server and a SQL elastic database pool—this holds all the databases.

• Managed Instance: This is a relatively new deployment model from the Azure
SQL team. This deployment reflects a collection of databases on a logical server,
providing complete control over the resources in terms of system databases.
Generally, system databases are not visible in other deployment models, but they
are available in the model. This model comes very close to the deployment of SQL
Server on-premises:

Azure SQL Database | 199

Figure 7.3: Azure SQL Database deployment models

If you are wondering when to use what, you should look at a feature comparison
between SQL Database and SQL Managed Instance. A complete feature comparison
is available at https://docs.microsoft.com/azure/azure-sql/database/features-
comparison.

Next, we will cover some of the features of SQL Database. Let's start with application
features.

Application features

Azure SQL Database provides multiple application-specific features that cater to the
different requirements of OLTP systems:

• Columnar store: This feature allows the storage of data in a columnar format
rather than in a row format.

• In-memory OLTP: Generally, data is stored in back-end files in SQL, and data is
pulled from them whenever it is needed by the application. In contrast to this,
in-memory OLTP puts all data in memory and there is no latency in reading the
storage for data. Storing in-memory OLTP data on SSD provides the best possible
performance for Azure SQL.

• All features of on-premises SQL Server.

The next feature we are going to discuss is high availability.

High availability

Azure SQL, by default, is 99.99% highly available. It has two different architectures for
maintaining high availability based on SKUs. For the Basic, Standard, and General SKUs,
the entire architecture is broken down into the following two layers.

• Compute layer

• Storage layer

https://docs.microsoft.com/azure/azure-sql/database/features-comparison
https://docs.microsoft.com/azure/azure-sql/database/features-comparison

200 | Azure OLTP solutions

There is redundancy built in for both of these layers to provide high availability:

Figure 7.4: Compute and storage layers in standard SKUs

For the Premium and business-critical SKUs, both compute and storage are on the
same layer. High availability is achieved by the replication of compute and storage
deployed in a four-node cluster, using technology similar to SQL Server Always On
availability groups:

Figure 7.5: Four-node cluster deployment

Azure SQL Database | 201

Now that you know how high availability is handled, let's jump to the next feature:
backups.

Backups

Azure SQL Database also provides features to automatically back up databases and
store them on storage accounts. This feature is important especially in cases where a
database becomes corrupt or a user accidentally deletes a table. This feature is available
at the server level, as shown in Figure 7.6:

Figure 7.6: Backing up databases in Azure

Architects should prepare a backup strategy so that backups can be used in times
of need. While configuring backups, ensure that your backups occur neither too
infrequently nor too frequently. Based on the business needs, a weekly backup or even a
daily backup should be configured, or even more frequently than that, if required. These
backups can be used for restoration purposes.

Backups will help in business continuity and data recovery. You can also go for
geo-replication to recover the data during a region failure. In the next section, we will
cover geo-replication.

202 | Azure OLTP solutions

Geo-replication

Azure SQL Database also provides the benefit of being able to replicate a database
to a different region, also known as a secondary region; this is completely based on
the plan that you are choosing. The database at the secondary region can be read by
applications. Azure SQL Database allows readable secondary databases. This is a great
business continuity solution as a readable database is available at any point in time.
With geo-replication, it is possible to have up to four secondaries of a database in
different regions or the same region. With geo-replication, it is also possible to fail over
to a secondary database in the event of a disaster. Geo-replication is configured at the
database level, as shown in Figure 7.7:

Figure 7.7: Geo-replication in Azure

Azure SQL Database | 203

If you scroll down on this screen, the regions that can act as secondaries are listed, as
shown in Figure 7.8:

Figure 7.8: List of available secondaries for geo-replication

Before architecting solutions that involve geo-replication, we need to validate the data
residency and compliance regulations. If customer data is not allowed to be stored
outside a region due to compliance reasons, we shouldn't be replicating it to other
regions.

In the next section, we will explore scalability options.

204 | Azure OLTP solutions

Scalability

Azure SQL Database provides vertical scalability by adding more resources (such as
compute, memory, and IOPS). This can be done by increasing the number of Database
Throughput Units (DTUs) or compute and storage resources in the case of the vCore
model:

Figure 7.9: Scalability in Azure SQL Database

We have covered the differences between DTU-based model and the vCore-based
model later in this chapter.

In the next section, we will cover security, which will help you understand how to build
secure data solutions in Azure.

Security

Security is an important factor for any database solution and service. Azure SQL
provides enterprise-grade security for Azure SQL, and this section will list some of the
important security features in Azure SQL.

Firewall

Azure SQL Database, by default, does not provide access to any requests. Source IP
addresses should be explicitly accepted for access to SQL Server. There is an option to
allow all Azure-based services access to a SQL database as well. This option includes
virtual machines hosted on Azure.

The firewall can be configured at the server level instead of the database level.
The Allow access to Azure services option allows all services, including virtual
machines, to access a database hosted on a logical server.

Azure SQL Database | 205

By default, this will be turned off due to security reasons; enabling this would allow
access from all Azure services:

Figure 7.10: Configuring a firewall at the server level in Azure

206 | Azure OLTP solutions

Azure SQL Server on dedicated networks

Although access to SQL Server is generally available through the internet, it is possible
for access to SQL Server to be limited to requests coming from virtual networks. This
is a relatively new feature in Azure. This helps in accessing data within SQL Server
from an application on another server of the virtual network without the request going
through the internet.

For this, a service endpoint of the Microsoft.Sql type should be added within the virtual
network, and the virtual network should be in the same region as that of Azure SQL
Database:

Figure 7.11: Adding a Microsoft.Sql service endpoint

Azure SQL Database | 207

An appropriate subnet within the virtual network should be chosen:

Figure 7.12: Choosing a subnet for the Microsoft.Sql service

208 | Azure OLTP solutions

Finally, from the Azure SQL Server configuration blade, an existing virtual
network should be added that has a Microsoft.Sql service endpoint enabled:

Figure 7.13: Adding a virtual network with the Microsoft.Sql service endpoint

Encrypted databases at rest

The databases should be in an encrypted form when at rest. At rest here means that the
data is at the storage location of the database. Although you might not have access to
SQL Server and its database, it is preferable to encrypt the database storage.

Databases on a filesystem can be encrypted using keys. These keys must be stored
in Azure Key Vault and the vault must be available in the same region as that of
Azure SQL Server. The filesystem can be encrypted by using the Transparent
data encryption menu item of the SQL Server configuration blade and by
selecting Yes for Use your own key.

Azure SQL Database | 209

The key is an RSA 2048 key and must exist within the vault. SQL Server will decrypt
the data at the page level when it wants to read it and send it to the caller; then, it will
encrypt it after writing to the database. No changes to the applications are required,
and it is completely transparent to them:

Figure 7.14: Transparent data encryption in SQL Server

Dynamic data masking

SQL Server also provides a feature that masks individual columns that contain sensitive
data, so that no one apart from privileged users can view actual data by querying it in
SQL Server Management Studio. Data will remain masked and will only be unmasked
when an authorized application or user queries the table. Architects should ensure that
sensitive data, such as credit card details, social security numbers, phone numbers,
email addresses, and other financial details, is masked.

Masking rules may be defined on a column in a table. There are four main types of
masks—you can check them out here: https://docs.microsoft.com/sql/relational-
databases/security/dynamic-data-masking?view=sql-server-ver15#defining-a-
dynamic-data-mask.

https://docs.microsoft.com/sql/relational-databases/security/dynamic-data-masking?view=sql-server-ver15#defining-a-dynamic-data-mask
https://docs.microsoft.com/sql/relational-databases/security/dynamic-data-masking?view=sql-server-ver15#defining-a-dynamic-data-mask
https://docs.microsoft.com/sql/relational-databases/security/dynamic-data-masking?view=sql-server-ver15#defining-a-dynamic-data-mask

210 | Azure OLTP solutions

Figure 7.15 shows how data masking is added:

 Figure 7.15: Dynamic data masking in SQL Database

Azure Active Directory integration

Another important security feature of Azure SQL is that it can be integrated with
Azure Active Directory (AD) for authentication purposes. Without integrating with
Azure AD, the only authentication mechanism available to SQL Server is via username
and password authentication—that is, SQL authentication. It is not possible to use
integrated Windows authentication. The connection string for SQL authentication
consists of both the username and password in plaintext, which is not secure.
Integrating with Azure AD enables the authentication of applications with Windows
authentication, a service principal name, or token-based authentication. It is a good
practice to use Azure SQL Database integrated with Azure AD.

There are other security features, such as advanced threat protection, auditing of the
environment, and monitoring, that should be enabled on any enterprise-level Azure
SQL Database deployments.

With that, we've concluded our look at the features of Azure SQL Database and can now
move on to the types of SQL databases.

Single Instance
Single Instance databases are hosted as a single database on a single logical server.
These databases do not have access to the complete features provided by SQL Server.
Each database is isolated and portable. Single instances support the vCPU-based and
DTU-based purchasing models that we discussed earlier.

Elastic pools | 211

Another added advantage of a single database is cost-efficiency. If you are in a vCore-
based model, you can opt for lower compute and storage resources to optimize costs. If
you need more compute or storage power, you can always scale up. Dynamic scalability
is a prominent feature of single instances that helps to scale resources dynamically
based on business requirements. Single instances allow existing SQL Server customers
to lift and shift their on-premises applications to the cloud.

Other features include availability, monitoring, and security.

When we started our section on Azure SQL Database, we mentioned elastic pools as
well. You can also transition a single database to an elastic pool for resource sharing.
If you are wondering what resource sharing and what elastic pools are, in the next
section, we will cover this.

Elastic pools
An elastic pool is a logical container that can host multiple databases on a single logical
server. Elastic pools are available in the vCore-based and DTU-based purchasing
models. The vCPU-based purchasing model is the default and recommended method
of deployment, where you'll get the freedom to choose your compute and storage
resources based on your business workloads. As shown in Figure 7.16, you can select
how many cores and how much storage is required for your database:

Figure 7.16: Setting up elastic pools in the vCore-based model

212 | Azure OLTP solutions

Also, at the top of the preceding figure, you can see there is an option that says Looking
for basic, standard, premium? If you select this, the model will be switched to the DTU
model.

The SKUs available for elastic pools in the DTU-based model are as follows:

• Basic

• Standard

• Premium

Figure 7.17 shows the maximum amounts of DTUs that can be provisioned for each SKU:

Figure 7.17: Amount of DTUs per SKU in an elastic pool

All the features discussed for Azure SQL single instances are available to elastic pools
as well; however, horizontal scalability is an additional feature that enables sharding.
Sharding refers to the vertical or horizontal partitioning of data and the storage of that
data in separate databases. It is also possible to have autoscaling of individual databases
in an elastic pool by consuming more DTUs than are actually allocated to that database.

Elastic pools also provide another advantage in terms of cost. You will see in a later
section that Azure SQL Database is priced using DTUs, and DTUs are provisioned as
soon as the SQL Server service is provisioned. DTUs are charged for irrespective of
whether those DTUs are consumed. If there are multiple databases, then it is possible to
put these databases into elastic pools and for them to share the DTUs among them.

All information for implementing sharding with Azure SQL elastic pools has been
provided at https://docs.microsoft.com/azure/sql-database/sql-database-elastic-
scale-introduction.

https://docs.microsoft.com/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/azure/sql-database/sql-database-elastic-scale-introduction

Managed Instance | 213

Next, we will discuss the Managed Instance deployment option, which is a scalable,
intelligent, cloud-based, fully managed database.

Managed Instance
Managed Instance is a unique service that provides a managed SQL server similar to
what's available on on-premises servers. Users have access to master, model, and other
system databases. Managed Instance is ideal when there are multiple databases and
customers migrating their instances to Azure. Managed Instance consists of multiple
databases.

Azure SQL Database provides a new deployment model known as Azure SQL Database
Managed Instance that provides almost 100% compatibility with the SQL Server
Enterprise Edition Database Engine. This model provides a native virtual network
implementation that addresses the usual security issues and is a highly recommended
business model for on-premises SQL Server customers. Managed Instance allows
existing SQL Server customers to lift and shift their on-premises applications
to the cloud with minimal application and database changes while preserving all
PaaS capabilities at the same time. These PaaS capabilities drastically reduce the
management overhead and total cost of ownership, as shown in Figure 7.18:

Figure 7.18: Azure SQL Database Managed Instance

The complete comparison between Azure SQL Database, Azure SQL Managed Instance,
and SQL Server on an Azure virtual machine is available here: https://docs.microsoft.
com/azure/azure-sql/azure-sql-iaas-vs-paas-what-is-overview#comparison-table.

https://docs.microsoft.com/azure/azure-sql/azure-sql-iaas-vs-paas-what-is-overview#comparison-table
https://docs.microsoft.com/azure/azure-sql/azure-sql-iaas-vs-paas-what-is-overview#comparison-table

214 | Azure OLTP solutions

The key features of Managed Instance are shown in the Figure 7.19:

Figure 7.19: SQL Database Managed Instance features

We have mentioned the terms vCPU-based pricing model and DTU-based pricing
model at several points throughout the chapter. It's time that we took a closer look at
these pricing models.

SQL database pricing | 215

SQL database pricing
Azure SQL previously had just one pricing model—a model based on DTUs—but an
alternative pricing model based on vCPUs has also been launched. The pricing model is
selected based on the customer's requirements. The DTU-based model is selected when
the customer wants simple and preconfigured resource options. On the other hand, the
vCore-based model offers the flexibility to choose compute and storage resources. It
also provides control and transparency.

Let's take a closer look at each of these models.

DTU-based pricing

The DTU is the smallest unit of performance measure for Azure SQL Database. Each
DTU corresponds to a certain amount of resources. These resources include storage,
CPU cycles, IOPS, and network bandwidth. For example, a single DTU might provide
three IOPS, a few CPU cycles, and IO latencies of 5 ms for read operations and 10 ms for
write operations.

Azure SQL Database provides multiple SKUs for creating databases, and each of these
SKUs has defined constraints for the maximum amount of DTUs. For example, the Basic
SKU provides just 5 DTUs with a maximum 2 GB of data, as shown in Figure 7.20:

Figure 7.20: DTUs for different SKUs

216 | Azure OLTP solutions

On the other hand, the standard SKU provides anything between 10 DTUs and 300
DTUs with a maximum of 250 GB of data. As you can see here, each DTU costs around
991 rupees, or around $1.40:

Figure 7.21: Cost summary for the selected number of DTUs in the Standard SKU

A comparison of these SKUs in terms of performance and resources is provided by
Microsoft and is shown in the Figure 7.22:

Figure 7.22: SKU comparison in Azure

SQL database pricing | 217

Once you provision a certain number of DTUs, the back-end resources (CPU, IOPS, and
memory) are allocated and are charged for whether they are consumed or not. If more
DTUs are procured than are actually needed, it leads to waste, while there would be
performance bottlenecks if insufficient DTUs were provisioned.

Azure provides elastic pools for this reason as well. As you know, there are multiple
databases in an elastic pool and DTUs are assigned to elastic pools instead of individual
databases. It is possible for all databases within a pool to share the DTUs. This means
that if a database has low utilization and is consuming only five DTUs, there will be
another database consuming 25 DTUs in order to compensate.

It is important to note that, collectively, DTU consumption cannot exceed the amount
of DTUs provisioned for the elastic pool. Moreover, there is a minimum amount of DTUs
that should be assigned to each database within the elastic pool, and this minimum DTU
count is preallocated for the database.

An elastic pool comes with its own SKUs:

Figure 7.23: SKUs in an elastic pool

Also, there is a limit on the maximum number of databases that can be created within
a single elastic pool. The complete limits can be reviewed here: https://docs.microsoft.
com/azure/azure-sql/database/resource-limits-dtu-elastic-pools.

vCPU-based pricing

This is the new pricing model for Azure SQL. This pricing model provides options to
procure the number of virtual CPUs (vCPUs) allocated to the server instead
of setting the amount of DTUs required for an application. A vCPU is a logical CPU with
attached hardware, such as storage, memory, and CPU cores.

https://docs.microsoft.com/azure/azure-sql/database/resource-limits-dtu-elastic-pools
https://docs.microsoft.com/azure/azure-sql/database/resource-limits-dtu-elastic-pools

218 | Azure OLTP solutions

In this model, there are three SKUs: General Purpose, Hyperscale, and Business
Critical, with a varied number of vCPUs and resources available. This pricing is available
for all SQL deployment models:

Figure 7.24: vCPU pricing for the General Purpose SKU

How to choose the appropriate pricing model

Architects should be able to choose an appropriate pricing model for Azure SQL
Database. DTUs are a great mechanism for pricing where there is a usage pattern
applicable and available for the database. Since resource availability in the DTU scheme
of things is linear, as shown in the next diagram, it is quite possible for usage to be more
memory-intensive than CPU-intensive. In such cases, it is possible to choose different
levels of CPU, memory, and storage for a database.

In DTUs, resources come packaged, and it is not possible to configure these resources
at a granular level. With a vCPU model, it is possible to choose different levels of
memory and CPU for different databases. If the usage pattern for an application
is known, using the vCPU pricing model could be a better option compared to the
DTU model. In fact, the vCPU model also provides the benefit of hybrid licenses if an
organization already has on-premises SQL Server licenses. There is a discount of up to
30% provided to these SQL Server instances.

Azure Cosmos DB | 219

In Figure 7.25, you can see from the left-hand graph that as the amount of DTUs
increases, resource availability also grows linearly; however, with vCPU pricing (in
the right-hand graph), it is possible to choose independent configurations for each
database:

Figure 7.25: Storage-compute graph for the DTU and vCore models

With that, we can conclude our coverage of Azure SQL Database. We discussed
different deployment methods, features, pricing, and plans related to Azure SQL
Database. In the next section, we will be covering Cosmos DB, which is a NoSQL
database service.

Azure Cosmos DB
Cosmos DB is Azure's truly cross-region, highly available, distributed, multi-model
database service. Cosmos DB is for you if you would like your solution to be highly
responsive and always available. As this is a cross-region multi-model database, we
can deploy applications closer to the user's location and achieve low latency and high
availability.

With the click of a button, throughput and storage can be scaled across any number
of Azure regions. There are a few different database models to cover almost all
non-relational database requirements, including:

1. SQL (documents)

2. MongoDB

3. Cassandra

4. Table

5. Gremlin Graph

220 | Azure OLTP solutions

The hierarchy of objects within Cosmos DB starts with the Cosmos DB account. An
account can have multiple databases, and each database can have multiple containers.
Depending on the type of database, the container might consist of documents, as in
the case of SQL; semi-structured key-value data within Table storage; or entities and
relationships among those entities, if using Gremlin and Cassandra to store NoSQL
data.

Cosmos DB can be used to store OLTP data. It accounts for ACID with regard to
transaction data, with a few caveats.

Cosmos DB provides for ACID requirements at the single document level. This means
data within a document, when updated, deleted, or inserted, will have its atomicity,
consistency, isolation, and durability maintained. However, beyond documents,
consistency and atomicity have to be managed by the developer themselves.

Pricing for Cosmos DB can be found here: https://azure.microsoft.com/pricing/
details/cosmos-db.

Figure 7.26 shows some features of Azure Cosmos DB:

Figure 7.26: An overview of Azure Cosmos DB

Azure Cosmos DB

Global distribution Elastic scale-out Guaranteed low latency Five consistency models Comprehensive SLAs

SQLTable JavaScript API for MongoDB Gremlin Cassandra Spark ETCD

...more APIs
coming

Key-Value DocumentsColumn-Family Graph

https://azure.microsoft.com/pricing/details/cosmos-db
https://azure.microsoft.com/pricing/details/cosmos-db

Azure Cosmos DB | 221

In the next section, we will cover some key features of Azure Cosmos DB.

Features

Some of the key benefits of Azure Cosmos DB are:

• Global distribution: Highly responsive and highly available applications can be
built worldwide using Azure Cosmos DB. With the help of replication, replicas of
data can be stored in Azure regions that are close to users, hence providing less
latency and global distribution.

• Replication: You can opt in to or opt out of replication to a region any time you
like. Let's say you have a replica of your data available in the East US region, and
your organization is planning to shut down their processes in East US and migrate
to UK South. With just a few clicks, East US can be removed, and UK South can be
added to the account for replication.

• Always On: Cosmos DB provides 99.999% of high availability for both read and
write. The regional failover of a Cosmos DB account to another region can be
invoked via the Azure portal or programmatically. This ensures business continuity
and disaster recovery planning for your application during a region failure.

• Scalability: Cosmos DB offers unmatched elastic scalability for writes and reads
all around the globe. The scalability response is massive, meaning that you can
scale from thousands to hundreds of millions of requests/second with a single API
call. The interesting thing is that this is done around the globe, but you need to
pay only for throughput and storage. This level of scalability is ideal for handling
unexpected spikes.

• Low latency: As mentioned earlier, replicating copies of data to locations nearer
to users drastically reduces latency; it means that users can access their data in
milliseconds. Cosmos DB guarantees less than 10 ms of latency for both reads and
writes all around the world.

• TCO Savings: As Cosmos DB is a fully managed service, the level of management
required from the customer is low. Also, the customer doesn't have to set up
datacenters across the globe to accommodate users from other regions.

• SLA: It offers an SLA of 99.999% high availability.

• Support for Open-Source Software (OSS) APIs: The support for OSS APIs
is another added advantage of Cosmos DB. Cosmos DB implements APIs for
Cassandra, Mongo DB, Gremlin, and Azure Table storage.

222 | Azure OLTP solutions

Use case scenarios

If your application involves high levels of data reads and writes at a global scale, then
Cosmos DB is the ideal choice. The common types of applications that have such
requirements include web, mobile, gaming, and Internet of Things applications. These
applications would benefit from the high availability, low latency, and global presence of
Cosmos DB.

Also, the response time provided by Cosmos DB is near real time. The Cosmos DB
SDKs can be leveraged to develop iOS and Android applications using the Xamarin
framework.

A couple of the popular games that use Cosmos DB are The Walking Dead: No Man's
Land, by Next Games, and Halo 5: Guardians.

A complete list of use case scenarios and examples can be found here: https://docs.
microsoft.com/azure/cosmos-db/use-cases.

Cosmos DB is the go-to service in Azure for storing semi-structured data as part
of OLTP applications. I could write a whole book on the features and capabilities of
Cosmos DB alone; the intention of this section was to give you an introduction to
Cosmos DB and the role it plays in handling OLTP applications.

Summary
In this chapter, you learned that Azure SQL Database is one of the flagship services
of Azure. A plethora of customers are using this service today and it provides all the
enterprise capabilities that are needed for a mission-critical database management
system.

You discovered that there are multiple deployment types for Azure SQL Database, such
as Single Instance, Managed Instance, and elastic pools. Architects should perform a
complete assessment of their requirements and choose the appropriate deployment
model. After they choose a deployment model, they should choose a pricing strategy
between DTUs and vCPUs. They should also configure all the security, availability,
disaster recovery, monitoring, performance, and scalability requirements in Azure SQL
Database regarding data.

In the next chapter, we will be discussing how to build secure applications in Azure. We
will cover the security practices and features of most services.

https://docs.microsoft.com/azure/cosmos-db/use-cases
https://docs.microsoft.com/azure/cosmos-db/use-cases

In the previous chapter, we discussed Azure data services. As we are dealing with
sensitive data, security is a big concern. Security is, undoubtedly, the most important
non-functional requirement for architects to implement. Enterprises put lots of
emphasis on having their security strategy implemented correctly. In fact, security is
one of the top concerns for almost every stakeholder in an application's development,
deployment, and management. It becomes all the more important when an application
is built for deployment to the cloud.

Architecting secure
applications on Azure

8

226 | Architecting secure applications on Azure

In order for you to understand how you can secure your applications on Azure
depending upon the nature of the deployment, the following topics will be covered in
this chapter:

• Understanding security in Azure

• Security at the infrastructure level

• Security at the application level

• Authentication and authorization in Azure applications

• Working with OAuth, Azure Active Directory, and other authentication methods
using federated identity, including third-party identity providers such as Facebook

• Understanding managed identities and using them to access resources

Security
As mentioned before, security is an important element for any software or service.
Adequate security should be implemented so that an application can only be used by
people who are allowed to access it, and users should not be able to perform operations
that they are not allowed to execute. Similarly, the entire request-response mechanism
should be built using methods that ensure that only intended parties can understand
messages, and to make sure that it is easy to detect whether messages have been
tampered with or not.

For the following reasons, security in Azure is even more important. Firstly, the
organizations deploying their applications are not in full control of the underlying
hardware and networks. Secondly, security has to be built into every layer, including
hardware, networks, operating systems, platforms, and applications. Any omissions
or misconfigurations can render an application vulnerable to intruders. For example,
you might have heard of the recent vulnerability that affected Zoom meetings that
let hackers record meetings even when the meeting host had disabled recording for
attendees. Sources claim that millions of Zoom accounts have been sold on the dark
web. The company has taken the necessary action to address this vulnerability.

Security is a big concern nowadays, especially when hosting applications in the cloud,
and can lead to dire consequences if mishandled. Hence, it's necessary to understand
the best practices involved in securing your workloads. We are progressing in the area
of DevOps, where development and operations teams collaborate effectively with the
help of tools and practices, and security has been a big concern there as well.

Security | 227

To accommodate security principles and practices as a vital part of DevOps without
affecting the overall productivity and efficiency of the process, a new culture known as
DevSecOps has been introduced. DevSecOps helps us to identify security issues early
in the development stage rather than mitigating them after shipping. In a development
process that has security as a key principle of every stage, DevSecOps reduces the cost
of hiring security professionals at a later stage to find security flaws with software.

Securing an application means that unknown and unauthorized entities are unable to
access it. This also means that communication with the application is secure and not
tampered with. This includes the following security measures:

• Authentication: Authentication checks the identity of a user and ensures that the
given identity can access the application or service. Authentication is performed in
Azure using OpenID Connect, which is an authentication protocol built on OAuth
2.0.

• Authorization: Authorization allows and establishes permissions that an identity
can perform within the application or service. Authorization is performed in Azure
using OAuth.

• Confidentiality: Confidentiality ensures that communication between the user
and the application remains secure. The payload exchange between entities is
encrypted so that it will make sense only to the sender and the receiver, but
not to others. The confidentiality of messages is ensured using symmetric and
asymmetric encryption. Certificates are used to implement cryptography—that is,
the encryption and decryption of messages.

Symmetric encryption uses a single key, which is shared with the sender and
the receiver, while asymmetric encryption uses a pair of private and public keys
for encryption, which is more secure. SSH key pairs in Linux, which are used for
authentication, is a very good example of asymmetric encryption.

• Integrity: Integrity ensures that the payload and message exchange between
the sender and the receiver is not tampered with. The receiver receives the
same message that was sent by the sender. Digital signatures and hashes are the
implementation mechanisms to check the integrity of incoming messages.

228 | Architecting secure applications on Azure

Security is a partnership between the service provider and the service consumer.
Both parties have different levels of control over deployment stacks, and each should
implement security best practices to ensure that all threats are identified and mitigated.
We already know from Chapter 1, Getting started with Azure, that the cloud broadly
provides three paradigms—IaaS, PaaS, and SaaS—and each of these has different levels
of collaborative control over the deployment stack. Each party should implement
security practices for the components under its control and within its scope. Failure
to implement security at any layer in the stack or by any party would make the entire
deployment and application vulnerable to attack. Every organization needs to have a
life cycle model for security, just as for any other process. This ensures that security
practices are continuously improved to avoid any security flaws. In the next section,
we'll be discussing the security life cycle and how it can be used.

Security life cycle

Security is often regarded as a non-functional requirement for a solution. However,
with the growing number of cyberattacks at the moment, nowadays it is considered a
functional requirement of every solution.

Every organization follows some sort of application life cycle management for their
applications. When security is treated as a functional requirement, it should follow the
same process of application development. Security should not be an afterthought; it
should be part of the application from the beginning. Within the overall planning phase
for an application, security should also be planned. Depending on the nature of the
application, different kinds and categories of threats should be identified, and, based
on these identifications, they should be documented in terms of scope and approach to
mitigate them. A threat modeling exercise should be undertaken to illustrate the threat
each component could be subject to. This will lead to designing security standards and
policies for the application. This is typically the security design phase. The next phase is
called the threat mitigation or build phase. In this phase, the implementation of security
in terms of code and configuration is executed to mitigate security threats and risks.

A system cannot be secure until it is tested. Appropriate penetration tests and other
security tests should be performed to identify potential threat mitigation that has not
been implemented or has been overlooked. The bugs from testing are remediated and
the cycle continues throughout the life of the application. This process of application
life cycle management, shown in Figure 8.1, should be followed for security:

Security | 229

Figure 8.1: Security life cycle

Planning, threat modeling, identification, mitigation, testing, and remediation are
iterative processes that continue even when an application or service is operational.
There should be active monitoring of entire environments and applications to
proactively identify threats and mitigate them. Monitoring should also enable alerts and
audit logs to help in reactive diagnosis, troubleshooting, and the elimination of threats
and vulnerabilities.

The security life cycle of any application starts with the planning phase, which
eventually leads to the design phase. In the design phase, the application's architecture
is decomposed into granular components with discrete communication and hosting
boundaries. Threats are identified based on their interaction with other components
within and across hosting boundaries. Within the overall architecture, threats are
mitigated by implementing appropriate security features, and once the mitigation
is in place, further testing is done to verify whether the threat still exists. After the
application is deployed to production and becomes operational, it is monitored for any
security breaches and vulnerabilities, and either proactive or reactive remediation is
conducted.

As mentioned earlier, different organizations have different processes and methods to
implement the security life cycle; likewise, Microsoft provides complete guidance and
information about the security life cycle, which is available at https://www.microsoft.
com/securityengineering/sdl/practices. Using the practices that Microsoft has shared,
every organization can focus on building more secure solutions. As we are progressing
in the era of cloud computing and migrating our corporate and customer data to the
cloud, learning how to secure that data is vital. In the next section, we will explore
Azure security and the different levels of security, which will help us to build secure
solutions in Azure.

https://www.microsoft.com/securityengineering/sdl/practices
https://www.microsoft.com/securityengineering/sdl/practices

230 | Architecting secure applications on Azure

Azure security

Azure provides all its services through datacenters in multiple Azure regions. These
datacenters are interconnected within regions, as well as across regions. Azure
understands that it hosts mission-critical applications, services, and data for its
customers. It must ensure that security is of the utmost importance for its datacenters
and regions.

Customers deploy applications to the cloud based on their belief that Azure will protect
their applications and data from vulnerabilities and breaches. Customers will not move
to the cloud if this trust is broken, and so Azure implements security at all layers,
as seen in Figure 8.2, from the physical perimeter of datacenters to logical software
components. Each layer is protected, and even the Azure datacenter team does not
have access to them:

Figure 8.2: Security features at different layers in Azure datacenters

Security is of paramount importance to both Microsoft and Azure. Microsoft ensures
that trust is built with its customers, and it does so by ensuring that its customers'
deployments, solutions, and data are completely secure, both physically and virtually.
People will not use a cloud platform if it is not physically and digitally secure.

To ensure that customers have trust in Azure, each activity in the development of
Azure is planned, documented, audited, and monitored from a security perspective. The
physical Azure datacenters are protected from intrusion and unauthorized access. In
fact, even Microsoft personnel and operations teams do not have access to customer
solutions and data. Some of the out-of-the-box security features provided by Azure are
listed here:

• Secure user access: A customer's deployment, solution, and data can only be
accessed by the customer. Even Azure datacenter personnel do not have access to
customer artifacts. Customers can allow access to other people; however, that is
at the discretion of the customer.

IaaS security | 231

• Encryption at rest: Azure encrypts all its management data, which includes a
variety of enterprise-grade storage solutions to accommodate different needs.
Microsoft also provides encryption to managed services such as Azure SQL
Database, Azure Cosmos DB, and Azure Data Lake Storage as well. Since the data
is encrypted at rest, it cannot be read by anyone. It also provides this functionality
to its customers, as well as those who can encrypt their data at rest.

• Encryption at transit: Azure encrypts all data that flows from its network. It also
ensures that its network backbone is protected from any unauthorized access.

• Active monitoring and auditing: Azure monitors all its datacenters actively on an
ongoing basis. It actively identifies any breach, threat, or risk, and mitigates them.

Azure meets country-specific, local, international, and industry-specific compliance
standards. You can explore the complete list of Microsoft compliance offerings at
https://www.microsoft.com/trustcenter/compliance/complianceofferings. Keep this
as a reference while deploying compliant solutions in Azure. Now that we know the key
security features in Azure, let's go ahead and take a deep dive into IaaS security. In the
next section, we will explore how customers can leverage the security features available
for IaaS in Azure.

IaaS security
Azure is a mature platform for deploying IaaS solutions. There are lots of users of Azure
who want complete control over their deployments, and they typically use IaaS for their
solutions. It is important that these deployments and solutions are secure, by default
and by design. Azure provides rich security features to secure IaaS solutions. In this
section, some of the main features will be covered.

Network security groups

The bare minimum of IaaS deployment consists of virtual machines and virtual
networks. A virtual machine might be exposed to the internet by applying a public IP
to its network interface, or it might only be available to internal resources. Some of
those internal resources might, in turn, be exposed to the internet. In any case, virtual
machines should be secured so that unauthorized requests should not even reach
them. Virtual machines should be secured using facilities that can filter requests on the
network itself, rather than the requests reaching a virtual machine and it having to take
action on them.

https://www.microsoft.com/trustcenter/compliance/complianceofferings

232 | Architecting secure applications on Azure

Ring-fencing is a mechanism that virtual machines use as one of their security
mechanisms. This fence can allow or deny requests depending on their protocol, origin
IP, destination IP, originating port, and destination port. This feature is deployed using
the Azure network security groups (NSGs) resource. NSGs are composed of rules that
are evaluated for both incoming and outgoing requests. Depending on the execution
and evaluation of these rules, it is determined whether the requests should be allowed
or denied access.

NSGs are flexible and can be applied to a virtual network subnet or individual network
interfaces. When applied to a subnet, the security rules are applied to all virtual
machines hosted on the subnet. On the other hand, applying to a network interface
affects requests to only a particular virtual machine associated with that network
interface. It is also possible to apply NSGs to both network subnets and network
interfaces simultaneously. Typically, this design should be used to apply common
security rules at the network subnet level, and unique security rules at the network
interface level. It helps to design modular security rules.

The flow for evaluating NSGs is shown in Figure 8.3:

Figure 8.3: A flow diagram representing the evaluation of NSGs

IaaS security | 233

When a request reaches an Azure host, depending on whether it's an inbound or
outbound request, appropriate rules are loaded and executed against the request/
response. If the rule matches the request/response, either the request/response
is allowed or denied. The rule matching consists of important request/response
information, such as the source IP address, destination IP address, source port,
destination port, and protocol used. Additionally, NSGs support service tags. A service
tag denotes a group of IP address prefixes from a given Azure service. Microsoft
manages the address prefixes and automatically updates them. This eliminates the
hassle of updating the security rules every time there is an address prefix change.

The set of service tags available for use is available at https://docs.microsoft.com/
azure/virtual-network/service-tags-overview#available-service-tags. Service tags
can be used with NSGs as well as with Azure Firewall. Now that you have learned about
how NSGs work, let's take a look at the NSG design, which will help you determine the
primary points you should consider while creating NSG rules to improve security.

NSG design

The first step in designing an NSG is to ascertain the security requirements of the
resource. The following should be determined or considered:

• Is the resource accessible from the internet only?

• Is the resource accessible from both internal resources and the internet?

• Is the resource accessible from internal resources only?

• Based on the architecture of the solution being deployed, determine the
dependent resources, load balancers, gateways, and virtual machines used.

• Configure a virtual network and its subnet.

Using the results of these investigations, an adequate NSG design should be created.
Ideally, there should be multiple network subnets for each workload and type of
resource. It is not recommended to deploy both load balancers and virtual machines on
the same subnet.

Taking project requirements into account, rules should be determined that are common
for different virtual machine workloads and subnets. For example, for a SharePoint
deployment, the front-end application and SQL servers are deployed on separate
subnets, so rules for each subnet should be determined.

After common subnet-level rules are identified, rules for individual resources should
be identified, and these should be applied at the network interface level. It is important
to understand that if a rule allows an incoming request on a port, that port can also be
used for outgoing requests without any configuration.

https://docs.microsoft.com/azure/virtual-network/service-tags-overview#available-service-tags
https://docs.microsoft.com/azure/virtual-network/service-tags-overview#available-service-tags

234 | Architecting secure applications on Azure

If resources are accessible from the internet, rules should be created with specific IP
ranges and ports wherever possible, instead of allowing traffic from all the IP ranges
(usually represented as 0.0.0.0/0). Careful functional and security testing should be
executed to ensure that adequate and optimal NSG rules are opened and closed.

Firewalls

NSGs provide external security perimeters for requests. However, this does not mean
that virtual machines should not implement additional security measures. It is always
better to implement security both internally and externally. Virtual machines, whether
in Linux or Windows, provide a mechanism to filter requests at the operating system
level. This is known as a firewall in both Windows and Linux.

It is advisable to implement firewalls for operating systems. They help build a virtual
security wall that allows only those requests that are considered trusted. Any untrusted
requests are denied access. There are even physical firewall devices, but on the cloud,
operating system firewalls are used. Figure 8.4 shows firewall configuration for a
Windows operating system:

Figure 8.4: Firewall configuration

Firewalls filter network packets and identify incoming ports and IP addresses. Using the
information from these packets, the firewall evaluates the rules and decides whether it
should allow or deny access.

IaaS security | 235

When it comes to Linux, there are different firewall solutions available. Some of the
firewall offerings are very specific to the distribution that is being used; for example,
SUSE uses SuSefirewall2 and Ubuntu uses ufw. The most widely used implementations
are firewalld and iptables, which are available on every distribution.

Firewall design

As a best practice, firewalls should be evaluated for individual operating systems. Each
virtual machine has a distinct responsibility within the overall deployment and solution.
Rules for these individual responsibilities should be identified and firewalls should be
opened and closed accordingly.

While evaluating firewall rules, it is important to take NSG rules at both the subnet and
individual network interface level into consideration. If this is not done properly, it is
possible that rules are denied at the NSG level, but left open at the firewall level, and
vice versa. If a request is allowed at the NSG level and denied at the firewall level, the
application will not work as intended, while security risks increase if a request is denied
at the NSG level and allowed at the firewall level.

A firewall helps you build multiple networks isolated by its security rules. Careful
functional and security testing should be executed to ensure that adequate and optimal
firewall rules are opened and closed.

It makes the most sense to use Azure Firewall, which is a cloud-based network
service on top of NSGs. It is very easy to set up, provides central management for
administration, and requires zero maintenance. Azure Firewall and NSGs combined can
provide security between virtual machines, virtual networks, and even different Azure
subscriptions. Having said that, if a solution requires that extra level of security, we can
consider implementing an operating system–level firewall. We'll be discussing Azure
Firewall in more depth in one of the upcoming sections, Azure Firewall.

Application security groups

NSGs are applied at the virtual network subnet level or directly to individual network
interfaces. While it is sufficient to apply NSGs at the subnet level, there are times when
this is not enough. There are different types of workloads available within a single
subnet and each of them requires a different security group. It is possible to assign
security groups to individual network interface cards (NICs) of the virtual machines,
but it can easily become a maintenance nightmare if there is a large number of virtual
machines.

236 | Architecting secure applications on Azure

Azure has a relatively new feature known as application security groups. We can
create application security groups and assign them directly to multiple NICs, even
when those NICs belong to virtual machines in different subnets and resource groups.
The functionality of application security groups is similar to NSGs, except that they
provide an alternate way of assigning groups to network resources, providing additional
flexibility in assigning them across resource groups and subnets. Application security
groups can simplify NSGs; however, there is one main limitation. We can have one
application security group in the source and destination of a security rule, but having
multiple application security groups in a source or destination is not supported
right now.

One of the best practices for creating rules is to always minimize the number of
security rules that you need, to avoid maintenance of explicit rules. In the previous
section, we discussed the usage of service tags with NSGs to eliminate the hassle of
maintaining the individual IP address prefixes of each service. Likewise, when using
application security groups, we can reduce the complexity of explicit IP addresses
and multiple rules. This practice is recommended wherever possible. If your solution
demands an explicit rule with an individual IP address or range of IP addresses, only
then should you opt for it.

Azure Firewall

In the previous section, we discussed using Azure Firewall within a Windows/Linux
operating system to allow or disallow requests and responses through particular
ports and services. While operating system firewalls play an important role from a
security point of view and must be implemented for any enterprise deployment, Azure
provides a security resource known as Azure Firewall that has a similar functionality of
filtering requests based on rules and determining whether a request should be allowed
or rejected.

The advantage of using Azure Firewall is that it evaluates a request before it reaches
an operating system. Azure Firewall is a network resource and is a standalone service
protecting resources at the virtual network level. Any resources, including virtual
machines and load balancers, that are directly associated with a virtual network can be
protected using Azure Firewall.

Azure Firewall is a highly available and scalable service that can protect not only
HTTP-based requests but any kind of request coming into and going out from a virtual
network, including FTP, SSH, and RDP. Azure Firewall can also span multiple Availability
Zones during deployment to provide increased availability.

IaaS security | 237

It is highly recommended that Azure Firewall is deployed for mission-critical workloads
on Azure, alongside other security measures. It is also important to note that Azure
Firewall should be used even if other services, such as Azure Application Gateway and
Azure Front Door, are used, since all these tools have different scopes and features.
Additionally, Azure Firewall provides support for service tags and threat intelligence.
In the previous section, we discussed the advantages of using service tags. Threat
intelligence can be used to generate alerts when traffic comes from or goes to known
malicious IP addresses and domains, which are recorded in the Microsoft Threat
Intelligence feed.

Reducing the attack surface area

NSGs and firewalls help with managing authorized requests to the environment.
However, the environment should not be overly exposed to attacks. The surface area
of the system should be optimally enabled to achieve its functionality, but disabled
enough that attackers cannot find loopholes and access areas that are open without
any intended use, or open but not adequately secured. Security should be adequately
hardened, making it difficult for any attacker to break into the system.

Some of the configurations that should be done include the following:

• Remove all unnecessary users and groups from the operating system.

• Identify group membership for all users.

• Implement group policies using directory services.

• Block script execution unless it is signed by trusted authorities.

• Log and audit all activities.

• Install malware and anti-virus software, schedule scans, and update definitions
frequently.

• Disable or shut down services that are not required.

• Lock down the filesystem so only authorized access is allowed.

• Lock down changes to the registry.

• A firewall must be configured according to the requirements.

• PowerShell script execution should be set to Restricted or RemoteSigned. This
can be done using the Set-ExecutionPolicy -ExecutionPolicy Restricted or
Set-ExecutionPolicy -ExecutionPolicy RemoteSigned PowerShell commands.

• Enable enhanced protection through Internet Explorer.

• Restrict the ability to create new users and groups.

238 | Architecting secure applications on Azure

• Remove internet access and implement jump servers for RDP.

• Prohibit logging into servers using RDP through the internet. Instead, use site-to-
site VPN, point-to-site VPN, or express routes to RDP into remote machines from
within the network.

• Regularly deploy all security updates.

• Run the security compliance manager tool on the environment and implement all
of its recommendations.

• Actively monitor the environment using Security Center and Operations
Management Suite.

• Deploy virtual network appliances to route traffic to internal proxies and reverse
proxies.

• All sensitive data, such as configuration, connection strings, and credentials,
should be encrypted.

The aforementioned are some of the key points that should be considered from a
security standpoint. The list will keep on growing, and we need to constantly improve
security to prevent any kind of security breach.

Implementing jump servers

It is a good idea to remove internet access from virtual machines. It is also a good
practice to limit remote desktop services' accessibility from the internet, but then
how do you access the virtual machines at all? One good way is to only allow internal
resources to RDP into virtual machines using Azure VPN options. However, there is also
another way—using jump servers.

Jump servers are servers that are deployed in the demilitarized zone (DMZ). This
means it is not on the network hosting the core solutions and applications. Instead,
it is on a separate network or subnet. The primary purpose of the jump server is to
accept RDP requests from users and help them log in to it. From this jump server, users
can further navigate to other virtual machines using RDP. It has access to two or more
networks: one that has connectivity to the outside world, and another that's internal to
the solution. The jump server implements all the security restrictions and provides a
secure client to connect to other servers. Normally, access to emails and the internet is
disabled on jump servers.

An example of deploying a jump server with virtual machine scale sets (VMSSes),
using Azure Resource Manager templates is available at https://azure.microsoft.com/
resources/templates/201-vmss-windows-jumpbox.

https://azure.microsoft.com/resources/templates/201-vmss-windows-jumpbox
https://azure.microsoft.com/resources/templates/201-vmss-windows-jumpbox

Application security | 239

Azure Bastion

In the previous section, we discussed implementing jump servers. Azure Bastion is a
fully managed service that can be provisioned in a virtual network to provide RDP/SSH
access to your virtual machines directly in the Azure portal over TLS. The Bastion host
will act as a jump server and eliminate the need for public IP addresses for your virtual
machines. The concept of using Bastion is the same as implementing a jump server;
however, since this is a managed service, it's completely managed by Azure.

Since Bastion is a fully managed service from Azure and is hardened internally, we don't
need to apply additional NSGs on the Bastion subnet. Also, since we are not attaching
any public IPs to our virtual machines, they are protected against port scanning.

Application security
Web applications can be hosted within IaaS-based solutions on top of virtual machines,
and they can be hosted within Azure-provided managed services, such as App Service.
App Service is part of the PaaS deployment paradigm, and we will look into it in the next
section. In this section, we will look at application-level security.

SSL/TLS

Secure Socket layer (SSL) is now deprecated and has been replaced by Transport Layer
security (TLS). TLS provides end-to-end security by means of cryptography. It provides
two types of cryptography:

• Symmetric: The same key is available to both the sender of the message and the
receiver of the message, and it is used for both the encryption and decryption of
the message.

• Asymmetric: Every stakeholder has two keys—a private key and a public key. The
private key remains on the server or with the user and remains a secret, while
the public key is distributed freely to everyone. Holders of the public key use
it to encrypt the message, which can only be decrypted by the corresponding
private key. Since the private key stays with the owner, only they can decrypt the
message. Rivest–Shamir–Adleman (RSA) is one of the algorithms used to generate
these pairs of public-private keys.

• The keys are also available in certificates popularly known as X.509 certificates,
although certificates have more details apart from just the keys and are generally
issued by trusted certificate authorities.

TLS should be used by web applications to ensure that message exchange between
users and the server is secure and confidential and that identities are being protected.
These certificates should be purchased from a trusted certificate authority instead of
being self-signed certificates.

240 | Architecting secure applications on Azure

Managed identities

Before we take a look at managed identities, it is important to know how applications
were built without them.

The traditional way of application development is to use secrets, such as a username, a
password, or SQL connection strings, in configuration files. Putting these secrets into
configuration files makes application changes to these secrets easy and flexible without
modifying code. It helps us stick to the "open for extension, closed for modification"
principle. However, this approach has a downside from a security point of view. The
secrets can be viewed by anyone who has access to configuration files since generally
these secrets are listed there in plain text. There are a few hacks to encrypt them, but
they aren't foolproof.

A better way to use secrets and credentials within an application is to store them in
a secrets repository such as Azure Key Vault. Azure Key Vault provides full security
using the hardware security module (HSM), and the secrets are stored in an encrypted
fashion with on-demand decryption using keys stored in separate hardware. Secrets
can be stored in Key Vault, with each secret having a display name and key. The key is in
the form of a URI that can be used to refer to the secret from applications, as shown in
Figure 8.5:

Figure 8.5: Storing secrets inside a key vault

Within application configuration files, we can refer to the secret using the name or the
key. However, there is another challenge now. How does the application connect to and
authenticate with the key vault?

Application security | 241

Key vaults have access policies that define permissions to a user or group with regard
to access to secrets and credentials within the key vault. The users, groups, or service
applications that can be provided access are provisioned and hosted within Azure
Active Directory (Azure AD). Although individual user accounts can be provided access
using Key Vault access policies, it is a better practice to use a service principal to access
the key vault. A service principal has an identifier, also known as an application ID or
client ID, along with a password. The client ID, along with its password, can be used to
authenticate with Azure Key Vault. This service principal can be allowed to access the
secrets. The access policies for Azure Key Vault are granted in the Access policies pane
of your key vault. In Figure 8.6, you can see that the service principal—https://keyvault.
book.com—has given access to the key vault called keyvaultbook:

Figure 8.6: Granted access for a service principal to access a key vault

This brings us to another challenge: to access the key vault, we need to use the client ID
and secret in our configuration files to connect to the key vault, get hold of the secret,
and retrieve its value. This is almost equivalent to using a username, password, and SQL
connection string within configuration files.

This is where managed identities can help. Azure launched managed service identities
and later renamed them managed identities. Managed identities are identities managed
by Azure. In the background, managed identities also create a service principal along
with a password. With managed identities, there is no need to put credentials in
configuration files.

242 | Architecting secure applications on Azure

Managed identities can only be used to authenticate with services that support Azure
AD as an identity provider. Managed identities are meant only for authentication. If
the target service does not provide role-based access control (RBAC) permission to
the identity, the identity might not be able to perform its intended activity on the
target service.

Managed identities come in two flavors:

• System-assigned managed identities

• User-assigned managed identities

System-assigned identities are generated by the service itself. For example, if an app
service wants to connect to Azure SQL Database, it can generate the system-assigned
managed identity as part of its configuration options. These managed identities also
get deleted when the parent resource or service is deleted. As shown in Figure 8.7,
a system-assigned identity can be used by App Service to connect to Azure SQL
Database:

Figure 8.7: Enabling a system-assigned managed identity for App Service

User-assigned managed identities are created as standalone separate identities and
later assigned to Azure services. They can be applied and reused with multiple Azure
services since their life cycles do not depend on the resource they are assigned to.

Application security | 243

Once a managed identity is created and RBAC or access permissions are given to it on
the target resource, it can be used within applications to access the target resources
and services.

Azure provides an SDK as well a REST API to talk to Azure AD and get an access token
for managed identities, and then use the token to access and consume the target
resources.

The SDK comes as part of the Microsoft.Azure.Services.AppAuthentication NuGet
package for C#. Once the access token is available, it can be used to consume the
target resource.

The code needed to get the access token is as follows:

var tokenProvider = new AzureServiceTokenProvider();

string token = await tokenProvider.GetAccessTokenAsync("https://vault.azure.
net");

Alternatively, use this:

string token = await tokenProvider.GetAccessTokenAsync("https://database.
windows.net");

It should be noted that the application code needs to run in the context of App Service
or a function app because the identity is attached to them and is only available in code
when it's run from within them.

The preceding code has two different use cases. The code to access the key vault and
Azure SQL Database is shown together.

It is important to note that applications do not provide any information related to
managed identities in code and is completely managed using configuration. The
developers, individual application administrators, and operators will not come across
any credentials related to managed identities, and, moreover, there is no mention
of them in code either. Credential rotation is completely regulated by the resource
provider that hosts the Azure service. The default rotation occurs every 46 days. It's up
to the resource provider to call for new credentials if required, so the provider could
wait for more than 46 days.

In the next section, we will be discussing a cloud-native security information and
event manager (SIEM): Azure Sentinel.

244 | Architecting secure applications on Azure

Azure Sentinel
Azure provides an SIEM and security orchestration automated response (SOAR) as a
standalone service that can be integrated with any custom deployment on Azure. Figure
8.8 shows some of the key features of Azure Sentinel:

Figure 8.8: Key features of Azure Sentinel

Azure Sentinel collects information logs from deployments and resources and performs
analytics to find patterns and trends related to various security issues that are pulled
from data sources.

There should be active monitoring of the environment, logs should be collected,
and information should be culled from these logs as a separate activity from code
implementation. This is where the SIEM service comes into the picture. There are
numerous connectors that can be used with Azure Sentinel; each of these connectors
will be used to add data sources to Azure Sentinel. Azure Sentinel provides connectors
for Microsoft services such as Office 365, Azure AD, and Azure Threat Protection. The
collected data will be fed to a Log Analytics workspace, and you can write queries to
search these logs.

SIEM tools such as Azure Sentinel can be enabled on Azure to get all the logs from log
analytics and Azure Security Center, which in turn can get them from multiple sources,
deployments, and services. SIEM can then run its intelligence on top of this collected
data and generate insights. It can generate reports and dashboards based on discovered
intelligence for consumption, but it can also investigate suspicious activities and
threats, and take action on them.

PaaS security | 245

While Azure Sentinel may sound very similar in functionality to Azure Security Center,
Azure Sentinel can do much more than Azure Security Center. Its ability to collect logs
from other avenues using connectors makes it different from Azure Security Center.

PaaS security
Azure provides numerous PaaS services, each with its own security features. In general,
PaaS services can be accessed using credentials, certificates, and tokens. PaaS services
allow the generation of short-lived security access tokens. Client applications can send
these security access tokens to represent trusted users. In this section, we will cover
some of the most important PaaS services that are used in almost every solution.

Azure Private Link

Azure Private Link provides access to Azure PaaS services as well as Azure-hosted
customer-owned/partner-shared services over a private endpoint in your virtual
network. While using Azure Private Link, we don't have to expose our services to the
public internet, and all traffic between our service and the virtual network goes via
Microsoft's backbone network.

Azure Private Endpoint is the network interface that helps to privately and securely
connect to a service that is powered by Azure Private Link. Since the private endpoint
is mapped to the instance of the PaaS service, not to the entire service, users can only
connect to the resource. Connections to any other service are denied, and this protects
against data leakage. Private Endpoint also lets you access securely from on-premises
via ExpressRoute or VPN Tunnels. This eliminates the need to set up public peering or
to pass through the public internet to reach the service.

Azure Application Gateway

Azure provides a Level 7 load balancer known as Azure Application Gateway that
can not only load balance but also help in routing using values in URL. It also has a
feature known as Web Application Firewall. Azure Application Gateway supports TLS
termination at the gateway, so the back-end servers will get the traffic unencrypted.
This has several advantages, such as better performance, better utilization of the back-
end servers, and intelligent routing of packets. In the previous section, we discussed
Azure Firewall and how it protects resources at the network level. Web Application
Firewall, on the other hand, protects the deployment at the application level.

246 | Architecting secure applications on Azure

Any deployed application that is exposed to the internet faces numerous security
challenges. Some of the important security threats are as follows:

• Cross-site scripting

• Remote code execution

• SQL injection

• Denial of Service (DoS) attacks

• Distributed Denial of Service (DDoS) attacks

There are many more, though.

A large number of these attacks can be addressed by developers by writing defensive
code and following best practices; however, it is not just the code that should be
responsible for identifying these issues on a live site. Web Application Firewall
configures rules that can identify such issues, as mentioned before, and deny requests.

It is advised to use Application Gateway Web Application Firewall features to protect
applications from live security threats. Web Application Firewall will either allow the
request to pass through it or stop it, depending on how it's configured.

Azure Front Door

Azure has launched a relatively new service known as Azure Front Door. The role
of Azure Front Door is quite similar to that of Azure Application Gateway; however,
there is a difference in scope. While Application Gateway works within a single region,
Azure Front Door works at the global level across regions and datacenters. It has a web
application firewall as well that can be configured to protect applications deployed
in multiple regions from various security threats, such as SQL injection, remote code
execution, and cross-site scripting.

Application Gateway can be deployed behind Front Door to address connection
draining. Also, deploying Application Gateway behind Front Door will help with the load
balancing requirement, as Front Door can only perform path-based load balancing at
the global level. The addition of Application Gateway to the architecture will provide
further load balancing to the back-end servers in the virtual network.

PaaS security | 247

Azure App Service Environment

Azure App Service is deployed on shared networks behind the scenes. All SKUs of App
Service use a virtual network, which can potentially be used by other tenants as well.
In order to have more control and a secure App Service deployment on Azure, services
can be hosted on dedicated virtual networks. This can be accomplished by using
Azure App Service Environment (ASE), which provides complete isolation to run your
App Service at a high scale. This also provides additional security by allowing you to
deploy Azure Firewall, Application Security Groups, NSGs, Application Gateway, Web
Application Firewall, and Azure Front Door. All App Service plans created in App Service
Environment will be in an isolated pricing tier, and we cannot choose any other tier.

All the logs from this virtual network and compute can then be collated in Azure Log
Analytics and Security Center, and finally with Azure Sentinel.

Azure Sentinel can then provide insights and execute workbooks and runbooks to
respond to security threats in an automated way. Security playbooks can be run in
Azure Sentinel in response to alerts. Every security playbook comprises measures that
need to be taken in the event of an alert. The playbooks are based on Azure Logic Apps,
and this will give you the freedom to use and customize the built-in templates available
with Logic Apps.

Log Analytics

Log Analytics is a new analytics platform for managing cloud deployments, on-premises
datacenters, and hybrid solutions.

It provides multiple modular solutions—a specific functionality that helps to implement
a feature. For example, security and audit solutions help to ascertain a complete view
of security for an organization's deployment. Similarly, there are many more solutions,
such as automation and change tracking, that should be implemented from a security
perspective. Log Analytics security and audit services provide information in the
following five categories:

• Security domains: These provide the ability to view security records, malware
assessments, update assessments, network security, identity and access
information, and computers with security events. Access is also provided to the
Azure Security Center dashboard.

• Anti-malware assessment: This helps to identify servers that are not protected
against malware and have security issues. It provides information about exposure
to potential security problems and assesses their criticality of any risk. Users can
take proactive actions based on these recommendations. Azure Security Center
sub-categories provide information collected by Azure Security Center.

248 | Architecting secure applications on Azure

• Notable issues: This quickly identifies active issues and grades their severity.

• Detections: This category is in preview mode. It enables the identification of
attack patterns by visualizing security alerts.

• Threat intelligence: This helps to identify attack patterns by visualizing the total
number of servers with outbound malicious IP traffic, the malicious threat type,
and a map that shows where these IPs come from.

The preceding details, when viewed from the portal, are shown in Figure 8.9:

Figure 8.9: Information being displayed in the Security And Audit pane of Log Analytics

Now that you have learned about security for PaaS services, let's explore how to secure
data stored in Azure Storage.

Azure Storage
Storage accounts play an important part in the overall solution architecture. Storage
accounts can store important information, such as user personal identifiable
information (PII) data, business transactions, and other sensitive and confidential data.
It is of the utmost importance that storage accounts are secure and only allow access to
authorized users. The stored data is encrypted and transmitted using secure channels.
Storage, as well as the users and client applications consuming the storage account
and its data, plays a crucial role in the overall security of data. Data should be kept
encrypted at all times. This also includes credentials and connection strings connecting
to data stores.

Azure Storage | 249

Azure provides RBAC to govern who can manage Azure storage accounts. These RBAC
permissions are given to users and groups in Azure AD. However, when an application
to be deployed on Azure is created, it will have users and customers that are not
available in Azure AD. To allow users to access the storage account, Azure Storage
provides storage access keys. There are two types of access keys at the storage account
level—primary and secondary. Users possessing these keys can connect to the storage
account. These storage access keys are used in the authentication step when accessing
the storage account. Applications can access storage accounts using either primary
or secondary keys. Two keys are provided so that if the primary key is compromised,
applications can be updated to use the secondary key while the primary key is
regenerated. This helps minimize application downtime. Moreover, it enhances security
by removing the compromised key without impacting applications. The storage key
details, as seen on the Azure portal, are shown in Figure 8.10:

Figure 8.10: Access keys for a storage account

Azure Storage provides four services—blob, files, queues, and tables—in an account.
Each of these services also provides infrastructure for their own security using secure
access tokens.

A shared access signature (SAS) is a URI that grants restricted access rights to Azure
Storage services: blobs, files, queues, and tables. These SAS tokens can be shared with
clients who should not be trusted with the entire storage account key to restrict access
to certain storage account resources. By distributing an SAS URI to these clients, access
to resources is granted for a specified period.

SAS tokens exist at both the storage account and the individual blob, file, table, and
queue levels. A storage account–level signature is more powerful and has the right to
allow and deny permissions at the individual service level. It can also be used instead of
individual resource service levels.

250 | Architecting secure applications on Azure

SAS tokens provide granular access to resources and can be combined as well. These
tokens include read, write, delete, list, add, create, update, and process. Moreover, even
access to resources can be determined while generating SAS tokens. It could be for
blobs, tables, queues, and files individually, or a combination of them. Storage account
keys are for the entire account and cannot be constrained for individual services—
neither can they be constrained from the permissions perspective. It is much easier
to create and revoke SAS tokens than it is for storage account access keys. SAS tokens
can be created for use for a certain period of time, after which they automatically
become invalid.

It is to be noted that if storage account keys are regenerated, then the SAS token based
on them will become invalid and a new SAS token should be created and shared with
clients. In Figure 8.11, you can see an option to select the scope, permissions, start date,
end date, allowed IP address, allowed protocols, and signing key to create an SAS token:

Figure 8.11: Creating an SAS token

If we are regenerating key1, which we used to sign the SAS token in the earlier example,
then we need to create a new SAS token with key2 or the new key1.

Azure Storage | 251

Cookie stealing, script injection, and DoS attacks are common means used by attackers
to disrupt an environment and steal data. Browsers and the HTTP protocol implement
a built-in mechanism that ensures that these malicious activities cannot be performed.
Generally, anything that is cross-domain is not allowed by either HTTP or browsers. A
script running in one domain cannot ask for resources from another domain. However,
there are valid use cases where such requests should be allowed. The HTTP protocol
implements cross-origin resource sharing (CORS). With the help of CORS, it is possible
to access resources across domains and make them work. Azure Storage configures
CORS rules for blob, file, queue, and table resources. Azure Storage allows the creation
of rules that are evaluated for each authenticated request. If the rules are satisfied, the
request is allowed to access the resource. In Figure 8.12, you can see how to add CORS
rules to each of the storage services:

Figure 8.12: Creating CORS rules for a storage account

Data must not only be protected while in transit; it should also be protected while at
rest. If data at rest is not encrypted, anybody who has access to the physical drive in
the datacenter can read the data. Although the possibility of a data breach is negligible,
customers should still encrypt their data. Storage service encryption also helps protect
data at rest. This service works transparently and injects itself without users knowing
about it. It encrypts data when the data is saved in a storage account and decrypts it
automatically when it is read. This entire process happens without users performing
any additional activity.

Azure account keys must be rotated periodically. This will ensure that an attacker is not
able to gain access to storage accounts.

It is also a good idea to regenerate the keys; however, this must be evaluated with
regard to its usage in existing applications. If it breaks the existing application, these
applications should be prioritized for change management, and changes should be
applied gradually.

252 | Architecting secure applications on Azure

It is always recommended to have individual service–level SAS tokens with limited
timeframes. This token should only be provided to users who should access the
resources. Always follow the principle of least privilege and provide only the necessary
permissions.

SAS keys and storage account keys should be stored in Azure Key Vault. This provides
secure storage and access to them. These keys can be read at runtime by applications
from the key vault, instead of storing them in configuration files.

Additionally, you can also use Azure AD to authorize the requests to the blob and queue
storage. We'll be using RBAC to give necessary permissions to a service principal,
and once we authenticate the service principal using Azure AD, an OAuth 2.0 token
is generated. This token can be added to the authorization header of your API calls to
authorize a request against blob or queue storage. Microsoft recommends the use of
Azure AD authorization while working with blob and queue applications due to the
superior security provided by Azure AD and its simplicity compared to SAS tokens.

In the next section, we are going to assess the security options available for Azure SQL
Database.

Azure SQL
SQL Server stores relational data on Azure, which is a managed relational database
service. It is also known as a Database as a Service (DBaaS) that provides a highly
available, scalable, performance-centric, and secure platform for storing data. It is
accessible from anywhere, with any programming language and platform. Clients need a
connection string comprising the server, database, and security information to connect
to it.

SQL Server provides firewall settings that prevent access to anyone by default. IP
addresses and ranges should be whitelisted to access SQL Server. Architects should
only allow IP addresses that they are confident about and that belong to customers/
partners. There are deployments in Azure for which either there are a lot of IP
addresses or the IP addresses are not known, such as applications deployed in Azure
Functions or Logic Apps. For such applications to access Azure SQL, Azure SQL allows
whitelisting of all IP addresses to Azure services across subscriptions.

It is to be noted that firewall configuration is at the server level and not the database
level. This means that any changes here affect all databases within a server. In Figure
8.13, you can see how to add clients IPs to the firewall to grant access to the server:

Azure SQL | 253

Figure 8.13: Configuring firewall rules

Azure SQL also provides enhanced security by encrypting data at rest. This ensures
that nobody, including the Azure datacenter administrators, can view the data stored in
SQL Server. The technology used by SQL Server for encrypting data at rest is known as
Transparent Data Encryption (TDE). There are no changes required at the application
level to implement TDE. SQL Server encrypts and decrypts data transparently when
the user saves and reads data. This feature is available at the database level. We can also
integrate TDE with Azure Key Vault to have Bring Your Own Key (BYOK). Using BYOK,
we can enable TDE using a customer-managed key in Azure Key Vault.

254 | Architecting secure applications on Azure

SQL Server also provides dynamic data masking (DDM), which is especially useful for
masking certain types of data, such as credit card details or user PII data. Masking is
not the same as encryption. Masking does not encrypt data, but only masks it, which
ensures that data is not in a human-readable format. Users should mask and encrypt
sensitive data in Azure SQL Server.

SQL Server also provides an auditing and threat detection service for all servers.
There are advanced data collection and intelligence services running on top of these
databases to discover threats and vulnerabilities and alert users to them. Audit logs
are maintained by Azure in storage accounts and can be viewed by administrators to
be actioned. Threats such as SQL injection and anonymous client logins can generate
alerts that administrators can be informed about over email. In Figure 8.14, you can see
how to enable Threat Detection:

Figure 8.14: Enabling Threat Protection and selecting the types of threat to detect

Data can be masked in Azure SQL. This helps us store data in a format that cannot be
read by humans:

Azure SQL | 255

Figure 8.15: Configuring the settings to mask data

Azure SQL also provides TDE to encrypt data at rest, as shown in Figure 8.16:

Figure 8.16: Enabling TDE

To conduct a vulnerability assessment on SQL Server, you can leverage SQL
Vulnerability Assessment, which is a part of the unified package for advanced SQL
security capabilities known as Advanced Data Security. SQL Vulnerability Assessment
can be used by customers proactively to improve the security of the database by
discovering, tracking, and helping you to remediate potential database vulnerabilities.

256 | Architecting secure applications on Azure

We have mentioned Azure Key Vault a few times in the previous sections, when we
discussed managed identities, SQL Database, and so on. You know the purpose of Azure
Key Vault now, and in the next section, we will be exploring some methods that can help
secure the contents of your key vault.

Azure Key Vault
Securing resources using passwords, keys, credentials, certificates, and unique
identifiers is an important element of any environment and application from the
security perspective. They need to be protected, and ensuring that these resources
remain secure and do not get compromised is an important pillar of security
architecture. Management and operations that keep the secrets and keys secure, while
making them available when needed, are important aspects that cannot be ignored.
Typically, these secrets are used all over the place—within the source code, inside
configuration files, on pieces of paper, and in other digital formats. To overcome these
challenges and store all secrets uniformly in a centralized secure storage, Azure Key
Vault should be used.

Azure Key Vault is well integrated with other Azure services. For example, it would
be easy to use a certificate stored in Azure Key Vault and deploy it to an Azure virtual
machine's certificate store. All kinds of keys, including storage keys, IoT and event
keys, and connection strings, can be stored as secrets in Azure Key Vault. They can
be retrieved and used transparently without anyone viewing them or storing them
temporarily anywhere. Credentials for SQL Server and other services can also be stored
in Azure Key Vault.

Azure Key Vault works on a per-region basis. What this means is that an Azure Key
Vault resource should be provisioned in the same region where the application
and service are deployed. If a deployment consists of more than one region and
needs services from Azure Key Vault, multiple Azure Key Vault instances should be
provisioned.

An important feature of Azure Key Vault is that the secrets, keys, and certificates are
not stored in general storage. This sensitive data is backed up by the HSM. This means
that this data is stored in separate hardware on Azure that can only be unlocked by keys
owned by users. To provide added security, you can also implement virtual network
service endpoints for Azure Key Vault. This will restrict access to the key vault to
specific virtual networks. You can also restrict access to an IPv4 address range.

Authentication and authorization using OAuth | 257

In the Azure Storage section, we discussed using Azure AD to authorize requests to
blobs and queues. It was mentioned that we use an OAuth token, which is obtained
from Azure AD, to authenticate API calls. In the next section, you will learn how
authentication and authorization are done using OAuth. Once you have completed
the next section, you will be able to relate it to what we discussed in the Azure Storage
section.

Authentication and authorization using OAuth
Azure AD is an identity provider that can authenticate users based on already available
users and service principals available within the tenant. Azure AD implements
the OAuth protocol and supports authorization on the internet. It implements an
authorization server and services to enable the OAuth authorization flow, implicit as
well as client credential flows. These are different well-documented OAuth interaction
flows between client applications, authorization endpoints, users, and protected
resources.

Azure AD also supports single sign-on (SSO), which adds security and ease when
signing in to applications that are registered with Azure AD. You can use OpenID
Connect, OAuth, SAML, password-based, or the linked or disabled SSO method when
developing new applications. If you are unsure of which to use, refer to the flowchart
from Microsoft here: https://docs.microsoft.com/azure/active-directory/manage-
apps/what-is-single-sign-on#choosing-a-single-sign-on-method.

Web applications, JavaScript-based applications, and native client applications (such
as mobile and desktop applications) can use Azure AD for both authentication and
authorization. There are social media platforms, such as Facebook, Twitter, and so on,
that support the OAuth protocol for authorization.

One of the easiest ways to enable authentication for web applications using Facebook is
shown next. There are other methods that use security binaries, but that is outside the
scope of this book.

In this walkthrough, an Azure App Service will be provisioned along with an App Service
Plan to host a custom web application. A valid Facebook account will be needed as a
prerequisite in order to redirect users to it for authentication and authorization.

https://docs.microsoft.com/azure/active-directory/manage-apps/what-is-single-sign-on#choosing-a-single-sign-on-method
https://docs.microsoft.com/azure/active-directory/manage-apps/what-is-single-sign-on#choosing-a-single-sign-on-method

258 | Architecting secure applications on Azure

A new resource group can be created using the Azure portal, as shown in Figure 8.17:

Figure 8.17: Creating a new resource group

After the resource group has been created, a new app service can be created using the
portal, as shown in Figure 8.18:

Figure 8.18: Creating a new application

Authentication and authorization using OAuth | 259

It is important to note the URL of the web application because it will be needed later
when configuring the Facebook application.

Once the web application is provisioned in Azure, the next step is to create a new
application in Facebook. This is needed to represent your web application within
Facebook and to generate appropriate client credentials for the web application. This is
the way Facebook knows about the web application.

Navigate to developers.facebook.com and log in using the appropriate credentials.
Create a new application by selecting the Create App option under My Apps in the
top-right corner, as shown in Figure 8.19:

Figure 8.19: Creating a new application from the Facebook developer portal

The web page will prompt you to provide a name for the web application to create a
new application within Facebook:

Figure 8.20: Adding a new application

Add a new Facebook Login product and click on Set Up to configure login for the
custom web application to be hosted on Azure App Service:

http://developers.facebook.com

260 | Architecting secure applications on Azure

Figure 8.21: Adding Facebook login to the application

The Set Up button provides a few options, as shown in Figure 8.22, and these options
configure the OAuth flow, such as authorization flow, implicit flow, or client credential
flow. Select the Web option because that is what needs Facebook authorization:

Figure 8.22: Selecting the platform

Authentication and authorization using OAuth | 261

Provide the URL of the web application that we noted earlier after provisioning the web
application on Azure:

Figure 8.23: Providing the site URL to the application

Click on the Settings item in the menu on the left and provide the OAuth redirect
URL for the application. Azure already has well-defined callback URLs for each of the
popular social media platforms, and the one used for Facebook is domain name/.auth/
login/facebook/callback:

Figure 8.24: Adding OAuth redirect URIs

Go to the Basic settings from the menu on the left and note the values for App ID and
App Secret. These are needed to configure the Azure App Services authentication/
authorization:

262 | Architecting secure applications on Azure

Figure 8.25: Finding the App ID and App Secret

In the Azure portal, navigate back to the Azure App Service created in the first few
steps of this section and navigate to the authentication/authorization blade. Switch on
App Services Authentication, select Log in with Facebook for authentication, and click
on the Facebook item from the list:

Figure 8.26: Enabling Facebook authentication in App Service

On the resultant page, provide the already noted app ID and app secret, and also
select the scope. The scope decides the information shared by Facebook with the web
application:

Authentication and authorization using OAuth | 263

Figure 8.27: Selecting the scope

Click OK and click the Save button to save the authentication/authorization settings.

Now, if a new incognito browser session is initiated and you go to the custom web
application, the request should get redirected to Facebook. As you might have seen
on other websites, when you use Log in with Facebook, you will be asked to give your
credentials:

Figure 8.28: Logging in to the website using Facebook

264 | Architecting secure applications on Azure

Once you have entered your credentials, a user consent dialog box will ask for
permission for data from Facebook to be shared with the web application:

Figure 8.29: User consent to share your information with the application

If consent is provided, the web page from the web application should appear:

Figure 8.30: Accessing the landing page

Security monitoring and auditing | 265

A similar approach can be used to protect your web application using Azure AD, Twitter,
Microsoft, and Google. You can also integrate your own identity provider if required.

The approach shown here illustrates just one of the ways to protect a website using
credentials stored elsewhere and the authorization of external applications to access
protected resources. Azure also provides JavaScript libraries and .NET assemblies to
use the imperative programming method to consume the OAuth endpoints provided by
Azure AD and other social media platforms. You are recommended to use this approach
for greater control and flexibility for authentication and authorization within your
applications.

So far, we have discussed security features and how they can be implemented. It is also
relevant to have monitoring and auditing in place. Implementing an auditing solution will
help your security team to audit the logs and take precautionary measures. In the next
section, we will be discussing the security monitoring and auditing solutions in Azure.

Security monitoring and auditing
Every activity in your environment, from emails to changing a firewall, can be
categorized as a security event. From a security standpoint, it's necessary to have a
central logging system to monitor and track the changes made. During an audit, if
you find suspicious activity, you can discover what the flaw in the architecture is and
how it can be remediated. Also, if you had a data breach, the logs will help security
professionals to understand the pattern of an attack and how it was executed. Also,
necessary preventive measures can be taken to avoid similar incidents in the future.
Azure provides the following two important security resources to manage all security
aspects of the Azure subscription, resource groups, and resources:

• Azure Monitor

• Azure Security Center

Of these two security resources, we will first explore Azure Monitor.

Azure Monitor

Azure Monitor is a one-stop shop for monitoring Azure resources. It provides
information about Azure resources and their state. It also offers a rich query interface,
using information that can be sliced and diced using data at the levels of subscription,
resource group, individual resource, and resource type. Azure Monitor collects
data from numerous data sources, including metrics and logs from Azure, customer
applications, and the agents running in virtual machines. Other services, such as Azure
Security Center and Network Watcher, also ingest data to the Log Analytics workspace,
which can be analyzed from Azure Monitor. You can use REST APIs to send custom data
to Azure Monitor.

266 | Architecting secure applications on Azure

Azure Monitor can be used through the Azure portal, PowerShell, the CLI, and
REST APIs:

Figure 8.31: Exploring activity logs

The following logs are those provided by Azure Monitor:

• Activity log: This shows all management-level operations performed on resources.
It provides details about the creation time, the creator, the resource type, and the
status of resources.

• Operation log (classic): This provides details of all operations performed on
resources within a resource group and subscription.

• Metrics: This gets performance information for individual resources and sets
alerts on them.

• Diagnostic settings: This helps us to configure the effects logs by setting up Azure
Storage for storing logs, streaming logs in real time to Azure Event Hubs, and
sending them to Log Analytics.

• Log search: This helps integrate Log Analytics with Azure Monitor.

Security monitoring and auditing | 267

Azure Monitor can identify security-related incidents and take appropriate action. It is
important that only authorized individuals should be allowed to access Azure Monitor,
since it might contain sensitive information.

Azure Security Center

Azure Security Center, as the name suggests, is a one-stop shop for all security needs.
There are generally two activities related to security—implementing security and
monitoring for any threats and breaches. Security Center has been built primarily to
help with both these activities. Azure Security Center enables users to define their
security policies and get them implemented on Azure resources. Based on the current
state of Azure resources, Azure Security Center provides security recommendations
to harden the solution and individual Azure resources. The recommendations include
almost all Azure security best practices, including the encryption of data and disks,
network protection, endpoint protection, access control lists, the whitelisting of
incoming requests, and the blocking of unauthorized requests. The resources range
from infrastructure components, such as load balancers, network security groups, and
virtual networks, to PaaS resources, such as Azure SQL and Storage. Here is an excerpt
from the Overview pane of Azure Security Center, which shows the overall secure score
of the subscription, resource security hygiene, and more:

Figure 8.32: Azure Security Center overview

268 | Architecting secure applications on Azure

Azure Security Center is a rich platform that provides recommendations for multiple
services, as shown in Figure 8.33. Also, these recommendations can be exported to CSV
files for reference:

Figure 8.33: Azure Security Center recommendations

As was mentioned at the beginning of this section, monitoring and auditing are crucial
in an enterprise environment. Azure Monitor can have multiple data sources and can
be used to audit logs from these sources. Azure Security Center gives continuous
assessments and prioritized security recommendations along with the overall secure
score.

Summary
Security is always an important aspect of any deployment or solution. It has become
much more important and relevant because of deployment to the cloud. Moreover,
there is an increasing threat of cyberattacks. In these circumstances, security has
become a focal point for organizations. No matter the type of deployment or solution,
whether it's IaaS, PaaS, or SaaS, security is needed across all of them. Azure datacenters
are completely secure, and they have a dozen international security certifications.
They are secure by default. They provide IaaS security resources, such as NSGs,
network address translation, secure endpoints, certificates, key vaults, storage, virtual
machine encryption, and PaaS security features for individual PaaS resources. Security
has a complete life cycle of its own and it should be properly planned, designed,
implemented, and tested, just like any other application functionality.

Summary | 269

We discussed operating system firewalls and Azure Firewall and how they can be
leveraged to increase the overall security landscape of your solution. We also explored
new Azure services, such as Azure Bastion, Azure Front Door, and Azure Private Link.

Application security was another key area, and we discussed performing authentication
and authorization using OAuth. We did a quick demo of how to create an app service
and integrate Facebook login. Facebook was just an example; you could use Google,
Twitter, Microsoft, Azure AD, or any custom identity provider.

We also explored the security options offered by Azure SQL, which is a managed
database service provided by Azure. We discussed the implementation of security
features, and in the final section, we concluded with monitoring and auditing
with Azure Monitor and Azure Security Center. Security plays a vital role in your
environment. An architect should always design and architect solutions with security as
one of the main pillars of the architecture; Azure provides many options to achieve this.

Now that you know how to secure your data in Azure, in the next chapter, we will focus
on big data solutions from Hadoop, followed by Data Lake Storage, Data Lake Analytics,
and Data Factory.

In the previous chapter, you learned about the various security strategies that can be
implemented on Azure. With a secure application, we manage vast amounts of data.
Big data has been gaining significant traction over the last few years. Specialized tools,
software, and storage are required to handle it. Interestingly, these tools, platforms,
and storage options were not available as services a few years back. However, with new
cloud technology, Azure provides numerous tools, platforms, and resources to create
big data solutions easily. This chapter will detail the complete architecture for ingesting,
cleaning, filtering, and visualizing data in a meaningful way.

Azure Big Data
solutions

9

272 | Azure Big Data solutions

The following topics will be covered in this chapter:

• Big data overview

• Data integration

• Extract-Transform-Load (ETL)

• Data Factory

• Data Lake Storage

• Tools ecosystems such as Spark, Databricks, and Hadoop

• Databricks

Big data
With the influx of cheap devices—such as Internet of Things devices and hand-held
devices—the amount of data that is being generated and captured has increased
exponentially. Almost every organization has a great deal of data and they are ready
to purchase more if needed. When large quantities of data arrive in multiple different
formats and on an ever-increasing basis, then we can say we are dealing with big data.
In short, there are three key characteristics of big data:

• Volume: By volume, we mean the quantity of data both in terms of size (in GB, TB,
and PB, for instance) and in terms of the number of records (as in a million rows
in a hierarchical data store, 100,000 images, half a billion JSON documents, and so
on).

• Velocity: Velocity refers to the speed at which data arrives or is ingested. If data
does not change frequently or new data does not arrive frequently, the velocity
of data is said to be low, while if there are frequent updates and a lot of new data
arrives on an ongoing basis frequently, it is said to have high velocity.

• Variety: Variety refers to different kinds and formats of data. Data can come
from different sources in different formats. Data can arrive as structured data (as
in comma-separated files, JSON files, or hierarchical data), as semi-structured
databases (as in schema-less NoSQL documents), or as unstructured data (such as
binary large objects (blobs), images, PDFs, and so on). With so many variants, it's
important to have a defined process for processing ingested data.

In the next section, we will check out the general big data process.

Big data | 273

Process for big data

When data comes from multiple sources in different formats and at different speeds, it
is important to set out a process of storing, assimilating, filtering, and cleaning data in a
way that helps us to work with that data more easily and make the data useful for other
processes. There needs to be a well-defined process for managing data. The general
process for big data that should be followed is shown in Figure 9.1:

Figure 9.1: Big data process

There are four main stages of big data processing. Let's explore them in detail:

• Ingest: This is the process of bringing and ingesting data into the big data
environment. Data can come from multiple sources, and connectors should be
used to ingest that data within the big data platform.

• Store: After ingestion, data should be stored in the data pool for long-term
storage. The storage should be there for both historical as well as live data and
must be capable of storing structured, semi-structured, and non-structured
data. There should be connectors to read the data from data sources, or the data
sources should be able to push data to storage.

• Analysis: After data is read from storage, it should be analyzed, a process that
requires filtering, grouping, joining, and transforming data to gather insights.

• Visualize: The analysis can be sent as reports using multiple notification platforms
or used to generate dashboards with graphs and charts.

Previously, the tools needed to capture, ingest, store, and analyze big data were not
readily available for organizations due to the involvement of expensive hardware and
large investments. Also, no platform was available to process them. With the advent of
the cloud, it has become easier for organizations to capture, ingest, store, and perform
big data analytics using their preferred choice of tools and frameworks. They can
pay the cloud provider to use their infrastructure and avoid any capital expenditure.
Moreover, the cost of the cloud is very cheap compared to any on-premises solution.

Ingest Store Analyze Visualize

274 | Azure Big Data solutions

Big data demands an immense amount of compute, storage, and network resources.
Generally, the amount of resources required is not practical to have on a single machine
or server. Even if, somehow, enough resources are made available on a single server,
the time it takes to process an entire big data pool is considerably large, since each
job is done in sequence and each step has a dependency upon the prior step. There is
a need for specialized frameworks and tools that can distribute work across multiple
servers and eventually bring back the results from them and present to the user after
appropriately combining the results from all the servers. These tools are specialized
big data tools that help in achieving availability, scalability, and distribution out of the
box to ensure that a big data solution can be optimized to run quickly with built-in
robustness and stability.

The two prominent Azure big data services are HD Insights and Databricks. Let's go
ahead and explore the various tools available in the big data landscape.

Big data tools
There are many tools and services in the big data space, and we are going to cover some
of them in this chapter.

Azure Data Factory

Azure Data Factory is the flagship ETL service in Azure. It defines incoming data (in
terms of its format and schema), transforms data according to business rules and
filters, augments existing data, and finally transfers data to a destination store that is
readily consumable by other downstream services. It is able to run pipelines (containing
ETL logic) on Azure, as well as custom infrastructure, and can also run SQL Server
Integration Services packages.

Azure Data Lake Storage

Azure Data Lake Storage is enterprise-level big data storage that is resilient, highly
available, and secure out of the box. It is compatible with Hadoop and can scale to
petabytes of data storage. It is built on top of Azure storage accounts and hence gets all
of the benefits of storage account directly. The current version is called Gen2, after the
capabilities of both Azure Storage and Data Lake Storage Gen1 were combined.

Big data tools | 275

Hadoop

Hadoop was created by the Apache software foundation and is a distributed, scalable,
and reliable framework for processing big data that breaks big data down into smaller
chunks of data and distributes them within a cluster. A Hadoop cluster comprises two
types of servers—masters and slaves. The master server contains the administrative
components of Hadoop, while the slaves are the ones where the data processing
happens. Hadoop is responsible for the logical partition data between slaves; slaves
perform all transformation on data, gather insights, and pass them back to master
nodes who will collate them to generate the final output. Hadoop can scale to
thousands of servers, with each server providing compute and storage for the jobs.
Hadoop is available as a service using the HDInsight service in Azure.

There are three main components that make up the Hadoop core system:

HDFS: Hadoop Distributed File System is a file system for the storage of big data.
It is a distributed framework that helps by breaking down large big data files into
smaller chunks and placing them on different slaves in a cluster. HDFS is a fault-
tolerant file system. This means that although different chunks of data are made
available to different slaves in the cluster, there is also the replication of data
between the slaves to ensure that in the event of any slave's failure, that data will
also be available on another server. It also provides fast and efficient access to data
to the requestor.

MapReduce: MapReduce is another important framework that enables Hadoop to
process data in parallel. This framework is responsible for processing data stored
within HDFS slaves and mapping them to the slaves. After the slaves are done
processing, the "reduce" part brings information from each slave and collates them
together as the final output. Generally, both HDFS and MapReduce are available
on the same node, such that the data does not need to travel between slaves and
higher efficiency can be achieved when processing them.

YARN: Yet Another Resource Negotiator (YARN) is an important Hadoop
architectural component that helps in scheduling jobs related to applications and
resource management within a cluster. YARN was released as part of Hadoop 2.0,
with many casting it as the successor to MapReduce as it is more efficient in terms
of batch processing and resource allocation.

276 | Azure Big Data solutions

Apache Spark

Apache Spark is a distributed, reliable analytics platform for large-scale data processing.
It provides a cluster that is capable of running transformation and machine learning
jobs on large quantities of data in parallel and bringing a consolidated result back to the
client. It comprises master and worker nodes, where the master nodes are responsible
for dividing and distributing the actions within jobs and data between worker nodes,
as well as consolidating the results from all worker nodes and returning the results
to the client. An important thing to remember while using Spark is that the logic or
calculations should be easily parallelized, and the amount of data is too large to fit on
one machine. Spark is available in Azure as a service from HDInsight and Databricks.

Databricks

Databricks is built on top of Apache Spark. It is a Platform as a Service where a managed
Spark cluster is made available to users. It provides lots of added features, such as a
complete portal to manage Spark cluster and its nodes, as well as helping to create
notebooks, schedule and run jobs, and provide security and support for multiple users.

Now, it's time to learn how to integrate data from multiple sources and work with them
together using the tools we've been talking about.

Data integration
We are well aware of how integration patterns are used for applications; applications
that are composed of multiple services are integrated together using a variety of
patterns. However, there is another paradigm that is a key requirement for many
organizations, which is known as data integration. The surge in data integration has
primarily happened during the last decade, when the generation and availability of data
has become incredibly high. The velocity, variety, and volume of data being generated
has increased drastically, and there is data almost everywhere.

Every organization has many different types of applications, and they all generate data
in their own proprietary format. Often, data is also purchased from the marketplace.
Even during mergers and amalgamations of organizations, data needs to be migrated
and combined.

Data integration refers to the process of bringing data from multiple sources and
generating a new output that has more meaning and usability.

ETL | 277

There is a definite need for data integration in the following scenarios:

• Migrating data from a source or group of sources to a target destination. This is
needed to make data available in different formats to different stakeholders and
consumers.

• Getting insights from data. With the rapidly increasing availability of data,
organizations want to derive insights from it. They want to create solutions
that provide insights; data from multiple sources should be merged, cleaned,
augmented, and stored in a data warehouse.

• Generating real-time dashboards and reports.

• Creating analytics solutions.

Application integration has a runtime behavior when users are consuming the
application—for example, in the case of credit card validation and integration. On the
other hand, data integration happens as a back-end exercise and is not directly linked
to user activity.

Let's move on to understanding the ETL process with Azure Data Factory.

ETL
A very popular process known as ETL helps in building a target data source to house
data that is consumable by applications. Generally, the data is in a raw format, and to
make it consumable, the data should go through the following three distinct phases:

• Extract: During this phase, data is extracted from multiple places. For instance,
there could be multiple sources and they all need to be connected together in
order to retrieve the data. Extract phases typically use data connectors consisting
of connection information related to the target data source. They might also have
temporary storage to bring the data from the data source and store it for faster
retrieval. This phase is responsible for the ingestion of data.

• Transform: The data that is available after the extract phase might not be
directly consumable by applications. This could be for a variety of reasons; for
example, the data might have irregularities, there might be missing data, or there
might be erroneous data. Or, there might even be data that is not needed at all.
Alternatively, the format of the data might not be conducive to consumption by
the target applications. In all of these cases, transformation has to be applied to
the data in such a way that it can be efficiently consumed by applications.

278 | Azure Big Data solutions

• Load: After transformation, data should be loaded to the target data source in a
format and schema that enables faster, easier, and performance-centric availability
for applications. Again, this typically consists of data connectors for destination
data sources and loading data into them.

Next, let's cover how Azure Data Factory relates to the ETL process.

A primer on Azure Data Factory
Azure Data Factory is a fully managed, highly available, highly scalable, and easy-to-use
tool for creating integration solutions and implementing ETL phases. Data Factory helps
you to create new pipelines in a drag and drop fashion using a user interface, without
writing any code; however, it still provides features to allow you to write code in your
preferred language.

There are a few important concepts to learn about before using the Data Factory
service, which we will be exploring in more detail in the following sections:

• Activities: Activities are individual tasks that enable the running and processing
of logic within a Data Factory pipeline. There are multiple types of activities.
There are activities related to data movement, data transformation, and control
activities. Each activity has a policy through which it can decide the retry
mechanism and retry interval.

• Pipelines: Pipelines in Data Factory are composed of groups of activities and
are responsible for bringing activities together. Pipelines are the workflows and
orchestrators that enable the running of the ETL phases. Pipelines allow the
weaving together of activities and allow the declaration of dependencies between
them. By using dependencies, it is possible to run some tasks in parallel and other
tasks in sequence.

• Datasets: Datasets are the sources and destinations of data. These could be Azure
storage accounts, Data Lake Storage, or a host of other sources.

• Linked services: These are services that contain the connection and connectivity
information for datasets and are utilized by individual tasks for connecting to
them.

• Integration runtime: The main engine that is responsible for the running of Data
Factory is called the integration runtime. The integration runtime is available on
the following three configurations:

• Azure: In this configuration, Data Factory runs on the compute resources that are
provided by Azure.

A primer on Azure Data Lake Storage | 279

• Self-hosted: Data Factory, in this configuration, runs when you bring your own
compute resources. This could be through on-premises or cloud-based virtual
machine servers.

• Azure SQL Server Integration Services (SSIS): This configuration allows the
running of traditional SSIS packages written using SQL Server.

• Versions: Data Factory comes in two different versions. It is important to
understand that all new developments will happen on V2, and that V1 will stay as it
is, or fade out at some point. V2 is preferred for the following reasons:

It provides the capability to run SQL Server integration packages.

It has enhanced functionalities compared to V1.

It comes with enhanced monitoring, which is missing in V1.

Now that you have a fair understanding of Data Factory, let's get into the various
storage options available on Azure.

A primer on Azure Data Lake Storage
Azure Data Lake Storage provides storage for big data solutions. It is specially designed
for storing the large amounts of data that are typically needed in big data solutions. It is
an Azure-provided managed service. Customers need to bring their data and store it in
a data lake.

There are two versions of Azure Data Lake Storage: version 1 (Gen1) and the current
version, version 2 (Gen2). Gen2 has all the functionality of Gen1, but one particular
difference is that it is built on top of Azure Blob storage.

As Azure Blob storage is highly available, can be replicated multiple times, is disaster-
ready, and is low in cost, these benefits are transferred to Data Lake Storage Gen2. Data
Lake Storage Gen2 can store any kind of data, including relational, non-relational, file
system–based, and hierarchical data.

Creating a Data Lake Storage Gen2 instance is as simple as creating a new storage
account. The only change that needs to be done is enabling the hierarchical namespace
from the Advanced tab of your storage account. It is important to note that there is
no direct migration or conversion from a general storage account to Azure Data Lake
Storage or vice versa. Also, general storage accounts are for storing files, while Data
Lake Storage is optimized for reading and ingesting large quantities of data.

Next, we will look into the process and main phases while working with big data. These
are distinct phases and each is responsible for different activities on data.

280 | Azure Big Data solutions

Migrating data from Azure Storage to Data Lake Storage Gen2
In this section, we will be migrating data from Azure Blob storage to another Azure
container of the same Azure Blob storage instance, and we will also migrate data to
an Azure Data Lake Storage Gen2 instance using an Azure Data Factory pipeline.
The following sections outline the steps that need to be taken to create such an
end-to-end solution.

Preparing the source storage account

Before we can create Azure Data Factory pipelines and use them for migration, we need
to create a new storage account, consisting of a number of containers, and upload the
data files. In the real world, these files and the storage connection would already be
prepared. The first step for creating a new Azure storage account is to create a new
resource group or choose an existing resource group within an Azure subscription.

Provisioning a new resource group

Every resource in Azure is associated with a resource group. Before we provision an
Azure storage account, we need to create a resource group that will host the storage
account. The steps for creating a resource group are given here. It is to be noted that a
new resource group can be created while provisioning an Azure storage account or an
existing resource group can be used:

1. Navigate to the Azure portal, log in, and click on + Create a resource; then, search
for Resource group.

2. Select Resource group from the search results and create a new resource group.
Provide a name and choose an appropriate location. Note that all the resources
should be hosted in the same resource group and location so that it is easy to
delete them.

After provisioning the resource group, we will provision a storage account within it.

Migrating data from Azure Storage to Data Lake Storage Gen2 | 281

Provisioning a storage account

In this section, we will go through the steps of creating a new Azure storage account.
This storage account will fetch the data source from which data will be migrated.
Perform the following steps to create a storage account:

1. Click on + Create a resource and search for Storage Account. Select Storage
Account from the search results and then create a new storage account.

2. Provide a name and location, and then select a subscription based on the resource
group that was created earlier.

3. Select StorageV2 (general purpose v2) for Account
kind, Standard for Performance, and Locally-redundant storage
(LRS) for Replication, as demonstrated in Figure 9.2:

Figure 9.2: Configuring the storage account

282 | Azure Big Data solutions

4. Now create a couple of containers within the storage account. The rawdata
container contains the files that will be extracted by the Data Factory pipeline
and will act as the source dataset, while finaldata will contain files that the Data
Factory pipelines will write data to and will act as the destination dataset:

Figure 9.3: Creating containers

5. Upload a data file (this file is available with the source code) to
the rawdata container, as shown in Figure 9.4:

Figure 9.4: Uploading a data file

After completing these steps, the source data preparation activities are complete. Now
we can focus on creating a Data Lake Storage instance.

Migrating data from Azure Storage to Data Lake Storage Gen2 | 283

Provisioning the Data Lake Storage Gen2 service

As we already know, the Data Lake Storage Gen2 service is built on top of the
Azure storage account. Because of this, we will be creating a new storage account
in the same way that we did earlier—with the only difference being the selection
of Enabled for Hierarchical namespace in the Advanced tab of the new Azure storage
account. This will create the new Data Lake Storage Gen2 service:

Figure 9.5: Creating a new storage account

After the creation of the data lake, we will focus on creating a new Data Factory
pipeline.

284 | Azure Big Data solutions

Provisioning Azure Data Factory

Now that we have provisioned both the resource group and Azure storage account, it's
time to create a new Data Factory resource:

1. Create a new Data Factory pipeline by selecting V2 and by providing a name and
location, along with a resource group and subscription selection.

Data Factory has three different versions, as shown in Figure 9.6. We've already
discussed V1 and V2:

Figure 9.6: Selecting the version of Data Factory

Migrating data from Azure Storage to Data Lake Storage Gen2 | 285

2. Once the Data Factory resource is created, click on the Author & Monitor link
from the central pane.

This will open another window, consisting of the Data Factory designer for the
pipelines.

The code of the pipelines can be stored in version control repositories such that it can
be tracked for code changes and promote collaboration between developers. If you
missed setting up the repository settings in these steps, that can be done later.

The next section will focus on configuration related to version control repository
settings if your Data Factory resource was created without any repository settings
being configured.

Repository settings

Before creating any Data Factory artifacts, such as datasets and pipelines, it is a good
idea to set up the code repository for hosting files related to Data Factory:

1. From the Authoring page, click on the Manage button and then Git Configuration
in the left menu. This will open another pane; click on the Set up code repository
button in this pane:

Figure 9.7: Setting up a Git repository

286 | Azure Big Data solutions

2. From the resultant blade, select any one of the types of repositories that you want
to store Data Factory code files in. In this case, let's select Azure DevOps Git:

Figure 9.8: Selecting the appropriate Git repository type

3. Create a new repository or reuse an existing repository from Azure DevOps. You
should already have an account in Azure DevOps. If not, visit, https://dev.azure.
com and use the same account used for the Azure portal to login and create a new
organization and project within it. Refer to Chapter 13, Integrating Azure DevOps,
to learn more about creating organizations and projects in Azure DevOps.

Now, we can move back to the Data Factory authoring window and start creating
artifacts for our new pipeline.

In the next section, we will prepare the datasets that will be used within our Data
Factory pipelines.

https://dev.azure.com
https://dev.azure.com

Migrating data from Azure Storage to Data Lake Storage Gen2 | 287

Data Factory datasets

Now we can go back to the Data Factory pipeline. First, create a new dataset that will
act as the source dataset. It will be the first storage account that we create and upload
the sample product.csv file to:

1. Click on + Datasets -> New DataSet from the left menu and select Azure Blob
Storage as data store and delimitedText as the format for the source file. Create
a new linked service by providing a name and selecting an Azure subscription
and storage account. By default, AutoResolveIntegrationRuntime is used for the
runtime environment, which means Azure will provide the runtime environment
on Azure-managed compute. Linked services provide multiple authentication
methods, and we are using the shared access signature (SAS) uniform resource
locator (URI) method. It is also possible to use an account key, service principal,
and managed identity as authentication methods:

Figure 9.9: Implementing the authentication method

288 | Azure Big Data solutions

2. Then, on the resultant lower pane in the General tab, click on the Open properties
link and provide a name for the dataset:

Figure 9.10: Naming the dataset

3. From the Connection tab, provide details about the container, the blob file
name in the storage account, the row delimiter, the column delimiter, and other
information that will help Data Factory to read the source data appropriately.

The Connection tab, after configuration, should look similar to Figure 9.11. Notice
that the path includes the name of the container and the name of the file:

Figure 9.11: Configuring the connection

Migrating data from Azure Storage to Data Lake Storage Gen2 | 289

4. At this point, if you click on the Preview data button, it shows preview data
from the product.csv file. On the Schema tab, add two columns and name them
ProductID and ProductPrice. The schema helps in providing an identifier to the
columns and also mapping the source columns in the source dataset to the target
columns in the target dataset, when the names are not the same.

Now that the first dataset is created, let's create the second one.

Creating the second dataset

Create a new dataset and linked service for the destination blob storage account in the
same way that you did before. Note that the storage account is the same as the source
but the container is different. Ensure that the incoming data has schema information
associated with it as well, as shown in Figure 9.12:

Figure 9.12: Creating the second dataset

Next, we will create a third dataset.

Creating a third dataset

Create a new dataset for the Data Lake Storage Gen2 instance as the target dataset. To
do this, select the new dataset and then select Azure Data Lake Storage Gen2.

Give the new dataset a name and create a new linked service in the Connection tab.
Choose Use account key as the authentication method and the rest of the configuration
will be auto-filled after selecting the storage account name. Then, test the connection
by clicking on the Test connection button. Keep the default configuration for the rest of
the tabs, as shown in Figure 9.13:

290 | Azure Big Data solutions

Figure 9.13: Configuration in Connection tabs

Now that we have the connection to source data and also connections to both the
source and destination data stores, it's time to create the pipelines that will contain the
logic of the data transformation.

Migrating data from Azure Storage to Data Lake Storage Gen2 | 291

Creating a pipeline

After all the datasets are created, we can create a pipeline that will consume those
datasets. The steps for creating a pipeline are given next:

1. Click on the + Pipelines => New Pipeline menu from the left menu to create
a new pipeline. Then, drag and drop the Copy Data activity from the Move &
Transform menu, as demonstrated in Figure 9.14:

Figure 9.14: Pipeline menu

292 | Azure Big Data solutions

2. The resultant General tab can be left as it is, but the Source tab should be
configured to use the source dataset that we configured earlier:

Figure 9.15: Source tab

3. The Sink tab is used to configure the destination data store and dataset, and it
should be configured to use the target dataset that we configured earlier:

Figure 9.16: Sink tab

4. On the Mapping tab, map the columns from the source to the destination dataset
columns, as shown in Figure 9.17:

Figure 9.17: Mapping tab

Migrating data from Azure Storage to Data Lake Storage Gen2 | 293

Adding one more Copy Data activity

Within our pipeline, we can add multiple activities, each responsible for a particular
transformation task. The task looked at in this section is responsible for copying data
from the Azure storage account to Azure Data Lake Storage:

1. Add another Copy Data activity from the left activity menu to migrate data to Data
Lake Storage; both of the copy tasks will run in parallel:

Figure 9.18: Copy Data activities

The configuration for the source is the Azure Blob storage account that contains
the product.csv file.

The sink configuration will target the Data Lake Storage Gen2 account.

2. The rest of the configuration can be left in the default settings for the second
Copy Data activity.

After the authoring of the pipeline is complete, it can be published to a version control
repository such as GitHub.

Next, we will look into creating a solution using Databricks and Spark.

294 | Azure Big Data solutions

Creating a solution using Databricks
Databricks is a platform for using Spark as a service. We do not need to provision
master and worker nodes on virtual machines. Instead, Databricks provides us with a
managed environment consisting of master and worker nodes and also manages them.
We need to provide the steps and logic for the processing of data, and the rest is taken
care of by the Databricks platform.

In this section, we will go through the steps of creating a solution using Databricks. We
will be downloading sample data to analyze.

The sample CSV has been downloaded from https://ourworldindata.org/coronavirus-
source-data, although it is also provided with the code of this book. The URL mentioned
before will have more up-to-date data; however, the format might have changed, and so
it is recommended to use the file available with the code samples of this book:

1. The first step in creating a Databricks solution is to provision it from the Azure
portal. There is a 14-day evaluation SKU available along with two other SKUs—
standard and premium. The premium SKU has Azure Role-Based Access Control at
the level of notebooks, clusters, jobs, and tables:

Figure 9.19: Azure portal—Databricks service

https://ourworldindata.org/coronavirus-source-data
https://ourworldindata.org/coronavirus-source-data

Creating a solution using Databricks | 295

2. After the Data bricks workspace is provisioned, click on the Launch workspace
button from the Overview pane. This will open a new browser window and will
eventually log you in to the Databricks portal.

3. From the Databricks portal, select Clusters from the left menu and create a new
cluster, as shown in Figure 9.20:

Figure 9.20: Creating a new cluster

4. Provide the name, the Databricks runtime version, the number of worker types,
the virtual machine size configuration, and the driver type server configuration.

5. The creation of the cluster might take a few minutes. After the creation of the
cluster, click on Home, select a user from its context menu, and create a new
notebook:

296 | Azure Big Data solutions

Figure 9.21: Selecting a new notebook

6. Provide a name to the notebook, as shown next:

Figure 9.22: Creating a notebook

7. Create a new storage account, as shown next. This will act as storage for the raw
COVID data in CSV format:

Figure 9.23: Creating a new storage account

Creating a solution using Databricks | 297

8. Create a container for storing the CSV file, as shown next:

Figure 9.24: Creating a container

9. Upload the owid-covid-data.csv file to this container.

Once you have completed the preceding steps, the next task is to load the data.

Loading data

The second major step is to load the COVID data within the Databricks workspace. This
can be done in two main ways:

• Mount the Azure storage container in Databricks and then load the files available
within the mount.

• Load the data directly from the storage account. This approach has been used in
the following example.

The following steps should be performed to load and analyze data using Databricks:

1. The first step is to connect and access the storage account. The key for the
storage account is needed, which is stored within the Spark configuration. Note
that the key here is "fs.azure.account.key.coronadatastorage.blob.core.windows.
net" and the value is the associated key:

spark.conf.set("fs.azure.account.key.coronadatastorage.blob.core.windows.
net","xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx==")

2. The key for the Azure storage account can be retrieved by navigating to the
settings and the Access Keys property of the storage account in the portal.

The next step is to load the file and read the data within the CSV file. The schema
should be inferred from the file itself instead of being provided explicitly. There is
also a header row, which is represented using the option in the next command.

The file is referred to using the following format: wasbs://{{container}}@{{storage
account name}}.blob.core.windows.net/{{filename}}.

298 | Azure Big Data solutions

3. The read method of the SparkSession object provides methods to read files. To
read CSV files, the csv method should be used along with its required parameters,
such as the path to the CSV file. There are additional optional parameters that can
be supplied to customize the reading process of the data files. There are multiple
types of file formats, such as JSON, Optimized Row Columnar (ORC), and Parquet,
and relational databases such as SQL Server and MySQL, NoSQL data stores such
as Cassandra and MongoDB, and big data platforms such as Apache Hive that can
all be used within Spark. Let's take a look at the following command to understand
the implementation of Spark DataFrames:

coviddata = spark.read.format("csv").option("inferSchema", "true").
option("header", "true").load("wasbs://coviddata@coronadatastorage.blob.
core.windows.net/owid-covid-data.csv")

Using this command creates a new object of the DataFrame type in Spark. Spark
provides Resilient Distributed Dataset (RDD) objects to manipulate and work
with data. RDDs are low-level objects and any code written to work with them
might not be optimized. DataFrames are higher-level constructs over RDDs and
provide optimization to access and work with them RDDs. It is better to work with
DataFrames than RDDs.

DataFrames provide data in row-column format, which makes it easier to visualize
and work with data. Spark DataFrames are similar to pandas DataFrames, with the
difference being that they are different implementations.

4. The following command shows the data in a DataFrame. It shows all the rows and
columns available within the DataFrame:

coviddata.show()

You should get a similar output to what you can see in Figure 9.25:

Figure 9.25: The raw data in a DataFrame

5. The schema of the loaded data is inferred by Spark and can be checked using the
following command:

coviddata.printSchema()

This should give you a similar output to this:

Creating a solution using Databricks | 299

Figure 9.26: Getting the schema of the DataFrame for each column

6. To count the number of rows within the CSV file, the following command can be
used, and its output shows that there are 19,288 rows in the file:

coviddata.count()

Figure 9.27: Finding the count of records in a DataFrame

7. The original DataFrame has more than 30 columns. We can also select a subset of
the available columns and work with them directly, as shown next:

CovidDataSmallSet = coviddata.select("location","date", "new_cases", "new_
deaths")
CovidDataSmallSet.show()

The output of the code will be as shown in Figure 9.28:

Figure 9.28: Selecting a few columns from the overall columns

300 | Azure Big Data solutions

8. It is also possible to filter data using the filter method, as shown next:

CovidDataSmallSet.filter(" location == 'United States' ").show()

9. It is also possible to add multiple conditions together using the AND (&) or OR (|)
operators:

CovidDataSmallSet.filter((CovidDataSmallSet.location == 'United States') |
(CovidDataSmallSet.location == 'Aruba')).show()

10. To find out the number of rows and other statistical details, such as the mean,
maximum, minimum, and standard deviation, the describe method can be used:

CovidDataSmallSet.describe().show()

Upon using the preceding command, you'll get a similar output to this:

Figure 9.29: Showing each column's statistics using the describe method

11. It is also possible to find out the percentage of null or empty data within specified
columns. A couple of examples are shown next:

from pyspark.sql.functions import col
(coviddata.where(col("diabetes_prevalence").isNull()).count() * 100)/
coviddata.count()

The output shows 5.998548320199087, which means 95% of the data is null. We
should remove such columns from data analysis. Similarly, running the same
command on the total_tests_per_thousand column returns 73.62090418913314,
which is much better than the previous column.

12. To drop some of the columns from the DataFrame, the next command can be used:

coviddatanew=coviddata.drop("iso_code").drop("total_tests").drop("total_
tests").drop("new_tests").drop("total_tests_per_thousand").drop("new_
tests_per_thousand").drop("new_tests_smoothed").drop("new_tests_smoothed_
per_thousand ")

Creating a solution using Databricks | 301

13. At times, you will need to have an aggregation of data. In such scenarios, you can
perform the grouping of data, as shown here:

coviddatanew = coviddata.groupBy('location').agg({'date': 'max'})

This will display the data from the groupBy statement:

Figure 9.30: Data from the groupby statement

14. As you can see in the max (date) column, the dates are mostly the same for all the
countries, we can use this value to filter the records and get a single row for each
country representing the maximum date:

coviddatauniquecountry = coviddata.filter("date='2020-05-23 00:00:00'")
coviddatauniquecountry.show()

15. If we take a count of records for the new DataFrame, we get 209.

We can save the new DataFrame into another CSV file, which may be needed by
other data processors:

coviddatauniquecountry.rdd.saveAsTextFile("dbfs:/mnt/coronadatastorage/
uniquecountry.csv")

We can check the newly created file with the following command:

%fs ls /mnt/coronadatastorage/

302 | Azure Big Data solutions

The mounted path will be displayed as shown in Figure 9.31:

Figure 9.31: The mounted path within the Spark nodes

16. It is also possible to add the data into the Databricks catalog using the
createTempView or createOrReplaceTempView method within the Databricks catalog.
Putting data into the catalog makes it available in a given context. To add data
into the catalog, the createTempView or createOrReplaceTempView method of the
DataFrame can be used, providing a new view for the table within the catalog:

coviddatauniquecountry.createOrReplaceTempView("corona")

17. Once the table is in the catalog, it is accessible from your SQL session, as shown
next:

spark.sql("select * from corona").show()

The data from the SQL statement will apear as shown in Figure 9.32:

Figure 9.32: Data from the SQL statement

Summary | 303

18. It possible to perform an additional SQL query against the table, as shown next:

spark.sql("select * from corona where location in ('India','Angola') order
by location").show()

That was a small glimpse of the possibilities with Databricks. There are many more
features and services within it that could not be covered within a single chapter. Read
more about it at https://azure.microsoft.com/services/databricks.

Summary
This chapter dealt with the Azure Data Factory service, which is responsible for
providing ETL services in Azure. Since it is a platform as a service, it provides unlimited
scalability, high availability, and easy-to-configure pipelines. Its integration with Azure
DevOps and GitHub is also seamless. We also explored the features and benefits of
using Azure Data Lake Storage Gen2 to store any kind of big data. It is a cost-effective,
highly scalable, hierarchical data store for handling big data, and is compatible with
Azure HDInsight, Databricks, and the Hadoop ecosystem.

By no means did we have a complete deep dive into all the topics mentioned in this
chapter. It was more about the possibilities in Azure, especially with Databricks and
Spark. There are multiple technologies in Azure related to big data, including HDInsight,
Hadoop, Spark and its related ecosystem, and Databricks, which is a Platform as a
Service environment for Spark with added functionality. In the next chapter, you will
learn about the serverless computing capabilities in Azure.

https://azure.microsoft.com/services/databricks

In the previous chapter, you learned about various big data solutions available on Azure.
In this chapter, you will learn how serverless technology can help you deal with a large
amount of data.

Serverless is one of the hottest buzzwords in technology these days, and everyone
wants to ride this bandwagon. Serverless brings a lot of advantages in overall
computing, software development processes, infrastructure, and technical
implementation. There is a lot going on in the industry: at one end of the spectrum is
Infrastructure as a Service (IaaS), and at the other is serverless. In between the two
are Platform as a Service (PaaS) and containers. I have met many developers and it
seems to me that there is some confusion among them about IaaS, PaaS, containers,
and serverless computing. Also, there is much confusion about use cases, applicability,
architecture, and implementation for the serverless paradigm. Serverless is a new
paradigm that is changing not only technology but also the culture and processes
within organizations.

Serverless in Azure –
Working with Azure

Functions

10

306 | Serverless in Azure – Working with Azure Functions

We will begin this chapter by introducing serverless, and will cover the following topics
as we progress:

• Functions as a Service

• Azure Functions

• Azure Durable Functions

• Azure Event Grid

Serverless
Serverless refers to a deployment model in which users are responsible for only their
application code and configuration. In serverless computing, customers do not have to
bother about bringing their own underlying platform and infrastructure and, instead,
can concentrate on solving their business problems.

Serverless does not mean that there are no servers. Code and configuration will
always need compute, storage, and networks to run. However, from the customer's
perspective, there is no visibility of such compute, storage, and networks. They do not
care about the underlying platform and infrastructure. They do not need to manage or
monitor infrastructure and the platform. Serverless provides an environment that can
scale up and down, in and out, automatically, without the customer even knowing about
it. All operations related to platforms and infrastructures happen behind the scenes
and are executed by the cloud provider. Customers are provided with performance-
related service-level agreements (SLAs) and Azure ensures that it meets those SLAs
irrespective of the total demand.

Customers are required to only bring in their code; it is the responsibility of the cloud
provider to provide the infrastructure and platform needed to run the code. Let's go
ahead and dive into the various advantages of Azure Functions.

The advantages of Azure Functions
Serverless computing is a relatively new paradigm that helps organizations convert
large functionalities into smaller, discrete, on-demand functions that can be invoked
and executed through automated triggers and scheduled jobs. They are also known
as Functions as a Service (FaaS), in which organizations can focus on their domain
challenges instead of the underlying infrastructure and platform. FaaS also helps in
devolving solution architectures into smaller, reusable functions, thereby increasing
return on investment.

The advantages of Azure Functions | 307

There is a plethora of serverless compute platforms available. Some of the important
ones are listed here:

• Azure Functions

• AWS Lambda

• IBM OpenWhisk

• Iron.io

• Google Cloud Functions

In fact, every few days it feels like there is a new platform/framework being introduced,
and it is becoming increasingly difficult for enterprises to decide on the framework
that works best for them. Azure provides a rich serverless environment known as Azure
Functions, and what follows are some of the features that it supports:

• Numerous ways to invoke a function—manually, on a schedule, or based on an
event.

• Numerous types of binding support.

• The ability to run functions synchronously as well as asynchronously.

• The ability to execute functions based on multiple types of triggers.

• The ability to run both long- and short-duration functions. However, large and
long-running functions are not recommended as they may lead to unexpected
timeouts.

• The ability to use proxy features for different function architectures.

• Multiple usage models including consumption, as well as the App Service model.

• The ability to author functions using multiple languages, such as JavaScript,
Python, and C#.

• Authorization based on OAuth.

• The Durable Functions extension helps in writing stateful functions.

• Multiple authentication options, including Azure AD, Facebook, Twitter, and other
identity providers.

• The ability to easily configure inbound and outbound parameters.

• Visual Studio integration for authoring Azure functions.

• Massive parallelism.

Let's take a look at FaaS and what roles it plays in serverless architecture.

308 | Serverless in Azure – Working with Azure Functions

FaaS
Azure provides FaaS. These are serverless implementations from Azure. With Azure
Functions, code can be written in any language the user is comfortable with and Azure
Functions will provide a runtime to execute it. Based on the language chosen, an
appropriate platform is provided for users to bring their own code. Functions are a unit
of deployment and can automatically be scaled out and in. When dealing with functions,
users cannot view the underlying virtual machines and platform, but Azure Functions
provides a small window to view them via the Kudu Console.

There are two main components of Azure Functions:

• The Azure Functions runtime

• Azure Functions binding and triggers

Let's learn about these components in detail.

The Azure Functions runtime

The core of Azure Functions is its runtime. The precursor to Azure Functions was
Azure WebJobs. The code for Azure WebJobs also forms the core for Azure Functions.
There are additional features and extensions added to Azure WebJobs to create Azure
Functions. The Azure Functions runtime is the magic that makes functions work. Azure
Functions is hosted within Azure App Service. Azure App Service loads the Azure
runtime and either waits for an external event or a manual activity to occur. On arrival
of a request or the occurrence of a trigger, App Service loads the incoming payload,
reads the function's function.json file to find the function's bindings and trigger, maps
the incoming data to incoming parameters, and invokes the function with parameter
values. Once the function completes its execution, the value is again passed back to
the Azure Functions runtime by way of an outgoing parameter defined as a binding in
the function.json file. The function runtime returns the values to the caller. The Azure
Functions runtime acts as the glue that enables the entire performance of functions.

The current Azure runtime version is ~3. It is based on the .NET Core 3.1 framework.
Prior to this, version ~2 was based on the .NET Core 2.2 framework. The first version, ~1,
was based on the .NET 4.7 framework.

There were substantial changes from version 1 to 2 because of changes in the
underlying framework itself. However, there are very few breaking changes from
version 2 to 3 and most functions written in version 2 would continue to run on version
3 as well. However, it is recommended that adequate testing is done after migrating
from version 2 to 3. There were also breaking changes from version 1 to 2 with regard to
triggers and bindings. Triggers and bindings are now available as extensions, with each
one in a different assembly in versions 2 and 3.

FaaS | 309

Azure Functions bindings and triggers

If the Azure Functions runtime is the brain of Azure Functions, then Azure Functions
bindings and triggers are its heart. Azure Functions promote loose coupling and high
cohesion between services using triggers and bindings. Applications written targeting
non-serverless environments implement code using imperative syntax for incoming and
outgoing parameters and return values. Azure Functions uses a declarative mechanism
to invoke functions using triggers and configures the flow of data using bindings.

Binding refers to the process of creating a connection between the incoming data
and the Azure function along with mapping the data types. The connection could be
in a single direction from the runtime to Azure Functions and vice versa or could be
multi-directional—the binding can transmit data between the Azure runtime and Azure
Functions in both directions. Azure Functions defines bindings declaratively.

Triggers are a special type of binding through which functions can be invoked based on
external events. Apart from invoking a function, triggers also pass the incoming data,
payload, and metadata to the function.

Bindings are defined in the function.json file as follows:

{
 "bindings": [
 {
 "name": "checkOut",
 "type": "queueTrigger",
 "direction": "in",
 "queueName": "checkout-items",
 "connection": "AzureWebJobsDashboard"
 },
 {
 "name": "Orders",
 "type": "table",
 "direction": "out",
 "tableName": "OrderDetails",
 "connection": "<<Connection to table storage account>>"
 }
],
 "disabled": false
}

310 | Serverless in Azure – Working with Azure Functions

In this example, a trigger is declared that invokes the function whenever there is a new
item in the storage queue. The type is queueTrigger, the direction is inbound, queueName
is checkout-items, and details about the target storage account connection and table
name are also shown. All these values are important for the functioning of this binding.
The checkOut name can be used within the function's code as a variable.

Similarly, a binding for the return value is declared. Here, the return value is
named Orders and the data is the output from Azure Functions. The binding writes the
return data into Azure Table Storage using the connection string provided.

Both bindings and triggers can be modified and authored using the Integrate tab in
Azure Functions. In the backend, the function.json file is updated. The checkOut trigger
is declared as shown here:

Figure 10.1: The Triggers section of the Integrate tab

FaaS | 311

The Orders output is shown next:

Figure 10.2: Adding output details for the storage account

The authors of Azure functions do not need to write any plumbing code to get data
from multiple sources. They just decide the type of data expected from the Azure
runtime. This is shown in the next code segment. Notice that the checkout is available
as a string to the function. Multiple data types can be used as binding for functions. For
example, a queue binding can provide the following:

• A plain old CLR (Common Language Runtime) object (POCO)

• A string

• A byte

• CloudQueueMessage

312 | Serverless in Azure – Working with Azure Functions

The author of the function can use any one of these data types, and the Azure Functions
runtime will ensure that a proper object is sent to the function as a parameter. The
following is a code snippet for accepting string data and the Functions runtime will
encapsulate incoming data into a string data type before invoking the function. If the
runtime is unable to cast the incoming data to a string, it will generate an exception:

using System;
public static void Run(string checkOut, TraceWriter log)
{
 log.Info($"C# Queue trigger function processed: { checkOut }");
}

It is also important to know that, in Figure 10.2, the storage account names are
AzureWebJobsStorage and AzureWebJobsDashboard. Both of these are keys defined in the
appSettings section and contain storage account connection strings. These storage
accounts are used internally by Azure Functions to maintain its state and the status of
function execution.

For more information on Azure bindings and triggers, refer to https://docs.microsoft.
com/azure/azure-functions/functions-bindings-storage-queue.

Now that we have a fair understanding of Azure bindings and triggers, let's check out
the various configuration options offered by Azure Functions.

Azure Functions configuration

Azure Functions provides configuration options at multiple levels. It provides
configuration for the following:

• The platform itself

• Functions App Services

These settings affect every function contained by them. More information about these
settings are available at https://docs.microsoft.com/azure/azure-functions/functions-
how-to-use-azure-function-app-settings.

https://docs.microsoft.com/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/azure/azure-functions/functions-how-to-use-azure-function-app-settings
https://docs.microsoft.com/azure/azure-functions/functions-how-to-use-azure-function-app-settings

FaaS | 313

Platform configuration

Azure functions are hosted within Azure App Service, so they get all of its features.
Diagnostic and monitoring logs can be configured easily using platform features.
Furthermore, App Service provides options for assigning SSL certificates, using a
custom domain, authentication, and authorization as part of its networking features.

Although customers are not concerned about the infrastructure, operating system,
file system, or platform on which functions actually execute, Azure Functions provides
the necessary tooling to peek within the underlying system and make changes. The
in-portal console and the Kudu Console are the tools used for this purpose. They
provide a rich editor to author Azure functions and edit their configuration.

Azure Functions, just like App Service, lets you store the configuration information
within the web.config application settings section, which can be read on demand. Some
of the platform features of function apps are shown in Figure 10.3:

Figure 10.3: Platform features of a function app

These platform features can be used to configure authentication, custom domains, SSL,
and so on. Also, the Platform Features tab provides an overview of the development
tools that can be used with the function app. In the next section, we will take a look at
the function app settings that are available in the platform features.

314 | Serverless in Azure – Working with Azure Functions

App Service function settings

These settings affect all functions. Application settings can be managed here. Proxies
in Azure Functions can be enabled and disabled. We will discuss proxies later in this
chapter. They also help in changing the edit mode of a function application and the
deployment to slots:

Figure 10.4: Function app settings

Budget is a very important aspect of the success of any project. Let's explore the various
plans offered for Azure Functions.

Azure Functions cost plans

Azure Functions is based on the Azure App Service and provides a pocket-friendly
model for users. There are three cost models.

FaaS | 315

A consumption plan

This is based on the per-second consumption and execution of functions. This plan
calculates the cost based on the compute usage during the actual consumption and
execution of the function. If a function is not executed, there is no cost associated
with it. However, it does not mean that performance is compromised in this plan.
Azure functions will automatically scale out and in based on demand, to ensure basic
minimum performance levels are maintained. A function execution is allowed 10
minutes for completion.

One of the major drawbacks of this plan is that if there is no consumption of functions
for a few seconds, the function might get cold and the next request that comes up
might face a short delay in getting a response as the function is idle. This phenomenon
is called a cold start. However, there are workarounds that can keep functions warm
even when there are no legitimate requests. This can be done by writing a scheduled
function that keeps invoking the target function to keep it warm.

A premium plan

This is a relatively new plan and provides lots of benefits compared to both App Service
and a consumption plan. In this plan, there are no cold starts for Azure functions.
Functions can be associated with a private network and customers can choose their
own virtual machine sizes for executing functions. It provides numerous out-of-the-
box facilities that were not possible previously with the other two types of plans.

An App Service plan

This plan provides functions with completely dedicated virtual machines in the
backend, and so the cost is directly proportional to the cost of the virtual machine and
its size. There is a fixed cost associated with this plan, even if functions are not invoked.
Function code can run for as long as necessary. Although there is no time restriction,
the default limit is set to 30 minutes. This can be changed by changing the value in the
hosts.json file. Within the App Service plan, the function runtime goes idle if not used
for a few minutes and can be activated only using an HTTP trigger. There is an Always
On setting that can be used to prevent the function runtime from going idle. Scaling is
either manual or based on autoscale settings.

Along with the flexible pricing option, Azure also offers various hosting options for
architecture deployment.

316 | Serverless in Azure – Working with Azure Functions

Azure Functions destination hosts

The Azure Functions runtime can be hosted on Windows as well as on Linux hosts.
PowerShell Core, Node.js, Java, Python, and .NET Core-based functions can run on
both Windows as well as Linux operating systems. It is important to know which type
of underlying operating system is required for the functions because this configuration
setting is tied to the function app and in turn to all functions that are contained in it.

Also, it is possible to run functions within Docker containers. This is because Azure
provides Docker images that have a pre-built function runtime installed in them and
functions can be hosted using such images. Now, Docker images can be used to create
containers within Kubernetes Pods and hosted on Azure Kubernetes Service, Azure
Container Instances, or on unmanaged Kubernetes clusters. These images can be
stored within Docker Hub, Azure Container Registry, or any other global as well as
private image repositories.

To have a clearer understanding, let's look into some of the most prominent use cases
for Azure Functions.

Azure Functions use cases

Azure Functions has many implementations. Let's have a look at some of these use
cases.

Implementing microservices

Azure Functions helps in breaking down large applications into smaller, discrete
functional code units. Each unit is treated independently of others and evolves in its
own life cycle. Each such code unit has its own compute, hardware, and monitoring
requirements. Each function can be connected to all other functions. These units
are woven together by orchestrators to build complete functionality. For example,
in an e-commerce application, there can be individual functions (code units), each
responsible for listing catalogs, recommendations, categories, subcategories, shopping
carts, checkouts, payment types, payment gateways, shipping addresses, billing
addresses, taxes, shipping charges, cancellations, returns, emails, SMS, and so on.
Some of these functions are brought together to create use cases for e-commerce
applications, such as product browsing and checkout flow.

Integration between multiple endpoints

Azure Functions can build overall application functionality by integrating multiple
functions. The integration can be based on the triggering of events or it could be
on a push basis. This helps in decomposing large monolithic applications into small
components.

FaaS | 317

Data processing

Azure Functions can be used for processing incoming data in batches. It can help in
processing data in multiple formats, such as XML, CSV, JSON, and TXT. It can also run
conversion, enrichment, cleaning, and filtering algorithms. In fact, multiple functions
can be used, each doing either conversion or enrichment, cleaning or filtering. Azure
Functions can also be used to incorporate advanced cognitive services, such as optical
character recognition (OCR), computer vision, and image manipulation and conversion.
This is ideal if you want to process API responses and convert them.

Integrating legacy applications

Azure Functions can help in integrating legacy applications with newer protocols
and modern applications. Legacy applications might not be using industry-
standard protocols and formats. Azure Functions can act as a proxy for these legacy
applications, accepting requests from users or other applications, converting the
data into a format understood by a legacy application, and talking to it on protocols it
understands. This opens a world of opportunity for integrating and bringing old and
legacy applications into the mainstream portfolio.

Scheduled jobs

Azure Functions can be used to execute continuously or periodically for certain
application functions. These application functions can perform tasks such as
periodically taking backups, restoring, running batch jobs, exporting and importing
data, and bulk emailing.

Communication gateways

Azure Functions can be used in communication gateways when using notification
hubs, SMS, email, and so on. For example, you can use Azure Functions to send a push
notification to Android and iOS devices using Azure Notification Hubs.

Azure functions are available in different types, which must be selected based on their
relationship to optimizing workloads. Let's have a closer look at them.

318 | Serverless in Azure – Working with Azure Functions

Types of Azure functions

Azure functions can be categorized into three different types:

• On-demand functions: These are functions that are executed when they
are explicitly called or invoked. Examples of such functions include HTTP-based
functions and webhooks.

• Scheduled functions: These functions are like timer jobs and execute
functions on fixed intervals.

• Event-based functions: These functions are executed based on external events.
For example, uploading a new file to Azure Blob storage generates an event that
could start the execution of Azure functions.

In the following section, you will learn how to create an event-driven function that will
be connected to an Azure Storage account.

Creating an event-driven function
In this example, an Azure function will be authored and connected to an Azure Storage
account. The Storage account has a container for holding all Blob files. The name of the
Storage account is incomingfiles and the container is orders, as shown in Figure 10.5:

Figure 10.5: Storage account details

Creating an event-driven function | 319

Perform the following steps to create a new Azure function from the Azure portal:

1. Click on the + button beside the Functions menu on the left.

2. Select In-Portal from the resultant screen and click on the Continue button.

3. Select Azure Blob Storage trigger, as shown in Figure 10.6:

Figure 10.6: Selecting Azure Blob Storage trigger

Right now, this Azure function does not have connectivity to the Storage account. Azure
functions need connection information for the Storage account, and that is available
from the Access keys tab in the Storage account. The same information can be obtained
using the Azure Functions editor environment. In fact, that environment allows the
creation of a new Storage account from the same editor environment.

The Azure Blob Storage trigger can be added using the New button beside the Storage
account connection input type. It allows the selection of an existing Storage account
or the creation of a new Storage account. Since I already have a couple of Storage
accounts, I am reusing them, but you should create a separate Azure Storage account.
Selecting a Storage account will update the settings in the appSettings section with the
connection string added to it.

Ensure that a container already exists within the Blob service of the target Azure
Storage account. The path input refers to the path to the container. In this case, the
orders container already exists within the Storage account. The Create button shown
here will provision the new function monitoring the Storage account container:

320 | Serverless in Azure – Working with Azure Functions

Figure 10.7: Creating a function that monitors the Storage account container

The code for the storagerelatedfunctions function is as follows:

public static void Run(Stream myBlob, TraceWriter log)
{
 log.Info($"C# Blob trigger function Processed blob\n \n Size {myBlob.
Length} Bytes");
}

The bindings are shown here:

{
 "bindings": [
 {
 "name": "myBlob",
 "type": "blobTrigger",
 "direction": "in",
 "path": "orders",
 "connection": "azureforarchitead2b_STORAGE"
 }
],
 "disabled": false
}

Function Proxies | 321

Now, uploading any blob file to the orders container should trigger the function:

Figure 10.8: C# Blob trigger function processed blob

In the next section, we will dive into Azure Function Proxies, which will help you to
efficiently handle the requests and responses of your APIs.

Function Proxies
Azure Function Proxies is a relatively new addition to Azure Functions. Function
Proxies helps in hiding the details of Azure functions and exposing completely different
endpoints to customers. Function Proxies can receive requests on endpoints, modify
the content, body, headers, and URL of the request by changing the values, and
augment them with additional data and pass it internally to Azure functions. Once they
get a response from these functions, they can again convert, override, and augment the
response and send it back to the client.

It also helps in invoking different functions for CRUD (create, read, delete, and update)
operations using different headers, thereby breaking large functions into smaller
ones. It provides a level of security by not exposing the original function endpoint and
also helps in changing the internal function implementation and endpoints without
impacting its caller. Function Proxies helps by providing clients with a single function
URL and then invoking multiple Azure functions in the backend to complete workflows.
More information about Azure Function Proxies can be found at https://docs.microsoft.
com/azure/azure-functions/functions-proxies.

In the next section, we will cover Durable Functions in detail.

https://docs.microsoft.com/azure/azure-functions/functions-proxies
https://docs.microsoft.com/azure/azure-functions/functions-proxies

322 | Serverless in Azure – Working with Azure Functions

Durable Functions
Durable Functions is one of the latest additions to Azure Functions. It allows architects
to write stateful workflows in an Orchestrator function, which is a new function type.
As a developer, you can choose to code it or use any form of IDE. Some advantages of
using Durable Functions are:

• Function output can be saved to local variables and you can call other functions
synchronously and asynchronously.

• The state is preserved for you.

The following is the basic mechanism for invoking Durable Functions:

Figure 10.9: Mechanism for invoking Durable Functions

Azure Durable Functions can be invoked by any trigger provided by Azure Functions.
These triggers include HTTP, Blob storage, Table Storage, Service Bus queues, and
more. They can be triggered manually by someone with access to them, or by an
application. Figure 10.9 shows a couple of triggers as an example. These are also
known as starter Durable Functions. The starter durable functions invoke the durable
orchestrator trigger, which contains the main logic for orchestration, and orchestrates
the invocation of activity functions.

Durable Functions | 323

The code written within the durable orchestrator must be deterministic. This means
that no matter the number of times the code is executed, the values returned by it
should remain the same. The Orchestrator function is a long-running function by
nature. This means it can be hydrated, state-serialized, and it goes to sleep after it
calls a durable activity function. This is because it does not know when the durable
activity function will complete and does not want to wait for it. When the durable
activity function finishes its execution, the Orchestrator function is executed again.
The function execution starts from the top and executes until it either calls another
durable activity function or finishes the execution of the function. It has to re-execute
the lines of code that it already executed earlier and should get the same results that
it got earlier. Note that the code written within the durable orchestrator must be
deterministic. This means that no matter the number of times the code is executed, the
values returned by it should remain the same.

Let me explain this with the help of an example. If we use a general .NET Core
datetime class and return the current date time, it will result in a new value every
time we execute the function. The Durable Functions context object provides
CurrentUtcDateTime, which will return the same datetime value during re-execution that
it returned the first time.

These orchestration functions can also wait for external events and enable scenarios
related to human hand-off. This concept will be explained later in this section.

These activity functions can be called with or without a retry mechanism. Durable
Functions can help to solve many challenges and provides features to write functions
that can do the following:

• Execute long-running functions

• Maintain state

• Execute child functions in parallel or sequence

• Recover from failure easily

• Orchestrate the execution of functions in a workflow

Now that you have a fair understanding of the inner workings of a durable function, let's
explore how to create a durable function in Visual Studio.

324 | Serverless in Azure – Working with Azure Functions

Steps for creating a durable function using Visual Studio

The following are the steps to create a durable function:

1. Navigate to the Azure portal and click on Resource groups in the left menu.

2. Click on the +Add button in the top menu to create a new resource group.

3. Provide the resource group information on the resultant form and click on the
Create button, as shown here:

Figure 10.10: Creating a resource group

4. Navigate to the newly created resource group and add a new function app by
clicking on the +Add button in the top menu and search for function app in the
resultant search box.

5. Select Function App and click on the Create button. Fill in the resultant function
app form and click on the Create button. You can also reuse the function app we
created earlier.

6. Once the function app is created, we will get into our local development
environment with visual studio 2019 installed on it. We will get started with Visual
Studio and create a new project of type Azure functions, provide it with a name,
and select Azure Functions v3 (.NET core) for Function runtime.

7. After the project is created, we need to add the DurableTask NuGet package to
the project for working with Durable Functions. The version used at the time of
writing this chapter is 2.2.2:

Figure 10.11: Adding a DurableTask NuGet package

Durable Functions | 325

8. Now, we can code our durable functions within Visual Studio. Add a new function,
provide it with a name, and select the Durable Functions Orchestration trigger
type:

Figure 10.12: Selecting a Durable Functions Orchestration trigger

9. Visual Studio generates the boilerplate code for Durable Functions, and we are
going to use it to learn about Durable Functions. Durable Functions activities are
functions that are invoked by the main Orchestrator function. There is generally
one main Orchestrator function and multiple Durable Functions activities. Once
the extension is installed, provide a name for the function and write code that
does something useful, such as sending an email or an SMS, connecting to external
systems and executing logic, or executing services using their endpoints, such as
cognitive services.

Visual Studio generates three sets of functions in a single line of code:

• HttpStart: This is the starter function. This means that it is responsible for
starting the durable function orchestration. The code generated consists of an
HTTP trigger starter function; however, it could be any trigger-based function,
such as BlobTrigger, a ServiceBus queue, or a trigger-based function.

• RunOrchestrator: This is the main durable orchestration function. It is
responsible for accepting parameters from the starter function and in
turn, invokes multiple durable task functions. Each durable task function is
responsible for a functionality and these durable tasks can be invoked either in
parallel or in sequence depending on the need.

• SayHello: This is the durable task function that is invoked from the durable
function orchestrator to do a particular job.

326 | Serverless in Azure – Working with Azure Functions

10. The code for the starter function (HttpStart) is shown next. This function has a
trigger of type HTTP and it accepts an additional binding of type DurableClient.
This DurableClient object helps in invoking the Orchestrator function:

Figure 10.13: Code for the starter function

11. The code for the Orchestrator function (RunOrchestrator) is shown next. This
function has a trigger of type OrchestrationTrigger and accepts a parameter of
type IDurableOrchestrationContext. This context object helps in invoking durable
tasks:

Figure 10.14: Code for orchestrator trigger function

Durable Functions | 327

12. The code for the durable task function (HelloFunction) is shown next. This
function has a trigger of type ActivityTrigger and accepts a parameter that
can be any type needed for it to execute its functionality. It has a return value
of type string and the function is responsible for returning a string value to the
orchestration function:

Figure 10.15: Code for the durable task function

Next, we can execute the function locally, which will start a storage emulator if one's
not already started, and will provide a URL for the HTTP trigger function:

Figure 10.16: Starting the storage emulator

328 | Serverless in Azure – Working with Azure Functions

We are going to invoke this URL using a tool known as Postman (this can be
downloaded from https://www.getpostman.com/). We just need to copy the URL and
execute it in Postman. This activity is shown in Figure 10.17:

Figure 10.17: Invoking URLs using Postman

Notice that five URLs are generated when you start the orchestrator:

• The statusQueryGetUri URL is used to find the current status of the orchestrator.
Clicking this URL on Postman opens a new tab, and if we execute this request, it
shows the status of the workflow:

Figure 10.18: Current status of the orchestrator

• The terminatePostUri URL is used for stopping an already running Orchestrator
function.

• The sendEventPostUri URL is used to post an event to a suspended durable
function. Durable functions can be suspended if they are waiting for an external
event. This URL is used in those cases.

https://www.getpostman.com/

Creating a connected architecture with functions | 329

• The purgeHistoryDeleteUri URL is used to delete the history maintained by
Durable Functions for a particular invocation from its Table Storage account.

Now that you know how to work with Durable Functions using Visual Studio, let's cover
another aspect of Azure functions: chaining them together.

Creating a connected architecture with functions
A connected architecture with functions refers to creating multiple functions, whereby
the output of one function triggers another function and provides data for the next
function to execute its logic. In this section, we will continue with the previous scenario
of the Storage account. In this case, the output of the function being triggered using
Azure Storage Blob files will write the size of the file to Azure Cosmos DB.

The configuration of Cosmos DB is shown next. By default, there are no collections
created in Cosmos DB.

A collection will automatically be created when creating a function that will be triggered
when Cosmos DB gets any data:

Figure 10.19: Creating an Azure Cosmos DB account

330 | Serverless in Azure – Working with Azure Functions

Let's follow the below steps to retrieve data for the next function from the output of
one function.

1. Create a new database, testdb, within Cosmos DB, and create a new collection
named testcollection within it. You need both the database and the collection
name when configuring Azure functions:

 Figure 10.20: Adding a container

2. Create a new function that will have a Blob Storage trigger and output CosmosDB
binding. The value returned from the function will be the size of the data for
the uploaded file. This returned value will be written to Cosmos DB. The output
binding will write to the Cosmos DB collection. Navigate to the Integrate tab
and click on the New Output button below the Outputs label and select
Azure Cosmos DB:

Creating a connected architecture with functions | 331

Figure 10.21: Binding output to Azure Cosmos DB

3. Provide the appropriate names for the database and collection (check the
checkbox to create the collection if it does not exist), click on the New button
to select your newly created Azure Cosmos DB, and leave the parameter name
as outputDocument:

Figure 10.22: Newly created Azure Cosmos DB

332 | Serverless in Azure – Working with Azure Functions

4. Modify the function as shown in Figure 10.23:

 Figure 10.23: Modifying the function

5. Now, uploading a new file to the orders collection in the Azure Storage account
will execute a function that will write to the Azure Cosmos DB collection. Another
function can be written with the newly created Azure Cosmos DB account as a
trigger binding. It will provide the size of files and the function can act on it. This
is shown here:

Figure 10.24: Writing a trigger binding function

This section covered how the output of one function can be used to retrieve data for
the next function. In the next section, you will learn about how to enable serverless
eventing by understanding about Azure Event Grid.

Azure Event Grid
Azure Event Grid is a relatively new service. It has also been referred to as a serverless
eventing platform. It helps with the creation of applications based on events (also
known as event-driven design). It is important to understand what events are and how
we dealt with them prior to Event Grid. An event is something that happened – that
is, an activity that changed the state of a subject. When a subject undergoes a change in
its state, it generally raises an event.

Azure Event Grid | 333

Events typically follow the publish/subscribe pattern (also popularly known as the pub/
sub pattern), in which a subject raises an event due to its state change, and that event
can then be subscribed to by multiple interested parties, also known as subscribers.
The job of the event is to notify the subscribers of such changes and also provide them
with data as part of its context. The subscribers can take whatever action they deem
necessary, which varies from subscriber to subscriber.

Prior to Event Grid, there was no service that could be described as a real-time event
platform. There were separate services, and each provided its own mechanism for
handling events.

For example, Log Analytics, also known as Operations Management Suite (OMS),
provides an infrastructure for capturing environment logs and telemetry on which
alerts can be generated. These alerts can be used to execute a runbook, a webhook, or
a function. This is near to real time, but they are not completely real time. Moreover,
it was quite cumbersome to trap individual logs and act on them. Similarly, there
is Application Insights, which provides similar features to Log Analytics but for
applications instead.

There are other logs, such as activity logs and diagnostic logs, but again, they rely on
similar principles as other log-related features. Solutions are deployed on multiple
resource groups in multiple regions, and events raised from any of these should be
available to the resources that are deployed elsewhere.

Event Grid removes all barriers, and as a result, events can be generated by most
resources (they are increasingly becoming available), and even custom events can be
generated. These events can then be subscribed to by any resource, in any region, and
in any resource group within the subscription.

Event Grid is already laid down as part of the Azure infrastructure, along with data
centers and networks. Events raised in one region can easily be subscribed to by
resources in other regions, and since these networks are connected, it is extremely
efficient for the delivery of events to subscribers.

Event Grid

Event Grid lets you create applications with event-based architecture. There are
publishers of events and there are consumers of events; however, there can be multiple
subscribers for the same event.

The publisher of an event can be an Azure resource, such as Blob storage, Internet of
Things (IoT) hubs, and many others. These publishers are also known as event sources.
These publishers use out-of-the-box Azure topics to send their events to Event Grid.
There is no need to configure either the resource or the topic. The events raised by
Azure resources are already using topics internally to send their events to Event Grid.
Once the event reaches the grid, it can be consumed by the subscribers.

334 | Serverless in Azure – Working with Azure Functions

The subscribers, or consumers, are resources who are interested in events and want to
execute an action based on these events. These subscribers provide an event handler
when they subscribe to the topic. The event handlers can be Azure functions, custom
webhooks, logic apps, or other resources. Both the event sources and subscribers that
execute event handlers are shown in Figure 10.25:

Figure 10.25: The Event Grid architecture

When an event reaches a topic, multiple event handlers can be executed
simultaneously, each taking its own action.

It is also possible to raise a custom event and send a custom topic to Event Grid. Event
Grid provides features for creating custom topics, and these topics are automatically
attached to Event Grid. These topics know the storage for Event Grid and automatically
send their messages to it. Custom topics have two important properties, as follows:

• An endpoint: This is the endpoint of the topic. Publishers and event sources use
this endpoint to send and publish their events to Event Grid. In other words,
topics are recognized using their endpoints.

• Keys: Custom topics provide a couple of keys. These keys enable security for
the consumption of the endpoint. Only publishers with these keys can send and
publish their messages to Event Grid.

Media Services

Blob Storage

Azure Subscriptions

Resource Groups

IoT Hub

Event Hubs

Service Bus

Custom Topics

Azure Functions

Logic Apps

Azure Automation

Queue Storage

Webhooks

Hybrid Connections

Event Hubs

Event Sources Event Handlers

Event SubscriptionsTopics

Azure Event Grid | 335

Each event has an event type and it is recognized by it. For example, Blob
storage provides event types, such as blobAdded and blobDeleted. Custom topics
can be used to send a custom-defined event, such as a custom event of the
KeyVaultSecretExpired type.

On the other hand, subscribers have the ability to accept all messages or only get
events based on filters. These filters can be based on the event type or other properties
within the event payload.

Each event has at least the following five properties:

• id: This is the unique identifier for the event.

• eventType: This is the event type.

• eventTime: This is the date and time when the event was raised.

• subject: This is a short description of the event.

• data: This is a dictionary object and contains either resource-specific data or any
custom data (for custom topics).

Currently, Event Grid's functionalities are not available with all resources; however,
Azure is continually adding more and more resources with Event Grid functionality.

To find out more about the resources that can raise events related to Event Grid and
handlers that can handle these events, please go to https://docs.microsoft.com/azure/
event-grid/overview.

Resource events

In this section, the following steps are provided to create a solution in which events
that are raised by Blob storage are published to Event Grid and ultimately routed to an
Azure function:

1. Log in to the Azure portal using the appropriate credentials and create a new
Storage account in an existing or a new resource group. The Storage account
should be either StorageV2 or Blob storage. As demonstrated in Figure 10.26, Event
Grid will not work with StorageV1:

https://docs.microsoft.com/azure/event-grid/overview
https://docs.microsoft.com/azure/event-grid/overview

336 | Serverless in Azure – Working with Azure Functions

Figure 10.26: Creating a new storage account

2. Create a new function app or reuse an existing function app to create an Azure
function. The Azure function will be hosted within the function app.

3. Create a new function using the Azure Event Grid trigger template. Install the
Microsoft.Azure.WebJobs.Extensions.EventGrid extension if it's not already
installed, as shown in Figure 10.27:

Azure Event Grid | 337

Figure 10.27: Installing extensions for an Azure Event Grid trigger

4. Name the StorageEventHandler function and create it. The following default
generated code will be used as the event handler:

Figure 10.28: Event handler code

The subscription to Storage events can be configured either from the Azure
Functions user interface (UI) by clicking on Add Event Grid subscription, or from
the storage account itself.

338 | Serverless in Azure – Working with Azure Functions

5. Click on the Add Event Grid subscription link in the Azure Functions UI to add a
subscription to the events raised by the storage account created in the previous
step. Provide a meaningful name for the subscription, and then choose Event
Schema followed by Event Grid Schema. Set Topic Types as Storage Accounts,
set an appropriate Subscription, and the resource group containing the storage
account:

Figure 10.29: Creating an Event Grid subscription

Ensure that the Subscribe to all event types checkbox is checked and click on the
Create button (it should be enabled as soon as a storage account is selected).

Azure Event Grid | 339

6. If we now navigate to the storage account in the Azure portal and click on
the Events link in the left-hand menu, the subscription for the storage account
should be visible:

Figure 10.30: Event subscription list

340 | Serverless in Azure – Working with Azure Functions

7. Upload a file to the Blob storage after creating a container, and the Azure
function should be executed. The upload action will trigger a new event of
the blobAdded type and send it to the Event Grid topic for storage accounts. As
shown in Figure 10.31, the subscription is already set to get all the events from this
topic, and the function gets executed as part of the event handler:

Figure 10.31: Triggering a new event

In this section, you learned how events raised by Blob storage can be routed to an Azure
function. In the next section, you will learn how to leverage custom events.

Custom events

In this example, instead of using out-of-box resources to generate events, custom
events will be used. We will use PowerShell to create this solution and reuse the same
Azure function that was created in the last exercise as the handler:

1. Log in and connect to your Azure subscription of choice using Login-AzAccount
and Set-AzContext cmdlet.

2. The next step is to create a new Event Grid topic in Azure in a resource group.
The New-AzEventGridTopic cmdlet is used to create a new topic:

New-AzEventGridTopic -ResourceGroupName CustomEventGridDemo -Name
"KeyVaultAssetsExpiry" -Location "West Europe"

Azure Event Grid | 341

3. Once the topic is created, its endpoint URL and key should be retrieved as they
are needed to send and publish the event to it. The Get-AzEventGridTopic and
Get-AzEventGridTopicKey cmdlets are used to retrieve these values. Note that Key1
is retrieved to connect to the endpoint:

$topicEndpoint = (Get-AzEventGridTopic -ResourceGroupName containers -Name
KeyVaultAssetsExpiry).Endpoint

$keys = (Get-AzEventGridTopicKey -ResourceGroupName containers -Name
KeyVaultAssetsExpiry).Key1

4. A new hash table is created with all five important Event Grid event properties. A
new id property is generated for the ID, the subject property is set to Key vault
Asset Expiry, eventType is set to Certificate Expiry, eventTime is set to the
current time, and data contains information regarding the certificate:

$eventgridDataMessage = @{
id = [System.guid]::NewGuid()
subject = "Key Vault Asset Expiry"
eventType = "Certificate Expiry"
eventTime = [System.DateTime]::UtcNow
data = @{
CertificateThumbprint = "sdfervdserwetsgfhgdg"
ExpiryDate = "1/1/2019"
Createdon = "1/1/2018"
}
}

5. Since Event Grid data should be published in the form of a JSON array, the payload
is converted in the JSON array. The "[","]" square brackets represent a JSON
array:

$finalBody = "[" + $(ConvertTo-Json $eventgridDataMessage) + "]"

6. The event will be published using the HTTP protocol, and the appropriate
header information has to be added to the request. The request is sent using the
application/JSON content type and the key belonging to the topic is assigned
to the aeg-sas-key header. It is mandatory to name the header and key set to
aeg-sas-key:

$header = @{
"contentType" = "application/json"
"aeg-sas-key" = $keys}

342 | Serverless in Azure – Working with Azure Functions

7. A new subscription is created to the custom topic with a name, the resource
group containing the topic, the topic name, the webhook endpoint, and the actual
endpoint that acts as the event handler. The event handler in this case is the Azure
function:

New-AzEventGridSubscription -TopicName KeyVaultAssetsExpiry
-EventSubscriptionName "customtopicsubscriptionautocar" -ResourceGroupName
CustomEventGridDemo -EndpointType webhook '
-Endpoint "https://durablefunctiondemoapp.
azurewebsites.net/runtime/webhooks/
EventGrid?functionName=StorageEventHandler&code=0aSw6sxvtFmafXHvt7iOw/
Dsb8o1M9RKKagzVchTUkwe9EIkzl4mCg=='
-Verbose

The URL of the Azure function is available from the Integrate tab, as shown in
Figure 10.31:

Figure 10.32: Event Grid Subscription URL in the Integrate tab

8. By now, both the subscriber (event handler) and the publisher have been
configured. The next step is to send and publish an event to the custom topic.
The event data was already created in the previous step and, by using the Invoke-
WebRequest cmdlet, the request is sent to the endpoint along with the body and the
header:

Invoke-WebRequest -Uri $topicEndpoint -Body $finalBody -Headers $header
-Method Post

The API call will trigger the event and the Event Grid will message the endpoint we
configured, which is the function app. With this activity, we are winding up this chapter.

Summary | 343

Summary
The evolution of functions from traditional methods has led to the design of the loosely
coupled, independently evolving, self-reliant serverless architecture that was only a
concept in earlier days. Functions are a unit of deployment and provide an environment
that does not need to be managed by the user at all. All they have to care about is
the code written for the functionality. Azure provides a mature platform for hosting
functions and integrating them seamlessly, based on events or on demand. Nearly every
resource in Azure can participate in an architecture composed of Azure functions. The
future is functions, as more and more organizations want to stay away from managing
infrastructures and platforms. They want to offload this to cloud providers. Azure
Functions is an essential feature to master for every architect dealing with Azure.

This chapter went into the details of Azure Functions, Functions as a Service, Durable
Functions, and Event Grid. The next chapter will focus on Azure Logic Apps, and we will
build a complete end-to-end solution combining multiple serverless services along with
other Azure services, such as Azure Key Vault and Azure Automation.

This chapter continues from the previous chapter and will go into further depth about
serverless services available within Azure. In the previous chapter, you learned in detail
about Azure Functions, functions as a service, Durable Functions, and Event Grid. Going
forward, this chapter will focus on understanding Logic Apps and then move on to
creating a complete end-to-end serverless solution that combines multiple serverless
and other kinds of services, such as Key Vault and Azure Automation.

Azure solutions
using Azure Logic

Apps, Event Grid, and
Functions

11

346 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

In this chapter, we will further explore Azure services by covering the following topics:

• Azure Logic Apps

• Creating an end-to-end solution using serverless technologies

Azure Logic Apps
Logic Apps is a serverless workflow offering from Azure. It has all the features of
serverless technologies, such as consumption-based costing and unlimited scalability.
Logic Apps helps us to build a business process and workflow solution with ease using
the Azure portal. It provides a drag-and-drop UI to create and configure workflows.

Using Logic Apps is the preferred way to integrate services and data, create business
projects, and create a complete flow of logic. There are several important concepts that
should be understood before building a logic app.

Activities

An activity is a single unit of work. Examples of activities include converting XML
to JSON, reading blobs from Azure Storage, and writing to a Cosmos DB document
collection. Logic Apps provides a workflow definition consisting of multiple co-related
activities in a sequence. There are two types of activity in Logic Apps:

• Trigger: A trigger refers to the initiation of an activity. All logic apps have a single
trigger that forms the first activity. It is the trigger that creates an instance of the
logic app and starts the execution. Examples of triggers are the arrival of Event
Grid messages, an email, an HTTP request, or a schedule.

• Actions: Any activity that is not a trigger is a step activity, and each of them is
responsible to perform one task. Steps are connected to each other in a workflow.
Each step will have an action that needs to be completed before going to the next
step.

Connectors

Connectors are Azure resources that help connect a logic app to external services.
These services can be in the cloud or on-premises. For example, there is a connector
for connecting logic apps to Event Grid. Similarly, there is another connector to
connect to Office 365 Exchange. Almost all types of connectors are available in Logic
Apps, and they can be used to connect to services. Connectors contain connection
information and also logic to connect to external services using this connection
information.

Azure Logic Apps | 347

The entire list of connectors is available at https://docs.microsoft.com/connectors.

Now that you know about connectors, you need to understand how they can be aligned
in a step-by-step manner to make the workflow work as expected. In the next section,
we will be focusing on the workings of a logic app.

The workings of a logic app

Let's create a Logic Apps workflow that gets triggered when an email account receives
an email. It replies to the sender with a default email and performs sentiment analysis
on the content of the email. For sentiment analysis, the Text Analytics resource from
Cognitive Services should be provisioned before creating the logic app:

1. Navigate to the Azure portal, log in to your account, and create a Text Analytics
resource in a resource group. Text Analytics is part of Cognitive Services and
has features such as sentiment analysis, key phrase extraction, and language
detection. You can find the service in the Azure portal, as shown in Figure 11.1:

Figure 11.1: Navigating to the Text Analytics service from the Azure portal

2. Provide the Name, Location, Subscription, Resource group, and Pricing tier
values. We'll be using the free tier (F0 tier) of this service for this demo.

3. Once the resource is provisioned, navigate to the Overview page, and copy the
endpoint URL. Store it in a temporary location. This value will be required when
configuring the logic app.

https://docs.microsoft.com/connectors

348 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

4. Navigate to the Keys page and copy the value from Key 1 and store it in a
temporary location. This value will be needed when configuring the logic app.

5. The next step is to create a logic app. To create a logic app, navigate to the
resource group in the Azure portal in which the logic app should be created.
Search for Logic App and create it by providing Name, Location, Resource group,
and Subscription values.

6. After the logic app has been created, navigate to the resource, click on Logic app
designer in the left-hand menu, and then select the When a new email is received
in Outlook.com template to create a new workflow. The template provides a
head start by adding boilerplate triggers and activities. This will add an Office 365
Outlook trigger automatically to the workflow.

7. Click on the Sign in button on the trigger; it will open a new Internet Explorer
window. Then, sign in to your account. After successfully signing in, a new Office
365 mail connector will be created, containing the connection information to the
account.

8. Click on the Continue button and configure the trigger with a 3-minute poll
frequency, as shown in Figure 11.2:

Figure 11.2: Configuring the trigger with a 3-minute poll frequency

Azure Logic Apps | 349

9. Click on Next step to add another action and type the keyword variable in
the search bar. Then, select the Initialize variable action, as demonstrated in
Figure 11.3:

Figure 11.3: Adding the Initialize variable action

350 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

10. Next, configure the variable action. When the Value box is clicked on, a pop-up
window appears that shows Dynamic content and Expression. Dynamic content
refers to properties that are available to the current action and are filled with
runtime values from previous actions and triggers. Variables help in keeping
workflows generic. From this window, select Body from Dynamic content:

Figure 11.4: Configuring the variable action

11. Add another action by clicking on Add step, typing outlook in the search bar, and
then selecting the Reply to email action:

Figure 11.5: Adding the Reply to email action

Azure Logic Apps | 351

12. Configure the new action. Ensure that Message Id is set with the dynamic
content, Message Id, and then type the reply in the Comment box that you'd like
to send to the recipient:

Figure 11.6: Configuring the Reply to email action

13. Add another action, type text analytics in the search bar, and then select Detect
Sentiment (preview):

Figure 11.7: Adding the Detect Sentiment (preview) action

352 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

14. Configure the sentiment action as shown in Figure 11.8—both the endpoint and key
values should be used here. Now click on the Create button, as demonstrated in
Figure 11.8:

Figure 11.8: Configuring the Detect Sentiment (preview) action

15. Provide the text to the action by adding dynamic content and selecting the
previously created variable, emailContent. Then, click on Show advanced options
and select en for Language:

Figure 11.9: Selecting the language for the sentiment action

16. Next, add a new action by selecting Outlook, and then select Send an email. This
action sends the original recipient the email content with the sentiment score
in its subject. It should be configured as shown in Figure 11.10. If the score is not
visible in the dynamic content window, click on the See more link beside it:

Azure Logic Apps | 353

Figure 11.10: Adding the Send an email action

17. Save the logic app, navigate back to the overview page, and click on Run trigger.
The trigger will check for new emails every 3 minutes, reply to the senders,
perform sentiment analysis, and send an email to the original recipient. A sample
email with negative connotations is sent to the given email ID:

Figure 11.11: Sample email

354 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

18. After a few seconds, the logic app executes, and the sender gets the following
reply:

Figure 11.12: Reply email to the original sender

19. The original recipient gets an email with the sentiment score and the original
email text, as shown in Figure 11.13:

Figure 11.13: HTML view of the email message

Creating an end-to-end solution using serverless technologies | 355

From the activity, we were able to understand the workings of a logic app. The app was
triggered when an email was received in the inbox of the user and the process followed
the sequence of steps that were given in the logic app. In the next section, you will learn
how to create an end-to-end solution using serverless technologies.

Creating an end-to-end solution using serverless technologies
In this section, we will create an end-to-end solution comprising serverless
technologies that we discussed in the previous sections. The following example will give
you an idea of how workflows can be intelligently implemented to avoid management
overhead. In the next activity, we will create a workflow to notify the users when the
keys, secrets, and certificates get stored in Azure Key Vault. We will take this as a
problem statement, figure out a solution, architect the solution, and implement it.

The problem statement

The problem that we are going to solve here is that users and organizations are not
notified regarding the expiration of secrets in their key vault, and applications stop
working when they expire. Users are complaining that Azure does not provide the
infrastructure to monitor Key Vault secrets, keys, and certificates.

Solution

The solution to this problem is to combine multiple Azure services and integrate them
so that users can be proactively notified of the expiration of secrets. The solution will
send notifications using two channels—email and SMS.

The Azure services used to create this solution include the following:

• Azure Key Vault

• Azure Active Directory (Azure AD)

• Azure Event Grid

• Azure Automation

• Logic Apps

• Azure Functions

• SendGrid

• Twilio SMS

Now that you know the services that will be used as part of the solution, let's go ahead
and create an architecture for this solution.

356 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

Architecture

In the previous section, we explored the list of services that will be used in the solution.
If we want to implement the solution, the services should be laid out in the proper
order. The architecture will help us to develop the workflow and take a step closer to
the solution.

The architecture of the solution comprises multiple services, as shown in Figure 11.14:

Figure 11.14: Solution architecture

Let's go through each of these services and understand their roles and the functionality
that they provide in the overall solution.

Azure Automation

Azure Automation provides runbooks, and these runbooks can be executed to run logic
using PowerShell, Python, and other scripting languages. Scripts can be executed either
on-premises or in the cloud, which provides rich infrastructure and facilities to create
scripts. These kinds of scripts are known as runbooks. Typically, runbooks implement
a scenario such as stopping or starting a virtual machine, or creating and configuring
storage accounts. It is quite easy to connect to the Azure environment from runbooks
with the help of assets such as variables, certificates, and connections.

In the current solution, we want to connect to Azure Key Vault, read all the secrets
and keys stored within it, and fetch their expiry dates. These expiry dates should be
compared with today's date and, if the expiry date is within a month, the runbook
should raise a custom event on Event Grid using an Event Grid custom topic.

An Azure Automation runbook using a PowerShell script will be implemented to achieve
this. Along with the runbook, a scheduler will also be created that will execute the
runbook once a day at 12.00 AM.

PowerShell
runbookAzure

Automation
schedule Certificates

Administrator/
stakeholder

groups

Event Grid

Key Vault Secrets

logic app

email

Access

SubscribesPu
bli

sh
es

SMS

Runs
once

every day

Creating an end-to-end solution using serverless technologies | 357

A custom Azure Event Grid topic

Once the runbook identifies that a secret or key is going to expire within a month, it will
raise a new custom event and publish it to the custom topic created specifically for this
purpose. Again, we will go into the details of the implementation in the next section.

Azure Logic Apps

A logic app is a serverless service that provides workflow capabilities. Our logic app will
be configured to be triggered as and when an event is published on the custom Event
Grid topic. After it is triggered, it will invoke the workflow and execute all the activities
in it one after another. Generally, there are multiple activities, but for the purpose of
this example, we will invoke one Azure function that will send both email and SMS
messages. In a full-blown implementation, these notification functions should be
implemented separately in separate Azure functions.

Azure Functions

Azure Functions is used to notify users and stakeholders about the expiration of secrets
and keys using email and SMS. SendGrid is used to send emails, while Twilio is used to
send SMS messages from Azure Functions.

In the next section, we will take a look at the prerequisites before implementing the
solution.

Prerequisites

You will need an Azure subscription with contributor rights at the very least. As
we are only deploying services to Azure and no external services are deployed, the
subscription is the only prerequisite. Let's go ahead and implement the solution.

Implementation

A key vault should already exist. If not, one should be created.

This step should be performed if a new Azure Key Vault instance needs to be
provisioned. Azure provides multiple ways in which to provision resources. Prominent
among them are Azure PowerShell and the Azure CLI. The Azure CLI is a command-line
interface that works across platforms. The first task will be to provision a key vault in
Azure. In this implementation, we will use Azure PowerShell to provision the key vault.

Before Azure PowerShell can be used to create a key vault, it is important to log into
Azure so that subsequent commands can be executed successfully to create the key
vault.

358 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

Step 1: Provisioning an Azure Key Vault instance

The first step is to prepare the environment for the sample. This involves logging into
the Azure portal, selecting an appropriate subscription, and then creating a new Azure
resource group and a new Azure Key Vault resource:

1. Execute the Connect-AzAccount command to log into Azure. It will prompt for
credentials in a new window.

2. After a successful login, if there are multiple subscriptions available for the
login ID provided, they will all be listed. It is important to select an appropriate
subscription—this can be done by executing the Set-AzContext cmdlet:

Set-AzContext -SubscriptionId xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx

3. Create a new resource group in your preferred location. In this case, the name of
the resource group is IntegrationDemo and it is created in the West Europe region:

New-AzResourceGroup -Name IntegrationDemo -Location "West Europe" -Verbose

4. Create a new Azure Key Vault resource—the name of the vault, in this case,
is keyvaultbook, and it is enabled for deployment, template deployment, disk
encryption, soft delete, and purge protection:

New-AzKeyVault -Name keyvaultbook -ResourceGroupName
IntegrationDemo -Location "West Europe" -EnabledForDeployment
-EnabledForTemplateDeployment -EnabledForDiskEncryption
-EnablePurgeProtection -Sku Standard - Verbose

Please note that the key vault name needs to be unique. You may not be able to use the
same name for two key vaults. The preceding command, when executed successfully,
will create a new Azure Key Vault resource. The next step is to provide access to a
service principal on the key vault.

Step 2: Creating a service principal

Instead of using an individual account to connect to Azure, Azure provides service
principals, which are, in essence, service accounts that can be used to connect to
Azure Resource Manager and run activities. Adding a user to an Azure directory/tenant
makes them available everywhere, including in all resource groups and resources, due
to the nature of security inheritance in Azure. Access must be explicitly revoked from
resource groups for users if they are not allowed to access them. Service principals
help by assigning granular access and control to resource groups and resources, and, if
required, they can be given access to the subscription scope. They can also be assigned
granular permissions, such as reader, contributor, or owner permissions.

Creating an end-to-end solution using serverless technologies | 359

In short, service principals should be the preferred mechanism to consume Azure
services. They can be configured either with a password or with a certificate key.
Service principals can be created using the New-AzAdServicePrinicipal command, as
shown here:

$sp = New-AzADServicePrincipal -DisplayName "keyvault-book" -Scope "/
subscriptions/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx" -Role Owner -StartDate
([datetime]::Now) -EndDate $([datetime]::now.AddYears(1)) -Verbose

The important configuration values are the scope and role. The scope determines the
access area for the service application—it is currently shown at the subscription level.
Valid values for scope are as follows:

/subscriptions/{subscriptionId}
/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}
/subscriptions/{subscriptionId}/resourcegroups/{resourceGroupName}/providers/
{resourceProviderNamespace}/{resourceType}/{resourceName}
/subscriptions/{subscriptionId}/resourcegroups/{resourceGroupName}/
providers/{resourceProviderNamespace}/{parentResourcePath}/{resourceType}/
{resourceName}

The role provides permissions to the assigned scope. The valid values are as follows:

• Owner

• Contributor

• Reader

• Resource-specific permissions

In the preceding command, owner permissions have been provided to the newly
created service principal.

We can also use certificates if needed. For simplicity, we will proceed with the
password.

With the service principal we created, the secret will be hidden. To find out the secret,
you can try the following commands:

$BSTR = [System.Runtime.InteropServices.Marshal]::SecureStringToBSTR($sp.
Secret)

$UnsecureSecret = [System.Runtime.InteropServices.
Marshal]::PtrToStringAuto($BSTR)

$UnsecureSecret will have your secret key.

360 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

Along with the service principal, an Application Directory application will be created.
The application acts as the global representation of our application across directories
and the principal is like a local representation of the application. We can create multiple
principals using the same application in a different directory. We can get the details
of the application created using the Get-AzAdApplication command. We will save the
output of this command to a variable, $app, as we will need this later:

$app = Get-AzAdApplication -DisplayName $sp.DisplayName

We have now created a service principal using a secret; another secure way of creating
one is using certificates. In the next section, we will create a service principal using
certificates.

Step 3: Creating a service principal using certificates

To create a service principal using certificates, the following steps should be executed:

1. Create a self-signed certificate or purchase a certificate: A self-signed certificate
is used to create this example end-to-end application. For real-life deployments, a
valid certificate should be purchased from a certificate authority.

To create a self-signed certificate, the following command can be run. The
self-signed certificate is exportable and stored in a personal folder on the local
machine—it also has an expiry date:

$currentDate = Get-Date
$expiryDate = $currentDate.AddYears(1)
$finalDate = $expiryDate.AddYears(1)
$servicePrincipalName = "https://automation.book.com"
$automationCertificate = New-SelfSignedCertificate -DnsName
$servicePrincipalName -KeyExportPolicy Exportable -Provider "Microsoft
Enhanced RSA and AES Cryptographic Provider" -NotAfter $finalDate
-CertStoreLocation "Cert:\LocalMachine\My"

2. Export the newly created certificate: The new certificate must be exported to the
filesystem so that later, it can be uploaded to other destinations, such as Azure AD,
to create a service principal.

The commands used to export the certificate to the local filesystem are shown
next. Please note that this certificate has both public and private keys, and so
while it is exported, it must be protected using a password, and the password
must be a secure string:

Creating an end-to-end solution using serverless technologies | 361

$securepfxpwd = ConvertTo-SecureString -String 'password' -AsPlainText
-Force # Password for the private key PFX certificate
$cert1 = Get-Item -Path Cert:\LocalMachine\My\$($automationCertificate.
Thumbprint)
Export-PfxCertificate -Password $securepfxpwd -FilePath " C:\
azureautomation.pfx" -Cert $cert1

The Get-Item cmdlet reads the certificate from the certificate store and stores
it in the $cert1 variable. The Export-PfxCertificate cmdlet actually exports the
certificate in the certificate store to the filesystem. In this case, it is in the C:\book
folder.

3. Read the content from the newly generated PFX file: An object of
X509Certificate2 is created to hold the certificate in memory, and the data is
converted to a Base64 string using the System.Convert function:

$newCert = New-Object System.Security.Cryptography.X509Certificates.
X509Certificate2 -ArgumentList "C:\azureautomation.pfx", $securepfxpwd
$newcertdata = [System.Convert]::ToBase64String($newCert.GetRawCertData())

We will be using this same principal to connect to Azure from the Azure
Automation account. It is important that the application ID, tenant ID, subscription
ID, and certificate thumbprint values are stored in a temporary location so that
they can be used to configure subsequent resources:

$adAppName = "azure-automation-sp"
$ServicePrincipal = New-AzADServicePrincipal -DisplayName $adAppName
-CertValue $newcertdata -StartDate $newCert.NotBefore -EndDate $newCert.
NotAfter
Sleep 10
New-AzRoleAssignment -ServicePrincipalName $ServicePrincipal.ApplicationId
-RoleDefinitionName Owner -Scope /subscriptions/xxxxx-xxxxxxx-xxxxxx-
xxxxxxx

We have our service principal ready. The key vault we created doesn't have an access
policy set, which means no user or application will be able to access the vault. In the
next step, we will grant permissions to the Application Directory application we created
to access the key vault.

Step 4: Creating a key vault policy

At this stage, we have created the service principal and the key vault. However, the
service principal still does not have access to the key vault. This service principal will
be used to query and list all the secrets, keys, and certificates from the key vault, and it
should have the necessary permissions to do so.

362 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

To provide the newly created service principal permission to access the key vault, we
will go back to the Azure PowerShell console and execute the following command:

Set-AzKeyVaultAccessPolicy -VaultName keyvaultbook -ResourceGroupName
IntegrationDemo -ObjectId $ServicePrincipal.Id -PermissionsToKeys get,list,create
-PermissionsToCertificates get,list,import -PermissionsToSecrets get,list -Verbose

Referring to the previous command block, take a look at the following points:

• Set-AzKeyVaultAccessPolicy provides access permissions to users, groups, and
service principals. It accepts the key vault name and the service principal object
ID. This object is different from the application ID. The output of the service
principal contains an Id property, as shown here:

Figure 11.15: Finding the object ID of the service principal

• PermissionsToKeys provides access to keys in the key vault, and the get, list, and
create permissions are provided to this service principal. There is no write or
update permission provided to this principal.

• PermissionsToSecrets provides access to secrets in the key vault, and the get and
list permissions are provided to this service principal. There is no write or update
permission provided to this principal.

• PermissionsToCertificates provides access to secrets in the key vault, and get,
import, and list permissions are provided to this service principal. There is no
write or update permission provided to this principal.

At this point, we have configured the service principal to work with the Azure key vault.
The next part of the solution is to create an Automation account.

Step 5: Creating an Automation account

Just like before, we will be using Azure PowerShell to create a new Azure Automation
account within a resource group. Before creating a resource group and an Automation
account, a connection to Azure should be established. However, this time, use the
credentials for the service principal to connect to Azure. The steps are as follows:

Creating an end-to-end solution using serverless technologies | 363

1. The command to connect to Azure using the service application is as follows. The
value is taken from the variables that we initialized in the previous steps:

Login-AzAccount -ServicePrincipal -CertificateThumbprint $newCert.
Thumbprint -ApplicationId $ServicePrincipal.ApplicationId -Tenant "xxxx-
xxxxxx-xxxxx-xxxxx"

2. Make sure that you have access by checking Get-AzContext as shown here. Make a
note of the subscription ID as it will be needed in subsequent commands:

Get-AzContext

3. After connecting to Azure, a new resource containing the resources for the
solution and a new Azure Automation account should be created. You are naming
the resource group VaultMonitoring, and creating it in the West Europe region. You
will be creating the remainder of the resources in this resource group as well:

$IntegrationResourceGroup = "VaultMonitoring"
$rgLocation = "West Europe"
$automationAccountName = "MonitoringKeyVault"
New-AzResourceGroup -name $IntegrationResourceGroup -Location $rgLocation
New-AzAutomationAccount -Name $automationAccountName -ResourceGroupName
$IntegrationResourceGroup -Location $rgLocation -Plan Free

4. Next, create three automation variables. The values for these, that is, the
subscription ID, tenant ID, and application ID, should already be available using the
previous steps:

New-AzAutomationVariable -Name "azuresubscriptionid"
-AutomationAccountName $automationAccountName -ResourceGroupName
$IntegrationResourceGroup -Value " xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx "
-Encrypted $true

New-AzAutomationVariable -Name "azuretenantid" -AutomationAccountName
$automationAccountName -ResourceGroupName $IntegrationResourceGroup -Value
" xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx " -Encrypted $true

New-AzutomationVariable -Name "azureappid" -AutomationAccountName
$automationAccountName -ResourceGroupName $IntegrationResourceGroup -Value
" xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx " -Encrypted $true

364 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

5. Now it's time to upload a certificate, which will be used to connect to Azure from
Azure Automation:

$securepfxpwd = ConvertTo-SecureString -String 'password' -AsPlainText
-Force # Password for the private key PFX certificate
New-AzAutomationCertificate -Name "AutomationCertifcate" -Path "C:\book\
azureautomation.pfx" -Password $securepfxpwd -AutomationAccountName
$automationAccountName -ResourceGroupName $IntegrationResourceGroup

6. The next step is to install PowerShell modules related to Key Vault and Event Grid
in the Azure Automation account, as these modules are not installed by default.

7. From the Azure portal, navigate to the already-created VaultMonitoring resource
group by clicking on Resource Groups in the left-hand menu.

8. Click on the already-provisioned Azure Automation account, MonitoringKeyVault,
and then click on Modules in the left-hand menu. The Event Grid module is
dependent on the Az.profile module, and so we have to install it before the Event
Grid module.

9. Click on Browse Gallery in the top menu and type Az.profile in the search box, as
shown in Figure 11.16:

 Figure 11.16: The Az.Profile module in the module gallery

10. From the search results, select Az.Profile and click on the Import button in
the top menu. Finally, click on the OK button. This step takes a few seconds to
complete. After a few seconds, the module should be installed.

Creating an end-to-end solution using serverless technologies | 365

11. The status of the installation can be checked from the Module menu item.
Figure 11.17 demonstrates how we can import a module:

Figure 11.17: Az.Profile module status

12. Perform steps 9, 10, and 11 again in order to import and install the Az.EventGrid
module. If you are warned to install any dependencies before proceeding, go
ahead and install the dependencies first.

13. Perform steps 9, 10, and 11 again in order to import and install the Az.KeyVault
module. If you are warned to install any dependencies before proceeding, go
ahead and install the dependency first.

Since we have imported the necessary modules, let's go ahead and create the Event
Grid topic.

366 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

Step 6: Creating an Event Grid topic

If you recall the architecture that we used, we need an Event Grid topic. Let's create
one.

The command that's used to create an Event Grid topic using PowerShell is as follows:

New-AzEventGridTopic -ResourceGroupName VaultMonitoring -Name
azureforarchitects-topic -Location "West Europe"

The process of creating an Event Grid topic using the Azure portal is as follows:

1. From the Azure portal, navigate to the already-created Vaultmonitoring resource
group by clicking on Resource Groups in the left-hand menu.

2. Next, click on the +Add button and search for Event Grid Topic in the search box.
Select it and then click on the Create button.

3. Fill in the appropriate values in the resultant form by providing a name, selecting
a subscription, and selecting the newly created resource group, the location, and
the event schema.

As we already discussed, the Event Grid topic provides an endpoint where the source
will send the data. Since we have our topic ready, let's prepare the source Automation
account.

Step 7: Setting up the runbook

This step will focus on creating an Azure Automation account and PowerShell runbooks
that will contain the core logic of reading Azure key vaults and retrieving secrets stored
within them. The steps required for configuring Azure Automation are as follows:

1. Create the Azure Automation runbook: From the Azure portal, navigate to the
already-created Vaultmonitoring resource group by clicking on Resource Groups
in the left-hand menu.

2. Click on the already-provisioned Azure Automation account, MonitoringKeyVault.
Then, click on Runbooks in the left-hand menu, and click on +Add a Runbook
from the top menu.

3. Click on Create a new Runbook and provide a name. Let's call this runbook
CheckExpiredAssets, and then set Runbook type to PowerShell:

Creating an end-to-end solution using serverless technologies | 367

Figure 11.18: Creating a runbook

4. Code the runbook: Declare a few variables to hold the subscription ID, tenant
ID, application ID, and certificate thumbprint information. These values
should be stored in Azure Automation variables, and the certificate should be
uploaded to Automation certificates. The key used for the uploaded certificate is
AutomationCertifcate. The values are retrieved from these stores and are assigned
to the variables, as shown next:

$subscriptionID = get-AutomationVariable "azuresubscriptionid"
$tenantID = get-AutomationVariable "azuretenantid"
$applicationId = get-AutomationVariable "azureappid"
$cert = get-AutomationCertificate "AutomationCertifcate"
$certThumbprint = ($cert.Thumbprint).ToString()

5. The next code within the runbook helps to log into Azure using the service
principal with values from the variables declared previously. Also, the code selects
an appropriate subscription. The code is shown next:

Login-AzAccount -ServicePrincipal -CertificateThumbprint $certThumbprint
-ApplicationId $applicationId -Tenant $tenantID
Set-AzContext -SubscriptionId $subscriptionID

Since Azure Event Grid was provisioned in step 6 of this section, its endpoint and
keys are retrieved using the Get-AzEventGridTopic and Get-AzEventGridTopicKey
cmdlets.

368 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

Azure Event Grid generates two keys—a primary and a secondary. The first key
reference is taken as follows:

$eventGridName = "ExpiredAssetsKeyVaultEvents"
$eventGridResourceGroup = "VaultMonitoring"
$topicEndpoint = (Get-AzEventGridTopic -ResourceGroupName
$eventGridResourceGroup -Name $eventGridName).Endpoint
$keys = (Get-AzEventGridTopicKey -ResourceGroupName
$eventGridResourceGroup -Name $eventGridName).Key1

6. Next, all key vaults that were provisioned within the subscription are
retrieved using iteration. While looping, all secrets are retrieved using the
Get-AzKeyVaultSecret cmdlet.

The expiry date of each secret is compared to the current date, and if the
difference is less than a month, it generates an Event Grid event and publishes it
using the invoke-webrequest command.

The same steps are executed for certificates stored within the key vault. The
cmdlet used to retrieve all the certificates is Get-AzKeyVaultCertificate.

The event that is published to Event Grid should be in the JSON array. The
generated message is converted to JSON using the ConvertTo-Json cmdlet and
then converted to an array by adding [and] as a prefix and suffix.

In order to connect to Azure Event Grid and publish the event, the sender should
supply the key in its header. The request will fail if this data is missing in the
request payload:

$keyvaults = Get-AzureRmKeyVault
foreach($vault in $keyvaults) {
$secrets = Get-AzureKeyVaultSecret -VaultName $vault.VaultName
foreach($secret in $secrets) {
if(![string]::IsNullOrEmpty($secret.Expires)) {
if($secret.Expires.AddMonths(-1) -lt [datetime]::Now)
{
$secretDataMessage = @{
id = [System.guid]::NewGuid()
subject = "Secret Expiry happening soon !!"
eventType = "Secret Expiry"
eventTime = [System.DateTime]::UtcNow
data = @{
"ExpiryDate" = $secret.Expires
"SecretName" = $secret.Name.ToString()
"VaultName" = $secret.VaultName.ToString()

Creating an end-to-end solution using serverless technologies | 369

"SecretCreationDate" = $secret.Created.ToString()
"IsSecretEnabled" = $secret.Enabled.ToString()
"SecretId" = $secret.Id.ToString()
}
}
...
Invoke-WebRequest -Uri $topicEndpoint -Body $finalBody -Headers $header
-Method Post -UseBasicParsing
}
}
Start-Sleep -Seconds 5
}
}

7. Publish the runbook by clicking on the Publish button, as shown in Figure 11.19:

Figure 11.19: Publishing the runbook

8. Scheduler: Create an Azure Automation scheduler asset to execute this runbook
once every day at 12.00 AM. Click on Schedules from the left-hand menu of Azure
Automation and click on +Add a schedule in the top menu.

9. Provide scheduling information in the resulting form.

This should conclude the configuration of the Azure Automation account.

370 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

Step 8: Working with SendGrid

In this step, we will be creating a new SendGrid resource. The SendGrid resource
is used to send emails from the application without needing to install a Simple
Mail Transfer Protocol (SMTP) server. It provides a REST API and a C# Software
Development Kit (SDK), by means of which it is quite easy to send bulk emails. In the
current solution, Azure Functions will be used to invoke the SendGrid APIs to send
emails, and so this resource needs to be provisioned. This resource has separate costing
and is not covered as part of the Azure cost—there is a free tier available that can be
used for sending emails:

1. A SendGrid resource is created just like any other Azure resource. Search for
sendgrid, and we will get SendGrid Email Delivery in the results.

2. Select the resource and click on the Create button to open its configuration form.

3. Select an appropriate pricing tier.

4. Provide the appropriate contact details.

5. Tick the Terms of use check box.

6. Complete the form and then click on the Create button.

7. After the resource is provisioned, click on the Manage button in the top menu—
this will open the SendGrid website. The website may request email configuration.
Then, select API Keys from the Settings section and click on the Create API Key
button:

Figure 11.20: Creating API keys for SendGrid

Creating an end-to-end solution using serverless technologies | 371

8. From the resulting window, select Full Access and click on the Create & View
button. This will create the key for the SendGrid resource; keep a note of this key,
as it will be used with the Azure Functions configuration for SendGrid:

Figure 11.21: Setting up the access level in the SendGrid portal

Now that we have configured access levels for SendGrid, let's configure another third-
party service, which is called Twilio.

Step 9: Getting started with Twilio

In this step, we will be creating a new Twilio account. Twilio is used for sending bulk
SMS messages. To create an account with Twilio, navigate to twilio.com and create a
new account. After successfully creating an account, a mobile number is generated that
can be used to send SMS messages to receivers:

http://twilio.com

372 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

Figure 11.22: Choosing a Twilio number

The Twilio account provides both production and test keys. Copy the test key and token
to a temporary location, such as Notepad, as they will be required later within Azure
Functions:

Figure 11.23: Setting up Twilio

We have SendGrid and Twilio in place for the notification service; however, we need
something that can take the event and notify the users. Here comes the role of a
function app. In the next section, we will be creating a function app that will help with
sending SMS and emails.

Creating an end-to-end solution using serverless technologies | 373

Step 10: Setting up a function app

In this step, we will be creating a new function app responsible for sending emails
and SMS notifications. The purpose of the function app within the solution is to send
notification messages to users regarding the expiry of secrets in the key vault. A single
function will be responsible for sending both emails and SMS messages—note that this
could have been divided into two separate functions. The first step is to create a new
function app and host a function within it:

1. As we have done before, navigate to your resource group, click on the +Add button
in the top menu, and search for the function app resource. Then, click on the
Create button to get the Function App form.

2. Fill in the Function App form and click on the Create button. The name of the
function app must be unique across Azure.

3. Once the function app is provisioned, create a new function called
SMSandEMailFunction by clicking on the + button next to the Functions item in the
left-hand menu. Then, select In-portal from the central dashboard.

4. Select HTTP trigger and name it SMSandEMailFunction. Then, click on the Create
button—the Authorization level option can be any value.

5. Remove the default code, replace it with the code shown in the following listing,
and then click on the Save button in the top menu:

#r "SendGrid"
#r "Newtonsoft.Json"
#r "Twilio.Api"
using System.Net;
using System;
using SendGrid.Helpers.Mail;
using Microsoft.Azure.WebJobs.Host;
using Newtonsoft.Json;
using Twilio;
using System.Configuration;
public static HttpResponseMessage Run(HttpRequestMessage req, TraceWriter
log, out Mail message,out SMSMessage sms)
{
log.Info("C# HTTP trigger function processed a request.");
string alldata = req.Content.ReadAsStringAsync().GetAwaiter().GetResult();
message = new Mail();
var personalization = new Personalization();
personalization.AddBcc(new Email(ConfigurationManager.
AppSettings["bccStakeholdersEmail"]));

374 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

personalization.AddTo(new Email(ConfigurationManager.
AppSettings["toStakeholdersEmail"]));
var messageContent = new Content("text/html", alldata);
message.AddContent(messageContent);
message.AddPersonalization(personalization);
message.Subject = "Key Vault assets Expiring soon..";
message.From = new Email(ConfigurationManager.AppSettings["serviceEmail"]);
string msg = alldata;
sms = new SMSMessage();
sms.Body = msg;
sms.To = ConfigurationManager.AppSettings["adminPhone"];
sms.From = ConfigurationManager.AppSettings["servicePhone"];
return req.CreateResponse(HttpStatusCode.OK, "Hello ");
}

6. Click on the function app name in the left-hand menu and click again on the
Application settings link in the main window:

Figure 11.24: Navigating to Application settings

Creating an end-to-end solution using serverless technologies | 375

7. Navigate to the Application settings section, as shown in Figure 11.24, and add a
few entries by clicking on + Add new setting for each entry.

Note that the entries are in the form of key-value pairs, and the values should
be actual real-time values. Both adminPhone and servicePhone should already be
configured on the Twilio website. servicePhone is the phone number generated by
Twilio that is used for sending SMS messages, and adminPhone is the phone number
of the administrator to whom the SMS should be sent.

Also note that Twilio expects the destination phone number to be in a particular
format depending on the country (for India, the format is +91 xxxxx xxxxx). Note
the spaces and country code in the number.

We also need to add the keys for both SendGrid and Twilio within the application
settings. These settings are mentioned in the following list. You may already have
these values handy because of activities performed in earlier steps:

• The value of SendGridAPIKeyAsAppSetting is the key for SendGrid.

• TwilioAccountSid is the system identifier for the Twilio account. This value
was already copied and stored in a temporary location in Step 9: Getting
started with Twilio.

• TwilioAuthToken is the token for the Twilio account. This value was already
copied and stored in a temporary place in an earlier step.

376 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

8. Save the settings by clicking on the Save button in the top menu:

Figure 11.25: Configuring application settings

Creating an end-to-end solution using serverless technologies | 377

9. Click on the Integrate link in the left-hand menu just below the name of the
function, and click on + New Output. This is to add an output for the SendGrid
service:

Figure 11.26: Adding an output to the function app

10. Next, select SendGrid; it might ask you to install the SendGrid extension. Install
the extension, which will take a couple of minutes:

Figure 11.27: Configuring a function app

378 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

11. After installing the extension, the output configuration form appears. The
important configuration items in this form are Message parameter name and
SendGrid API Key App Setting. Leave the default value for Message parameter
name and click on the drop-down list to select SendGridAPIKeyAsAppSetting
as the API app setting key. This was already configured in a previous step within
the app settings configuration. The form should be configured as shown in Figure
11.28, and then you need to click on the Save button:

Figure 11.28: Setting up SendGrid

12. Click on + New Output again; this is to add an output for the Twilio service.

13. Then, select Twilio SMS. It might ask you to install the Twilio SMS extension.
Install the extension, which will take a couple of minutes.

14. After installing the extension, the output configuration form appears. The
important configuration items in this form are Message parameter name, Account
SID setting, and Auth Token setting. Change the default value for Message
parameter name to sms. This is done because the message parameter is already
used for the SendGrid service parameter. Ensure that the value of Account
SID setting is TwilioAccountSid and that the value of Auth Token setting is
TwilioAuthToken. These values were already configured in a previous step of the
app settings configuration. The form should be configured as shown in Figure
11.29, and then you should click on Save:

Creating an end-to-end solution using serverless technologies | 379

Figure 11.29: Setting up Twilio SMS output

Our SendGrid and Twilio accounts are ready. Now it's time to use the connectors and
add them to the logic app. In the next part, we will create the logic app and will use
connectors to work with the resources we have created so far.

Step 11: Creating a logic app

In this step, we will be creating a new logic app workflow. We have authored an Azure
Automation runbook that queries all the secrets in all key vaults and publishes an
event if it finds any of them expiring within a month. The logic app's workflow acts as a
subscriber to these events:

1. The first step within the Logic App menu is to create a logic app workflow.

2. Fill in the resultant form after clicking on the Create button. We are provisioning
the logic app in the same resource group as the other resources for this solution.

3. After the logic app is provisioned, it opens the designer window. Select Blank
Logic App from the Templates section.

4. In the resultant window, add a trigger that can subscribe to Event Grid. Logic Apps
provides a trigger for Event Grid, and you can search for this to see whether it's
available.

380 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

5. Next, select the When a resource event occurs (preview) trigger:

Figure 11.30: Selecting a trigger from Event Grid

6. In the resultant window, select Connect with Service Principal.

Provide the service principal details, including the application ID (Client ID),
tenant ID, and password. This trigger does not accept a service principal that
authenticates with the certificate—it accepts a service principal only with
a password. Create a new service principal at this stage that authenticates
with a password (the steps for creating a service principal based on password
authentication were covered earlier, in step 2) and use the details of the newly
created service principal for Azure Event Grid configuration, as shown in
Figure 11.31:

Figure 11.31: Providing the service principal details for connection

Creating an end-to-end solution using serverless technologies | 381

7. Select the subscription. Based on the scope of the service principal, this will get
auto-filled. Select Microsoft.EventGrid.Topics as the Resource Type value and set
the name of the custom topic as ExpiredAssetsKeyVaultEvents:

Figure 11.32: Providing Event Grid trigger details

8. The previous step will create a connector, and the connection information can be
changed by clicking on Change connection.

9. The final configuration of the Event Grid trigger should be similar to Figure 11.33:

Figure 11.33: Event Grid trigger overview

382 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

10. Add a new Parse JSON activity after the Event Grid trigger—this activity needs
the JSON schema. Generally, the schema is not available, but this activity helps
generate the schema if valid JSON is provided to it:

Figure 11.34: Parse JSON activity

11. Click on Use sample payload to generate schema and provide the following data:

{
"ExpiryDate": "",
"SecretName": "",
"VaultName": "",
"SecretCreationDate": "",
"IsSecretEnabled": "",
"SecretId": ""
}

A question might arise here regarding the sample payload. At this stage, how
do you calculate the payload that's generated by the Event Grid publisher? The
answer to this lies in the fact that this sample payload is exactly the same as is
used in the data element in the Azure Automation runbook. You can take a look at
that code snippet again:

data = @{
"ExpiryDate" = $certificate.Expires
"CertificateName" = $certificate.Name.ToString()
"VaultName" = $certificate.VaultName.ToString()
"CertificateCreationDate" = $certificate.Created.ToString()
"IsCertificateEnabled" = $certificate.Enabled.ToString()
"CertificateId" = $certificate.Id.ToString()
}

Creating an end-to-end solution using serverless technologies | 383

12. The Content box should contain dynamic content coming out from the previous
trigger, as demonstrated in Figure 11.35:

 Figure 11.35: Providing dynamic content to the Parse JSON activity

13. Add another Azure Functions action after Parse JSON, and then select
Choose an Azure function. Select the Azure function apps called
NotificationFunctionAppBook and SMSAndEmailFunction, which were created
earlier:

384 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

Figure 11.36: Adding an Azure Functions action

14. Click on the Request Body text area and fill it with the following code. This is done
to convert the data into JSON before sending it to the Azure function:

{
"alldata" :
}

15. Place the cursor after the ":" in the preceding code and click on Add dynamic
content | Body from the previous activity:

Figure 11.37: Converting data to JSON before sending it to an Azure function

Creating an end-to-end solution using serverless technologies | 385

16. Save the entire logic app; it should look as follows:

Figure 11.38: Logic app workflow

Once you save the logic app, your solution is ready to be tested. If you don't have any
keys or secrets, try adding them with an expiry date so that you can confirm whether
your solution is working.

Testing

Upload some secrets and certificates that have expiry dates to Azure Key Vault and
execute the Azure Automation runbook. The runbook is scheduled to run on a schedule.
Additionally, the runbook will publish events to Event Grid. The logic app should be
enabled, and it will pick the event and finally invoke the Azure function to send email
and SMS notifications.

The email should look as follows:

Figure 11.39: Email received regarding the expiring keys

386 | Azure solutions using Azure Logic Apps, Event Grid, and Functions

In this exercise, we had a problem, we architected a solution, and we implemented it.
This is exactly what happens in the role of an architect. Customers will have specific
requirements and, based on those, you must develop a solution. On that note, we are
concluding this chapter. Let's do a quick recap of what we have discussed.

Summary
This chapter introduced Logic Apps and demonstrated a complete end-to-end solution
using multiple Azure services. The chapter focused heavily on creating an architecture
that integrated multiple Azure services to create an end-to-end solution. The services
used in the solution were Azure Automation, Azure Logic Apps, Azure Event Grid, Azure
Functions, SendGrid, and Twilio. These services were implemented through the Azure
portal and PowerShell using service principals as service accounts. The chapter also
showed a number of ways of creating service principals with password and certificate
authentication.

A solution to a problem can be found in multiple ways. You could use an Outlook trigger
in a logic app instead of SendGrid. There will be many solutions to a problem—the one
to go with depends on what approach you are taking. The more familiar you are with
the services, the greater the number of options you will have. In the next chapter,
you will learn about the importance of events in both Azure and Azure application
architecture.

Events are everywhere! Any activity or task that changes the state of a work item
generates an event. Due to a lack of infrastructure and the non-availability of cheap
devices, there previously was not much traction for the Internet of Things (IoT).
Historically, organizations used hosted environments from internet service
providers (ISPs) that just had monitoring systems on top of them. These monitoring
systems raised events that were few and far between.

However, with the advent of the cloud, things are changing rapidly. With increased
deployments on the cloud, especially of Platform as a Service (PaaS) services,
organizations no longer need much control over the hardware and the platform, and
now every time there is a change in an environment, an event is raised. With the
emergence of cloud events, IoT has gained a lot of prominence and events have started
to take center stage.

Another recent phenomenon has been the rapid burst of growth in the availability
of data. The velocity, variety, and volume of data has spiked, and so has the need
for solutions for storing and processing data. Multiple solutions and platforms have
emerged, such as Hadoop, data lakes for storage, data lakes for analytics, and machine
learning services.

Azure Big Data
eventing solutions

12

390 | Azure Big Data eventing solutions

Apart from storage and analytics, there is also a need for services that are capable of
ingesting millions upon millions of events and messages from various sources. There
is also a need for services that can work on temporal data, rather than working on an
entire snapshot of data. For example, event data/IoT data is used in applications that
make decisions based on real-time or near real-time data, such as traffic management
systems or systems that monitor temperature.

Azure provides a plethora of services that help in capturing and analyzing real-time
data from sensors. In this chapter, we will go through a couple of eventing services in
Azure, as listed here:

• Azure Event Hubs

• Azure Stream Analytics

There are other eventing services, such as Azure Event Grid, that are not covered in this
chapter; however, they are extensively covered in Chapter 10, Azure Integration Services
with Azure functions (Durable Functions and Proxy functions).

Introducing events
Events are important constructs in both Azure and Azure application architecture.
Events are everywhere within the software ecosystem. Generally, any action that is
taken results in an event that can be trapped, and then further action can be taken. To
take this discussion forward, it is important to first understand the basics of events.

Events help in capturing the new state of a target resource. A message is a lightweight
notification of a condition or a state change. Events are different than messages.
Messages are related to business functionality, such as sending order details to
another system. They contain raw data and can be large in size. In comparison, events
are different; for instance, a virtual machine being stopped is an event. Figure 12.1
demonstrates this transition from the current state to the target state:

Figure 12.1: Transition of a state due to an event

Introducing events | 391

Events can be stored in durable storage as historical data and events can also be used to
find patterns that are emerging on an ongoing basis. Events can be thought of as data
being streamed constantly. To capture, ingest, and perform analysis on a stream of data,
special infrastructure components that can read a small window of data and provide
insights are needed, and that is where the Stream Analytics service comes into the
picture.

Event streaming

Processing events as they are ingested and streamed over a time window provides real-
time insights about data. The time window could 15 minutes or an hour—the window
is defined by the user and depends on the insights that are to be extracted from data.
Take credit card swipes, for instance—millions of credit card swipes happen every
minute, and fraud detection can be done over streamed events for a time window of
one or two minutes.

Event streaming refers to services that can accept data as and when it arises, rather
than accepting it periodically. For example, event streams should be capable of
accepting temperature information from devices as and when they send it, rather than
making the data wait in a queue or a staging environment.

Event streaming also has the capability of querying data while in transit. This is
temporal data that is stored for a while, and the queries occur on the moving data;
therefore, the data is not stationary. This capability is not available on other data
platforms, which can only query stored data and not temporal data that has just been
ingested.

Event streaming services should be able to scale easily to accept millions or even
billions of events. They should be highly available such that sources can send events and
data to them at any time. Real-time data ingestion and being able to work on that data,
rather than data that's stored in a different location, is the key to event streaming.

392 | Azure Big Data eventing solutions

But when we already have so many data platforms with advanced query execution
capabilities, why do we need event steaming? One of the main advantages of event
streaming is that it provides real-time insights and information whose usefulness is
time-dependent. The same information found after a few minutes or hours might not
be that useful. Let's consider some scenarios in which working on incoming data is
quite important. These scenarios can't be effectively and efficiently solved by existing
data platforms:

• Credit card fraud detection: This should happen as and when a fraudulent
transaction happens.

• Telemetry information from sensors: In the case of IoT devices sending vital
information about their environments, the user should be notified as and when an
anomaly is detected.

• Live dashboards: Event streaming is needed to create dashboards that show live
information.

• Datacenter environment telemetry: This will let the user know about any
intrusions, security breaches, failures of components, and more.

There are many possibilities for applying event streaming within an enterprise, and its
importance cannot be stressed enough.

Event Hubs

Azure Event Hubs is a streaming platform that provides functionality related to the
ingestion and storage of streaming-related events.

It can ingest data from a variety of sources; these sources could be IoT sensors or
any applications using the Event Hubs Software Development Kit (SDK). It supports
multiple protocols for ingesting and storing data. These protocols are industry
standard, and they include the following:

• HTTP: This is a stateless option and does not require an active session.

• Advanced Messaging Queuing Protocol (AMQP): This requires an active session
(that is, an established connection using sockets) and works with Transport Layer
Security (TLS) and Secure Socket Layer (SSL).

• Apache Kafka: This is a distributed streaming platform similar to Stream Analytics.
However, Stream Analytics is designed to run real-time analytics on multiple
streams of data from various sources, such as IoT sensors and websites.

Event Hubs is an event ingestion service. It can't query a request and output query
results to another location. That is the responsibility of Stream Analytics, which is
covered in the next section.

Introducing events | 393

To create an Event Hubs instance from the portal, search for Event Hubs in Marketplace
and click on Create. Select a subscription and an existing resource group (or create a
new one). Provide a name for the Event Hubs namespace, the preferred Azure region
to host it in, the pricing tier (Basic or Standard, explained later), and the number of
throughput units (explained later):

Figure 12.2: Creating an Event Hubs namespace

Event Hubs, being a PaaS service, is highly distributed, highly available, and highly
scalable.

Event Hubs comes with the following two SKUs or pricing tiers:

• Basic: This comes with one consumer group and can retain messages for 1 day. It
can have a maximum of 100 brokered connections.

• Standard: This comes with a maximum of 20 consumer groups and can retain
messages for 1 day with additional storage for 7 days. It can have a maximum of
1,000 brokered connections. It is also possible to define policies in this SKU.

394 | Azure Big Data eventing solutions

Figure 12.3 shows the different SKUs available while creating a new Event Hubs
namespace. It provides an option to choose an appropriate pricing tier, along with other
important details:

Figure 12.3: Event Hubs SKUs

Throughput can also be configured at the namespace level. Namespaces are containers
that consist of multiple event hubs in the same subscription and region. The throughput
is calculated as throughput units (TUs). Each TU provides:

• Up to 1 MB per second of ingress or a maximum of 1,000 ingress events and
management operations per second.

• Up to 2 MB per second of egress or a maximum of 4,096 events and management
operations per second.

• Up to 84 GB of storage.

The TUs can range from 1 to 20 and they are billed on an hourly basis.

It is important to note that the SKU cannot be changed after provisioning an Event
Hubs namespace. Due consideration and planning should be undertaken before
selecting an SKU. The planning process should include planning the number of
consumer groups required and the number of applications interested in reading events
from the event hub.

Event Hubs architecture | 395

Also, the Standard SKU is not available in every region. It should be checked for
availability at the time of the design and implementation of the event hub. The URL
for checking region availability is https://azure.microsoft.com/global-infrastructure/
services/?products=event-hubs.

Event Hubs architecture
There are three main components of the Event Hubs architecture: The Event
Producers, the Event Hub, and the Event Consumer, as shown in the following diagram:

Figure 12.4: Event Hubs architecture

Event Producers generate events and send them to the Event Hub. The Event
Hub stores the ingested events and provides that data to the Event Consumer.
The Event Consumer is whatever is interested in those events, and it connects to
the Event Hub to fetch the data.

Event hubs cannot be created without an Event Hubs namespace. The Event Hubs
namespace acts as a container and can host multiple event hubs. Each Event Hubs
namespace provides a unique REST-based endpoint that is consumed by clients to send
data to Event Hubs. This namespace is the same namespace that is needed for Service
Bus artifacts, such as topics and queues.

The connection string of an Event Hubs namespace is composed of its URL, policy
name, and key. A sample connection string is shown in the following code block:

Endpoint=sb://demoeventhubnsbook.servicebus.windows.
net/;SharedAccessKeyName=RootManageSharedAccessKey;SharedAccessKey=M/
E4eeBsr7DAlXcvw6ziFqlSDNbFX6E49Jfti8CRkbA=

This connection string can be found in the Shared Access Signature (SAS) menu item
of the namespace. There can be multiple policies defined for a namespace, each having
different levels of access to the namespace. The three levels of access are as follows:

• Manage: This can manage the event hub from an administrative perspective. It
also has rights for sending and listening to events.

• Send: This can write events to Event Hubs.

• Listen: This can read events from Event Hubs.

https://azure.microsoft.com/global-infrastructure/services/?products=event-hubs
https://azure.microsoft.com/global-infrastructure/services/?products=event-hubs

396 | Azure Big Data eventing solutions

By default, the RootManageSharedAccessKey policy is created when creating an event hub,
as shown in Figure 12.5. Policies help in creating granular access control on Event Hubs.
The key associated with each policy is used by consumers to determine their identity;
additional policies can also be created with any combination of the three previously
mentioned access levels:

Figure 12.5: Shared access policies in Event Hubs

Event hubs can be created from the Event Hubs namespace service by performing the
following actions:

Event Hubs architecture | 397

1. Click on Event Hubs in the left-hand menu and click on + Event Hub in the
resultant screen:

Figure 12.6: Creating an event hub from the Azure portal

398 | Azure Big Data eventing solutions

2. Next, provide values for the Partition Count and Message Retention fields,
along with the name of your choice. Then, select Off for Capture, as demonstrated
in Figure 12.7:

Figure 12.7: Creating a new event hub

After the event hub is created, you will see it in the list of event hubs, as shown in
Figure 12.8:

Figure 12.8: List of created event hubs

Event Hubs architecture | 399

Event Hubs also allows the storage of events to a storage account or data lake directly
using a feature known as Capture.

Capture helps in the automatic storage of ingested data to either an Azure Storage
account or an Azure Data Lake Storage account. This feature ensures that the ingestion
and storage of events happens in a single step, rather than transferring data into
storage being a separate activity:

Figure 12.9: Capture feature options

Separate policies can be assigned to each event hub by adding a new policy at the event
hub level.

After creating the policy, the connection string is available from the Secure Access
Signature left-menu item in the Azure portal.

400 | Azure Big Data eventing solutions

Since a namespace can consist of multiple event hubs, the connection string for an
individual event hub will be similar to the following code block. The difference here is in
the key value and the addition of EntityPath with the name of the event hub:

Endpoint=sb://azuretwittereventdata.servicebus.windows

=rxEu5K4Y2qsi5wEeOKuOvRnhtgW8xW35UBex4VlIKqg=;EntityPath=myeventhub

We had to keep the Capture option set to Off while creating the event hub, and it can
be switched back on after creating the event hub. It helps to save events to Azure Blob
storage or an Azure Data Lake Storage account automatically. The configuration for the
size and time interval is shown in Figure 12.10:

Figure 12.10: Selecting the size and time interval for capturing events

We did not cover the concepts of partitions and message retention options while
creating event hubs.

Partitioning is an important concept related to the scalability of any data store. Events
are retained within event hubs for a specific period of time. If all events are stored
within the same data store, then it becomes extremely difficult to scale that data store.
Every event producer will connect to the same data store and send their events to it.
Compare this with a data store that can partition the same data into multiple smaller
data stores, each being uniquely identified with a value.

Event Hubs architecture | 401

The smaller data store is called a partition, and the value that defines the partition is
known as the partition key. This partition key is part of the event data.

Now the event producers can connect to the event hub, and based on the value of the
partition key, the event hub will store the data in an appropriate partition. This will
allow the event hub to ingest multiple events at the same time in parallel.

Deciding on the number of partitions is a crucial aspect of the scalability of an event
hub. Figure 12.11 shows that ingested data is stored in the appropriate partition
internally by Event Hubs using the partition key:

Figure 12.11: Partitioning in an event hub

It is important to understand that one partition might have multiple keys. The user
decides how many partitions are required, and the event hub internally decides the
best way to allocate the partition keys between them. Each partition stores data in an
orderly way using a timestamp, and newer events are appended toward the end of the
partition.

It is important to note that it is not possible to change the number of partitions once
the event hub is created.

It is also important to remember that partitions also help in bringing parallelism and
concurrency for applications reading the events. For example, if there are 10 partitions,
10 parallel readers can read the events without any degradation in performance.

Message retention refers to the time period for which events should be stored. After
the expiry of the retention period, the events are discarded.

402 | Azure Big Data eventing solutions

Consumer groups

Consumers are applications that read events from an event hub. Consumer groups
are created for consumers to connect to in order to read the events. There can
be multiple consumer groups for an event hub, and each consumer group has access
to all the partitions within an event hub. Each consumer group forms a query on the
events in events hubs. Applications can use consumer groups and each application
will get a different view of the event hub events. A default $default consumer group
is created when creating an event hub. It is good practice for one consumer to be
associated with one consumer group for optimal performance. However, it is possible to
have five readers on each partition in a consumer group:

Figure 12.12: Event receivers in a consumer group

Now that you understand consumer groups, it is time to go deeper into the concept of
Event Hubs throughput.

A primer on Stream Analytics | 403

Throughput

Partitions help with scalability, while throughput helps with capacity per second. So,
what is capacity in terms of Event Hubs? It is the amount of data that can be handled
per second.

In Event Hubs, a single TU allows the following:

• 1 MB of ingestion data per second or 1,000 events per second (whichever happens
first)

• 2 MB of egress data per second or 4,096 events per second (whichever happens
first)

The auto-inflate option helps in increasing the throughput automatically if the number
of incoming/outgoing events or the incoming/outgoing total size crosses a threshold.
Instead of throttling, the throughput will scale up and down. The configuration of
throughput at the time of the creation of the namespace is shown in Figure 12.13. Again,
careful thought should go into deciding the TUs:

Figure 12.13: Selecting the TUs along with auto-inflate

A primer on Stream Analytics
Event Hubs is a highly scalable data streaming platform, so we need another service
that can process these events as a stream rather than just as stored data. Stream
Analytics helps in processing and examining a stream of big data, and Stream Analytics
jobs help to execute the processing of events.

Stream Analytics can process millions of events per second and it is quite easy to get
started with it. Azure Stream Analytics is a PaaS that is completely managed by Azure.
Customers of Stream Analytics do not have to manage the underlying hardware and
platform.

404 | Azure Big Data eventing solutions

Each job comprises multiple inputs, outputs, and a query, which transforms the
incoming data into new output. The whole architecture of Stream Analytics is shown in
Figure 12.14:

Figure 12.14: Azure Stream Analytics architecture

In Figure 12.14, the event sources are displayed on the extreme left. These are the
sources that produce the events. They could be IoT devices, custom applications
written in any programming language, or events coming from other Azure platforms,
such as Log Analytics or Application Insights.

These events must first be ingested into the system, and there are numerous Azure
services that can help to ingest this data. We've already looked at Event Hubs and how
they help in ingesting data. There are other services, such as IoT Hub, that also help in
ingesting device-specific and sensor-specific data. IoT Hub and ingestion are covered
in detail in Chapter 11, Designing IoT Solutions. This ingested data undergoes processing
as it arrives in a stream, and this processing is done using Stream Analytics. The output
from Stream Analytics could be fed to a presentation platform, such as Power BI, to
show real-time data to stakeholders, or a storage platform such as Cosmos DB, Data
Lake Storage, or Azure Storage, from which the data can be read and actioned later by
Azure Functions and Service Bus queues.

Stream Analytics helps in gathering insights from real-time ingested data within a time
window frame and helps in identifying patterns.

A primer on Stream Analytics | 405

It does so through three different tasks:

• Input: The data should be ingested within the analytics process. The data can
originate from Event Hubs, IoT Hub, or Azure Blob storage. Multiple separate
reference inputs using a storage account and SQL Database can be used for lookup
data within queries.

• Query: This is where Stream Analytics does the core job of analyzing the ingested
data and extracting meaningful insights and patterns. It does so with the help
of JavaScript user-defined functions, JavaScript user-defined aggregates, Azure
Machine Learning, and Azure Machine Learning studio.

• Output: The result of the queries can be sent to multiple different types of
destinations, and prominent among them are Cosmos DB, Power BI, Synapse
Analytics, Data Lake Storage, and Functions:

Figure 12.15: Stream Analytics process

Stream Analytics is capable of ingesting millions of events per second and can execute
queries on top of them.

Input data is supported in any of the three following formats:

• JavaScript Object Notation (JSON): This is a lightweight, plaintext-based format
that is human readable. It consists of name-value pairs; an example of a JSON
event follows:

{
 "SensorId" : 2,
 "humidity" : 60,
 "temperature" : 26C
}

• Event Hubs
• IoT Hub
• Blob Storage

• Query Language
• JavaScript UDF
• JavaScript UDA
• Azure Machine Learning Studio
• Azure Machine Learning

• Event Hubs
• IoT Hub
• Blob/Table Storage
• Service Bus Topics/Queues
• Azure Functions
• Power BI
• Cosmos DB
• SQL Database
• Data Lake Storage
• Azure Synapse Analytics

Input OutputQuery

406 | Azure Big Data eventing solutions

• Comma-Separated Values (CSV): These are also plaintext values, which are
separated by commas. An example of CSV is shown in Figure 12.16. The first row is
the header, containing three fields, followed by two rows of data:

Figure 12.16: Plaintext values

• Avro: This format is similar to JSON; however, it is stored in a binary format rather
than a text format:

{
	 "firstname":	"Ritesh",
 "lastname": "Modi",
 "email": "ritesh.modi@outlook.com"
}

However, this does not mean that Stream Analytics can only ingest data using these
three formats. It can also create custom .NET-based deserializers, using which any
format of data can be ingested, depending upon the deserializers' implementation.
The steps you can follow to write a custom deserializer are available at https://docs.
microsoft.com/azure/stream-analytics/custom-deserializer-examples.

Not only can Stream Analytics receive events, but it also provides advanced query
capability for the data that it receives. The queries can extract important insights from
the temporal data streams and output them.

As shown in Figure 12.17, there is an input dataset and an output dataset; the query
moves the events from the input to the output. The INTO clause refers to the output
location, and the FROM clause refers to the input location. The queries are very similar to
SQL queries, so the learning curve is not too steep for SQL programmers:

Figure 12.17: Stream Analytics query for receiving Twitter data

https://docs.microsoft.com/azure/stream-analytics/custom-deserializer-examples
https://docs.microsoft.com/azure/stream-analytics/custom-deserializer-examples

A primer on Stream Analytics | 407

Event Hubs provides mechanisms for sending outputs from queries to target
destinations. At the time of writing, Stream Analytics supports multiple destinations for
events and query outputs, as shown before.

It is also possible to define custom functions that can be reused within queries. There
are four options provided to define custom functions.

• Azure Machine Learning

• JavaScript user-defined functions

• JavaScript user-defined aggregates

• Azure Machine Learning studio

The hosting environment

Stream Analytics jobs can run on hosts that are running on the cloud, or they can run
on IoT edge devices. IoT edge devices are devices that are near to IoT sensors, rather
than on the cloud. Figure 12.18 shows the New Stream Analytics job pane:

Figure 12.18: Creating a new Stream Analytics job

Let's check out streaming units in detail.

408 | Azure Big Data eventing solutions

Streaming units

From Figure 12.18, you can see that the only configuration that is unique to Stream
Analytics is streaming units. Streaming units refers to the resources (that is, CPU
and memory) that are assigned for running a Stream Analytics job. The minimum and
maximum streaming units are 1 and 120, respectively.

Streaming units must be pre-allocated according to the amount of data and the number
of queries executed on that data; otherwise, the job will fail.

It is possible to scale streaming units up and down from the Azure portal.

A sample application using Event Hubs and Stream Analytics
In this section, we will be creating a sample application comprising multiple
Azure services, including Azure Logic Apps, Azure Event Hubs, Azure Storage, and
Azure Stream Analytics.

In this sample application, we will be reading all tweets containing the word "Azure" and
storing them in an Azure storage account.

To create this solution, we first need to provision all the necessary resources.

Provisioning a new resource group
Navigate to the Azure portal, log in using valid credentials, click on + Create a resource,
and search for Resource group. Select Resource group from the search results and
create a new resource group. Then, provide a name and choose an appropriate location.
Note that all resources should be hosted in the same resource group and location so
that it is easy to delete them:

Figure 12.19: Provisioning a new resource group in the Azure portal

Provisioning a new resource group | 409

Next, we will create an Event Hubs namespace.

Creating an Event Hubs namespace

Click on + Create a resource and search for Event Hubs. Select Event Hubs from
the search results and create a new event hub. Then, provide a name and location,
and select a subscription based on the resource group that was created earlier.
Select Standard as the pricing tier and also select Enable Auto-inflate, as shown in
Figure 12.20:

Figure 12.20: Creating an Event Hubs namespace

410 | Azure Big Data eventing solutions

By now, an Event Hubs namespace should have been created. It is a pre-requisite to
have a namespace before an event hub can be created. The next step is to provision an
event hub.

Creating an event hub

From the Event Hubs namespace service, click on Events Hubs in the left-
hand menu, and then click on + Event hubs to create a new event hub. Name
it azuretwitterdata and provide an optimal number of partitions and a Message
Retention value:

Figure 12.21: Creating the azuretwitterdata event hub

After this step, you will have an event hub that can be used to send event data, which
is stored in durable storage such as a Data Lake Storage account or an Azure Storage
account, to be used by downstream services.

Provisioning a new resource group | 411

Provisioning a logic app

After the resource group is provisioned, click on + Create a resource and search
for Logic Apps. Select Logic Apps from the search results and create a new logic app.
Then, provide a name and location, and select a subscription based on the resource
group created earlier. It is good practice to enable Log Analytics. Logic Apps is covered
in more detail in Chapter 11, Azure Solutions using Azure Logic Apps, Event Grid, and
Functions. The logic app is responsible for connecting to Twitter using an account and
fetching all the tweets with Azure in them:

Figure 12.22: Creating a logic app

412 | Azure Big Data eventing solutions

After the logic app is created, select the When a new tweet is posted trigger on the
design surface, sign in, and then configure it as shown in Figure 12.23. You will need a
valid Twitter account before configuring this trigger:

Figure 12.23: Configuring the frequency of incoming tweets

Next, drop a Send event action on the designer surface; this action is responsible for
sending tweets to the event hub:

Figure 12.24: Adding an action to send tweets to the event hub

Provisioning a new resource group | 413

Select the name of the event hub that was created in an earlier step.

The value specified in the content textbox is an expression that has been dynamically
composed using Logic Apps–provided functions and Twitter data. Clicking on Add
dynamic content provides a dialog through which the expression can be composed:

Figure 12.25: Configuring Logic Apps activity using dynamic expressions

The value of the expression is as follows:

json(concat('{','tweetdata:' ,'"',triggerBody()?['TweetText'],'"', '}'))

In the next section, we will provision the storage account.

Provisioning the storage account

Click on + Create a resource and search for Storage Account. Select Storage
Account from the search results and create a new storage account. Then, provide
a name and location, and select a subscription based on the resource group that was
created earlier. Finally, select StorageV2 for Account Kind, Standard for Performance,
and Locally-redundant storage (LRS) for the Replication field.

Next, we will create a Blob storage container to store the data coming out of Stream
Analytics.

Creating a storage container

Stream Analytics will output the data as files, which will be stored within a Blob storage
container. A container named twitter will be created within Blob storage, as shown in
Figure 12.26:

414 | Azure Big Data eventing solutions

Figure 12.26: Creating a storage container

Let's create a new Stream Analytics job with a hosting environment on the cloud and set
the streaming units to the default settings.

Creating Stream Analytics jobs

The input for this Stream Analytics job comes from the event hub, and so we need to
configure this from the Inputs menu:

Figure 12.27: Creating an input Stream Analytics job

Provisioning a new resource group | 415

The output for the Stream Analytics job is a Blob storage account, so you need to
configure the output accordingly. Provide a path pattern that is suitable for this
exercise; for example, {datetime:ss} is the path pattern that we are using for this
exercise:

Figure 12.28: Creating a Blob storage account as output

The query is quite simple; you are just copying the data from the input to the output:

Figure 12.29: Query for copying Twitter feeds

416 | Azure Big Data eventing solutions

While this example just involves copying data, there can be more complex queries for
performing transformation before loading data into a destination.

This concludes all the steps for the application; now you should be able to run it.

Running the application

The logic app should be enabled and Stream Analytics should be running. Now, run the
logic app; it will create a job to run all the activities within it, as shown in Figure 12.30:

Figure 12.30: Overview of the GetAzureTwitterData application

Provisioning a new resource group | 417

The Storage Account container should get data, as shown in Figure 12.31:

Figure 12.31: Checking the Storage Account container data

As an exercise, you can extend this sample solution and evaluate the sentiment of the
tweets every three minutes. The Logic Apps workflow for such an exercise would be as
follows:

Figure 12.32: Flowchart for analyzing tweet sentiment

418 | Azure Big Data eventing solutions

To detect sentiment, you'll need to use the Text Analytics API, which should be
configured before being used in Logic Apps.

Summary
This chapter focused on topics related to the streaming and storage of events. Events
have become an important consideration in overall solution architecture. We covered
important resources, such as Event Hubs and Stream Analytics, and foundational
concepts, such as consumer groups and throughputs, as well as creating an end-to-
end solution using them along with Logic Apps. You learned that events are raised from
multiple sources, and in order to get insights in real time about activities and their
related events, services such as Event Hubs and Stream Analytics play a significant
role. In the next chapter, we will learn about integrating Azure DevOps and Jenkins and
implementing some of the industry's best practices while developing solutions.

In the previous chapter, you learned about big data eventing and its relationship with
Azure's Event Hubs and Stream Analytics services. Software development is a complex
undertaking comprising multiple processes and tools, and involving people from
different departments. They all need to come together and work in a cohesive manner.
With so many variables, the risks are high when you are delivering to end customers.
One small omission or misconfiguration might lead to the application coming crashing
down. This chapter is about adopting and implementing practices that reduce this risk
considerably and ensure that high-quality software can be delivered to the customer
over and over again.

Integrating Azure
DevOps

13

422 | Integrating Azure DevOps

Before getting into the details of DevOps, here is a list of the problems faced by
software companies that DevOps addresses:

• Rigid organizations that don't welcome change

• Time-consuming processes

• Isolated teams working in silos

• Monolithic design and big bang deployments

• Manual execution

• A lack of innovation

In this chapter, we will cover the following topics:

• DevOps

• DevOps practices

• Azure DevOps

• DevOps preparation

• DevOps for PaaS solutions

• DevOps for virtual machine-based (IaaS) solutions

• DevOps for container-based (IaaS) solutions

• Azure DevOps and Jenkins

• Azure Automation

• Azure tools for DevOps

DevOps
There's currently no industry-wide consensus regarding the definition of
DevOps. Organizations have formulated their own definition of DevOps and tried
to implement it. They have their own perspective and think they've implemented
DevOps once they implement automation and configuration management, and use Agile
processes.

DevOps | 423

Based on my experience working on DevOps projects in industry, I have defined DevOps
as the following: DevOps is about the delivery mechanism of software systems. It's
about bringing people together, making them collaborate and communicate, working
together toward a common goal and vision. It's about taking joint responsibility,
accountability, and ownership. It's about implementing processes that foster
collaboration and a service mindset. It enables delivery mechanisms that bring agility
and flexibility to the organization. Contrary to popular belief, DevOps isn't about tools,
technology, and automation. These are enablers that help with collaboration, the
implementation of Agile processes, and faster and better delivery to the customer.

There are multiple definitions available on the internet for DevOps, and they aren't
wrong. DevOps doesn't provide a framework or methodology. It's a set of principles and
practices that, when employed within an organization, engagement, or project, achieve
the goal and vision of both DevOps and the organization. These principles and practices
don't mandate any specific processes, tools and technologies, or environments. DevOps
provides guidance that can be implemented through any tool, technology, or process,
although some of the technology and processes might be more applicable than others
to achieve the vision of DevOps' principles and practices.

Although DevOps practices can be implemented in any organization that provides
services and products to customers, going forward in this book, we'll look at DevOps
from the perspective of software development and the operations department of any
organization.

So, what is DevOps? DevOps is defined as a set of principles and practices bringing all
teams, including developers and operations, together from the start of the project for
faster, quicker, and more efficient end-to-end delivery of value to the end customer
again and again, in a consistent and predictable manner, reducing time to market,
thereby gaining a competitive advantage.

The preceding definition of DevOps doesn't indicate or refer to any specific processes,
tools, or technology. It doesn't prescribe any methodology or environment.

The goal of implementing DevOps principles and practices in any organization is to
ensure that the demands of stakeholders (including customers) and expectations are
met efficiently and effectively.

424 | Integrating Azure DevOps

Customer demands and expectations are met when the following happens:

• The customer gets the features they want

• The customer gets the features they want when they want them

• The customer gets faster updates on features

• The quality of delivery is high

When an organization can meet these expectations, customers are happy and remain
loyal. This, in turn, increases the market competitiveness of the organization, which
results in a bigger brand and market valuation. It has a direct impact on the top and
bottom lines of the organization. The organization can invest further in innovation and
customer feedback, bringing about continuous changes to its systems and services in
order to stay relevant.

The implementation of DevOps principles and practices in any organization is guided by
its surrounding ecosystem. This ecosystem is made up of the industry and domains the
organization belongs to.

DevOps is based on a set of principles and practices. We'll look into the details of these
principles and practices later in this chapter. The core principles of DevOps are:

• Agility: Being Agile increases the overall flexibility to changes and ensures that
adaptability increases to every changing environment and being productive. Agile
processes have a shorter work duration and it's easy to find issues earlier in the
development life cycle rather than much later, thereby reducing the technical
debt.

• Automation: The adoption of tools and automation increases the overall efficiency
and predictability of the process and end product. It helps in doing things faster
and in an easier and cheaper manner.

• Collaboration: Collaboration refers to a common repository, the rotation of
work responsibilities, the sharing of data and information, and other aspects that
improve the productivity of each member of the team, thereby supporting the
overall effective delivery of the product.

• Feedback: This refers to quick and early feedback loops between multiple teams
about things that work and things that don't work. It helps teams to prioritize
issues and fix them in subsequent releases.

The essence of DevOps | 425

The core DevOps practices are:

• Continuous integration: This refers to the process of validating and verifying the
quality and correctness of the code pushed within the repository by developers. It
can be scheduled, manual, or continuous. Continuous means that the process will
check for various quality attributes each time a developer pushes the code, while
scheduled means on a given time schedule, the checks will be conducted. Manual
refers to manual execution by an administrator or developer.

• Configuration management: This is an important facet of DevOps and provides
guidance for configuring infrastructure and applications either by pulling
configurations from configuration management servers or by pushing these
configurations on a schedule. Configuration management should bring back the
environment to the expected desired state every time it gets executed.

• Continuous delivery: Continuous delivery refers to the state of readiness
of an application to be able to be deployed in any existing, as well as a new,
environment. It is generally executed by means of a release definition in lower
environments like development and testing.

• Continuous deployment: Continuous deployment refers to the ability to deploy
the environment and application in production automatically. It is generally
executed by means of a release definition in the production environment.

• Continuous learning: This refers to the process of understanding the issues
faced by operations and customers and ensuring that they get communicated to
development and testing teams such that they can fix those issues in subsequent
releases to improve the overall health and usability of the application.

The essence of DevOps
DevOps is not a new paradigm; however, it's gaining a lot of popularity and traction.
Its adoption is at its highest level, and more and more companies are undertaking this
journey. I purposely mentioned DevOps as a journey because there are different levels
of maturity within DevOps. While successfully implementing continuous deployment
and delivery are considered the highest level of maturity in this journey, adopting
source code control and Agile software development are considered the first step in the
DevOps journey.

426 | Integrating Azure DevOps

One of the first things DevOps talks about is breaking down the barriers between the
development and the operations teams. It brings about close collaboration between
multiple teams. It's about breaking the mindset that the developer is responsible for
writing the code only and passing it on to operations for deployment once it's tested.
It's also about breaking the mindset that operations have no role to play in development
activities. Operations should influence the planning of the product and should be aware
of the features coming up as releases. They should also continually provide feedback to
the developers on operational issues such that they can be fixed in subsequent releases.
They should influence the design of the system to improve the operational working of
the system. Similarly, developers should help the operations team to deploy the system
and solve incidents when they arise.

The definition of DevOps talks about faster and more efficient end-to-end delivery
of systems to stakeholders. It doesn't talk about how fast or efficient the delivery
should be. It should be fast enough for the organization's domain, industry, customer
segmentation, and needs. For some organizations, quarterly releases are good enough,
while for others it could be weekly. Both are valid from a DevOps point of view, and
these organizations can deploy relevant processes and technologies to achieve
their target release deadlines. DevOps doesn't mandate any specific time frame for
continuous integration/continuous deployment (CI/CD). Organizations should
identify the best implementation of DevOps principles and practices based on their
overall project, engagement, and organizational vision.

The definition also talks about end-to-end delivery. This means that everything from
the planning and delivery of the system through to the services and operations should
be part of DevOps adoption. Processes should allow greater flexibility, modularity, and
agility in the application development life cycle. While organizations are free to use the
best fitting process—Waterfall, Agile, Scrum, or another—typically, organizations tend to
favor Agile processes with iteration-based delivery. This allows faster delivery in smaller
units, which are far more testable and manageable compared to a large delivery.

DevOps repeatedly talks about end customers in a consistent and predictable manner.
This means that organizations should continually deliver to customers with newer and
upgraded features using automation. We can't achieve consistency and predictability
without the use of automation. Manual work should be non-existent to ensure a high
level of consistency and predictability. Automation should also be end-to-end, to avoid
failures. This also indicates that the system design should be modular, allowing faster
delivery on systems that are reliable, available, and scalable. Testing plays a big role in
consistent and predictable delivery.

DevOps practices | 427

The end result of implementing these practices and principles is that the organization
is able to meet the expectations and demands of customers. The organization is able
to grow faster than the competition, and further increase the quality and capability of
their product and services through continuous innovation and improvement.

Now that you understand the idea behind DevOps, it's time to look into core DevOps
practices.

DevOps practices
DevOps consists of multiple practices, each providing a distinct functionality to
the overall process. The following diagram shows the relationship between them.
Configuration management, continuous integration, and continuous deployment
form the core practices that enable DevOps. When we deliver software services that
combine these three services, we achieve continuous delivery. Continuous delivery is
the capability and level of maturity of an organization that's dependent on the maturity
of configuration management, continuous integration, and continuous deployment.
Continuous feedback, at all stages, forms the feedback loop that helps to provide
superior services to customers. It runs across all DevOps practices. Let's deep dive into
each of these capabilities and DevOps practices:

Figure 13.1: DevOps practices

428 | Integrating Azure DevOps

Configuration management

Business applications and services need an environment in which they can be
deployed. Typically, the environment is an infrastructure composed of multiple
servers, computers, network, storage, containers, and many more services
working together such that business applications can be deployed on top of them.
Business applications are decomposed into multiple services running on multiple
servers, either on-premises or on the cloud, and each service has its own configuration
along with requirements related to the infrastructure's configuration. In short, both
the infrastructure and the application are needed to deliver systems to customers,
and both of them have their own configuration. If the configuration drifts, the
application might not work as expected, leading to downtime and failure. Moreover,
as the Application Lifecycle Management (ALM) process dictates the use of multiple
stages and environments, an application would be deployed to multiple environments
with different configurations. The application would be deployed to the development
environment for developers to see the result of their work. It would then be deployed to
multiple test environments with different configurations for functional tests, load and
stress tests, performance tests, integration tests, and more; it would also be deployed to
the preproduction environment to conduct user-acceptance tests, and finally into the
production environment. It's important that an application can be deployed to multiple
environments without undertaking any manual changes to its configuration.

Configuration management provides a set of processes and tools and they help to
ensure that each environment and application gets its own configuration. Configuration
management tracks configuration items, and anything that changes from environment
to environment should be treated as a configuration item. Configuration management
also defines the relationships between configuration items and how changes in one
configuration item will impact other configuration items.

Usage of configuration management

Configuration management helps in the following places:

• Infrastructure as Code: When the process of provisioning infrastructure and
its configuration is represented through code, and the same code goes through
the application life cycle process, it's known as Infrastructure as Code (IaC). IaC
helps to automate the provisioning and configuration of infrastructure. It also
represents the entire infrastructure in code that can be stored in a repository
and version-controlled. This allows users to employ the previous environment's
configurations when needed. It also enables the provisioning of an environment
multiple times in a consistent and predictable manner. All environments
provisioned in this way are consistent and equal in all ALM stages. There are many
tools that help in achieving IaC, including ARM templates, Ansible, and Terraform.

DevOps practices | 429

• Deploying and configuring the application: The deployment of an application
and its configuration is the next step after provisioning the infrastructure.
Examples include deploying a webdeploy package on a server, deploying a SQL
server schema and data (bacpac) on another server, and changing the SQL
connection string on the web server to represent the appropriate SQL server.
Configuration management stores values for the application's configuration for
each environment on which it is deployed.

The configuration applied should also be monitored. The expected and desired
configuration should be consistently maintained. Any drift from this expected and
desired configuration would render the application unavailable. Configuration
management is also capable of finding the drift and re-configuring the application and
environment to its desired state.

With automated configuration management in place, nobody on the team has to deploy
and configure environments and applications in production. The operations team isn't
reliant on the development team or long deployment documentation.

Another aspect of configuration management is source code control. Business
applications and services comprise code and other artifacts. Multiple team members
work on the same files. The source code should always be up to date and should
be accessible by only authenticated team members. The code and other artifacts
by themselves are configuration items. Source control helps in collaboration and
communication within the team since everybody is aware of what everyone else is
doing and conflicts are resolved at an early stage.

Configuration management can be broadly divided into two categories:

• Inside the virtual machine

• Outside the virtual machine

Configuration management tools

The tools available for configuration management inside the virtual machine are
discussed next.

Desired State Configuration

Desired State Configuration (DSC) is a configuration-management platform from
Microsoft, built as an extension to PowerShell. DSC was originally launched as part
of Windows Management Framework (WMF) 4.0. It's available as part of WMF 4.0 and
5.0 for all Windows Server operating systems before Windows 2008 R2. WMF 5.1 is
available out of the box on Windows Server 2016/2019 and Windows 10.

430 | Integrating Azure DevOps

Chef, Puppet, and Ansible

Apart from DSC, there's a host of configuration-management tools, such
as Chef, Puppet, and Ansible, supported by Azure. Details about these tools
aren't covered in this book. Read more about them here: https://docs.microsoft.com/
azure/virtual-machines/windows/infrastructure-automation.

The tools available for configuration management outside of a virtual machine are
mentioned next.

ARM templates

ARM templates are the primary means of provisioning resources in ARM. ARM
templates provide a declarative model through which resources and their configuration,
scripts, and extensions are specified. ARM templates are based on JavaScript Object
Notation (JSON) format. It uses JSON syntax and conventions to declare and configure
resources. JSON files are text-based, user friendly, and easily readable. They can be
stored in a source code repository and have version control on them. They are also a
means to represent infrastructure as code that can be used to provision resources in
Azure resource groups over and over again, predictably, consistently, and uniformly.

Templates provide the flexibility to be generic and modular in their design and
implementation. Templates give us the ability to accept parameters from users, declare
internal variables, help define dependencies between resources, link resources within
the same or different resource groups, and execute other templates. They also provide
scripting language-type expressions and functions that make them dynamic and
customizable at runtime. There are two chapters dedicated to ARM templates in this
book: Chapters 15, Cross Subscription Deployments Using ARM Templates, and Chapter
16, ARM Templates Modular Design and Implementation.

Now, it's time to focus on the next important DevOps principle: continuous integration.

Continuous integration

Multiple developers write code that's eventually stored in a common repository. The
code is normally checked in or pushed to the repository when the developers have
finished developing their features. This can happen in a day or might take days or weeks.
Some of the developers might be working on the same feature, and they might also
follow the same practices of pushing/checking in code in days or weeks. This can create
issues with the quality of the code. One of the tenets of DevOps is to fail fast. Developers
should check in/push their code to the repository often and compile the code to check
whether they've introduced bugs and that the code is compatible with the code written
by their colleagues. If a developer doesn't follow this practice, the code on their machine
will grow too large and will be difficult to integrate with other code. Moreover, if the
compile fails, it's difficult and time-consuming to fix the issues that arise.

https://docs.microsoft.com/azure/virtual-machines/windows/infrastructure-automation
https://docs.microsoft.com/azure/virtual-machines/windows/infrastructure-automation

DevOps practices | 431

Code integration

Continuous integration solves these kinds of challenges. Continuous integration helps
in compiling and validating the code pushed/checked in by a developer by taking it
through a series of validation steps. Continuous integration creates a process flow
that consists of multiple steps. Continuous integration is composed of continuous
automated builds and continuous automated tests. Normally, the first step is compiling
the code. After the successful compilation, each step is responsible for validating
the code from a specific perspective. For example, unit tests can be executed on the
compiled code, and then code coverage can be executed to check which code paths
are executed by unit tests. These could reveal whether comprehensive unit tests are
written or whether there's scope to add further unit tests. The end result of continuous
integration is deployment packages that can be used by continuous deployment to
deploy them to multiple environments.

Frequent code push

Developers are encouraged to check in their code multiple times a day, instead of doing
so after days or weeks. Continuous integration initiates the execution of the entire
pipeline as soon as the code is checked in or pushed. If compilation succeeds, code
tests, and other activities that are part of the pipeline, are executed without error; the
code is deployed to a test environment and integration tests are executed on it.

Increased productivity

Continuous integration increases developer productivity. They don't have to manually
compile their code, run multiple types of tests one after another, and then create
packages out of it. It also reduces the risk of getting bugs introduced in the code and
the code doesn't get stale. It provides early feedback to the developers about the quality
of their code. Overall, the quality of deliverables is high and they are delivered faster by
adopting continuous integration practices. A sample continuous integration pipeline is
shown here:

Figure 13.2: Continuous integration pipeline

432 | Integrating Azure DevOps

Build automation

Build automation consists of multiple tasks executing in sequence. Generally, the
first task is responsible for fetching the latest source code from the repository. The
source code might comprise multiple projects and files. They are compiled to generate
artifacts, such as executables, dynamic link libraries, and assemblies. Successful build
automation reflects that there are no compile-time errors in the code.

There could be more steps to build automation, depending on the nature and type of
the project.

Test automation

Test automation consists of tasks that are responsible for validating different aspects
of code. These tasks are related to testing code from a different perspective and are
executed in sequence. Generally, the first step is to run a series of unit tests on the
code. Unit testing refers to the process of testing the smallest denomination of a
feature by validating its behavior in isolation from other features. It can be automated
or manual; however, the preference is toward automated unit testing.

Code coverage is another type of automated testing that can be executed on code
to find out how much of the code is executed when running unit tests. It's generally
represented as a percentage and refers to how much code is testable through unit
testing. If the code coverage isn't close to 100%, it's either because the developer hasn't
written unit tests for that behavior or the uncovered code isn't required at all.

The successful execution of test automation, resulting in no significant code failure,
should start executing the packaging tasks. There could be more steps to test
automation depending on the nature and type of the project.

Packaging

Packaging refers to the process of generating deployable artifacts, such as MSI, NuGet,
and webdeploy packages, and database packages; versioning them; and then storing
them in a location such that they can be consumed by other pipelines and processes.

Once the process of continuous integration completes, the process of continuous
deployment starts, and that will be the focus of the next section.

DevOps practices | 433

Continuous deployment

By the time the process reaches continuous deployment, continuous integration
has ensured that we have fully working bits of an application that can now be taken
through different continuous deployment activities. Continuous deployment refers to
the capability of deploying business applications and services to preproduction and
production environments through automation. For example, continuous deployment
could provision and configure the preproduction environment, deploy applications to it,
and configure the applications. After conducting multiple validations, such as functional
tests and performance tests on the preproduction environment, the production
environment is provisioned, configured, and the application is deployed through
automation. There are no manual steps in the deployment process. Every deployment
task is automated. Continuous deployment can provision the environment and deploy
the application from scratch, while it can just deploy delta changes to an existing
environment if the environment already exists.

All environments are provisioned through automation using IaC. This ensures that
all environments, whether development, test, preproduction, or production, are the
same. Similarly, the application is deployed through automation, ensuring that it's
also deployed uniformly across all environments. The configuration across these
environments could be different for the application.

Continuous deployment is generally integrated with continuous integration. When
continuous integration has done its work, by generating the final deployable packages,
continuous deployment kicks in and starts its own pipeline. This pipeline is called
the release pipeline. The release pipeline consists of multiple environments, with
each environment consisting of tasks responsible for provisioning the environment,
configuring the environment, deploying applications, configuring applications,
executing operational validation on environments, and testing the application on
multiple environments.

Employing continuous deployment provides immense benefits. There is a high level of
confidence in the overall deployment process, which helps with faster and risk-free
releases on production. The chances of anything going wrong decrease drastically. The
team will be less stressed, and rollback to the previous working environment is possible
if there are issues with the current release:

Figure 13.3: Continuous deployment pipeline

Staging
environment

Test
automation

Production
environment

Performance
tests environment application

Provision
environment

Deploy
packages

environment application
Functional

tests
Acceptance

tests
Provision

environment
Deploy

packages

434 | Integrating Azure DevOps

Although every system demands its own configuration of the release pipeline, an
example of continuous deployment is shown in the preceding diagram. It's important
to note that, generally, provisioning and configuring multiple environments is part
of the release pipeline, and approvals should be sought before moving to the next
environment. The approval process might be manual or automated, depending on the
maturity of the organization.

Next, we will look into aspects related to the test environment.

Test environment deployment

The release pipeline starts once the drop is available from continuous integration
and the first step it should take is to get all the artifacts from the drop. After this, the
release pipeline might create a completely new bare-metal test environment or reuse
an existing one. This is again dependent on the type of project and the nature of the
testing planned to be executed in this environment. The environment is provisioned
and configured. The application artifacts are deployed and configured.

Test automation

After deploying an application, a series of tests can be performed on the environment.
One of the tests executed here is a functional test. Functional tests are primarily aimed
at validating the feature completeness and functionality of the application. These tests
are written from requirements gathered from the customer. Another set of tests that
can be executed is related to the scalability and availability of the application. This
typically includes load tests, stress tests, and performance tests. It should also include
an operational validation of the infrastructure environment.

Staging environment deployment

This is very similar to the test environment deployment, the only difference being that
the configuration values for the environment and application would be different.

Acceptance tests

Acceptance tests are generally conducted by application stakeholders, and these can be
manual or automated. This step is a validation from the customer's point of view about
the correctness and completeness of the application's functionality.

Deployment to production

Once the customer gives their approval, the same steps as that of the test and staging
environment deployment are executed, the only difference being that the configuration
values for the environment and application are specific to the production environment.
A validation is conducted after deployment to ensure that the application is running
according to expectations.

DevOps practices | 435

Continuous delivery is an important DevOps principle and closely resembles continuous
deployment; however, there are a few differences. In the next section, we will look into
continuous delivery.

Continuous delivery

Continuous delivery and continuous deployment might sound similar to you; however,
they aren't the same. While continuous deployment talks about deployment to
multiple environments and finally to the production environment through automation,
continuous delivery is the ability to generate application packages that are readily
deployable in any environment. To generate artifacts that are readily deployable,
continuous integration should be used to generate the application artifacts; a new or
existing environment should be used to deploy these artifacts and conduct functional
tests, performance tests, and user-acceptance tests through automation. Once these
activities are successfully executed without any errors, the application package is
considered readily deployable. Continuous delivery includes continuous integration
and deployment to an environment for final validations. It helps get feedback more
quickly from both the operations and the end user. This feedback can then be used to
implement subsequent iterations.

In the next section, we will look into continuous learning.

Continuous learning

With all the previously mentioned DevOps practices, it's possible to create great
business applications and deploy them automatically to the production environment;
however, the benefits of DevOps won't last for long if continuous improvement and
feedback principles are not in place. It's of the utmost importance that real-time
feedback about the application behavior is passed on as feedback to the development
team from both end users and the operations team.

Feedback should be passed to the teams, providing relevant information about what's
going well and what isn't.

An application's architecture and design should be built with monitoring, auditing,
and telemetry in mind. The operations team should collect telemetry information
from the production environment, capturing any bugs and issues, and pass it on to the
development team so that it can be fixed for subsequent releases.

436 | Integrating Azure DevOps

Continuous learning helps to make the application robust and resilient to failure. It
helps in making sure that the application is meeting consumer requirements. Figure 13.4
shows the feedback loop that should be implemented between different teams:

Figure 13.4: Feedback loop

After going through the important practices related to DevOps, now it's time to get into
tools and services that make these possible.

Azure DevOps
Let's look at another top-of-the-line online service that enables continuous integration,
continuous deployment, and continuous delivery seamlessly: Azure DevOps. In fact, it
would be more appropriate to call it a suite of services available under a single name.
Azure DevOps is a PaaS provided by Microsoft and hosted on the cloud. The same
service is available as Team Foundation Services (TFS) on-premises. All examples
shown in this book use Azure DevOps.

According to Microsoft, Azure DevOps is a cloud-based collaboration platform that
helps teams to share code, track work, and ship software. Azure DevOps is a new
name; earlier, it was known as Visual Studio Team Services (VSTS). Azure DevOps is an
enterprise software-development tool and service that enables organizations to provide
automation facilities to their end-to-end application life cycle management process,
from planning to deploying applications, and getting real-time feedback from software
systems. This increases the maturity and capability of an organization to deliver high-
quality software systems to their customers.

Successful software delivery involves efficiently bringing numerous processes and
activities together. These include executing and implementing various Agile processes,
increasing collaboration among teams, the seamless and automatic transition of
artifacts from one phase of the ALM to another phase, and deployments to multiple
environments. It's important to track and report on these activities to measure and
improve delivery processes. Azure DevOps makes this simple and easy. It provides a
whole suite of services that enables the following:

Monitoring Issues Feedback

Telemetry Bugs Communication

Azure DevOps | 437

• Collaboration among every team member by providing a single interface for the
entire application life cycle management

• Collaboration among development teams using source-code-management
services

• Collaboration among test teams using test-management services

• Automatic validation of code and packaging through continuous integration using
build-management services

• Automatic validation of application functionality, deployment, and configuration
of multiple environments through continuous deployment and delivery using
release-management services

• Tracking and work-item management using work-management services

The following table shows all the services available to a typical project from the Azure
DevOps left navigation bar:

Table 13.1: A list of Azure DevOps services

Service Description

Boards
Boards helps in the planning of the project by displaying the current progress of
tasks, backlogs, and user stories alongside sprint information. It also provides a
Kanban process and helps depict the current tasks in progress and completed.

Repos
Repos helps in managing repositories. It provides support with creating

managing permissions. There can be multiple repositories within a project.

Pipelines
Both release and build pipelines are created and managed from Pipelines. It
helps in automating the build and release process. There can be multiple build
and release pipelines within a project.

Test Plans All testing-related artifacts along with their management are available from
Test Plans.

Artifacts NuGet packages and other artifacts are stored and managed here.

438 | Integrating Azure DevOps

An organization in Azure DevOps serves as a security boundary and logical container
that provides all the services that are needed to implement a DevOps strategy. Azure
DevOps allows the creation of multiple projects within a single organization. By default,
a repository is created with the creation of a project; however, Azure DevOps allows the
creation of additional repositories within a single project. The relationship between an
Azure DevOps Organization, Projects, and a Repository is shown in Figure 13.5:

Figure 13.5: Relationship between Azure DevOps Organization, Projects, and Repository

Azure DevOps provides two types of repositories:

• Git

• Team Foundation Version Control (TFVC)

It also provides the flexibility to choose between the Git or TFVC source-control
repository. There can be a combination of TFS and TFVC repositories available within a
single project.

Azure DevOps | 439

TFVC

TFVC is the traditional and centralized way of implementing version control, where
there's a central repository and developers work on it directly in connected mode to
check in their changes. If the central repository is offline or unavailable, developers
can't check in their code and have to wait for it to be online and available. Other
developers can see only the checked-in code. Developers can group multiple changes
into a single changeset for checking in code changes that are logically grouped to
form a single change. TFVC locks the code files that are undergoing edits. Other
developers can read a locked file, but they can't edit it. They must wait for the prior
edit to complete and release the lock before they can edit. The history of check-ins and
changes is maintained on the central repository, while the developers have the working
copy of the files but not the history.

TFVC works very well with large teams that are working on the same projects. This
enables control over the source code at a central location. It also works best for long-
duration projects since the history can be managed at a central location. TFVC has no
issues working with large and binary files.

Git

Git, on the other hand, is a modern, distributed way of implementing version control,
where developers can work on their own local copies of code and history in offline
mode. Developers can work offline on their local clone of code. Each developer has a
local copy of code and its entire history, and they work on their changes with this local
repository. They can commit their code to the local repository. They can connect to
the central repository for the synchronization of their local repository on a per-need
basis. This allows every developer to work on any file since they would be working on
their local copy. Branching in Git doesn't create another copy of the original code and is
extremely fast to create.

Git works well with both small and large teams. Branching and merging is a breeze with
the advanced options that Git has.

Git is the recommended way of using source control because of the rich functionality
it provides. We'll use Git as the repository for our sample application in this book. In
the next section, we will have a detailed overview of implementing automation through
DevOps.

440 | Integrating Azure DevOps

Preparing for DevOps
Going forward, our focus will be on process and deployment automation using different
patterns in Azure. These include the following:

• DevOps for IaaS solutions

• DevOps for PaaS solutions

• DevOps for container-based solutions

Generally, there are shared services that aren't unique to any one application. These
services are consumed by multiple applications from different environments, such as
development, testing, and production. The life cycle of these shared services is different
for each application. Therefore, they have different version-control repositories, a
different code base, and build and release management. They have their own cycle of
plan, design, build, test, and release.

The resources that are part of this group are provisioned using ARM templates,
PowerShell, and DSC configurations.

The overall flow for building these common components is shown here:

Figure 13.6: Overall flow for building common components

Push code
to VSTS Git
branch or
raise Pull
request

Code quality
checks

Run
Integration

tests

Push code
to VSTS Git
branch or
raise Pull
request

If build fails,
developer

reworks on
code

VSTS
provides

feedback to
developer

Generate
build

artifacts and
drop them

Compile
the code

Execute unit
tests

Generate
build label

Push
changes to
shared repo

VSTS CI
kicks in and
starts build

pipeline

Preparing for DevOps | 441

The release process is shown in Figure 13.7:

Figure 13.7: Release process

On the DevOps journey, it's important to understand and provision the common
components and services before starting any software engagement, product, or service.

The first step in getting started with Azure DevOps is to provision an organization.

Azure DevOps organizations

A version-control system is needed to collaborate at the code level. Azure DevOps
provides both centralized and decentralized versions of control systems. Azure DevOps
also provides orchestration services for building and executing build and release
pipelines. It's a mature platform that organizes all DevOps-related version control and
builds and releases work-item-related artifacts. After an organization is provisioned in
Azure DevOps, an Azure DevOps project should be created to hold all project-related
artifacts.

An Azure DevOps organization can be provisioned by visiting https://dev.azure.com.

Build
pipeline ran
successfully

Deploy
to test

environment

Perform
test activities

Success or
rollback

Perform
operational

validation on
production

Deploy to
production

Create/
update next
environment

Start
deploying

environment

Create test
environment

ARM
templates

Approval for
deploying

to next/
production

Build
pipeline

generated
artifacts

Execute
release
pipeline

https://dev.azure.com

442 | Integrating Azure DevOps

An Azure DevOps organization is the top-level administrative and management
boundary that provides security, access, and collaboration between team members
belonging to an organization. There can be multiple projects within an organization and
each project comprises multiple teams.

Provisioning Azure Key Vault

It isn't advisable to store secrets, certificates, credentials, or other sensitive
information in code configuration files, databases, or any other general storage system.
It's advised to store this important data in a vault that's specifically designed for storing
secrets and credentials. Azure Key Vault provides such a service. Azure Key Vault is
available as a resource and service from Azure. Now, let's move on to exploring the
storage options for configurations.

Provisioning a configuration-management server/service

A configuration-management server/service that provides storage for configurations
and applies those configurations to different environments is always a good strategy
for automating deployments. DSC on custom virtual machines and DSC from Azure
Automation, Chef, Puppet, and Ansible are some options and can be used on Azure
seamlessly for both Windows as well as Linux environments. This book uses DSC as a
configuration-management tool for all purposes, and it provides a pull server that holds
all configuration documents (MOF files) for the sample application. It also maintains
the database of all virtual machines and containers that are configured and registered
with the pull server to pull configuration documents from it. The local configuration
manager on these targets virtual machines, and containers periodically check the
availability of new configurations as well as drifts in the current configuration and
report back to the pull server. It also has built-in reporting capabilities that provide
information about nodes that are compliant, as well as those that are non-compliant,
within a virtual machine. A pull server is a general web application that hosts the DSC
pull server endpoint. In the next topic, we will discuss a technique to monitor processes
in real time with Log Analytics.

Preparing for DevOps | 443

Log Analytics

Log Analytics is an audit and monitoring service provided by Azure to get real-time
information about all changes, drifts, and events occurring within virtual machines and
containers. It provides a centralized workspace and dashboard for IT administrators
for viewing, searching, and conducting drill-down searches on all changes, drifts, and
events that occur on these virtual machines. It also provides agents that are deployed
on target virtual machines and containers. Once deployed, these agents start sending
all changes, events, and drifts to the centralized workspace. Let's check out the storage
options for deploying multiple applications.

Azure Storage accounts

Azure Storage is a service provided by Azure to store files as blobs. All scripts and code
for automating the provisioning, deployment, and configuration of the infrastructure
and sample application are stored in the Azure DevOps Git repository and are packaged
and deployed in an Azure Storage account. Azure provides PowerShell script-extension
resources that can automatically download DSC and PowerShell scripts and execute
them on virtual machines during the execution of ARM templates. This storage acts
as common storage across all deployments for multiple applications. Storing scripts
and templates in a Storage account ensures that they can be used across projects
irrespective of projects in Azure DevOps. Let's move on to exploring the importance of
images in the next section.

Docker and OS images

Both virtual machine and container images should be built as part of the common
services build-and-release pipeline. Tools such as Packer and Docker Build can be used
to generate these images.

Management tools

All management tools, such as Kubernetes, DC/OS, Docker Swarm, and ITIL tools,
should be provisioned before building and deploying the solution.

We'll conclude this section on DevOps preparation with management tools. There are
multiple choices for each activity within a DevOps ecosystem and we should enable
them as part of the DevOps journey—it should not be an afterthought, but rather part of
DevOps planning.

444 | Integrating Azure DevOps

DevOps for PaaS solutions
The typical architecture for Azure PaaS app services is based on Figure 13.8:

Figure 13.8: A typical Azure PaaS app service architecture

The architecture shows some of the important components—such as Azure SQL,
Storage accounts, and the version control system—that participate in the Azure App
Service-based cloud solution architecture. These artifacts should be created using
ARM templates. These ARM templates should be part of the overall configuration
management strategy. It can have its own build and release management pipelines,
similar to the one shown in Figure 13.9:

Source Control
Resource

Group

Azure Active
Directory

deploy

Validate
deployment

IP address

authenticate

access token
App Service app

App Service Plan

Instances

Last-known good

Production

Staging

Deployment Slots

Storage Account

Blob Container

App Logs Web Server
Logs

Azure SQL Database

Logical Server

Database Database

DevOps for PaaS solutions | 445

Figure 13.9: Choosing deployment options for the app service

Now that we have explored the various deployment source options, let's go ahead and
dive into understanding how to deploy cloud solutions on Azure.

Azure App Service

Azure App Service provides managed hosting services for cloud solutions. It's a
fully-managed platform that provisions and deploys cloud solutions. Azure App
Service takes away the burden of creating and managing infrastructure and provides
minimum service-level agreements (SLAs) for hosting your cloud solutions.

Deployment slots

Azure App Service provides deployment slots that make deployment to them seamless
and easy. There are multiple slots, and swapping between slots is done at a DNS level.
It means anything in the production slot can be swapped with a staging slot by just
swapping the DNS entries. This helps in deploying the custom cloud solution to staging
and, after all checks and tests, they can be swapped to production if found satisfactory.
However, in the event of any issue in production after swapping, the previous good
values from the production environment can be reinstated by swapping again. Let's
move on to understanding Azure's database offering and some of its key features.

446 | Integrating Azure DevOps

Azure SQL

Azure SQL is a SQL PaaS service provided by Azure to host databases. Azure provides a
secure platform to host databases and takes complete ownership to manage the
availability, reliability, and scalability of the service. With Azure SQL, there's no need to
provision custom virtual machines, deploy a SQL server, and configure it. Instead, the
Azure team does this behind the scenes and manages it on your behalf. It also provides
a firewall service that enables security; only an IP address allowed by the firewall can
connect the server and access the database. The virtual machines provisioned to host
web applications have distinct public IP addresses assigned to them and they're added
to Azure SQL firewall rules dynamically. Azure SQL Server and its database is created
upon executing the ARM template. Next, we will cover build and release pipelines.

The build and release pipelines

In this section, a new build pipeline is created that compiles and validates an ASP.
NET MVC application, and then generates packages for deployment. After package
generation, a release definition ensures that deployment to the first environment
happens in an App Service and Azure SQL as part of continuous deployment.

There are two ways to author build and release pipelines:

1. Using the classic editor

2. Using YAML files

YAML files provide more flexibility for authoring build and release pipelines.

The project structure of the sample application is shown in Figure 13.10:

DevOps for PaaS solutions | 447

Figure 13.10: Project structure of a sample application

448 | Integrating Azure DevOps

In this project, there's an ASP.NET MVC application—the main application—and it
consists of application pages. Web Deploy packages will be generated out of this project
from build pipelines and they will eventually be on Web Apps. There are other projects
that are also part of the solution, as mentioned next:

• Unit test project: Code for unit-testing the ASP.NET MVC application. Assemblies
from this project will be generated and executed in the build execution.

• SQL Database project: Code related to the SQL database schema, structure,
and master data. DacPac files will be generated out of this project using the build
definition.

• Azure resource group project: ARM templates and parameter code to provision
the entire Azure environment on which the ASP.NET MVC application and the SQL
tables are created.

The build pipeline is shown in Figure 13.11:

Figure 13.11: Build pipeline of the ASP.NET MVC application

DevOps for PaaS solutions | 449

The configuration of each task is shown in Table 13.2:

Task name

Use NuGet 4.4.1

NuGet restore

Build solution

450 | Integrating Azure DevOps

Task name

Test
Assemblies

Publish
symbols path

Publish
Artifact - MVC
application

DevOps for PaaS solutions | 451

Task name

Publish
Artifact -
IaaS code (ARM
templates)

Build solution
Database1/
Database1.
sqlproj

452 | Integrating Azure DevOps

Table 13.2: Configuration of the build pipeline tasks

The build pipeline is configured to execute automatically as part of continuous
integration, as shown in Figure 13.12:

Figure 13.12: Enabling continuous integration in the build pipeline

The release definition consists of multiple environments, such as development, testing,
System Integration Testing (SIT), User Acceptance Testing (UAT), preproduction,
and production. The tasks are pretty similar in each environment, with the addition of
tasks specific to that environment. For example, a test environment has additional tasks
related to the UI, and functional and integration testing, compared to a development
environment.

Task name

Copy Files to:
$(build.
artifactst
aging
directory)

DevOps for PaaS solutions | 453

The release definition for such an application is shown in Figure 13.13:

Figure 13.13: Release definition

The release tasks for a single environment are shown in Figure 13.14:

Figure 13.14: Release tasks for a single environment

454 | Integrating Azure DevOps

The configuration for each of the tasks is listed here:

Task name

Replace
tokens in
*.SetParameters.
xml
(This is a task
installed from
Marketplace.)

DevOps for PaaS solutions | 455

Task name

Azure
Deployment:
Create Or Update
Resource Group
action on devRG

456 | Integrating Azure DevOps

Task name

Deploy Azure App
Service

DevOps for PaaS solutions | 457

Table 13.3: Configuration of the release pipeline tasks

In this section, you saw ways to configure build and release pipelines in Azure DevOps.
In the next section onward, the focus will be on different architectures, such as IaaS,
containers, and different scenarios.

Task name

Azure SQL
Publish

458 | Integrating Azure DevOps

DevOps for IaaS
IaaS involves the management and administration of base infrastructure and
applications together and there are multiple resources and components that need to
be provisioned, configured, and deployed on multiple environments. It is important to
understand the architecture before going ahead.

The typical architecture for an IaaS virtual machine-based solution is shown here:

Figure 13.15: Architecture for an IaaS virtual machine-based solution

Each of the components listed in the architecture is discussed from the next section
onward.

Azure virtual machines

Azure virtual machines that host web applications, application servers, databases,
and other services are provisioned using ARM templates. They're attached to a virtual
network and have a private IP address from the same network. The public IP for virtual
machines is optional since they're attached to a public load balancer. Operational
Insights agents are installed on virtual machines to monitor the virtual machines.
PowerShell scripts are also executed on these virtual machines, downloaded from a
Storage account available in another resource group to open relevant firewall ports,
download appropriate packages, and install local certificates to secure access through
PowerShell. The web application is configured to run on the provided port on these
virtual machines. The port number for the web application and all its configuration is
pulled from the DSC pull server and dynamically assigned.

DevOps for IaaS | 459

Azure public load balancers

A public load balancer is attached to some of the virtual machines for sending
requests to them in a round-robin fashion. This is generally needed for front-end web
applications and APIs. A public IP address and DNS name can be assigned to a load
balancer such that it can serve internet requests. It accepts HTTP web requests on
a different port and routes them to the virtual machines. It also probes certain
ports on HTTP protocols with some provided application paths. Network Address
Translation (NAT) rules can also be applied such that they can be used to log into the
virtual machines using remote desktops.

An alternative resource to the Azure public Load Balancer is the Azure Application
Gateway. Application gateways are layer-7 load balancers and provide features such as
SSL termination, session affinity, and URL-based routing. Let's discuss the build pipeline
in the next section.

The build pipeline

A typical build pipeline for an IaaS virtual machine-based solution is shown next. A
release pipeline starts when a developer pushes their code to the repository. The build
pipeline starts automatically as part of continuous integration. It compiles and builds
the code, executes unit tests on it, checks code quality, and generates documentation
from code comments. It deploys the new binaries into the development environment
(note that the development environment is not newly created), changes configuration,
executes integration tests, and generates build labels for easy identification. It then
drops the generated artifacts into a location accessible by the release pipeline. If there
are issues during the execution of any step in this pipeline, this is communicated to the
developer as part of the build pipeline feedback so that they can rework and resubmit
their changes. The build pipeline should fail or pass based on the severity of issues
found, and that varies from organization to organization. A typical build pipeline is
shown in Figure 13.16:

460 | Integrating Azure DevOps

Figure 13.16: A typical IaaS build pipeline

Similar to the build pipeline, let's learn about the implementation of a release pipeline.

The release pipeline

A typical release pipeline for an IaaS virtual machine-based deployment is shown next.
A release pipeline starts after the completion of the build pipeline. The first step in
the release pipeline is to gather the artifacts generated by the build pipeline. They are
generally deployable assemblies, binaries, and configuration documents. The release
pipeline executes and creates or updates the first environment, which generally is a
test environment. It uses ARM templates to provision all IaaS and PaaS services and
resources on Azure and configures them as well. They also help in executing scripts
and DSC configuration after virtual machines are created as post-creation steps. This
helps to configure the environment within the virtual machine and the operating
system. At this stage, application binaries from the build pipeline are deployed and
configured. Different automated tests are performed to check the solution and,
if found satisfactory, the pipeline moves the deployment to the next environment
after obtaining the necessary approvals. The same steps are executed in the next
environment, including the production environment. Finally, the operational validation
tests are executed in production to ensure that the application is working as expected
and there are no deviations.

Check in
code in local

branch

Update Dev
environment

with new
binaries

Generate build
artifacts and
drop them

Apply

VSTS
provides

feedback to
developer

If build fails,
developer

reworks on
code

Execute
interation

tests

Check in
code in local

branch

Generate
documentation

Generate
build label

Execution of
unit tests

Execution of
code quality

checks

Push
changes to
shared repo

VSTS CI
kicks in and
starts build

pipeline

Build
pipeline

compiles the
code

DevOps for IaaS | 461

At this stage, if there are any issues or bugs, they should be rectified and the entire
cycle should be repeated; however, if this doesn't happen within a stipulated time
frame, the last-known snapshot should be restored in the production environment to
minimize downtime. A typical release pipeline is shown in Figure 13.17:

Figure 13.17: A typical IaaS release pipeline

This section concludes the DevOps process for IaaS solutions and the next chapter will
focus on containers on virtual machines. Please note that containers can also run on
PaaS like App Service and Azure Functions.

Build
pipeline ran
successfully

Deploy and

application

environment
using DSC

Perform
test activities

Deploy and

application
(DSC)

Perform
tests and get

approval

Get approval
to deploy to
next stage

Deploy and

production

environment
using DSC

Execute
operational
validation

test

Create/Update next
stage environment

- ARM templates
- Virtual machines

- Other laas resources

Start
deploying

environment

Create test
environment

- ARM templates
- Virtual machines

- Other laas resources

Build
pipeline

generated
artifacts

Execute
release
pipeline

Prepare for
deployment

462 | Integrating Azure DevOps

DevOps with containers
In a typical architecture, container runtimes are deployed on virtual machines and
containers are run within them. The typical architecture for IaaS container-based
solutions is shown here:

Figure 13.18: Architecture for IaaS container-based solutions

These containers are managed by container orchestrators such as Kubernetes.
Monitoring services are provided by Log Analytics and all secrets and keys are stored
in Azure Key Vault. There is also a pull server, which could be on a virtual machine or
Azure Automation, providing configuration information to the virtual machines.

Containers

Containers are a virtualization technology; however, they don't virtualize physical
servers. Instead, containers are an operating system-level virtualization. This means
that containers share the operating system kernel provided by their host among
themselves and with the host. Running multiple containers on a host (physical or
virtual) shares the host operating system kernel. There's a single operating system
kernel provided by the host and used by all containers running on top of it.

Containers are also completely isolated from their host and other containers, much
like a virtual machine. Containers use operating system namespaces, control groups
on Linux, to provide the perception of a new operating system environment, and use
specific operating system virtualization techniques on Windows. Each container gets its
own copy of the operating system resources.

DevOps with containers | 463

Docker

Docker provides management features to containers. It comprises two executables:

• The Docker daemon

• The Docker client

The Docker daemon is the workhorse for managing containers. It's a management
service that's responsible for managing all activities on the host related to containers.
The Docker client interacts with the Docker daemon and is responsible for capturing
inputs and sending them to the Docker daemon. The Docker daemon provides
the runtime; libraries; graph drivers; the engines to create, manage, and monitor
containers; and images on the host server. It can also create custom images that are
used for building and shipping applications to multiple environments.

The Dockerfile

The Dockerfile is the primary building block for creating container images. It's a
simple text-based human-readable file without an extension and is even named
Dockerfile. Although there's a mechanism to name it differently, generally it is named
Dockerfile. The Dockerfile contains instructions to create a custom image using a
base image. These instructions are executed sequentially from top to bottom by the
Docker daemon. The instructions refer to the command and its parameters, such
as COPY, ADD, RUN, and ENTRYPOINT. The Dockerfile enables IaC practices by converting
the application deployment and configuration into instructions that can be versioned
and stored in a source code repository. Let's check out the build steps in the following
section.

The build pipeline

There's no difference, from the build perspective, between the container and a virtual-
machine-based solution. The build step remains the same. A typical release pipeline for
an IaaS container-based deployment is shown next.

The release pipeline

The only difference between a typical release pipeline for an IaaS container-based
deployment and the release pipeline is the container-image management and the
creation of containers using Dockerfile and Docker Compose. Advanced container-
management utilities, such as Docker Swarm, DC/OS, and Kubernetes, can also be
deployed and configured as part of release management. However, note that these
container management tools should be part of the shared services release pipeline, as
discussed earlier. Figure 13.19 shows a typical release pipeline for a container-based
solution:

464 | Integrating Azure DevOps

Figure 13.19: Container-based release pipeline

The focus of the next section is integration with other toolsets, such as Jenkins.

Azure DevOps and Jenkins
Azure DevOps is an open platform orchestrator that integrates with other orchestrator
tools seamlessly. It provides all the necessary infrastructure and features that integrate
well with Jenkins, as well. Organizations with well-established CI/CD pipelines built
on Jenkins can reuse them with the advanced but simple features of Azure DevOps to
orchestrate them.

Jenkins can be used as a repository and can execute CI/CD pipelines in Azure DevOps,
while it's also possible to have a repository in Azure DevOps and execute CI/CD
pipelines in Jenkins.

Build
pipeline ran
successfully

Create and run
containers

- DSC

Deploy and

application

Deploy and

production

Download
container

images from
repository

Perform
test activities

Execute
operational
validation

test

Perform
test and get

approval

Deploy and

application
(DSC)

environment
using DSC

Create/Update next
stage environment

- ARM templates
- Virtual machines
- laas + containers

Start
deploying

environment

Create test
environment

- ARM templates
- Virtual machines

- Other laas resources

Get approval
to deploy to
next stage

Build
pipeline

generated
artifacts

Execute
release
pipeline

Prepare for
deployment

Build/Update
container

image

Azure DevOps and Jenkins | 465

The Jenkins configuration can be added in Azure DevOps as service hooks, and
whenever any code change is committed to the Azure DevOps repository, it can trigger
pipelines in Jenkins. Figure 13.20 shows the configuration of Jenkins from the Azure
DevOps service hook configuration section:

Figure 13.20: Configuration of Jenkins

There are multiple triggers that execute the pipelines in Jenkins; one of them is Code
pushed, as shown in Figure 13.21:

Figure 13.21: Code pushed trigger executed

466 | Integrating Azure DevOps

It's also possible to deploy to Azure VM and execute Azure DevOps release pipelines, as
explained here: https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-
build-deploy-jenkins.

Jenkins should already be deployed before using it in any scenario. The deployment
process on Linux can be found at https://docs.microsoft.com/azure/virtual-machines/
linux/tutorial-jenkins-github-docker-cicd.

The next section will be more focused on tools and services related to configuration
management. Azure automation provides DSC-related services such as the pull server.

Azure Automation
Azure Automation is Microsoft's platform for all automation implementation
with regard to cloud, on-premises, and hybrid deployments. Azure Automation is
a mature automation platform that provides rich capabilities in terms of the following:

• Defining assets, such as variables, connections, credentials, certificates, and
modules

• Implementing runbooks using Python, PowerShell scripts, and PowerShell
workflows

• Providing UIs to create runbooks

• Managing the full runbook life cycle, including building, testing, and publishing

• Scheduling runbooks

• The ability to run runbooks anywhere—on cloud or on-premises

• DSC as a configuration-management platform

• Managing and configuring environments—Windows and Linux, applications, and
deployment

• The ability to extend Azure Automation by importing custom modules

Azure Automation provides a DSC pull server that helps to create a centralized
configuration management server that consists of configurations for nodes/virtual
machines and their constituents.

It implements the hub and spoke pattern wherein nodes can connect to the DSC pull
server and download configurations assigned to them, and reconfigure themselves
to reflect their desired state. Any changes or deviations within these nodes are
autocorrected by DSC agents the next time they run. This ensures that administrators
don't need to actively monitor the environment to find any deviations.

https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-build-deploy-jenkins
https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-build-deploy-jenkins
https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-jenkins-github-docker-cicd
https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-jenkins-github-docker-cicd

Azure Automation | 467

DSC provides a declarative language in which you define the intent and configuration,
but not how to run and apply those configurations. These configurations are based on
the PowerShell language and ease the process of configuration management.

In this section, we'll look into a simple implementation of using Azure Automation DSC
to configure a virtual machine to install and configure the web server (IIS) and create
an index.htm file that informs users that the website is under maintenance.

Next, you will learn how to provision an Azure Automation account.

Provisioning an Azure Automation account

Create a new Azure Automation account from the Azure portal or PowerShell within an
existing or new resource group. You may notice in Figure 13.22 that Azure Automation
provides menu items for DSC:

Figure 13.22: DSC in an Azure Automation account

It provides the following:

• DSC nodes: These list all the virtual machines and containers that are enlisted
with the current Azure Automation DSC pull server. These virtual machines and
containers are managed using configurations from the current DSC pull server.

• DSC configurations: These list all the raw PowerShell configurations imported and
uploaded to the DSC pull server. They are in human-readable format and aren't in
a compiled state.

• DSC node configurations: These list all compiles of DSC configurations available
on the pull server to be assigned to nodes—virtual machines and containers. A DSC
configuration produces MOF files after compilations and they're eventually used
to configure nodes.

468 | Integrating Azure DevOps

After provisioning an Azure Automation account, we can create a sample DSC
configuration, as shown in the next section.

Creating a DSC configuration

The next step is to write a DSC configuration using any PowerShell editor to reflect the
intent of the configuration. For this sample, a single configuration, ConfigureSiteOnIIS,
is created. It imports the base DSC module, PSDesiredStateConfiguration, which
consists of resources used within the configuration. It also declares a node web server.
When this configuration is uploaded and compiled, it will generate a DSC configuration
named ConfigureSiteOnIISwebserver. This configuration can then be applied to nodes.

The configuration consists of a few resources. These resources configure the target
node. The resources install a web server, ASP.NET, and framework, and create
an index.htm file within the inetpub\wwwroot directory with content to show that the
site is under maintenance. For more information about writing DSC configuration,
refer to https://docs.microsoft.com/powershell/scripting/dsc/getting-started/
wingettingstarted?view=powershell-7.

The next code listing shows the entire configuration described in the previous
paragraph. This configuration will be uploaded to the Azure Automation account:

Configuration ConfigureSiteOnIIS {

 Import-DscResource -ModuleName 'PSDesiredStateConfiguration'

 Node WebServer {

 WindowsFeature IIS

 {

 Name = "Web-Server"

 Ensure = "Present"

 }

 WindowsFeature AspDotNet

 {

 Name = "net-framework-45-Core"

 Ensure = "Present"

 DependsOn = "[WindowsFeature]IIS"

 }

https://docs.microsoft.com/powershell/scripting/dsc/getting-started/wingettingstarted?view=powershell-7
https://docs.microsoft.com/powershell/scripting/dsc/getting-started/wingettingstarted?view=powershell-7

Azure Automation | 469

 WindowsFeature AspNet45

 {

 Ensure = "Present"

 Name = "Web-Asp-Net45"

 DependsOn = "[WindowsFeature]AspDotNet"

 }

 File IndexFile

 {

 DestinationPath = "C:\inetpub\wwwroot\index.htm"

 Ensure = "Present"

 Type = "File"

 Force = $true

 Contents = "<HTML><HEAD><Title> Website under construction.</
Title></HEAD><BODY> '

 <h1>If you are seeing this page, it means the website is under
maintenance and DSC Rocks !!!!!</h1></BODY></HTML>"

 }

 }

}

After creating a sample DSC configuration, it should be imported within Azure
Automation as shown in the next section.

Importing the DSC configuration

The DSC configuration still isn't known to Azure Automation. It's available on some
local machines. It should be uploaded to Azure Automation DSC configurations.
Azure Automation provides the Import-AzureRMAutomationDscConfiguration cmdlet to
import the configuration to Azure Automation:

Import-AzureRmAutomationDscConfiguration -SourcePath "C:\DSC\AA\DSCfiles\
ConfigureSiteOnIIS.ps1" -ResourceGroupName "omsauto" -AutomationAccountName
"datacenterautomation" -Published -Verbose

The commands will import the configuration within Azure Automation. After importing,
the DSC configuration should be compiled so that it can be assigned to servers for
compliance checks and autoremediation.

470 | Integrating Azure DevOps

Compiling the DSC configuration

After the DSC configuration is available in Azure Automation, it can be asked
to compile. Azure Automation provides another cmdlet for this. Use the Start-
AzureRmAutomationDscCompilationJob cmdlet to compile the imported configuration. The
configuration name should match the name of the uploaded configuration. Compilation
creates an MOF file named after the configuration and node name together, which in
this case is the ConfigureSiteOnIIS web server. The execution of the command is shown
here:

Start-AzureRmAutomationDscCompilationJob -ConfigurationName ConfigureSiteOnIIS
-ResourceGroupName "omsauto" -AutomationAccountName "datacenterautomation"
-Verbose

Now you have accomplished DSC node configuration. In the next section, you will learn
to assign configurations to nodes.

Assigning configurations to nodes

The compiled DSC configurations can be applied to nodes. Use Register-
AzureRmAutomationDscNode to assign the configuration to a node.
The NodeConfigurationName parameter identifies the configuration name that should be
applied to the node. This is a powerful cmdlet that can also configure the DSC agent,
which is localconfigurationmanager, on nodes before they can download configurations
and apply them. There are multiple localconfigurationmanager parameters that can
be configured—details are available at https://devblogs.microsoft.com/powershell/
understanding-meta-configuration-in-windows-powershell-desired-state-
configuration.

Let's heck out the configuration below:

Register-AzureRmAutomationDscNode -ResourceGroupName "omsauto"
-AutomationAccountName "datacenterautomation" -AzureVMName testtwo
-ConfigurationMode ApplyAndAutocorrect -ActionAfterReboot ContinueConfiguration
-AllowModuleOverwrite $true -AzureVMResourceGroup testone -AzureVMLocation
"West Central US" -NodeConfigurationName "ConfigureSiteOnIIS.WebServer"
-Verbose

Now, we can test whether the configuration has been applied to the servers by
browsing the newly deployed website using a browser. After the testing has completed
successfully, let's move on to validating the connections.

https://devblogs.microsoft.com/powershell/understanding-meta-configuration-in-windows-powershell-desired-state-configuration
https://devblogs.microsoft.com/powershell/understanding-meta-configuration-in-windows-powershell-desired-state-configuration
https://devblogs.microsoft.com/powershell/understanding-meta-configuration-in-windows-powershell-desired-state-configuration

Tools for DevOps | 471

Validation

If appropriate, network security groups and firewalls are opened and enabled for
port 80, and a public IP is assigned to the virtual machine. The default website can be
browsed using the IP address. Otherwise, log into the virtual machine that's used to
apply the DSC configuration and navigate to http://localhost.

It should show the following page:

Figure 13.23: Localhost

This is the power of configuration management: without writing any significant code,
authoring a configuration once can be applied multiple times to the same and multiple
servers, and you can be assured that they will run in the desired state without any
manual intervention. In the next section, we will check out the various tools available
for Azure DevOps.

Tools for DevOps
As mentioned before, Azure is a rich and mature platform that supports the following:

• Multiple choices of languages

• Multiple choices of operating systems

• Multiple choices of tools and utilities

• Multiple patterns for deploying solutions (such as virtual machines, app services,
containers, and microservices)

With so many options and choices, Azure offers the following:

• Open cloud: It is open to open source, Microsoft, and non-Microsoft products,
tools, and services.

• Flexible cloud: It is easy enough for both end users and developers to use it with
their existing skills and knowledge.

• Unified management: It provides seamless monitoring and management features.

472 | Integrating Azure DevOps

All the services and capabilities mentioned here are important for the successful
implementation of DevOps. Figure 13.24 shows the open source tools and utilities that
can be used for different phases of managing the application life cycle and DevOps in
general:

Figure 13.24: Open source tools and utilities

Figure 13.24 shows the Microsoft tools and utilities that can be used for different
phases of managing the application life cycle and DevOps in general. Again, this is just a
small representation of all the tools and utilities—there are many more options available,
such as the following:

• Azure DevOps build orchestration for constructing a build pipeline

• Microsoft Test Manager and Pester for testing

• DSC, PowerShell, and ARM templates for deployment or configuration
management

• Log Analytics, Application Insights, and System Center Operations
Manager (SCOM) for alerting and monitoring

• Azure DevOps and System Center Service Manager for managing processes:

Summary | 473

Figure 13.25: Microsoft tools and utilities

There are many tools available for each of the DevOps practices and in this section, you
saw some of the tools and the way to configure them.

Summary
DevOps is gaining a lot of traction and momentum in the industry. Most organizations
have realized its benefits and are looking to implement DevOps. This is happening while
most of them are moving to the cloud. Azure, as a cloud platform, provides rich and
mature DevOps services, making it easy for organizations to implement DevOps.

In this chapter, we discussed DevOps along with its core practices, such as
configuration management, continuous integration, continuous delivery, and
deployment. We also discussed different cloud solutions based on PaaS, a virtual
machine IaaS, and a container IaaS, along with their respective Azure resources, the
build and release pipelines.

Configuration management was also explained in the chapter, along with DSC
services from Azure Automation and using pull servers to configure virtual machines
automatically. Finally, we covered Azure's openness and flexibility regarding the choice
of languages, tools, and operating systems.

In the next chapter, we will go through the details of Kubernetes and its components
and interactions, in addition to application design and deployment considerations on
Kubernetes.

Containers are one of the most talked-about infrastructure components of the
last decade. Containers are not a new technology; they have been around for quite
some time. They have been prevalent in the Linux world for more than two decades.
Containers were not well known in the developer community due to their complexity
and the fact that there was not much documentation regarding them. However, around
the beginning of this decade, in 2013, a company was launched known as Docker that
changed the perception and adoption of containers within the developer world.

Docker wrote a robust API wrapper on top of existing Linux LXC containers and made
it easy for developers to create, manage, and destroy containers from the command-
line interface. When containerizing applications, the number of containers we have
can increase drastically over time, and we can reach a point where we need to manage
hundreds or even thousands of containers. This is where container orchestrators
play a role, and Kubernetes is one of them. Using Kubernetes, we can automate the
deployment, scaling, networking, and management of containers.

Architecting Azure
Kubernetes solutions

14

476 | Architecting Azure Kubernetes solutions

In this chapter, we will look at:

• The introductory concepts of containers

• The concepts of Kubernetes

• The important elements that make Kubernetes work

• Architecting solutions using Azure Kubernetes Service

Now that you know what Kubernetes is used for, let's start from scratch and discuss
what containers are, how they are orchestrated using Kubernetes, and more.

Introduction to containers
Containers are referred to as operating system–level virtualization systems. They are
hosted on an operating system running either on a physical server or a virtual server.
The nature of the implementation depends on the host operating system. For example,
Linux containers are inspired by cgroups; on the other hand, Windows containers are
almost lightweight virtual machines with a small footprint.

Containers are truly cross-platform. Containerized applications can run on any
platform, such as Linux, Windows, or Mac, uniformly without any changes being
needed, which makes them highly portable. This makes them a perfect technology for
organizations to adopt as they are platform-agnostic.

In addition, containers can run in any cloud environment or on-premises environment
without changes being needed. This means that organizations are also not tied to a
single cloud provider if they implement containers as their hosting platform on the
cloud. They can move their environment from on-premises and lift and shift to the
cloud.

Containers provide all the benefits that are typically available with virtual machines.
They have their own IP addresses, DNS names, identities, networking stacks,
filesystems, and other components that give users the impression of using a pristine
new operating system environment. Under the hood, the Docker runtime virtualizes
multiple operating system kernel–level components to provide that impression.

Kubernetes fundamentals | 477

All these benefits provide immense benefits for organizations adopting container
technology, and Docker is one of the forerunners in this regard. There are other
container runtime options available, such as CoreOS Rkt (pronounced as Rocket, out
of production), Mesos Containerizer, and LXC containers. Organizations can adopt the
technology that they feel comfortable with.

Containers were previously not available in the Windows world, only becoming available
for Windows 10 and Windows Server 2016. However, containers are now first-class
citizens in the Windows world.

As mentioned in the introduction, containers should be monitored, governed, and
managed well, just like any other infrastructural component within an ecosystem.
It's necessary to deploy an orchestrator, such as Kubernetes, that can help you to do
so easily. In the next section, you will learn about the fundamentals of Kubernetes,
including what its advantages are.

Kubernetes fundamentals
Many organizations still ask, "Do we need Kubernetes, or indeed any container
orchestrator?" When we think about container management on a large scale, we need
to think about several points, such as scaling, load balancing, life cycle management,
continuous delivery, logging and monitoring, and more.

You might ask, "Aren't containers supposed to do all that?" The answer is that containers
are only a low-level piece of the puzzle. The real benefits are gained through the tools
that sit on top of the containers. At the end of the day, we need something to help us
with orchestration.

Kubernetes is a Greek word, κυβερνήτης, which means "helmsman" or "captain of the
ship." Keeping the maritime theme of Docker containers, Kubernetes is the captain
of the ship. Kubernetes is often denoted as K8s, where 8 represents the eight letters
between "K" and "s" in the word "Kubernetes."

As mentioned before, containers are more agile than virtual machines. They can be
created within seconds and destroyed equally quickly. They have a similar life cycle to
virtual machines; however, they need to be monitored, governed, and managed actively
within an environment.

478 | Architecting Azure Kubernetes solutions

It is possible to manage them using your existing toolset; even so, specialized tools,
such as Kubernetes, can provide valuable benefits:

• Kubernetes is self-healing in nature. When a Pod (read as "container" for now)
goes down within a Kubernetes environment, Kubernetes will ensure that a new
Pod is created elsewhere either on the same node or on another node, to respond
to requests on behalf of the application.

• Kubernetes also eases the process of upgrading an application. It provides out-of-
the-box features to help you perform multiple types of upgrades with the original
configuration.

• It helps to enable blue-green deployments. In this type of deployment, Kubernetes
will deploy the new version of the application alongside the old one, and once it is
confirmed that the new application works as expected, a DNS switch will be made
to switch to the new version of the application. The old application deployment
can continue to exist for rollback purposes.

• Kubernetes also helps to implement a rolling-upgrade deployment strategy. Here,
Kubernetes will deploy the new version of the application one server at a time, and
tear down the old deployment one server at a time. It will carry on this activity
until there are no more servers left from the old deployment.

• Kubernetes can be deployed on an on-premises data center or on the cloud using
the infrastructure as a service (IaaS) paradigm. This means that developers first
create a group of virtual machines and deploy Kubernetes on top of it. There is
also the alternative approach of using Kubernetes as a platform as a service (PaaS)
offering. Azure provides a PaaS service known as Azure Kubernetes Service (AKS),
which provides an out-of-the-box Kubernetes environment to developers.

When it comes to Deployment, Kubernetes can be deployed in two ways:

• Unmanaged clusters: Unmanaged clusters can be created by installing Kubernetes
and any other relevant packages on a bare–metal machine or a virtual machine.
In an unmanaged cluster, there will be master and worker nodes, formerly known
as minions. The master and worker nodes work hand–in–hand to orchestrate the
containers. If you are wondering how this is achieved, later in this chapter, we will
be exploring the complete architecture of Kubernetes. Right now, just know that
there are master and worker nodes.

Kubernetes architecture | 479

• Managed clusters: Managed clusters are normally provided by the cloud provider;
the cloud provider manages the infrastructure for you. In Azure, this service is
called AKS. Azure will provide active support regarding patching and managing
the infrastructure. With IaaS, organizations have to ensure the availability and
scalability of the nodes and the infrastructure on their own. In the case of AKS,
the master component will not be visible as it is managed by Azure. However, the
worker nodes (minions) will be visible and will be deployed to a separate resource
group, so you can access the nodes if needed.

Some of the key benefits of using AKS over unmanaged clusters are:

• If you are using unmanaged clusters, you need to work to make the solution
highly available and scalable. In addition to that, you need to have proper update
management in place to install updates and patches. On the other hand, in AKS,
Azure manages this completely, enabling developers to save time and be more
productive.

• Native integration with other services, such as Azure Container Registry to store
your container images securely, Azure DevOps to integrate CI/CD pipelines, Azure
Monitor for logging, and Azure Active Directory for security.

• Scalability and faster startup speed.

• Support for virtual machine scale sets.

While there is no difference in terms of the basic functionality of these two
deployments, the IaaS form of deployment provides the flexibility to add new plugins
and configuration immediately that might take some time for the Azure team to make
available with AKS. Also, newer versions of Kubernetes are available within AKS quite
quickly, without much delay.

We have covered the basics of Kubernetes. At this point, you might be wondering how
Kubernetes achieves all this. In the next section, we will be looking at the components
of Kubernetes and how they work hand–in–hand.

Kubernetes architecture
The first step in understanding Kubernetes is understanding its architecture. We will
go into the details of each component in the next section, but getting a high-level
overview of the architecture will help you to understand the interaction between the
components.

480 | Architecting Azure Kubernetes solutions

Kubernetes clusters

Kubernetes needs physical or virtual nodes for installing two types of components:

• Kubernetes control plane components, or master components

• Kubernetes worker nodes (minions), or non-master components

Figure 14.1 is a diagram that offers a high-level overview of Kubernetes' architecture. We
will get into the components in more detail later on:

Figure 14.1: Kubernetes cluster overview

The control plane components are responsible for managing and governing the
Kubernetes environment and Kubernetes minions.

All nodes together—the master as well as the minions—form the cluster. A cluster, in
other words, is a collection of nodes. They are virtual or physical, connected to each
other, and reachable using the TCP networking stack. The outside world will have no
clue about the size or capability of your cluster, or even the names of the worker nodes.
The only thing the nodes are aware of is the address of the API server through which
they interact with the cluster. For them, the cluster is one large computer that runs
their applications.

It is Kubernetes that internally decides an appropriate strategy, using controllers, to
choose a valid, healthy node that can run the application smoothly.

The control plane components can be installed in a high-availability configuration. So
far, we have discussed clusters and how they work. In the next section, we will be taking
a look at the components of a cluster.

Kubernetes architecture | 481

Kubernetes components

Kubernetes components are divided into two categories: master components and
node components. The master components are also known as the control plane of the
cluster. The control plane is responsible for managing the worker nodes and the Pods in
the cluster. The decision-making authority of a cluster is the control plane, and it also
takes care of detection and responses related to cluster events. Figure 14.2 describes the
complete architecture of a Kubernetes cluster:

Figure 14.2: Kubernetes architecture

You need to understand each of these components to administer a cluster correctly.
Let's go ahead and discuss what the master components are:

• API server: The API server is undoubtedly the brain of Kubernetes. It is the central
component that enables all activities within Kubernetes. Every client request,
with few exceptions, ends up with the API server, which decides the flow for the
request. It is solely responsible for interacting with the etcd server.

• etcd: etcd is the data store for Kubernetes. Only the API server is allowed to
communicate with etcd, and the API server can perform Create, Read, Update
and Delete (CRUD) activities on etcd. When a request ends up with the API server,
after validation, the API server can perform any CRUD operations, depending on
the etcd request. etcd is a distributed, highly available data store. There can be
multiple installations of etcd, each with a copy of the data, and any of them can
serve the requests from the API server. In Figure 14.3, you can see that there are
multiple instances running in the control plane to provide high availability:

482 | Architecting Azure Kubernetes solutions

Figure 14.3: Making the control plane highly available

• Controller manager: The controller manager is the workhorse of Kubernetes.
While the API server receives the requests, the actual work in Kubernetes is done
by the controller manager. The controller manager, as the name suggests, is the
manager of the controllers. There are multiple controllers in a Kubernetes master
node, and each is responsible for managing a single controller.

The main responsibility of a controller is managing a single resource in a
Kubernetes environment. For example, there is a replication controller manager
for managing replication controller resources, and a ReplicaSet controller to
manage ReplicaSets in a Kubernetes environment. The controller keeps a watch
on the API server, and when it receives a request for a resource managed by it, the
controller performs its job.

Kubernetes architecture | 483

One of the main responsibilities of controllers is to keep running in a loop and
ensure that Kubernetes is in the desired state. If there is any deviation from
the desired state, the controllers should bring it back to the desired state. A
deployment controller watches for any new deployment resources created by
the API server. If a new deployment resource is found, the deployment controller
creates a new ReplicaSet resource and ensures that the ReplicaSet is always in the
desired state. A replication controller keeps running in a loop and checks whether
the actual number of Pods in the environment matches the desired number of
Pods. If a Pod dies for any reason, the replication controller will find that the
actual count has gone down by one and it will schedule a new Pod in the same or
another node.

• Scheduler: The job of a scheduler is to schedule the Pods on Kubernetes minion
nodes. It is not responsible for creating Pods. It is purely responsible for assigning
Pods to Kubernetes minion nodes. It does so by taking into account the current
state of nodes, how busy they are, their available resources, and also the definition
of the Pod. A Pod might have a preference regarding a specific node, and the
scheduler will keep these requests in consideration while scheduling Pods to
nodes.

We will now explore the node components that are deployed in each of the worker
nodes in the cluster:

• Kubelet: While the API server, scheduler, controllers, and etcd are deployed on
master nodes, kubelets are deployed on minion nodes. They act as agents for the
Kubernetes master components and are responsible for managing Pods locally on
the nodes. There is one kubelet on each node. A kubelet takes commands from the
master components and also provides health, monitoring, and update information
about nodes and Pods to the master components, such as the API server and
the controller manager. They are the conduit for administrative communication
between the master and minion nodes.

• kube-proxy: kube-proxy, just like kubelets, is deployed on minion nodes. It is
responsible for monitoring Pods and Services, as well as updating the local iptables
and netfilter firewall rules with any change in the availability of Pods and Services.
This ensures that the routing information on nodes is updated as and when new
Pods and Services are created or existing Pods and Services are deleted.

484 | Architecting Azure Kubernetes solutions

• Container runtime: There are many container vendors and providers in the
ecosystem today. Docker is the most famous of them all, though others are also
gaining popularity. That's why, in our architecture, we denoted the container
runtime with the Docker logo. Kubernetes is a generic container orchestrator.
It cannot be tightly coupled with any single container vendor, such as Docker. It
should be possible to use any container runtime on the minion nodes to manage
the life cycle of containers.

To run containers in Pods, an industry-based standard known as a container runtime
interface (CRI) has been developed and is used by all leading companies. The standard
provides rules that should be followed to achieve interoperability with orchestrators
such as Kubernetes. Kubelets do not know which container binaries are installed on the
nodes. They could be Docker binaries or any other binaries.

As these container runtimes are developed with a common industry-based standard,
irrespective of which runtime you are using, kubelets will be able to communicate with
the container runtime. This decouples container management from Kubernetes cluster
management. The responsibilities of the container runtime include the creation of
containers, managing the networking stack of the containers, and managing the bridge
network. Since the container management is separate from the cluster management,
Kubernetes will not interfere in the responsibilities of the container runtime.

The components we discussed are applicable to both unmanaged as well as managed
AKS clusters. However, the master components are not exposed to the end user, as
Azure manages all that in the case of AKS. Later in this chapter, we will cover the
architecture of AKS. You will learn about unmanaged clusters and come to understand
the differences between these systems more clearly.

Next, you will learn about some of the most important Kubernetes resources, also
known as the primitives, knowledge that is applicable to both unmanaged and AKS
clusters.

Kubernetes primitives
You have learned that Kubernetes is an orchestration system used to deploy and
manage containers. Kubernetes defines a set of building blocks, which are also known
as primitives. These primitives together can help us to deploy, maintain, and scale
containerized applications. Let's take a look at each of the primitives and understand
their roles.

Kubernetes primitives | 485

Pod

Pods are the most basic unit of Deployment in Kubernetes. The immediate question
that arises to a curious mind is how is a Pod different to a container? Pods are wrappers
on top of containers. In other words, containers are contained within Pods. There can
be multiple containers within a Pod; however, best practice is to have a one-Pod-one-
container relationship. This does not mean we cannot have more than one container in
a Pod. Multiple containers in a Pod is also fine, as long as there is one main container
and the rest are ancillary containers. There are also patterns, such as sidecar patterns,
that can be implemented with multi-container Pods.

Each Pod has its own IP address and networking stack. All containers share the network
interface and the stack. All containers within a Pod can be reached locally using the
hostname.

A simple Pod definition in YAML format is shown in the following lines of code:

apiVersion: v1

kind: Pod

metadata:

 name: tappdeployment

 labels:

 appname: tapp

 ostype: linux

spec:

 containers:

 - name: mynewcontainer

 image: "tacracr.azurecr.io/tapp:latest"

 ports:

 - containerPort: 80

 protocol: TCP

 name: http

The Pod definition shown has a name and defines a few labels, which can be used by the
Service resource to expose to other Pods, nodes and external custom resources. It also
defines a single container based on a custom image stored in Azure Container Registry
and opens port 80 for the container.

486 | Architecting Azure Kubernetes solutions

Services

Kubernetes allows creating Pods with multiple instances. These Pods should be
reachable from any Pod or node within a cluster. It is possible to use the IP address of
a Pod directly and access the Pod. However, this is far from ideal. Pods are ephemeral
and they might get a new IP address if the previous Pod has gone down. In such cases,
the application will break easily. Kubernetes provides Services, which decouple Pod
instances from their clients. Pods may get created and torn down, but the IP address of
a Kubernetes Service remains constant and stable. Clients can connect to the Service
IP address, which in turn has one endpoint for each Pod it can send requests to. If there
are multiple Pod instances, each of their IP addresses will be available to the Service as
an endpoint object. When a Pod goes down, the endpoints are updated to reflect the
current Pod instances along with their IP addresses.

Services are highly decoupled with Pods. The main intention of Services is to queue
for Pods that have labels in their Service selector definitions. A Service defines label
selectors, and based on label selectors, Pod IP addresses are added to the Service
resource. Pods and Services can be managed independently of each other.

A Service provides multiple types of IP address schemes. There are four types of
Services: ClusterIP, NodePort, LoadBalancer, and Ingress Controller using Application
Gateway.

The most fundamental scheme is known as ClusterIP, and it is an internal IP address
that can be reached only from within the cluster. The ClusterIP scheme is shown in
Figure 14.4:

Figure 14.4: The workings of ClusterIP

Kubernetes primitives | 487

ClusterIP also allows the creation of NodePort, using which it gets a ClusterIP. However,
it can also open a port on each of the nodes within a cluster. The Pods can be reached
using ClusterIP addresses as well as by using a combination of the node IP and node
port:

Figure 14.5: The workings of NodePort

Services can refer not only to Pods but to external endpoints as well. Finally, Services
also allow the creation of a load balancer–based service that is capable of receiving
requests externally and redirecting them to a Pod instance using ClusterIP and
NodePort internally:

Figure 14.6: The workings of Load Balancer

There is one final type of service known as Ingress Controller, which provides advanced
functionalities such as URL-based routing, as shown in Figure 14.7:

Figure 14.7: The workings of Ingress Controller

488 | Architecting Azure Kubernetes solutions

A service definition in YAML format is shown here:

apiVersion: v1

kind: Service

metadata:

 name: tappservice

 labels:

 appname: tapp

 ostype: linux

spec:

 type: LoadBalancer

 selector:

 appname: myappnew

 ports:

 - name: http

 port: 8080

 targetPort: 80

 protocol: TCP

This service definition creates a load balancer–based service using label selectors.

Deployments

Kubernetes Deployments are higher-level resources in comparison to ReplicaSets and
Pods. Deployments provide functionality related to the upgrading and release of an
application. Deployment resources create a ReplicaSet, and the ReplicaSet manages the
Pod. It is important to understand the need for deployment resources when ReplicaSets
already exist.

Deployments play a significant role in upgrading applications. If an application is
already in production and a new version of the application needs to be deployed, there
are a few choices for you:

1. Delete existing Pods and create new Pods – in this method, there is downtime for
the application, so this method should only be used if downtime is acceptable.
There is a risk of increased downtime if the Deployment contains bugs and you
have to roll back to a previous version.

Kubernetes primitives | 489

2. Blue-green deployment – In this method, the existing Pods continue to run and
a new set of Pods is created with the new version of the application. The new
Pods are not reachable externally. Once the tests have successfully completed,
Kubernetes starts pointing to the new set of Pods. The old Pods can stay as-is or
can be subsequently deleted.

3. Rolling upgrades – In this method, existing Pods are deleted one at a time while
new Pods for the new application version are created one at a time. The new Pods
are incrementally deployed while the old Pods are incrementally reduced, until
they reach a count of zero.

All these approaches would have to be carried out manually without a Deployment
resource. A Deployment resource automates the entire release and upgrade process. It
can also help to automatically roll back to a previous version if there are any issues with
the current Deployment.

A Deployment definition is shown in the following code listing:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: tappdeployment

 labels:

 appname: tapp

 ostype: linux

spec:

 replicas: 3

 selector:

 matchLabels:

 appname: myappnew

 strategy:

 type: RollingUpdate

 rollingUpdate:

 maxSurge: 1

 maxUnavailable: 1

 template:

490 | Architecting Azure Kubernetes solutions

 metadata:

 name: mypod

 labels:

 appname: myappnew

 spec:

 containers:

 - name: mynewcontainer

 image: "tacracr.azurecr.io/tapp:latest"

 ports:

 - containerPort: 80

 protocol: TCP

 name: http

It is important to note that a Deployment has a strategy property, which determines
whether the recreate or RollingUpdate strategy is used. recreate will delete all
existing Pods and create new Pods. It also contains configuration details related to
RollingUpdate by providing the maximum number of Pods that can be created and
destroyed in a single execution.

Replication controller and ReplicaSet

Kubernetes' replication controller resource ensures that a specified desired number of
Pod instances are always running within a cluster. Any deviation from the desired state
is watched for by the replication controller, and it creates new Pod instances to meet
the desired state.

ReplicaSets are the new version of the replication controller. ReplicaSets provide the
same functionality as that of replication controllers, with a few advanced functionalities.
The main one among these is the rich capability for defining the selectors associated
with Pods. With ReplicaSets, it is possible to define the dynamic expressions that were
missing with replication controllers.

It is recommended to use ReplicaSets rather than replication controllers.

The next code listing shows an example of defining a ReplicaSet resource:

apiVersion: apps/v1

kind: ReplicaSet

metadata:

Kubernetes primitives | 491

 name: tappdeployment

 labels:

 appname: tapp

 ostype: linux

spec:

 replicas: 3

 selector:

 matchLabels:

 appname: myappnew

 template:

 metadata:

 name: mypod

 labels:

 appname: myappnew

 spec:

 containers:

 - name: mynewcontainer

 image: "tacracr.azurecr.io/tapp:latest"

 ports:

 - containerPort: 80

 protocol: TCP

 name: http

It is important to note that ReplicaSets have a replicas property, which determines
the count of Pod instances, a selector property, which defines the Pods that should be
managed by ReplicaSet, and finally the template property, which defines the Pod itself.

ConfigMaps and Secrets

Kubernetes provides two important resources to store configuration data. ConfigMaps
are used to store general configuration data that is not security-sensitive. Generic
application configuration data, such as folder names, volume names, and DNS names,
can be stored in ConfigMaps. On the other hand, sensitive data, such as credentials,
certificates, and secrets, should be stored within Secrets resources. This Secrets data is
encrypted and stored within the Kubernetes etcd data store.

492 | Architecting Azure Kubernetes solutions

Both ConfigMaps and Secrets data can be made available as environment variables or
volumes within Pods.

The definition of the Pod that wants to consume these resources should include a
reference to them. We have now covered the Kubernetes primitives and the roles of
each of the building blocks. Next, you will be learning about the architecture of AKS.

AKS architecture
In the previous section, we discussed the architecture of an unmanaged cluster. Now,
we will be exploring the architecture of AKS. When you have read this section, you will
be able to point out the major differences between the architecture of unmanaged and
managed (AKS, in this case) clusters.

When an AKS instance is created, the worker nodes only are created. The master
components are managed by Azure. The master components are the API server, the
scheduler, etcd, and the controller manager, which we discussed earlier. The kubelets
and kube-proxy are deployed on the worker nodes. Communication between the
nodes and master components happens using kubelets, which act as agents for the
Kubernetes clusters for the node:

Figure 14.8: AKS architecture

When a user requests a Pod instance, the user request lands with the API server.
The API server checks and validates the request details and stores in etcd (the data
store for the cluster) and also creates the deployment resource (if the Pod request is
wrapped around a deployment resource). The deployment controller keeps a watch on
the creation of any new deployment resources. If it sees one, it creates a ReplicaSet
resource based on the definition provided in the user request.

Deploying an AKS cluster | 493

The ReplicaSet controller keeps a watch on the creation of any new ReplicaSet
resources, and upon seeing a resource being created, it asks the scheduler to schedule
the Pods. The scheduler has its own procedure and rules for finding an appropriate
node for hosting the Pods. The scheduler informs the kubelet of the node and the
kubelet then fetches the definition for the Pod and creates the Pods using the container
runtime installed on the nodes. The Pod finally creates the containers within its
definition.

kube-proxy helps in maintaining the list of IP addresses of Pod and Service information
on local nodes, as well as updating the local firewall and routing rules. To do a quick
recap of what we have discussed so far, we started off with the Kubernetes architecture
and then moved on to primitives, followed by the architecture of AKS. Since you are
clear on the concepts, let's go ahead and create an AKS cluster in the next section.

Deploying an AKS cluster
AKS can be provisioned using the Azure portal, the Azure CLI (command-line
interface), Azure PowerShell cmdlets, ARM templates, SDKs (software development
kits) for supported languages, and even Azure ARM REST APIs.

The Azure portal is the simplest way of creating an AKS instance; however, to enable
DevOps, it is better to create an AKS instance using ARM templates, the CLI, or
PowerShell.

Creating an AKS cluster

Let's create a resource group to deploy our AKS cluster. From the Azure CLI, use the az
group create command:

az group create -n AzureForArchitects -l southeastasia

Here, -n denotes the name of the resource group and -l denotes the location. If the
request was successful, you will see a similar response to this:

Figure 14.9: Resource group creation

494 | Architecting Azure Kubernetes solutions

Now that we have the resource group ready, we will go ahead and create the AKS
cluster using the az aks create command. The following command will create a cluster
named AzureForArchitects-AKS in the AzureForArchitects resource group with a node
count of 2. The --generate-ssh-keys parameter will allow the creation of RSA (Rivest–
Shamir–Adleman) key pairs, a public-key cryptosystem:

az aks create --resource-group AzureForArchitects \

--name AzureForArchitects-AKS \

--node-count 2 \

--generate-ssh-keys

If the command succeeded, you will be able to see a similar output to this:

Figure 14.10: Creating the cluster

Going through the cluster, you will see a line item that says "nodeResourceGroup": "MC_
AzureForArchitects_AzureForArchitects-AKS_southeastasia". When creating an AKS
cluster, a second resource is automatically created to store the node resources.

Deploying an AKS cluster | 495

Our cluster is provisioned. Now we need to connect to the cluster and interact with
it. To control the Kubernetes cluster manager, we will be using kubectl. In the next
section, we will take a quick look at kubectl.

Kubectl

Kubectl is the main component through which developers and infrastructure
consultants can interact with AKS. Kubectl helps in creating a REST request containing
the HTTP header and body, and submitting it to the API server. The header contains the
authentication details, such as a token or username/password combination. The body
contains the actual payload in JSON format.

The kubectl command provides rich log details when used along with the verbose
switch. The switch takes an integer input that can range from 0 to 9, which can be
viewed from the details logs.

Connecting to the cluster

To connect to the cluster locally, we need to install kubectl. Azure Cloud Shell has
kubectl already installed. If you want to connect locally, use az aks install-cli to
install kubectl.

In order to configure kubectl to connect to our Kubernetes cluster, we need to
download the credentials and configure the CLI with them. This can be done using the
az aks get-credentials command. Use the command as shown here:

az aks get-credentials \

--resource-group AzureForArchitects \

--name AzureForArchitects-AKS

Now, we need to verify whether we're connected to the cluster. As mentioned earlier,
we'll be using kubectl to communicate with the cluster, and kubectl get nodes will show
a list of nodes in the cluster. During creation, we set the node count to 2, so the output
should have two nodes. Also, we need to make sure that the status of the node is Ready.
The output should be something like Figure 14.11:

Figure 14.11: Getting the list of nodes

496 | Architecting Azure Kubernetes solutions

Since our node is in the Ready state, let's go ahead and create a Pod. There are two ways
in which you can create resources in Kubernetes. They are:

• Imperative: In this method, we use the kubectl run and kubectl expose commands
to create the resources.

• Declarative: We describe the state of the resource via JSON or a YAML file. While
we were discussing Kubernetes primitives, you saw a lot of YAML files for each of
the building blocks. We will pass the file to the kubectl apply command to create
the resources, and the resources declared in the file will be created.

Let's take the imperative approach first, to create a Pod with the name webserver,
running an NGINX container with port 80 exposed:

kubectl run webserver --restart=Never --image nginx --port 80

Upon successful completion of the command, the CLI will let you know the status:

Figure 14.12: Creating a Pod

Now that we have tried the imperative method, let's follow the declarative method.
You can use the structure of the YAML file we discussed in the Pod subsection of the
Kubernetes primitives section and modify it as per your requirements.

We will be using the NGINX image, and the Pod will be named webserver-2.

You can use any text editor and create the file. The final file will look similar to this:

apiVersion: v1

kind: Pod

metadata:

 name: webserver-2

 labels:

 appname: nginx

 ostype: linux

spec:

Deploying an AKS cluster | 497

 containers:

 - name: wenserver-2-container

 image: nginx

 ports:

 - containerPort: 80

 protocol: TCP

 name: http

In the kubectl apply command, we will pass the filename to the -f parameter, as shown
in Figure 14.13, and you can see that the Pod has been created:

Figure 14.13: Creating a Pod using the declarative method.

Since we have created the Pods, we can use the kubectl get pods command to list
all the Pods. Kubernetes uses the concept of namespaces for the logical isolation of
resources. By default, all commands are pointing to the default namespace. If you want
to perform an action on a specific namespace, you can pass the namespace name via
the -n parameter. In Figure 14.14, you can see that kubectl get pods returns the Pods we
created in the previous example, which reside in the default namespace. Also, when we
use --all-namespaces, the output returns pods in all namespaces:

Figure 14.14: Listing all Pods

498 | Architecting Azure Kubernetes solutions

Now we will create a simple Deployment that runs NGINX and with a load balancer that
exposes it to the internet. The YAML file will look like this:

#Creating a deployment that runs six replicas of nginx

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-server

spec:

 replicas: 6

 selector:

 matchLabels:

 app: nginx-server

 template:

 metadata:

 labels:

 app: nginx-server

 spec:

 containers:

 - name: nginx-server

 image: nginx

 ports:

 - containerPort: 80

 name: http

#Creating Service

apiVersion: v1

kind: Service

metadata:

 name: nginx-service

Deploying an AKS cluster | 499

spec:

 ports:

 - port: 80

 selector:

 app: nginx-server

apiVersion: v1

kind: Service

metadata:

 name: nginx-lb

spec:

 type: LoadBalancer

 ports:

 - port: 80

 selector:

 app: nginx-server

We'll be using the kubectl apply command and passing the YAML file to the -f
parameter.

Upon success, all three Services will be created, and if you execute the kubectl get
deployment nginx-server command, you will see six replicas running, as shown in
Figure 14.15, to make the Service highly available:

Figure 14.15: Checking the deployment

500 | Architecting Azure Kubernetes solutions

Since our Deployment is provisioned, we need to check what the public IP of the load
balancer that we created is. We can use the kubectl get service nginx-lb --watch
command. When the load balancer is initializing, EXTERNAL-IP will show as <pending>,
the --wait parameter will let the command run in the foreground, and when the public
IP is allocated, we will be able to see a new line, as shown here:

Figure 14.16: Finding public IP of the load balancer

Now that we have the public IP, we can go to the browser and should see the NGINX
landing page, as shown in Figure 14.17:

Figure 14.17: NGINX landing page

Similarly, you can use the YAML files we discussed in the Kubernetes primitives section to
create different types of resources.

There are a lot of commands, such as logs, describe, exec, and delete, that
administrators need to use with the kubectl command. The objective of this section was
to enable you to create an AKS cluster, connect to the cluster, and deploy a simple web
application.

In the next section, we will be discussing AKS networking.

AKS networking
Networking forms a core component within a Kubernetes cluster. The master
components should be able to reach the minion nodes and the Pods running on top of
them, while the worker nodes should be able to communicate among themselves as well
as with the master components.

It might come as a surprise that core Kubernetes does not manage the networking
stack at all. It is the job of the container runtime on the nodes.

AKS networking | 501

Kubernetes has prescribed three important tenets that any container runtime should
adhere to. These are as follows:

• Pods should be able to communicate with other Pods without any transformation
in their source or destination addresses, something that is performed using
network address translation (NAT).

• Agents such as kubelets should be able to communicate with Pods directly on the
nodes.

• Pods that are directly hosted on the host network still should be able to
communicate with all Pods in the cluster.

Every Pod gets a unique IP address within the Kubernetes cluster, along with a
complete network stack, similar to virtual machines. They all are connected to the local
bridge network created by the Container Networking Interface (CNI) component. The
CNI component also creates the networking stack of the Pod. The bridge network then
talks to the host network and becomes the conduit for the flow of traffic from Pods to
network and vice versa.

CNI is a standard managed and maintained by the Cloud Native Computing Foundation
(CNCF), and there are many providers that provide their own implementation of the
interface. Docker is one of these providers. There are others, such as rkt (read as
rocket), weave, calico, and many more. Each has its own capabilities and independently
decides the network capabilities, while ensuring that the main tenets of Kubernetes
networking are followed completely.

AKS provides two distinct networking models:

• Kubenet

• Azure CNI

Kubenet

Kubenet is the default networking framework in AKS. Under Kubenet, each node gets an
IP address from the subnet of the virtual network they are connected with. The Pods do
not get IP addresses from the subnet. Instead, a separate addressing scheme is used to
provide IP addresses to Pods and Kubernetes Services. While creating an AKS instance,
it is important to set the IP address range for Pods and Services. Since Pods are not on
the same network as that of nodes, requests from Pods and to Pods are always NATed/
routed to replace the source Pod IP with the node IP address and vice versa.

In user-defined routing, Azure can support up to 400 routes, and you also cannot have
a cluster larger than 400 nodes. Figure 14.18 shows how the AKS node receives an IP
address from the virtual network, but not the Pods created in the node:

502 | Architecting Azure Kubernetes solutions

Figure 14.18: Networking in AKS

By default, this Kubenet is configured with 110 Pods per node. This means there can be a
maximum of 110 * 400 Pods in a Kubernetes cluster by default. The maximum number of
Pods per node is 250.

This scheme should be used when IP address availability and having user-defined
routing are not a constraint.

In the Azure CLI, you can execute the following command to create an AKS instance
using this networking stack:

az aks create \

 --resource-group myResourceGroup \

 --name myAKSCluster \

 --node-count 3 \

 --network-plugin kubenet \

 --service-cidr 10.0.0.0/16 \

 --dns-service-ip 10.0.0.10 \

 --pod-cidr 10.244.0.0/16 \

 --docker-bridge-address 172.17.0.1/16 \

 --vnet-subnet-id $SUBNET_ID \

 --service-principal <appId> \

 --client-secret <password>

AKS networking | 503

Notice how all the IP addresses are explicitly provided for Service resources, Pods,
nodes, and Docker bridges. These are non-overlapping IP address ranges. Also notice
that Kubenet is used as a network plugin.

Azure CNI (advanced networking)

With Azure CNI, each node and Pod gets an IP address assigned from the network
subnet directly. This means there can be as many Pods as there are unique IP addresses
available on a subnet. This makes IP address range planning much more important
under this networking strategy.

It is important to note that Windows hosting is only possible using the Azure CNI
networking stack. Moreover, some of AKS components, such as virtual nodes and
virtual kubelets, are also dependent on the Azure CNI stack. There is a need to reserve
IP addresses in advance, depending on the number of Pods that will be created. There
should always be extra IP addresses available on the subnet, to avoid exhaustion of
IP addresses or to avoid the need to rebuild the cluster for a larger subnet due to
application demand.

By default, this networking stack is configured for 30 Pods per node and it can be
configured with 250 Pods as the maximum number of Pods per node.

The command to execute to create an AKS instance using this networking stack is
shown here:

az aks create \

 --resource-group myResourceGroup \

 --name myAKSCluster \

 --network-plugin azure \

 --vnet-subnet-id <subnet-id> \

 --docker-bridge-address 172.17.0.1/16 \

 --dns-service-ip 10.2.0.10 \

 --service-cidr 10.2.0.0/24 \

 --generate-ssh-keys

Notice how all the IP addresses are explicitly provided for Service resources, Pods,
nodes, and Docker bridges. These are non-overlapping IP address ranges. Also, notice
that Azure is used as a network plugin.

So far, you have learned how to deploy a solution and manage the networking of an AKS
cluster. Security is another important factor that needs to be addressed. In the next
section, we will be focusing on access and identity options for AKS.

504 | Architecting Azure Kubernetes solutions

Access and identity for AKS
Kubernetes clusters can be secured in multiple ways.

The service account is one of the primary user types in Kubernetes. The Kubernetes API
manages the service account. Authorized Pods can communicate with the API server
using the credentials of service accounts, which are stored as Kubernetes Secrets.
Kubernetes does not have any data store or identity provider of its own. It delegates
the responsibility of authentication to external software. It provides an authentication
plugin that checks for the given credentials and maps them to available groups. If the
authentication is successful, the request passes to another set of authorization plugins
to check the permission levels of the user on the cluster, as well as the namespace-
scoped resources.

For Azure, the best security integration would be to use Azure AD. Using Azure AD, you
can also bring your on-premises identities to AKS to provide centralized management
of accounts and security. The basic workflow of Azure AD integration is shown in Figure
14.19:

Figure 14.19: Basic workflow of Azure AD integration

Users or groups can be granted access to resources within a namespace or across a
cluster. In the previous section, we used the az aks get-credential command to get
the credentials and the kubectl configuration context. When the user tries to interact
with kubectl, they are prompted to sign in using their Azure AD credentials. Azure AD
validates the credentials and a token is issued for the user. Based on the access level
they have, they can access the resources in the cluster or the namespace.

Additionally, you can leverage Azure Role-Based Access Control (RBAC) to limit access
to the resources in the resource group.

In the next section, we will be discussing virtual kubelet, which is one of the quickest
ways to scale out a cluster.

Virtual kubelet | 505

Virtual kubelet
Virtual kubelet is currently in preview and is managed by the CNCF organization. It is
quite an innovative approach that AKS uses for scalability purposes. Virtual kubelet is
deployed on the Kubernetes cluster as a Pod. The container running within the Pod
uses the Kubernetes SDK to create a new node resource and represents itself to the
entire cluster as a node. The cluster components, including the API server, scheduler,
and controllers, think of it and treat it as a node and schedule Pods on it.

However, when a Pod is scheduled on this node that is masquerading as a node, it
communicates to its backend components, known as providers, to create, delete, and
update the Pods. One of the main providers on Azure is Azure Container Instances.
Azure Batch can also be used as a provider. This means the containers are actually
created on Container Instances or Azure Batch rather than on the cluster itself;
however, they are managed by the cluster. The architecture of virtual kubelet is shown
in Figure 14.20:

Figure 14.20: Virtual kubelet architecture

506 | Architecting Azure Kubernetes solutions

Notice that virtual kubelet is represented as a node within the cluster and can help in
hosting and managing Pods, just like a normal kubelet would. However, virtual kubelet
has one limitation; this is what we are going to discuss in the next section.

Virtual nodes
One of the limitations of virtual kubelet is that the Pods deployed on virtual kubelet
providers are isolated and do not communicate with other Pods in the cluster. If there
is a need for the Pods on these providers to talk to other Pods and nodes in the cluster
and vice versa, then virtual nodes should be created. Virtual nodes are created on a
different subnet on the same virtual network that is hosting Kubernetes cluster nodes,
which can enable communication between Pods. Only the Linux operating system is
supported, at the time of writing, for working with virtual nodes.

Virtual nodes give a perception of a node; however, the node does not exist. Anything
scheduled on such a node actually gets created in Azure Container Instances. Virtual
nodes are based on virtual kubelet but have the extra functionality of seamless to-and-
fro communication between the cluster and Azure Container Instances.

While deploying Pods on virtual nodes, the Pod definition should contain an appropriate
node selector to refer to virtual nodes, and also tolerations, as shown in next code
snippet:

 nodeSelector:

 kubernetes.io/role: agent

 beta.kubernetes.io/os: linux

 type: virtual-kubelet

 tolerations:

 - key: virtual-kubelet.io/provider

 operator: Exists

 - key: azure.com/aci

 effect: NoSchedule

Here, the node selector is using the type property to refer to virtual kubelet and the
tolerations property to inform Kubernetes that nodes with taints, virtual-kubelet.io/
provider,should allow the Deployment of these Pods on them.

Summary | 507

Summary
Kubernetes is the most widely used container orchestrator and works with different
container and network runtimes. In this chapter, you learned about the basics of
Kubernetes, its architecture, and some of the important infrastructure components,
such as etcd, the API server, controller managers, and the scheduler, along with their
purpose. Plus, we looked at important resources that can be deployed to manage
applications, such as Pods, replication controllers, ReplicaSets, Deployments, and
Services.

AKS provides a couple of different networking stacks—Azure CNI and Kubenet. They
provide different strategies for assigning IP addresses to Pods. While Azure CNI
provides IP addresses to Pods from the underlying subnet, Kubenet uses virtual IP
addresses only.

We also covered some of the features provided exclusively by Azure, such as virtual
nodes, and concepts around virtual kubelet. In the next chapter, we will learn about the
provisioning and configuring resources with ARM templates.

Azure Resource Manager (ARM) templates are the preferred mechanism for
provisioning resources and configuring them on Azure.

ARM templates help to implement a relatively new paradigm known as Infrastructure
as Code (IaC). ARM templates convert the infrastructure and its configuration into
code, which has numerous advantages. IaC brings a high level of consistency and
predictability to deployments across environments. It also ensures that environments
can be tested before going to production, and, finally, it gives a high level of confidence
in the deployment process, maintenance, and governance.

Cross-subscription
deployments using

ARM templates

15

510 | Cross-subscription deployments using ARM templates

The following topics will be covered in this chapter:

• ARM templates

• Deploying resource groups with ARM templates

• Deploying resources across subscriptions and resource groups

• Deploying cross-subscription and resource group deployments using linked
templates

• Creating ARM templates for PaaS, data, and IaaS solutions

ARM templates
A prominent advantage of IaC is that it can be version controlled. It can also be reused
across environments, which provides a high degree of consistency and predictability
in deployments, and ensures that the impact and result of deploying an ARM template
is the same no matter the number of times the template is deployed. This feature is
known as idempotency.

ARM templates debuted with the introduction of the ARM specification and have
been getting richer in features and growing in maturity since then. It's important to
understand that there's generally a feature gap of a few weeks to a couple of months
between the actual resource configuration and the availability of the configuration in
ARM templates.

Each resource has its own configuration. This configuration can be affected in a
multitude of ways, including using Azure PowerShell, the Azure CLI, Azure SDKs, REST
APIs, and ARM templates.

Each of these techniques has its own development and release life cycle, which is
different from the actual resource development. Let's try to understand this with the
help of an example.

The Azure Databricks resource has its own cadence and development life cycle. The
consumers of this resource have their own development life cycle, in turn, which is
different from the actual resource development. If Databricks gets its first release on
December 31, the Azure PowerShell cmdlets for it might not be available on the same
date and might even be released on January 31 of the next year; similarly, the availability
of these features in the REST API and ARM templates might be around January 15.

ARM templates | 511

ARM templates are JSON-based documents that, when executed, invoke a REST API on
the Azure management plane and submit the entire document to it. The REST API has
its own development life cycle, and the JSON schema for the resource has its own life
cycle too.

This means the development of a feature within a resource needs to happen in at least
three different components before they can be consumed from ARM templates. These
include:

• The resource itself

• The REST API for the resource

• The ARM template resource schema

Each resource in the ARM template has the apiVersion property. This property helps to
decide the REST API version that should be used to provision and deploy the resource.
Figure 15.1 shows the flow of requests from the ARM template to resource APIs that are
responsible for the creation, updating, and deletion of resources:

Figure 15.1: Request flow

A resource configuration, such as a storage account in an ARM template, looks as
follows:

{
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2019-04-01",
 "name": "[variables('storage2')]",
 "location": "[resourceGroup().location]",
 "kind": "Storage",
 "sku": {
 "name": "Standard_LRS"
 }
}

512 | Cross-subscription deployments using ARM templates

In the preceding code, the availability of this schema for defining sku is based on the
development of the ARM template schema. The availability of the REST API and its
version number is determined by apiVersion, which happens to be 2019-04-01. The
actual resource is determined by the type property, which has the following two parts:

• Resource-provider namespace: Resources in Azure are hosted within namespaces
and related resources are hosted within the same namespace.

• Resource type: Resources are referenced using their type name.

In this case, the resource is identified by its provider name and type, which happens to
be Microsoft.Storage/storageaccounts.

Previously, ARM templates expected resource groups to be available prior to
deployment. They were also limited to deploying to a single resource group within a
single subscription.

This meant that, until recently, an ARM template could deploy all resources within
a single resource group. Azure ARM templates now have added functionality for
deploying resources to multiple resource groups within the same subscription or
multiple subscriptions simultaneously. It's now possible to create resource groups as
part of ARM templates, which means it's now possible to deploy resources in multiple
regions into different resource groups.

Why would we need to create resource groups from within ARM templates, and
why would we need to have cross-subscription and resource group deployments
simultaneously?

To appreciate the value of creating a resource group and cross-subscription
deployments, we need to understand how deployments were carried out prior to these
features being available.

To deploy an ARM template, a resource group is a prerequisite. Resource groups should
be created prior to the deployment of a template. Developers use PowerShell, the Azure
CLI, or the REST API to create resource groups and then initiate the deployment of ARM
templates. This means that any end-to-end deployment consists of multiple steps. The
first step is to provision the resource group and the next step is the deployment of the
ARM template to this newly created resource group. These steps could be executed
using a single PowerShell script or individual steps from the PowerShell command line.
The PowerShell script should be complete with regard to code related to exception
handling, taking care of edge cases, and ensuring that there are no bugs in it before it
can be said to be enterprise-ready. It is important to note that resource groups can be
deleted from Azure, and the next time the script runs, they might be expected to be
available. It would fail because it might assume that the resource group exists. In short,
the deployment of the ARM template to a resource group should be an atomic step
rather than multiple steps.

Deploying resource groups with ARM templates | 513

Compare this with the ability to create resource groups and their constituent resources
together within the same ARM templates. Whenever you deploy the template, it ensures
that the resource groups are created if they don't yet exist and continues to deploy
resources to them after creation.

Let's also look at how these new features can help to remove some of the technical
constraints related to disaster recovery sites.

Prior to these features, if you had to deploy a solution that was designed with disaster
recovery in mind, there were two separate deployments: one deployment for the
primary region and another deployment for the secondary region. For example, if
you were deploying an ASP.NET MVC application using App Service, you would create
an app service and configure it for the primary region, and then you would conduct
another deployment with the same template to another region using a different
parameters file. When deploying another set of resources in another region, as
mentioned before, the parameters used with the template should be different to reflect
the differences between the two environments. The parameters would include changes
such as a SQL connection string, domain and IP addresses, and other configuration
items unique to an environment.

With the availability of cross-subscription and resource group deployment, it's possible
to create the disaster recovery site at the same time as the primary site. This eliminates
two deployments and ensures that the same configuration can be used on multiple
sites.

Deploying resource groups with ARM templates
In this section, an ARM template will be authored and deployed, which will create a
couple of resource groups within the same subscription.

To use PowerShell to deploy templates that contain resource groups and cross-
subscription resources, the latest version of PowerShell should be used. At the time of
writing, Azure module version 3.3.0 is being used:

Figure 15.2: Verifying the latest Azure module version

514 | Cross-subscription deployments using ARM templates

If the latest Azure module is not installed, it can be installed using the following
command:

install-module -Name az -Force

It's time to create an ARM template that will create multiple resource groups within the
same subscription. The code for the ARM template is as follows:

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/
deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "resourceGroupInfo": {
 "type": "array" },
 "multiLocation": {
 "type": "array"
 }
 },
 "resources": [
 {
 "type": "Microsoft.Resources/resourceGroups",
 "location": "[parameters('multiLocation')[copyIndex()]]",
 "name": "[parameters('resourceGroupInfo')[copyIndex()]]",
 "apiVersion": "2019-10-01",
 "copy": {
 "name": "allResourceGroups",
 "count": "[length(parameters('resourceGroupInfo'))]"
 },
 "properties": {}
 }
],
 "outputs": {}
}

The first section of the code is about parameters that the ARM templates expect. These
are mandatory parameters, and anybody deploying these templates should provide
values for them. Array values must be provided for both the parameters.

Deploying resource groups with ARM templates | 515

The second major section is the resources JSON array, which can contain multiple
resources. In this example, we are creating resource groups, so it is declared within the
resources section. Resource groups are getting provisioned in a loop because of the
use of the copy element. The copy element ensures that the resource is run a specified
number of times and creates a new resource in every iteration. If we send two values
for the resourceGroupInfo array parameter, the length of the array would be two, and
the copy element will ensure that the resourceGroup resource is executed twice.

All resource names within a template should be unique for a resource type. The
copyIndex function is used to assign the current iteration number to the overall name
of the resource and make it unique. Also, we want the resource groups to be created in
different regions using distinct region names sent as parameters. The assignment of a
name and location for each resource group is done using the copyIndex function.

The code for the parameters file is shown next. This code is pretty straightforward and
provides array values to the two parameters expected by the previous template. The
values in this file should be changed for all parameters according to your environment:

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/
deploymentParameters.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "resourceGroupInfo": {
 "value": ["firstResourceGroup", "SeocndResourceGroup"]
 },
 "multiLocation": {
 "value": [
 "West Europe",
 "East US"
]
 }
 }
}

Deploying ARM templates

To deploy this template using PowerShell, log in to Azure with valid credentials using
the following command:

Login-AzAccount

https://schema.management.azure.com/schemas/2015-01-01/deploymentParameters.json#
https://schema.management.azure.com/schemas/2015-01-01/deploymentParameters.json#

516 | Cross-subscription deployments using ARM templates

The valid credentials could be a user account or a service principal. Then, use a newly
released New-AzDeployment cmdlet to deploy the template. The deployment script is
available in the multipleResourceGroups.ps1 file:

New-AzDeployment -Location "West Europe" -TemplateFile "c:\users\rites\
source\repos\CrossSubscription\CrossSubscription\multipleResourceGroups.
json" -TemplateParameterFile "c:\users\rites\source\repos\CrossSubscription\
CrossSubscription\multipleResourceGroups.parameters.json" -Verbose

It's important to understand that the New-AzResourceGroupDeployment cmdlet can't
be used here because the scope of the New-AzResourceGroupDeployment cmdlet is a
resource group and it expects a resource group to be available as a prerequisite. For
deploying resources at the subscription level, Azure had released a new cmdlet that
can work above the resource group scope. The new cmdlet, new-AzDeployment, works
at the subscription level. It is also possible to have a deployment at the management
group level. Management groups are at a higher level than subscriptions using the
New-AzManagementGroupDeployment cmdlet.

Deployment of templates using Azure CLI

The same template can also be deployed using the Azure CLI. Here are the steps to
deploy it using the Azure CLI:

1. Use the latest version of the Azure CLI to create resource groups using the ARM
template. At the time of writing, version 2.0.75 was used for deployment, as shown
here:

Figure 15.3: Checking the version of the Azure CLI

Deploying resources across subscriptions and resource groups | 517

2. Log in to Azure using the following command and select the right subscription for
use:

az login

3. If the login has access to multiple subscriptions, select the appropriate
subscription using the following command:

az account set –subscription xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

4. Execute the deployment using the following command. The deployment script is
available in the multipleResourceGroupsCLI.txt file:

C:\Users\Ritesh>az deployment create—location westus—template-file "C:\
users\rites\source\repos\CrossSubscription\CrossSubscription\azuredeploy.
json—parameters @"C:\users\rites\source\repos\CrossSubscription\
CrossSubscription\azuredeploy.parameters.json"—verbose

Once the command is executed, the resources defined within the ARM template should
be reflected on the Azure portal.

Deploying resources across subscriptions and resource groups
In the last section, resource groups were created as part of ARM templates. Another
feature in Azure is the provision of resources into multiple subscriptions simultaneously
from a single deployment using a single ARM template. In this section, we will provide
a new storage account to two different subscriptions and resource groups. The
person deploying the ARM template would select one of the subscriptions as the base
subscription, using which they would initiate the deployment and provision the storage
account into the current and another subscription. The prerequisite for deploying this
template is that the person doing the deployment should have access to at least two
subscriptions and that they have contributor rights on these subscriptions. The code
listing is shown here and is available in the CrossSubscriptionStorageAccount.json file
within the accompanying code:

518 | Cross-subscription deployments using ARM templates

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/
deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "storagePrefix1": {
 "type": "string",
 "defaultValue": "st01"
 ...
 "type": "string",
 "defaultValue": "rg01"
 },
 "remoteSub": {
 "type": "string",
 "defaultValue": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
 }
 ...
 }
 }
],
 "outputs": {}
 }
 }
 }
],
 "outputs": {}
}

It is important to note that the names of the resource group used within the code
should already be available in the respective subscriptions. The code will throw an error
if the resource groups are not available. Moreover, the names of the resource group
should precisely match those in the ARM template.

The code for deploying this template is shown next. In this case, we use
New-AzResourceGroupDeployment, because the scope of the deployment is a resource
group. The deployment script is available in the CrossSubscriptionStorageAccount.ps1
file within the code bundle:

New-AzResourceGroupDeployment -TemplateFile "<< path to your
CrossSubscriptionStorageAccount.json file >>" -ResourceGroupName "<<provide
your base subscription resource group name>>" -storagePrefix1 <<provide prefix
for first storage account>> -storagePrefix2 <<provide prefix for first storage
account>> -verbose

Deploying resources across subscriptions and resource groups | 519

Once the command is executed, the resources defined within the ARM template should
be reflected in the Azure portal.

Another example of cross-subscription and resource group deployments

In this section, we create two storage accounts in two different subscriptions, resource
groups, and regions from one ARM template and a single deployment. We will use the
nested templates approach along with the copy element to provide different names and
locations to these resource groups in different subscriptions.

However, before we can execute the next set of ARM templates, an Azure Key Vault
instance should be provisioned as a prerequisite and a secret should be added to it. This
is because the names of the storage accounts are retrieved from Azure Key Vault and
passed as parameters to ARM templates to provision the storage account.

To provision Azure Key Vault using Azure PowerShell, the next set of commands
can be executed. The code for the following commands is available in the
CreateKeyVaultandSetSecret.ps1 file:

New-AzResourceGroup -Location <<replace with location of your key vault>>
-Name <<replace with name of your resource group for key vault>> -verbose
New-AzureRmKeyVault -Name <<replace with name of your key vault>>
-ResourceGroupName <<replace with name of your resource group for
key vault>> -Location <<replace with location of your key vault>>
-EnabledForDeployment -EnabledForTemplateDeployment -EnabledForDiskEncryption
-EnableSoftDelete -EnablePurgeProtection -Sku Standard -Verbose

You should note that the ResourceID value should be noted from the result of the
New-AzKeyVault cmdlet. This value will need to be replaced in the parameters file. See
Figure 15.4 for details:

Figure 15.4: Creating a Key Vault instance

520 | Cross-subscription deployments using ARM templates

Execute the following command to add a new secret to the newly created Azure Key
Vault instance:

Set-AzKeyVaultSecret -VaultName <<replace with name of your key vault>> -Name
<<replace with name of yoursecret>> -SecretValue $(ConvertTo-SecureString
-String <<replace with value of your secret>> -AsPlainText -Force) -Verbose

The code listing is available in the CrossSubscriptionNestedStorageAccount.json file
within the code bundle:

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/
deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "hostingPlanNames": {
 "type": "array",
 "minLength": 1
 },
 ...
 "type": "Microsoft.Resources/deployments",
 "name": "deployment01",
 "apiVersion": "2019-10-01",
 "subscriptionId": "[parameters('subscriptions')[copyIndex()]]",
 "resourceGroup": "[parameters('resourceGroups')[copyIndex()]]",
 "copy": {
 "count": "[length(parameters('hostingPlanNames'))]",
 "name": "mywebsites", "mode": "Parallel"
 },
 ...
 "kind": "Storage",
 "properties": {
 }
 }
]
...

https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#
https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#

Deploying resources across subscriptions and resource groups | 521

Here's the code for the parameters file. It is available in the
CrossSubscriptionNestedStorageAccount.parameters.json file:

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/
deploymentParameters.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "hostingPlanNames": {
 ...
 "storageKey": {
 "reference": {
 "keyVault": { "id": "<<replace it with the value of Key vault
ResourceId noted before>>" },
 "secretName": "<<replace with the name of the secret available in
Key vault>>"
 }
 }
 }
}

Here's the PowerShell code for deploying the previous template. The deployment script
is available in the CrossSubscriptionNestedStorageAccount.ps1 file:

New-AzResourceGroupDeployment -TemplateFile "c:\users\rites\source\repos\
CrossSubscription\CrossSubscription\CrossSubscriptionNestedStorageAccount.
json" -ResourceGroupName rg01 -TemplateParameterFile "c:\
users\rites\source\repos\CrossSubscription\CrossSubscription\
CrossSubscriptionNestedStorageAccount.parameters.json" -Verbose

Once the command gets executed, the resources defined within the ARM template
should be reflected in the Azure portal.

522 | Cross-subscription deployments using ARM templates

Deploying cross-subscription and resource group deployments
using linked templates
The previous example used nested templates to deploy to multiple subscriptions
and resource groups. In the next example, we will deploy multiple App Service plans
in separate subscriptions and resource groups using linked templates. The linked
templates are stored in Azure Blob storage, which is protected using policies. This
means that only the holder of the storage account key or a valid shared access signature
can access this template. The access key is stored in Azure Key Vault and is accessed
from the parameters file using references under the storageKey element. You should
upload the website.json file to a container in Azure Blob storage. The website.json file
is a linked template responsible for provisioning an App Service plan and an app service.
The file is protected using the Private (no anonymous access) policy, as shown in Figure
15.5. A privacy policy ensures that anonymous access is not allowed. For this instance,
we have created a container named armtemplates and set it with a private policy:

Figure 15.5: Setting a private policy for the container

This file can only be accessed using the Shared Access Signature (SAS) keys. The SAS
keys can be generated from the Azure portal for a storage account using the Shared
access signature item in the left menu shown in Figure 15.6. You should click on the
Generate SAS and connection string button to generate the SAS token. It is to be
noted that an SAS token is displayed once and not stored within Azure. So, copy it and
store it somewhere so that it can be uploaded to Azure Key Vault. Figure 15.6 shows the
generation of the SAS token:

Deploying cross-subscription and resource group deployments using linked templates | 523

Figure 15.6: Generating an SAS token in the Azure portal

We will use the same Key Vault instance that was created in the previous section. We
just have to ensure that there are two secrets available within the Key Vault instance.
The first secret is StorageName and the other one is StorageKey. The commands to create
these secrets in the Key Vault instance are as follows:

Set-AzKeyVaultSecret -VaultName "testkeyvaultbook" -Name "storageName"
-SecretValue $(ConvertTo-SecureString -String "uniquename" -AsPlainText
-Force) -Verbose

Set-AzKeyVaultSecret -VaultName "testkeyvaultbook" -Name "storageKey"
-SecretValue $(ConvertTo-SecureString -String "?sv=2020-03-28&ss=bfqt&srt=sc
o&sp=rwdlacup&se=2020-03-30T21:51:03Z&st=2020-03-30T14:51:03Z&spr=https&sig=
gTynGhj20er6pDl7Ab%2Bpc29WO3%2BJhvi%2BfF%2F6rHYWp4g%3D" -AsPlainText -Force
) -Verbose

524 | Cross-subscription deployments using ARM templates

You are advised to change the names of the Key Vault instance and the secret key value
based on your storage account.

After ensuring that the Key Vault instance has the necessary secrets, the ARM template
file code can be used to deploy the nested templates across subscriptions and resource
groups.

The ARM template code is available in the CrossSubscriptionLinkedStorageAccount.
json file and is also shown here. You are advised to change the value of the templateUrl
variable within this file. It should be updated with a valid Azure Blob storage file
location:

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/
deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "hostingPlanNames": {
 "type": "array",
 "minLength": 1
 ...
 "type": "Microsoft.Resources/deployments",
 "name": "fsdfsdf",
 "apiVersion": "2019-10-01",
 "subscriptionId": "[parameters('subscriptions')[copyIndex()]]",
 "resourceGroup": "[parameters('resourceGroups')[copyIndex()]]",
 "copy": {
 "count": "[length(parameters('hostingPlanNames'))]",
 "name": "mywebsites",
 "mode": "Parallel"
 ...
]
}

The code for the parameters file is shown next. You are advised to change the values of
the parameters, including the resourceid of the Key Vault instance and the secret name.
The names of app services should be unique, or the template will fail to deploy. The
code for the parameters file is available in the CrossSubscriptionLinkedStorageAccount.
parameters.json code file:

Deploying cross-subscription and resource group deployments using linked templates | 525

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/
deploymentParameters.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "hostingPlanNames": {
 "value": ["firstappservice", "secondappservice"]
 ...
 "storageKey": {
 "reference": {
 "keyVault": { "id": "/subscriptions/xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx/resourceGroups/keyvaluedemo/providers/Microsoft.KeyVault/
vaults/forsqlvault1" },
 "secretName": "storageKey"
 }
 }
 }
}

Here's the command to deploy the template. The deployment script is available in the
CrossSubscriptionLinkedStorageAccount.ps1 file:

New-AzureRmResourceGroupDeployment -TemplateFile "c:\users\
rites\source\repos\CrossSubscription\CrossSubscription\
CrossSubscriptionLinkedStorageAccount.json" -ResourceGroupName <<replace
with the base subscription resource group name >> -TemplateParameterFile
"c:\users\rites\source\repos\CrossSubscription\CrossSubscription\
CrossSubscriptionLinkedStorageAccount.parameters.json" -Verbose

Once the command gets executed, the resources defined within the ARM template
should be reflected in the Azure portal.

Now that you know how to provision resources across resource groups and
subscriptions, we will look at some of the solutions that can be created using ARM
templates.

526 | Cross-subscription deployments using ARM templates

Virtual machine solutions using ARM templates
Infrastructure as a service (IaaS) resources and solutions can be deployed and
configured using ARM templates. The major resources related to IaaS are virtual
machine resources.

Creating a virtual machine resource is dependent on multiple other resources in Azure.
Some of the resources that are needed to create a virtual machine include:

• A storage account or a managed disk for hosting the operating system and
data disk

• A virtual network along with subnets

• A network interface card

There are other resources that are optional, including:

• Azure Load Balancer

• Network security groups

• Public IP address

• Route tables and more

This section will deal with the process of creating virtual machines using ARM
templates. As mentioned before in this section, we need to create a few resources, upon
which the virtual machine resource will depend, prior to creating the virtual machine
resource itself.

It is important to note that it is not always necessary to create the dependent
resources. They should be created only if they do not exist already. If they already
are available within the Azure subscription, the virtual machine resource can be
provisioned by referencing those dependent resources.

The template is dependent on a few parameters that should be supplied to it at the time
of executing the template. These variables relate to the location of the resources and
some of their configuration values. These values are taken from parameters because
they might change from one deployment to another, so using parameters helps keep
the template generic.

Virtual machine solutions using ARM templates | 527

The first step is to create a storage account, as shown in the following code:

{

 "type": "Microsoft.Storage/storageAccounts",
 "name": "[variables('storageAccountName')]",
 "apiVersion": "2019-04-01",
 "location": "[parameters('location')]",
 "sku": {
 "name": "Standard_LRS"
 },
 "kind": "Storage",
 "properties": {}
 },

After creating a storage account, a virtual network should be defined within the ARM
template. It is important to note that there is no dependency between a storage
account and a virtual network. They can be created in parallel. The virtual network
resource has a subnet as its sub-resource. These are both configured with their IP
ranges; the subnet typically has a smaller range than the virtual network IP range:

 {

 "apiVersion": "2019-09-01",

 "type": "Microsoft.Network/virtualNetworks",

 "name": "[variables('virtualNetworkName')]",

 "location": "[parameters('location')]",

 "properties": {

 "addressSpace": {

 "addressPrefixes": [

 "[variables('addressPrefix')]"

]

 },

 "subnets": [

 {

 "name": "[variables('subnetName')]",

 "properties": {

 "addressPrefix": "[variables('subnetPrefix')]"

 }

528 | Cross-subscription deployments using ARM templates

 }

]

 }

 },

If the virtual machine needs to be accessed over the public internet, a public IP
address can also be created, as shown in the following code. Again, it is a completely
independent resource and can be created in parallel with the storage account and
virtual network:

 {

 "apiVersion": "2019-11-01",

 "type": "Microsoft.Network/publicIPAddresses",

 "name": "[variables('publicIPAddressName')]",

 "location": "[parameters('location')]",

 "properties": {

 "publicIPAllocationMethod": "Dynamic",

 "dnsSettings": {

 "domainNameLabel": "[parameters('dnsLabelPrefix')]"

 }

 }

 },

After creating the virtual network, storage account, and public IP address, a network
interface can be created. A network interface is dependent on a virtual network and
subnet resource. It can optionally also be associated with a public IP address as well.
This is shown in the following code:

{

 "apiVersion": "2019-11-01",

 "type": "Microsoft.Network/networkInterfaces",

 "name": "[variables('nicName')]",

 "location": "[parameters('location')]",

 "dependsOn": [

Virtual machine solutions using ARM templates | 529

 "[resourceId('Microsoft.Network/publicIPAddresses/',
variables('publicIPAddressName'))]",

 "[resourceId('Microsoft.Network/virtualNetworks/',
variables('virtualNetworkName'))]"

],

 "properties": {

 "ipConfigurations": [

 {

 "name": "ipconfig1",

 "properties": {

 "privateIPAllocationMethod": "Dynamic",

 "publicIPAddress": {

"id": "[resourceId('Microsoft.Network/
publicIPAddresses',variables('publicIPAddressName'))]"

 },

"subnet": {

"id": "[variables('subnetRef')]"

 }

 }

 }

]

 }

 },

It is important to note that both the public IP address and the subnet are referred to by
their unique Azure identifiers.

After the creation of the network interface, we have all the resources that are needed
to create a virtual machine. The next code block shows how to create a virtual machine
using an ARM template. It has a dependency on the network card and storage account.
This indirectly creates dependencies on the virtual network, subnet, and the public IP
address.

530 | Cross-subscription deployments using ARM templates

For the virtual machine, we configure the mandatory resource configuration, lincluding
type, apiVersion, location, and name, along with any dependencies, as shown in the
following code:

{

"apiVersion": "2019-07-01",

"type": "Microsoft.Compute/virtualMachines",

"name": "[variables('vmName')]",

"location": "[resourceGroup().location]",

"tags": {

"displayName": "VirtualMachine"

 },

"dependsOn": [

"[concat('Microsoft.Storage/storageAccounts/',
variables('storageAccountName'))]",

"[concat('Microsoft.Network/networkInterfaces/', variables('nicName'))]"

],

"properties": {

"hardwareProfile": { "vmSize": "[variables('vmSize')]" },

"availabilitySet": {

"id": "[resourceId('Microsoft.Compute/availabilitySets',
parameters('adAvailabilitySetName'))]"

 },

"osProfile": {

"computerName": "[variables('vmName')]",

"adminUsername": "[parameters('adminUsername')]",

"adminPassword": "[parameters('adminPassword')]"

 },

"storageProfile": {

"imageReference": {

Virtual machine solutions using ARM templates | 531

"publisher": "[variables('imagePublisher')]",

"offer": "[variables('imageOffer')]",

"sku": "[parameters('windowsOSVersion')]",

"version": "latest"

 },

"osDisk": { "createOption": "FromImage" },

"copy": [

 {

"name": "dataDisks",

"count": 3,

"input": {

"lun": "[copyIndex('dataDisks')]",

"createOption": "Empty",

"diskSizeGB": "1023",

"name": "[concat(variables('vmName'), '-datadisk', copyIndex('dataDisks'))]"

 }

 }

]

 },

"networkProfile": {

"networkInterfaces": [

 {

"id": "[resourceId('Microsoft.Network/networkInterfaces',
variables('nicName'))]"

 }

]

 }

 }

 }

532 | Cross-subscription deployments using ARM templates

In the preceding code, the virtual machine is configured with:

• A hardware profile—the size of the virtual machine.

• An OS profile—the name and credentials for logging in to the virtual machine.

• A storage profile—the storage account on which to store the Virtual Hard Disk
(VHD) file for the virtual machine, including data disks.

• A network profile—the reference to the network interface card.

The next section will show an example of using ARM templates to provision a Platform
as a Service solution.

PaaS solutions using ARM templates
Platform as a service (PaaS) resources and solutions can be deployed using ARM
templates. One of the main resources related to PaaS is Azure Web Apps, and in this
section, we will focus on creating web apps on Azure using ARM templates.

The template expects a few parameters to be supplied while executing it. The
parameters needed are the SKU for the App Service plan, the Azure region hosting the
resources, and the SKU capacity of the App Service plan.

There are a couple of variables declared within the template to make it generic and
maintainable. The first one, hostingPlanName, is for the App Service plan name, and the
next one, webSiteName, is for the app service itself.

There are at minimum two resources that should be declared and provisioned for a
working web app in Azure. They are the following:

• The Azure App Service plan

• Azure App Service

The first step in creating a web app on Azure is defining the configuration for an Azure
App Service plan. The following code defines a new App Service plan. It is important to
note that the resource type is Microsoft.Web/serverfarms. Most of the configuration
values of the plan, such as location, name, and capacity, come as parameters to the ARM
template:

PaaS solutions using ARM templates | 533

 {

"apiVersion": "2019-08-01",

"name": "[variables('hostingPlanName')]",

"type": "Microsoft.Web/serverfarms",

"location": "[parameters('location')]",

"tags": {

"displayName": "HostingPlan"

 },

"sku": {

"name": "[parameters('skuName')]",

"capacity": "[parameters('skuCapacity')]"

 },

"properties": {

"name": "[variables('hostingPlanName')]"

 }

 },

The next resource that should be provisioned after a plan is the app service itself. It is
important that a dependency between both these resources is created such that a plan
is already created before the app service itself is created:

 {

"apiVersion": "2019-08-01",

"name": "[variables('webSiteName')]",

"type": "Microsoft.Web/sites",

"location": "[parameters('location')]",

"dependsOn": [

"[variables('hostingPlanName')]"

],

"properties": {

"name": "[variables('webSiteName')]",

"serverFarmId": "[resourceId('Microsoft.Web/serverfarms',
variables('hostingPlanName'))]"

 },

"resources": [

534 | Cross-subscription deployments using ARM templates

 {

"apiVersion": "2019-08-01",

"type": "config",

"name": "connectionstrings",

"dependsOn": [

"[variables('webSiteName')]"

],

"properties": {

"DefaultConnection": {

"value": "[concat('sql connection string here')]",

"type": "SQLAzure"

 }

 }

 }

]

 }

In the preceding code, a resource of type Microsoft.Web/sites is defined and it has a
dependency on the plan. It is also using the App Service plan and is associated with
it using serverFarmId. It further declares a connection string that can be used for
connecting to SQL Server.

This section showed an example of creating a PaaS solution on Azure using an ARM
template. Similarly, other PaaS solutions, including Azure Function apps, Kubernetes
Service, and Service Fabric, among many others, can be created using ARM templates.

Data-related solutions using ARM templates
There are many resources in Azure related to data management and storage. Some of
the important data-related resources include Azure SQL, Azure Cosmos DB, Azure Data
Lake Storage, Data Lake Analytics, Azure Synapsis, Databricks, and Data Factory.

All of these resources can be provisioned and configured using an ARM template. In
this section, we will create an ARM template to provision a Data Factory resource
responsible for migrating data from Azure Blob storage to Azure SQL Database using
stored procedures.

You will find the parameters file along with the template. These values might change
from one deployment to another; we'll keep the template generic so that you can
customize and use it easily with other deployments as well.

Data-related solutions using ARM templates | 535

The entire code for this section can be found at https://github.com/Azure/azure-
quickstart-templates/blob/master/101-data-factory-blob-to-sql-copy-stored-proc.

The first step is to declare the configuration for the data factory in the ARM template,
as shown in the following code:

"name": "[variables('dataFactoryName')]",

"apiVersion": "2018-06-01",

"type": "Microsoft.DataFactory/datafactories",

"location": "[parameters('location')]",

Each data factory has multiple linked services. These linked services act as connectors
to get data into the data factory, or the data factory can send data to them. The
following code listing creates a linked service for the Azure storage account from which
the blobs will be read into the data factory, and another linked service for Azure SQL
Database:

 {

"type": "linkedservices",

"name": "[variables('storageLinkedServiceName')]",

"apiVersion": "2018-06-01",

"dependsOn": [

"[variables('dataFactoryName')]"

],

"properties": {

"type": "AzureStorage",

"description": "Azure Storage Linked Service",

"typeProperties": {

"connectionString":

"[concat('DefaultEndpointsProtocol=https;
AccountName=',parameters('storageAccountName'),';
AccountKey=',parameters('storageAccountKey'))]"

 }

 }

 },

 {

"type": "linkedservices",

https://github.com/Azure/azure-quickstart-templates/blob/master/101-data-factory-blob-to-sql-copy-stored-proc
https://github.com/Azure/azure-quickstart-templates/blob/master/101-data-factory-blob-to-sql-copy-stored-proc

536 | Cross-subscription deployments using ARM templates

"name": "[variables('sqlLinkedServiceName')]",

"apiVersion": "2018-06-01",

"dependsOn": [

"[variables('dataFactoryName')]"

],

"properties": {

"type": "AzureSqlDatabase",

"description": "Azure SQL linked service",

"typeProperties": {

"connectionString": "[concat('Data Source=tcp:', parameters('sqlServerName'),
'.database.windows.net,1433;Initial Catalog=', parameters('sqlDatabaseName'),
';Integrated Security=False;User ID=', parameters('sqlUserId'), ';Password=',
parameters('sqlPassword'), ';Connect Timeout=30;Encrypt=True')]"

 }

 }

 },

After linked services, it's time to define the datasets for Azure Data Factory. Datasets
help in identifying the data that should be read and placed in the data factory. They
could also represent the temporary data that needs to be stored by the Data Factory
during the transformation, or even the destination location where the data will be
written. The next code block creates three datasets—one for each of the aspects of
datasets that were just mentioned.

The read dataset is shown in the following code block:

 {

"type": "datasets",

"name": "[variables('storageDataset')]",

"dependsOn": [

"[variables('dataFactoryName')]",

"[variables('storageLinkedServiceName')]"

],

"apiVersion": "2018-06-01",

"properties": {

"type": "AzureBlob",

"linkedServiceName": "[variables('storageLinkedServiceName')]",

Data-related solutions using ARM templates | 537

"typeProperties": {

"folderPath": "[concat(parameters('sourceBlobContainer'), '/')]",

"fileName": "[parameters('sourceBlobName')]",

"format": {

"type": "TextFormat"

 }

 },

"availability": {

"frequency": "Hour",

"interval": 1

 },

"external": true

 }

 },

The intermediate dataset is shown in the following lines of code:

 {

"type": "datasets",

"name": "[variables('intermediateDataset')]",

"dependsOn": [

"[variables('dataFactoryName')]",

"[variables('sqlLinkedServiceName')]"

],

"apiVersion": "2018-06-01",

"properties": {

"type": "AzureSqlTable",

"linkedServiceName": "[variables('sqlLinkedServiceName')]",

"typeProperties": {

"tableName": "[variables('intermediateDataset')]"

 },

"availability": {

"frequency": "Hour",

"interval": 1

538 | Cross-subscription deployments using ARM templates

 }

 }

 },

Finally, the dataset used for the destination is shown here:

 {

"type": "datasets",

"name": "[variables('sqlDataset')]",

"dependsOn": [

"[variables('dataFactoryName')]",

"[variables('sqlLinkedServiceName')]"

],

"apiVersion": "2018-06-01",

"properties": {

"type": "AzureSqlTable",

"linkedServiceName": "[variables('sqlLinkedServiceName')]",

"typeProperties": {

"tableName": "[parameters('sqlTargetTable')]"

 },

"availability": {

"frequency": "Hour",

"interval": 1

 }

 }

 },

Finally, we need a pipeline in Data Factory that can bring together all the datasets and
linked services, and help in creating extract-transform-load data solutions. A pipeline
consists of multiple activities, each fulfilling a particular task. All these activities can be
defined within the ARM template, as you'll see now. The first activity copies the blobs in
the storage account to an intermediate SQL Server, as shown in the following code:

{

"type": "dataPipelines",

"name": "[variables('pipelineName')]",

"dependsOn": [

Data-related solutions using ARM templates | 539

"[variables('dataFactoryName')]",

"[variables('storageLinkedServiceName')]",

"[variables('sqlLinkedServiceName')]",

"[variables('storageDataset')]",

"[variables('sqlDataset')]"

],

"apiVersion": "2018-06-01",

"properties": {

"description": "Copies data from Azure Blob to Sql DB while invoking stored
procedure",

"activities": [

 {

"name": "BlobtoSqlTableCopyActivity",

"type": "Copy",

"typeProperties": {

"source": {

"type": "BlobSource"

 },

"sink": {

"type": "SqlSink",

"writeBatchSize": 0,

"writeBatchTimeout": "00:00:00"

 }

 },

"inputs": [

 {

"name": "[variables('storageDataset')]"

 }

],

"outputs": [

 {

"name": "[variables('intermediateDataset')]"

540 | Cross-subscription deployments using ARM templates

 }

]

 },

 {

"name": "SqlTabletoSqlDbSprocActivity",

"type": "SqlServerStoredProcedure",

"inputs": [

 {

"name": "[variables('intermediateDataset')]"

 }

],

"outputs": [

 {

"name": "[variables('sqlDataset')]"

 }

],

"typeProperties": {

"storedProcedureName": "[parameters('sqlWriterStoredProcedureName')]"

 },

"scheduler": {

"frequency": "Hour",

"interval": 1

 },

"policy": {

"timeout": "02:00:00",

"concurrency": 1,

"executionPriorityOrder": "NewestFirst",

"retry": 3

 }

 }

],

Creating an IaaS solution on Azure with Active Directory and DNS | 541

"start": "2020-10-01T00:00:00Z",

"end": "2020-10-02T00:00:00Z"

 }

 }

]

 }

The last activity copies data from the intermediate dataset to the final destination
dataset.

There are also start and end times during which the pipeline should be running.

This section focused on creating an ARM template for a data-related solution. In the
next section, we will deal with ARM templates for creating datacenters on Azure with
Active Directory and DNS.

Creating an IaaS solution on Azure with Active Directory and DNS
Creating an IaaS solution on Azure means creating multiple virtual machines, promoting
a virtual machine to be a domain controller, and making other virtual machines join
the domain controller as domain-joined nodes. It also means installing a DNS server
for name resolution and, optionally, a jump server for accessing these virtual machines
securely.

The template creates an Active Directory forest on the virtual machines. It creates
multiple virtual machines based on the parameters supplied.

The template creates:

• A couple of availability sets

• A virtual network

• Network security groups to define the allowed and disallowed ports and
IP addresses

The template then does the following:

• Provisions one or two domains. The root domain is created by default; the child
domain is optional

• Provisions two domain controllers per domain

• Executes the desired state configuration scripts to promote a virtual machine to
be a domain controller

542 | Cross-subscription deployments using ARM templates

We can create multiple virtual machines using the approach discussed in the Virtual
machine solutions using ARM templates section. However, these virtual machines should
be part of an availability set if they need to be highly available. It is to be noted that
availability sets provide 99.95% availability for applications deployed on these virtual
machines, while Availability Zones provide 99.99% availability.

An availability set can be configured as shown in the following code:

 {

"name": "[variables('adAvailabilitySetNameRoot')]",

"type": "Microsoft.Compute/availabilitySets",

"apiVersion": "2019-07-01",

"location": "[parameters('location')]",

"sku": {

"name": "Aligned"

 },

"properties": {

"PlatformUpdateDomainCount": 3,

"PlatformFaultDomainCount": 2

 }

 },

Once the availability set is created, an additional profile should be added to the virtual
machine configuration to associate the virtual machine with the availability set, as
shown in the following code:

"availabilitySet" : {

"id": "[resourceId('Microsoft.Compute/availabilitySets',
parameters('adAvailabilitySetName'))]"

 }

You should note that availability sets are mandatory in order to use load balancers with
virtual machines.

Creating an IaaS solution on Azure with Active Directory and DNS | 543

Another change needed in the virtual network configuration is adding DNS information,
as shown in the following code:

 {

"name": "[parameters('virtualNetworkName')]",

"type": "Microsoft.Network/virtualNetworks",

"location": "[parameters('location')]",

"apiVersion": "2019-09-01",

"properties": {

"addressSpace": {

"addressPrefixes": [

"[parameters('virtualNetworkAddressRange')]"

]

 },

"dhcpOptions": {

"dnsServers": "[parameters('DNSServerAddress')]"

 },

"subnets": [

 {

"name": "[parameters('subnetName')]",

"properties": {

"addressPrefix": "[parameters('subnetRange')]"

 }

 }

]

 }

 },

Finally, to convert a virtual machine into Active Directory, a PowerShell script or
desired state configuration (DSC) script should be executed on the virtual machine.
Even for joining other virtual machines to the domain, another set of scripts should be
executed on those virtual machines.

544 | Cross-subscription deployments using ARM templates

Scripts can be executed on the virtual machine using the CustomScriptExtension
resource, as shown in the following code:

 {

"type": "Microsoft.Compute/virtualMachines/extensions",

"name": "[concat(parameters('adNextDCVMName'),'/PrepareNextDC')]",

"apiVersion": "2018-06-01",

"location": "[parameters('location')]",

"properties": {

"publisher": "Microsoft.Powershell",

"type": "DSC",

"typeHandlerVersion": "2.21",

"autoUpgradeMinorVersion": true,

"settings": {

"modulesURL": "[parameters('adNextDCConfigurationModulesURL')]",

"configurationFunction": "[parameters('adNextDCConfigurationFunction')]",

"properties": {

"domainName": "[parameters('domainName')]",

"DNSServer": "[parameters('DNSServer')]",

"DNSForwarder": "[parameters('DNSServer')]",

"adminCreds": {

"userName": "[parameters('adminUserName')]",

"password": "privateSettingsRef:adminPassword"

 }

 }

 },

"protectedSettings": {

"items": {

"adminPassword": "[parameters('adminPassword')]"

 }

 }

 }

 },

Summary | 545

In this section, we created a datacenter on Azure using the IaaS paradigm. We created
multiple virtual machines and converted one of them into domain controller, installed
DNS, and assigned a domain to it. Now, other virtual machines on the network can be
joined to this domain and they can form a complete datacenter on Azure.

Please refer to https://github.com/Azure/azure-quickstart-templates/tree/
master/301-create-ad-forest-with-subdomain for the complete code listing for
creating a datacenter on Azure.

Summary
The option to deploy resources using a single deployment to multiple subscriptions,
resource groups, and regions provides enhanced abilities to deploy, reduce bugs in
deployment, and access advanced benefits, such as creating disaster recovery sites and
achieving high availability.

In this chapter, you saw how to create a few different kinds of solution using ARM
templates. This included creating an infrastructure-based solution comprising virtual
machines; a platform-based solution using Azure App Service; a data-related solution
using the Data Factory resource (including its configuration); and a datacenter on Azure
with virtual machines, Active Directory, and DNS installed on top of the virtual machine.

In the next chapter, we will focus on creating modular ARM templates, an essential
skill for architects who really want to take their ARM templates to the next level. The
chapter will also show you various ways to design ARM templates and create reusable
and modular ARM templates.

https://github.com/Azure/azure-quickstart-templates/tree/master/301-create-ad-forest-with-subdomain
https://github.com/Azure/azure-quickstart-templates/tree/master/301-create-ad-forest-with-subdomain

We know that there are multiple ways to author an Azure Resource Manager (ARM)
template. It is quite easy to author one that provisions all of the necessary resources in
Azure using Visual Studio and Visual Studio Code. A single ARM template can consist of
all the required resources for a solution on Azure. This single ARM template could be as
small as a few resources, or it could be a larger one consisting of many resources.

While authoring a single template consisting of all resources is quite tempting, it is
advisable to plan an ARM template implementation divided into multiple smaller ARM
templates beforehand, so that future troubles related to them can be avoided.

In this chapter, we will look at how to write ARM templates in a modular way so that
they can evolve over a period of time with minimal involvement in terms of changes and
effort in testing and deployment.

However, before writing modular templates, it is best to understand the problems
solved by writing them in a modular fashion.

ARM template
modular design and

implementation

16

548 | ARM template modular design and implementation

The following topics will be covered in this chapter:

• Problems with a single template

• Understanding nested and linked deployment

• Linked templates

• Nested templates

• Free-flow configurations

• Known configurations

Now, let's explore the aforementioned topics in detail, which will help you to write
modular templates using industry best practices.

Problems with the single template approach
On the surface, it might not sound like a single large template consisting of all
resources will have problems, but there are issues that could arise in the future. Let's
discuss the issues that might arise when using single large templates.

Reduced flexibility in changing templates

Using a single large template with all resources makes it difficult to change it in the
future. With all dependencies, parameters, and variables in a single template, changing
the template can take a considerable amount of time compared to smaller templates.
The change could have an impact on other sections of the template, which might go
unnoticed, as well as introducing bugs.

Troubleshooting large templates

Large templates are difficult to troubleshoot. This is a known fact. The larger the
number of resources in a template, the more difficult it is to troubleshoot the template.
A template deploys all the resources in it, and finding a bug involves deploying the
template quite often. Developers would have reduced productivity while waiting for the
completion of template deployment.

Also, deploying a single template is more time-consuming than deploying smaller
templates. Developers have to wait for resources containing errors to be deployed
before taking any action.

Problems with the single template approach | 549

Dependency abuse

The dependencies between resources also tend to become more complex in larger
templates. It is quite easy to abuse the usage of the dependsOn feature in ARM templates
because of the way they work. Every resource in a template can refer to all its prior
resources rather than building a tree of dependencies. ARM templates do not complain
if a single resource is dependent on all other resources in the ARM template, even
though those other resources might have inter-dependencies within themselves. This
makes changing ARM templates bug prone and, at times, it is not even possible to
change them.

Reduced agility

Generally, there are multiple teams in a project, with each owning their own resources
in Azure. These teams will find it difficult to work with a single ARM template because
a single developer should be updating them. Updating a single template with multiple
teams might induce conflict and difficult-to-solve merges. Having multiple smaller
templates can enable each team to author their own piece of an ARM template.

No reusability

If you have a single template, then that's all that you have, and using this template
means deploying all resources. There is no possibility, out of the box, to select individual
resources without some maneuvering, such as adding conditional resources. A single
large template loses reusability because you take all the resources or none of them.

Knowing that single large templates have so many issues, it is good practice to author
modular templates so that we get benefits such as the following:

• Multiple teams can work on their templates in isolation.

• Templates can be reused across projects and solutions.

• Templates are easy to debug and troubleshoot.

Now that we have covered some of the issues with single large templates, in the
next section, we will consider the crux of modular templates and how they may help
developers to implement efficient deployments.

550 | ARM template modular design and implementation

Understanding the Single Responsibility Principle
The Single Responsibility Principle is one of the core principles of the SOLID design
principles. It states that a class or code segment should be responsible for a single
function and that it should own that functionality completely. The code should change
or evolve only if there is a functional change or bug in the current functionality and not
otherwise. This code should not change because of changes in some other component
or code that is not part of the current component.

Applying the same principle to ARM templates helps us to create templates that
have the sole responsibility of deploying a single resource or functionality instead of
deploying all resources and a complete solution.

Using this principle will help you create multiple templates, each responsible for a
single resource or a smaller group of resources rather than all resources.

Faster troubleshooting and debugging

Each template deployment is a distinct activity within Azure and is a separate instance
consisting of inputs, outputs, and logs. When multiple templates are deployed for
deploying a solution, each template deployment has separate log entries along with its
input and output descriptions. It is much easier to isolate bugs and troubleshoot issues
using these independent logs from multiple deployments compared to a single large
template.

Modular templates

When a single large template is decomposed into multiple templates where each
smaller template takes care of its own resources, and those resources are solely owned,
maintained, and are the responsibility of the template containing it, we can say we
have modular templates. Each template within these templates follows the Single
Responsibility Principle.

Before learning how to divide a large template into multiple smaller reusable templates,
it is important to understand the technology behind creating smaller templates and
how to compose them to deploy complete solutions.

Understanding the Single Responsibility Principle | 551

Deployment resources

ARM provides a facility to link templates. Although we have already gone through linked
templates in detail, I will mention it here to help you understand how linking templates
helps us achieve modularity, composition, and reusability.

ARM templates provide specialized resources known as deployments, which are
available from the Microsoft.Resources namespace. A deployment resource in an ARM
template looks very similar to the code segment that follows:

"resources": [
 {
 "apiVersion": "2019-10-01",
 "name": "linkedTemplate",
 "type": "Microsoft.Resources/deployments",
 "properties": {
 "mode": "Incremental",
 <nested-template-or-external-template>
 }
 }
]

This template is self-explanatory, and the two most important configurations in
the template resource are the type and the properties. The type here refers to the
deployment resource rather than any specific Azure resource (storage, virtual machine,
and so on) and the properties specify the deployment configuration, including a linked
template deployment or a nested template deployment.

However, what does the deployment resource do? The job of a deployment resource
is to deploy another template. Another template could be an external template in a
separate ARM template file, or it could be a nested template. It means that it is possible
to invoke other templates from a template, just like a function call.

552 | ARM template modular design and implementation

There can be nested levels of deployments in ARM templates. What this means is that
a single template can call another template, and the called template can call another
template, and this can go on for five levels of nested callings:

Figure 16.1: Template decomposition into smaller templates

Now that we understand that large templates can be modular with separate resources
in separate templates, we need to link and bring them together to deploy resources on
Azure. Linked and nested templates are ways to compose multiple templates together.

Linked templates
Linked templates are templates that invoke external templates. External templates are
stored in different ARM template files. An example of linked templates follows:

"resources": [
 {
 "apiVersion": "2019-10-01",
 "name": "linkedTemplate",
 "type": "Microsoft.Resources/deployments",
 "properties": {
 "mode": "Incremental",
 "templateLink": {
 "uri":"https://mystorageaccount.blob.core.windows.net/
AzureTemplates/newStorageAccount.json",
 "contentVersion":"1.0.0.0"
 },
 "parametersLink": {
 "uri":"https://mystorageaccount.blob.core.windows.net/
AzureTemplates/newStorageAccount.parameters.json",
 "contentVersion":"1.0.0.0"

Linked templates | 553

 }
 }
 }
]

Important additional properties in this template compared to the previous template
are templateLink and parametersLink. Now, templateLink refers to the actual URL of
the location of the external template file, and parametersLink is the URL location for
the corresponding parameters file. It is important to note that the caller template
should have access rights to the location of the called template. For example, if the
external templates are stored in Azure Blob storage, which is protected by keys, then
the appropriate Secure Access Signature (SAS) keys must be available to the caller
template to be able to access the linked templates.

It is also possible to provide explicit inline parameters instead of the parametersLink
value, as shown here:

"resources": [
 {
 "apiVersion": "2019-10-01",
 "name": "linkedTemplate",
 "type": "Microsoft.Resources/deployments",
 "properties": {
 "mode": "Incremental",
 "templateLink": {
 "uri":"https://mystorageaccount.blob.core.windows.net/
AzureTemplates/newStorageAccount.json",
 "contentVersion":"1.0.0.0"
 },
 "parameters": {
 "StorageAccountName":{"value": "
 [parameters('StorageAccountName')]"}
 }
 }
 }
]

You now have a good understanding of linked templates. A closely related topic is
nested templates, which the next section will discuss in detail.

554 | ARM template modular design and implementation

Nested templates
Nested templates are a relatively new feature in ARM templates compared to external
linked templates.

Nested templates do not define resources in external files. The resources are defined
within the caller template itself and within the deployment resource, as shown here:

"resources": [
 {
 "apiVersion": "2019-10-01",
 "name": "nestedTemplate",
 "type": "Microsoft.Resources/deployments",
 "properties": {
 "mode": "Incremental",
 "template": {
 "$schema": "https://schema.management.azure.com/schemas/2015-
 01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[variables('storageName')]",
 "apiVersion": "2019-04-01",
 "location": "West US",
 "properties": {
 "accountType": "Standard_LRS"
 }
 }
]
 }
 }
 }
]

In this code segment, we can see that the storage account resource is nested within
the original template as part of the deployments resource. Instead of using the
templateLink and parametersLink attributes, a resources array is used to create multiple
resources as part of a single deployment. The advantage of using a nested deployment
is that resources within a parent can be used to reconfigure them by using their names.
Usually, a resource with a name can exist only once within a template. Nested templates
allow us to use them within the same template and ensure that all templates are self-
sufficient rather than being stored separately, and they may or may not be accessible to
those external files.

Nested templates | 555

Now that we understand the technology behind modular ARM templates, how should
we divide a large template into smaller templates?

There are multiple ways a large template can be decomposed into smaller templates.
Microsoft recommends the following pattern for the decomposition of ARM templates:

Figure 16.2: Template decomposition strategy

When we decompose a large template into smaller templates, there is always the
main template, which is used for deploying the solution. This main or master template
internally invokes other nested or linked templates and they, in turn, invoke other
templates, and finally, the templates containing Azure resources are deployed.

The main template can invoke a known configuration resource template, which, in turn,
will invoke templates comprising Azure resources. The known configuration resource
template is specific to a project or solution and it does not have many reusable factors
associated with it. The member resource templates are reusable templates invoked by
the known configuration resource template.

Optionally, the master template can invoke shared resource templates and other
resource templates if they exist.

It is important to understand known configurations. Templates can be authored as
known configurations or as free-flow configurations.

556 | ARM template modular design and implementation

Free-flow configurations
ARM templates can be authored as generic templates where most, if not all, of the
values assigned to variables are obtained as parameters. This allows the person using
the template to pass any value they deem necessary to deploy resources in Azure. For
example, the person deploying the template could choose a virtual machine of any size,
any number of virtual machines, and any configuration for its storage and networks.
This is known as free-flow configuration, where most of the configuration is allowed
and the templates come from the user instead of being declared within the template.

There are challenges with this kind of configuration. The biggest one is that not all
configurations are supported in every Azure region and datacenter in Azure. The
templates will fail to create resources if those resources are not allowed to be created
in specific locations or regions. Another issue with free-flow configuration is that users
can provide any value they deem necessary and a template will honor them, thereby
increasing both the cost and deployment footprint even though they are not completely
required.

Known configurations
Known configurations, on the other hand, are specific pre-determined configurations
for deploying an environment using ARM templates. These pre-determined
configurations are known as T-shirt sizing configurations. Similar to the way a T-shirt
is available in a pre-determined configuration such as small, medium, and large, ARM
templates can be pre-configured to deploy a small, medium, or large environment
depending on the requirements. This means that users cannot determine any
random custom size for the environment, but they can choose from various provided
options, and ARM templates executed during runtime will ensure that an appropriate
configuration of the environment is provided.

So, the first step in creating a modular ARM template is deciding on the known
configurations for an environment.

As an example, here is the configuration of a datacenter deployment on Azure:

Table 16.1: Configuration of a datacenter deployment on Azure

Now that we know the configurations, we can create modular ARM templates.

T-Shirt Size

Small Four virtual machines with 7 GB of memory along with four CPU cores

Medium Eight virtual machines with 14 GB of memory along with eight CPU cores

Large 16 virtual machines with 28 GB of memory along with eight CPU cores

Known configurations | 557

There are two ways to write modular ARM templates:

• Composed templates: Composed templates link to other templates. Examples of
composed templates are master and intermediate templates.

• Leaf-level templates: Leaf-level templates are templates that contain a single
Azure resource.

ARM templates can be divided into modular templates based on the following:

• Technology

• Functionality

An ideal way to decide on the modular method to author an ARM template is as follows:

• Define resource- or leaf-level templates consisting of single resources. In the
upcoming diagram, the extreme right templates are leaf-level templates. Within
the diagram, virtual machines, virtual network, storage, and others in the same
column represent leaf-level templates.

• Compose environment-specific templates using leaf-level templates. These
environment-specific templates provide an Azure environment, such as a SQL
Server environment, an App Service environment, or a datacenter environment.
Let's drill down a bit more into this topic. Let's take the example of an Azure
SQL environment. To create an Azure SQL environment, multiple resources are
needed. At a bare minimum, a logical SQL Server, a SQL database, and a few
SQL firewall resources should be provisioned. All these resources are defined in
individual templates at the leaf level. These resources can be composed together
in a single template that has the capability to create an Azure SQL environment.
Anybody wanting to create an SQL environment can use this composed template.
Figure 16.3 has Data center, Messaging, and App Service as environment-specific
templates.

• Create templates with higher abstraction composing multiple environment-
specific templates into solutions. These templates are composed of environment-
specific templates that were created in the previous step. For example, to create
an e-commerce inventory solution that needs an App Service environment and a
SQL environment, two environment templates, App Service and SQL Server, can
be composed together. Figure 16.3 has Functional 1 and Functional 2 templates,
which are composed of child templates.

• Finally, a master template should be created, which should be composed of
multiple templates where each template is capable of deploying a solution.

558 | ARM template modular design and implementation

The preceding steps for creating a modular designed template can be easily understood
by means of Figure 16.3:

Figure 16.3: Template and resource mapping

Now, let's implement a part of the functionality shown in the previous diagram. In
this implementation, we will provide a virtual machine with a script extension using a
modular approach. The custom script extension deploys Docker binaries and prepares a
container environment on a Windows Server 2016 virtual machine.

Known configurations | 559

Now, we are going to create a solution using ARM templates using a modular approach.
As mentioned before, the first step is to create individual resource templates. These
individual resource templates will be used to compose additional templates capable of
creating an environment. These templates will be needed to create a virtual machine.
All ARM templates shown here are available in the accompanying chapter code. The
names and code of these templates are as follows:

• Storage.json

• virtualNetwork.json

• PublicIPAddress.json

• NIC.json

• VirtualMachine.json

• CustomScriptExtension.json

First, let's look at the code for the Storage.json template. This template provides a
storage account, which every virtual machine needs for storing its OS and data disk
files:

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-
01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "storageAccountName": {
 "type": "string",
 "minLength": 1
 },
 "storageType": {
 "type": "string",
 "minLength": 1
 },
 ...
 "outputs": {
 "resourceDetails": {
 "type": "object",
 "value": "[reference(parameters('storageAccountName'))]"
 }
 }
}

560 | ARM template modular design and implementation

Next, let's look at the code for the public IP address template. A virtual machine that
should be accessible over the internet needs a public IP address resource assigned to its
network interface card. Although exposing a virtual machine to the internet is optional,
this resource might get used for creating a virtual machine. The following code is
available in the PublicIPAddress.json file:

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-
01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "publicIPAddressName": {
 "type": "string",
 "minLength": 1
 },
 "publicIPAddressType": {
 "type": "string",
 "minLength": 1
 ...
 }
 }
],
 "outputs": {
 "resourceDetails": {
 "type": "object",
 "value": "[reference(parameters('publicIPAddressName'))]"
 }
 }
}

Known configurations | 561

Next, let's look at the code for the virtual network. Virtual machines on Azure need
a virtual network for communication. This template will be used to create a virtual
network on Azure with a pre-defined address range and subnets. The following code is
available in the virtualNetwork.json file:

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-
01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "virtualNetworkName": {
 "type": "string",
 "minLength": 1
 ...
 },
 "subnetPrefix": {
 "type": "string",
 "minLength": 1
 },
 "resourceLocation": {
 "type": "string",
 "minLength": 1
 }
 ...
 "subnets": [
 {
 "name": "[parameters('subnetName')]",
 "properties": {
 "addressPrefix": "[parameters('subnetPrefix')]"
 }
 }
]
 }
 }
],
 "outputs": {
 "resourceDetails": {
 "type": "object",
 "value": "[reference(parameters('virtualNetworkName'))]"
 }
 }
}

562 | ARM template modular design and implementation

Next, let's look at the code for the network interface card. A virtual network card is
needed by a virtual machine to connect to a virtual network and to accept and send
requests to and from the internet. The following code is available in the NIC.json file:

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-
01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "nicName": {
 "type": "string",
 "minLength": 1
 },
 "publicIpReference": {
 "type": "string",
 "minLength": 1
 ...
[resourceId(subscription().subscriptionId,resourceGroup().name, 'Microsoft.
Network/publicIPAddresses', parameters('publicIpReference'))]",
 "vnetRef": "[resourceId(subscription().
subscriptionId,resourceGroup().name, 'Microsoft.Network/virtualNetworks',
parameters('virtualNetworkReference'))]",
 "subnet1Ref": "[concat(variables('vnetRef'),'/subnets/',
parameters('subnetReference'))]"
 },
 ...
 "id": "[variables('subnet1Ref')]"
 }
 }
 }
]
 }
 }
],
 "outputs": {
 "resourceDetails": {
 "type": "object",
 "value": "[reference(parameters('nicName'))]"
 }
 }
}

Known configurations | 563

Next, let's look at the code for creating a virtual machine. Each virtual machine is a
resource in Azure, and note that this template has no reference to storage, network,
public IP addresses, or other resources created earlier. This reference and composition
will happen later in this section using another template. The following code is available
in the VirtualMachine.json file:

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01
01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "vmName": {
 "type": "string",
 "minLength": 1
 ...
 },
 "imageOffer": {
 "type": "string",
 "minLength": 1
 },
 "windowsOSVersion": {
 "type": "string",
 "minLength": 1
 },
 ...
 "outputs": {
 "resourceDetails": {
 "type": "object",
 "value": "[reference(parameters('vmName'))]"
 }
 }

}

564 | ARM template modular design and implementation

Next, let's look at the code for creating a custom script extension. This resource
executes a PowerShell script on a virtual machine after it is provisioned. This resource
provides an opportunity to execute post-provisioning tasks in Azure Virtual Machines.
The following code is available in the CustomScriptExtension.json file:

{
 "$schema": "http://schema.management.azure.com/schemas/2015-01-01/
deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "VMName": {
 "type": "string",
 "defaultValue": "sqldock",
 "metadata": {
...
 "commandToExecute": "[concat('powershell -ExecutionPolicy
Unrestricted -file docker.ps1')]"
 },
 "protectedSettings": {
 }
 }
 }
],
 "outputs": {
 }
}

Next, we'll look at the custom script extension PowerShell code that prepares the
Docker environment. Please note that a virtual machine reboot might happen while
executing the PowerShell script, depending on whether the Windows containers
feature is already installed or not. The following script installs the NuGet package, the
DockerMsftProvider provider, and the Docker executable. The docker.ps1 file is available
with the accompanying chapter code:

docker.ps1

Install-PackageProvider -Name Nuget -Force -ForceBootstrap -Confirm:$false
Install-Module -Name DockerMsftProvider -Repository PSGallery -Force
-Confirm:$false -verboseInstall-Package -Name docker -ProviderName
DockerMsftProvider -Force -ForceBootstrap -Confirm:$false

Known configurations | 565

All the previously seen linked templates should be uploaded to a container within an
Azure Blob storage account. This container can have a private access policy applied, as
you saw in the previous chapter; however, for this example, we will set the access policy
as container. This means these linked templates can be accessed without an SAS token.

Finally, let's focus on writing the master template. Within the master template, all
the linked templates are composed together to create a solution—to deploy a virtual
machine and execute a script within it. The same approach can be used for creating
other solutions, such as providing a datacenter consisting of multiple inter-connected
virtual machines. The following code is available in the Master.json file:

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/
deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "storageAccountName": {
 "type": "string",
 "minLength": 1
 ...
 },
 "subnetName": {
 "type": "string",
 "minLength": 1
 },
 "subnetPrefix": {
 "type": "string",
 "minLength": 1
 ...
 "windowsOSVersion": {
 "type": "string",
 "minLength": 1
 },
 "vhdStorageName": {
 "type": "string",
 "minLength": 1
 },
 "vhdStorageContainerName": {
 "type": "string",
 "minLength": 1
 ...[concat('https://',parameters('storageAccountName'),'armtfiles.blob.
core.windows.net/',variables('containerName'),'/Storage.json')]",
 "contentVersion": "1.0.0.0"

566 | ARM template modular design and implementation

 },
 "parameters": {
 "storageAccountName": {
 "value": "[parameters('storageAccountName')]"
 },
 "storageType": {
 "value": "[parameters('storageType')]"
 },
 "resourceLocation": {
 "value": "[resourceGroup().location]"
 ...
 "outputs": {
 "resourceDetails": {
 "type": "object",
 "value": "[reference('GetVM').outputs.resourceDetails.value]"
 }
 }
}

The master templates invoke the external templates and also co-ordinate inter-
dependencies among them.

The external templates should be available in a well-known location so that the master
template can access and invoke them. In this example, the external templates are
stored in the Azure Blob storage container and this information was passed to the ARM
template by means of parameters.

The external templates in Azure Blob storage could be access-protected by setting
up access policies. The command used to deploy the master template is shown
next. It might look like a complex command, but a majority of the values are used
as parameters. You are advised to change the values of these parameters before
running it. The linked templates have been uploaded to a storage account named
st02gvwldcxm5suwe within the armtemplates container. The resource group should
be created if it does not currently exist. The first command is used to create a new
resource group in the West Europe region:

New-AzResourceGroup -Name "testvmrg" -Location "West Europe" -Verbose

Understanding copy and copyIndex | 567

The rest of the parameter values are needed to configure each resource. The storage
account name and the dnsNameForPublicIP value should be unique within Azure:

New-AzResourceGroupDeployment -Name "testdeploy1" -ResourceGroupName
testvmrg -Mode Incremental -TemplateFile "C:\chapter 05\Master.json"
-storageAccountName "st02gvwldcxm5suwe" -storageType "Standard_LRS"
-publicIPAddressName "uniipaddname" -publicIPAddressType "Dynamic"
-dnsNameForPublicIP "azureforarchitectsbook" -virtualNetworkName
vnetwork01 -addressPrefix "10.0.1.0/16" -subnetName "subnet01" -subnetPrefix
"10.0.1.0/24" -nicName nic02 -vmSize "Standard_DS1" -adminUsername "sysadmin"
-adminPassword $(ConvertTo-SecureString -String sysadmin@123 -AsPlainText
-Force) -vhdStorageName oddnewuniqueacc -vhdStorageContainerName vhds
-OSDiskName mynewvm -vmName vm10 -windowsOSVersion 2012-R2-Datacenter
-imagePublisher MicrosoftWindowsServer -imageOffer WindowsServer
-containerName armtemplates -Verbose

In this section, we covered best practices for decomposing large templates into smaller
reusable templates and combining them together at runtime to deploy complete
solutions on Azure. As we progress through the book, we will modify the ARM template
step by step until we have explored its core parts. We used Azure PowerShell cmdlets to
initiate the deployment of templates on Azure.

Let's move on to the topic of copy and copyIndex.

Understanding copy and copyIndex
There are many times when multiple instances of a particular resource or a group of
resources are needed. For example, you may need to provision 10 virtual machines of
the same type. In such cases, it is not prudent to deploy templates 10 times to create
these instances. A better alternate approach is to use the copy and copyIndex features of
ARM templates.

copy is an attribute of every resource definition. This means it can be used to create
multiple instances of any resource type.

Let's understand this with the help of an example of creating multiple storage accounts
within a single ARM template deployment.

568 | ARM template modular design and implementation

The next code snippet creates 10 storage accounts serially. They could have been
created in parallel by using Parallel instead of Serial for the mode property:

"resources": [

 {

 "apiVersion": "2019-06-01",

 "type": "Microsoft.Storage/storageAccounts",

 "location": "[resourceGroup().location]",

 "name": "[concat(variables('storageAccountName'), copyIndex())]",

 "tags":{

 "displayName": "[variables('storageAccountName')]"

 },

 "sku":{

 "name":"Premium_ZRS"

 },

 "kind": "StorageV2",

 "copy":{

 "name": "storageInstances",

 "count": 10,

 "mode": "Serial"

 }

 }

],

In the preceding code, copy has been used to provision 10 instances of the storage
account serially, that is, one after another. The storage account names must be unique
for all 10 instances, and copyIndex has been used to make them unique by concatenating
the original storage name with the index value. The value returned by the copyIndex
function changes in every iteration; it will start at 0 and go on for 10 iterations. This
means it will return 9 for the last iteration.

Now that we have learned how to create multiple instances of an ARM template, let's
dive into securing these templates from known vulnerabilities.

Securing ARM templates | 569

Securing ARM templates
Another important aspect related to creating enterprise ARM templates is securing
them appropriately. ARM templates contain the resource configuration and vital
information about infrastructure, and so they should not be compromised or accessible
to unauthorized people.

The first step in securing ARM templates is storing them in storage accounts and
stopping any anonymous access to the storage account container. Moreover, SAS
tokens should be generated for storage accounts and used in ARM templates to
consume linked templates. This will ensure that only the holders of SAS tokens can
access the templates. Moreover, these SAS tokens should be stored in Azure Key Vault
instead of being hardcoded into ARM templates. This will ensure that even the people
responsible for deployment do not have access to the SAS token.

Another step in securing ARM templates is ensuring that any sensitive information and
secrets, such as database connection strings, Azure subscription and tenant identifiers,
service principal identifiers, IP addresses, and so on, should not be hardcoded in ARM
templates. They should all be parameterized, and the values should be fetched at
runtime from Azure Key Vault. However, before using this approach, it is important that
these secrets are stored in Key Vault prior to executing any ARM templates.

The following code shows one of the ways that values can be extracted from Azure Key
Vault at runtime using the parameters file:

{
 "$schema": https://schema.management.azure.com/schemas/2016-01-01/
deploymentParameters.json#,
 "contentVersion": "1.0.0.0",
 "parameters": {
 "storageAccountName": {
 "reference": {
 "keyVault": {
 "id": "/subscriptions/--subscription id --/
resourceGroups/rgname/providers/Microsoft.KeyVault/vaults/keyvaultbook"),
 "secretName": "StorageAccountName"
 }
 }
 }
 }
}

In this code listing, a parameter is defined that references Azure Key Vault to fetch
values at runtime during deployment. The Azure Key Vault identifier and the secret
name have been provided as input values.

570 | ARM template modular design and implementation

Now that you have learned how to secure ARM templates, let's take a look at identifying
the various dependencies between them and how we can enable communication
between multiple templates.

Using outputs between ARM templates
One of the important aspects that can easily be overlooked while using linked templates
is that there might be resource dependencies within linked templates. For example, a
SQL Server resource might be in a linked template that is different to that of a virtual
machine resource. If we want to open the SQL Server firewall for the virtual machine IP
address, then we should be able to dynamically pass this information to the SQL Server
firewall resource after provisioning the virtual machine.

This could be done using the simple method of referring to the IP address resource
using the REFERENCES function if the SQL Server and virtual machine resources are in the
same template.

It becomes slightly more complex in the case of linked templates if we want to share
runtime property values from one resource to another when they are in different
templates.

ARM templates provide an outputs configuration, which is responsible for generating
outputs from the current template deployment and returning them to the user. For
example, we might output a complete object, as shown in the following code listing,
using the reference function, or we might just output an IP address as a string value:

"outputs": {

 "storageAccountDetails": {

 "type": "object",

 "value": "[reference(resourceid
 ('Microsoft.Storage/storageAccounts',
 variables('storageAccountName')))]",

 "virtualMachineIPAddress": {

 "type": "string",

 "value": "[reference(variables
 ('publicIPAddressName')).properties.ipAddress]"

 }

 }

}

Using outputs between ARM templates | 571

Parameters within a linked template can be utilized by the master template. When a
linked template is called, the output is available to the master template that can be
supplied as a parameter to the next linked or nested template. This way, it is possible to
send the runtime configuration values of resources from one template to another.

The code in the master template would be similar to what's shown here; this is the code
that's used to call the first template:

{
 "type": "Microsoft.Resources/deployments",
 "apiVersion": "2017-05-10",
 "name": "createvm",
 "resoureceGroup": "myrg",
 "dependsOn": [
 "allResourceGroups"
],
 "properties":{
 "mode": "Incremental",
 "templateLink":{
 "uri": "[variables(
 'templateRefSharedServicesTemplateUri')]",
 "contentVersion": "1.0.0.0"
 },
 "parameters": {
 "VMName": {
 "value": "[variables('VmName')]"
 }
 }
 }
}

572 | ARM template modular design and implementation

The preceding code snippet from the master template is calling a nested template
responsible for provisioning a virtual machine. The nested template has an output
section that provides the IP address of the virtual machine. The master template will
have another deployment resource in its template that will take the output value and
send it as a parameter to the next nested template, passing the IP address at runtime.
This is shown in the following code:

{
 "type": "Microsoft,Resources/deployments",
 "apiVersion": "2017-05-10",
 "name": "createSQLServer",
 "resourceGroup": "myrg",
 "dependsOn": [
 "createvm"
],
 "properties": {
 "mode": "Incremental",
 "templateLink": {
 "uri": "[variables('templateRefsql')]",
 "contentVersion": "1.0.0.0"
 },
 "parameters": {
 "VMName": {
 "value": "[reference
('createvm').outputs.virtualMachineIPAddress.value]"
 }
 }
 }
}

In the preceding code listing, a nested template is being invoked and a parameter
is being passed to it. The value of the parameter is derived from the previous linked
template's output, which is named virtualMachineIPAddress. Now, the nested template
will get the IP address of the virtual machine dynamically and it can use it as a
whitelisted IP address.

Using this approach, we can pass runtime values from one nested template to another.

Summary | 573

Summary
ARM templates are the preferred means of provisioning resources in Azure. They
are idempotent in nature, bringing consistency, predictability, and reusability to
environment creation. In this chapter, we looked at how to create a modular ARM
template. It is important for teams to spend quality time designing ARM templates
in an appropriate way, so that multiple teams can work on them together. They are
highly reusable and require minimal changes to evolve. In this chapter, we learned
how to create templates that are secure by design, how to provision multiple resource
instances in a single deployment, and how to pass outputs from one nested template to
another using the outputs section of ARM templates.

The next chapter will move on to a different and very popular strand of technology
known as serverless within Azure. Azure Functions is one of the major serverless
resources of Azure, and this will be covered in complete depth, including Durable
Functions.

In the previous chapter, you learned about ARM templates, and so far, we have been
dealing with architectural concerns and their solutions in Azure in general. However,
this chapter is not based on generalized architecture. In fact, it explores one of the
most disruptive technologies of this century. This chapter will discuss the details of the
Internet of Things (IoT) and Azure.

Azure IoT refers to a collection of Microsoft-managed cloud services that can connect,
monitor, and control billions of IoT assets. In other words, an IoT solution comprises
one or more IoT devices that constantly communicate with one or more back-end
servers in the cloud.

Designing IoT
solutions

17

576 | Designing IoT solutions

This chapter will cover the following topics:

• Azure and IoT

• An overview of Azure IoT

• Device management

• Registering devices

• Device-to-IoT-hub communication

• Scaling IoT solutions

• High availability for IoT solutions

• IoT protocols

• Using message properties to route messages

IoT
The internet was invented in the 1980s and later became widely available. Almost
everyone moved toward having a presence on the internet and started creating their
own static web pages. Eventually, the static content became dynamic and could be
generated on the fly, based on context. In nearly all cases, a browser was needed to
access the internet. There were a plethora of browsers available, and without them,
using the internet was a challenge.

During the first decade of this century, there was an interesting development that was
emerging—the rise of handheld devices, such as mobile phones and tablets. Mobile
phones started becoming cheaper and were available ubiquitously. The hardware and
software capabilities of these handheld devices were improving considerably, and so
much so that people started using browsers on their mobile devices rather than on
their desktops. But one particularly distinct change was the rise of mobile apps. These
mobile apps were downloaded from a store and connected to the internet to talk to
back-end systems. Toward the end of the last decade, there were millions of apps
available with almost every conceivable functionality built into them. The back-end
system for these apps was built on the cloud so that they could be scaled rapidly. This
was the age of connecting applications and servers.

IoT architecture | 577

But was this the pinnacle of innovation? What was the next evolution of the internet?
Well, another paradigm has now been taking center stage: IoT. Instead of just mobile
and tablet devices connecting to the internet, why can't other devices connect to the
internet? Previously, such devices were available only in select markets; they were
costly, not available to the masses, and had limited hardware and software capabilities.
However, since the first part of this decade, the commercialization of these devices
has been growing on a grand scale. These devices are becoming smaller and smaller,
are more capable in terms of hardware and software, have more storage and compute
power, can connect to the internet on various protocols, and can be attached to almost
anything. This is the age of connecting devices to servers, applications, and other
devices.

This has led to the formulation of the idea that IoT applications can change the way
that industries are operating. Newer solutions that were previously unheard of are
beginning to be realized. Now, these devices can be attached to anything; they can get
information and send it to a back-end system that can assimilate information from all
the devices and either take action on or report incidents.

IoT sensors and controls can be leveraged in many business use cases. For example,
they can be used in vehicle tracking systems, which can track all the vital parameters
of a vehicle and send those details to a centralized data store for analysis. Smart
city initiatives can also make use of various sensors to track pollution levels,
temperature, and street congestion. IoT has also found its way into agriculture-
related activities, such as measuring soil fertility, humidity, and more. You can
visit Microsoft Technical Case Studies for IoT, at https://microsoft.github.io/
techcasestudies/#technology=IoT&sortBy=featured, for real-life examples of how
organizations leverage Azure IoT.

Before we explore the tools and services related to IoT, we will first cover IoT
architecture in detail.

IoT architecture
Before getting into Azure and its features and services regarding IoT, it is important
to understand the various components that are needed to create end-to-end IoT
solutions.

Consider that IoT devices across the globe are sending millions of messages every
second to a centralized database. Why is this data being collected? Well, the answer
is to extract rich information about events, anomalies, and outliers that are to do with
whatever those devices are monitoring.

https://microsoft.github.io/techcasestudies/#technology=IoT&sortBy=featured
https://microsoft.github.io/techcasestudies/#technology=IoT&sortBy=featured

578 | Designing IoT solutions

Let's understand this in more detail.

IoT architecture can be divided into distinct phases, as follows:

1. Connectivity: This phase involves a connection being made between a device and
the IoT service.

2. Identity: After connecting to the IoT service, the first thing that happens is the
identification of the device and ensuring that it is allowed to send device telemetry
to the IoT service. This is done using an authentication process.

3. Capture: During this phase, the device telemetry is captured and received by the
IoT service.

4. Ingestion: In this phase, the IoT service ingests the device telemetry.

5. Storage: The device telemetry is stored. It could be a temporary or permanent
store.

6. Transformation: The telemetry data is transformed for further processing. This
includes augmenting existing data and inferring data.

7. Analytics: The transformed data is used to find patterns, anomalies, and insights.

8. Presentation: The insights are shown as dashboards and reports. Additionally, new
alerts can be generated that could invoke automation scripts and processes.

Figure 17.1 shows a generic IoT-based architecture. Data is generated or collected by
devices and sent over to the cloud gateway. The cloud gateway, in turn, sends the data
to multiple back-end services for processing. Cloud gateways are optional components;
they should be used when the devices themselves are not capable of sending requests
to back-end services, either because of resource constraints or the lack of a reliable
network. These cloud gateways can collate data from multiple devices and send it to
back-end services. The data can then be processed by back-end services and shown as
insights or dashboards to users:

IoT architecture | 579

Figure 17.1: A generic IoT application architecture

Now that we are clear about the architecture, let's go ahead and understand how IoT
devices communicate with other devices.

Connectivity

IoT devices need to communicate to connect to other devices. There are various
connectivity types; for example, connectivity could exist between devices in a region,
between devices and a centralized gateway, and between devices and an IoT platform.

In all such cases, IoT devices need connectivity capability. This capability could be
in the form of internet connectivity, Bluetooth, infrared, or any other near-device
communication.

However, some IoT devices might not have the capability to connect to the internet. In
these cases, they can connect to a gateway that in turn has connectivity to the internet.

IoT devices use protocols to send messages. The major protocols are the Advanced
Message Queuing Protocol (AMQP) and the Message Queue Telemetry
Transport (MQTT) protocol.

580 | Designing IoT solutions

Device data should be sent to an IT infrastructure. The MQTT protocol is a device-
to-server protocol that devices can use to send telemetry data and other information
to servers. Once the server receives a message through the MQTT protocol, it needs
to transport the message to other servers using a reliable technology that is based on
messages and queues. AMQP is the preferred protocol for moving messages between
servers in an IT infrastructure in a reliable and predictable manner:

Figure 17.2: Workings of the MQTT and AMQP protocols

Servers receiving initial messages from IoT devices should send those messages to
other servers for whatever processing is necessary, such as saving to logs, evaluation,
analytics, and presentation.

Some devices do not have the capability to connect to the internet or do not support
protocols that are compatible with other server technologies. To enable these devices
to work with an IoT platform and the cloud, intermediate gateways can be used.
Gateways help in onboarding devices whose connectivity and networking capability is
slow and not consistent; such devices may use protocols that are not standard, or their
capabilities may be limited in terms of resources and power.

In such circumstances, when devices need additional infrastructure to connect to back-
end services, client gateways can be deployed. These gateways receive messages from
near devices, and forward (or push) them to the IT infrastructure and the IoT platform
for further consumption. These gateways are capable of protocol translation if required.

In this section, you learned about how communication is implemented with other
devices and about the role that gateways play in terms of communication. In the next
section, we're going to talk about identity.

IoT architecture | 581

Identity

IoT devices should be registered with a cloud platform. Devices that are not registered
should not be allowed to connect to a cloud platform. The devices should be
registered and be assigned an identity. A device should send its identity information
when connecting to the cloud. If the device fails to send this identity information,
the connectivity should fail. You will see, later in this chapter, how to generate an
identity for a device using a simulated application. As you already know, IoT devices are
deployed to capture information, and in the next section, we will briefly talk about the
capture process.

Capture

IoT devices should be able to capture information. They should have the capability, for
example, to read or monitor the moisture content in the air or in soil. This information
can be captured based on frequency—maybe even once per second. Once the
information is captured, the device should be able to send it across to the IoT platform
for processing. If a device can't connect to the IoT platform directly, it can connect to
an intermediary cloud gateway instead and have that push the captured information.

The size of captured data and the frequency of capture are the most important things
for the device. Whether a device should have local storage to be able to temporarily
store captured data is another important aspect that should be considered. For
instance, a device can work in offline mode if there is enough local storage available.
Even mobile devices sometimes act as IoT devices connected to various instruments
and have the capability to store data. Once we have captured the data, we need to
ingest it to an IoT platform for further analysis, and in the next section, we will explore
ingestion.

Ingestion

Data captured and generated by devices should be sent to an IoT platform that is
capable of ingesting and consuming this data to extract meaningful information and
insights out of it. The ingestion service is a crucial service because its availability and
scalability affect the throughput of incoming data. If data starts getting throttled due
to scalability issues, or if data is not able to be ingested due to availability issues, then it
will be lost and the dataset might get biased or skewed. We have the data captured and
we need a place to store this data. In the next section, you'll learn about storage.

582 | Designing IoT solutions

Storage

IoT solutions generally deal with millions or even billions of records, spanning terabytes
or even petabytes of data. This is valuable data that can provide insights on operations
and their health. This data needs to be stored in such a way that analytics can be
performed on it. Storage should be readily available for analytics, applications, and
services to consume it. Storage solutions should provide adequate throughput and
latency from a performance perspective, and be highly available, scalable, and secure.
The next section deals with data transformation, which is needed to store and analyze
data.

Transformation

IoT solutions are generally data-driven and have considerably high volumes of data
to deal with. Imagine that every car has a device and each one sends messages every
five seconds. If there were a million cars sending messages, this would be equal to 288
million messages per day and 8 billion messages per month. Together, this data has lots
of hidden information and insights; however, making sense of this kind of data just by
looking at it is difficult.

The data that is captured and stored by IoT devices can be consumed to solve business
problems, but not all data that is captured is of importance. Just a subset of data might
be needed to solve a problem. Additionally, the data that the IoT devices gather might
not be consistent either. To ensure that the data is consistent and not biased or skewed,
appropriate transformations should be executed upon it to make it ready for analysis.
During transformation, data is filtered, sorted, removed, enriched, and transformed
into a structure, such that the data can be consumed by components and applications
further downstream. We need to perform some analytics with the transformed data
before presenting it. As the next step in the workflow, we will discuss analytics.

Analytics

The data transformed in the previous step becomes the input for the analytics step.
Depending on the problem at hand, there are different types of analytics that can be
performed on transformed data.

The following are the different types of analytics that can be performed:

• Descriptive analytics: This type of analytics helps in finding patterns and details
about the status of the IoT devices and their overall health. This stage identifies
and summarizes the data for further consumption by more advanced stages of
analytics. It will help in summarization, finding statistics related to probability,
identifying deviation, and other statistical tasks.

IoT architecture | 583

• Diagnostic analytics: This type of analytics is more advanced than descriptive
analytics. It builds on descriptive analytics and tries to answer queries about why
certain things have happened. That is, it tries to find the root causes of events. It
tries to find answers using advanced concepts, such as hypothesis and correlation.

• Predictive analytics: This type of analytics tries to predict things that have a high
probability of happening in the future. It generates predictions that are based on
past data; regression is one of the examples that is based on past data. Predictive
analytics could, for example, predict the price of a car, the behavior of stock on the
stock market, when a car tire will burst, and more.

• Prescriptive analytics: This type of analytics is the most advanced. This stage
helps in identifying the action that should be performed to ensure that the health
of devices and solutions does not degrade, and identifying proactive measures to
undertake. The results of this stage of analytics can help in avoiding future issues
and eliminating problems at their root causes.

In the final stage, the output from analytics is presented in a human-readable manner
for a wider audience to understand and interpret. In the next part, we will discuss
presentation.

Presentation

Analytics help in identifying answers, patterns, and insights based on data. These
insights also need to be available to all stakeholders in formats that they can
understand. To this end, dashboards and reports can be generated, statistically or
dynamically, and then be presented to stakeholders. Stakeholders can consume these
reports for further action and improve their solutions continuously.

As a quick recap of all the preceding steps, we started off this section by looking at
connectivity, where we introduced gateways for sending the data from devices that
don't support the standard protocols. Then, we talked about identity and how data is
captured. The captured data is then ingested and stored for further transformation.
After transformation, analytics is done on the data before it's presented to all
stakeholders. As we are working on Azure, in the next section, we will cover what Azure
IoT is and consider the basics concepts that we have learned about so far from an Azure
standpoint.

584 | Designing IoT solutions

Azure IoT
Now you've learned about the various stages of end-to-end IoT solutions; each of these
stages is crucial and their proper implementation is a must for any solution's success.
Azure provides lots of services for each of these stages. Apart from these services,
Azure provides Azure IoT Hub, which is Azure's core IoT service and platform. It is
capable of hosting complex, highly available, and scalable IoT solutions. We will dive
deep into IoT Hub after going through some other services:

Figure 17.3: List of devices and services for IoT solutions

In the next section, we will follow a similar pattern as we did for our coverage of IoT
architecture to learn about communication, identity, capture, ingestion, storage,
transformation, analytics, and presentation with Azure IoT.

Connectivity

IoT Hub provides all the important protocol suites for devices to connect to IoT hubs.
It offers:

• HTTPS: The HyperText Transport Protocol Secure method uses certificates
consisting of a pair of keys, known as private-public keys, that are used to
encrypt and decrypt data between a device and IoT Hub. It provides one-way
communication from a device to the cloud.

• AMQP: AMQP is an industry standard for sending and receiving messages between
applications. It provides a rich infrastructure for the security and reliability of
messages, and that is one of the reasons why it is quite widely used within the IoT
space. It provides both device-to-Hub as well as Hub-to-device capabilities, and
devices can use it to authenticate using Claims-Based Security (CBS) or Simple
Authentication and Security Layer (SASL). It is used primarily in scenarios where
there are field gateways, and a single identity related to multiple devices can
transmit telemetry data to the cloud.

Azure IoT | 585

• MQTT: MQTT is an industry standard for sending and receiving messages between
applications. It provides both device-to-Hub as well as Hub-to-device capabilities.
It is used primarily in scenarios where each device has its own identity and
authenticates directly with the cloud.

In the next section, we will discuss identity and how devices are authenticated.

Identity

IoT Hub provides services for authenticating devices. It offers an interface for
generating unique identity hashes for each device. When devices send messages
containing a hash, IoT Hub can authenticate them, after checking in its own database
for the existence of such a hash. Now let's see how data is captured.

Capture

Azure provides IoT gateways, which enable devices that do not comply with IoT Hub
to be adapted and to push data. Local or intermediary gateways can be deployed near
devices in such a way that multiple devices can connect to a single gateway to capture
and send their information. Similarly, multiple clusters of devices with local gateways
can also be deployed. There can be a cloud gateway deployed on the cloud itself, which
is capable of capturing and accepting data from multiple sources and ingesting it for IoT
Hub. As discussed previously, we need to ingest the data that we capture. In the next
section, you will learn about ingestion with IoT Hub.

Ingestion

An IoT hub can be a single point of contact for devices and other applications. In other
words, the ingestion of IoT messages is the responsibility of the IoT Hub service. There
are other services, such as Event Hubs and the Service Bus messaging infrastructure,
that can ingest incoming messages; however, the benefits and advantages of using
IoT Hub to ingest IoT data far outweigh those of using Event Hubs and Service
Bus messaging. In fact, IoT Hub was made specifically for the purpose of ingesting
IoT messages within the Azure ecosystem so that other services and components
can act on them. The ingested data is stored to storage. Before we do any kind of
transformation or analytics, let's explore the role of storage in the workflow in the next
section.

586 | Designing IoT solutions

Storage

Azure provides multiple ways of storing messages from IoT devices. These include
storing relational data, schema-less NoSQL data, and blobs:

• SQL Database: SQL Database provides storage for relational data, JSON, and XML
documents. It provides a rich SQL-query language and it uses a full-blown SQL
server as a service. Data from devices can be stored in SQL databases if it is well
defined and the schema will not need to undergo changes frequently.

• Azure Storage: Azure Storage provides Table and Blob storage. Table storage
helps in storing data as entities, where the schema is not important. Blobs help in
storing files in containers as blobs.

• Cosmos DB: Cosmos DB is a full-blown enterprise-scale NoSQL database. It is
available as a service that is capable of storing schema-less data. It is a globally
distributed database that can span continents, providing high availability and
scalability of data.

• External data sources: Apart from Azure services, customers can bring or use
their own data stores, such as a SQL server on Azure virtual machines, and can use
them to store data in a relational format.

The next section is on transformation and analytics.

Transformation and analytics

Azure provides multiple resources to execute jobs and activities on ingested data. Some
of them are listed here:

• Data Factory: Azure Data Factory is a cloud-based data integration service that
allows us to create data-driven workflows in the cloud for orchestrating and
automating data movement and data transformation. Azure Data Factory helps
to create and schedule data-driven workflows (called pipelines) that can ingest
data from disparate data stores; process and transform data by using compute
services such as Azure HDInsight, Hadoop, Spark, Azure Data Lake Analytics,
Azure Synapse Analytics, and Azure Machine Learning; and publish output data
to a data warehouse for Business Intelligence (BI) applications rather than a
traditional Extract-Transform-Load (ETL) platform.

• Azure Databricks: Databricks provides a complete, managed, end-to-end Spark
environment. It can help in the transformation of data using Scala and Python. It
also provides a SQL library to manipulate data using traditional SQL syntax. It is
more performant than Hadoop environments.

Azure IoT | 587

• Azure HDInsight: Microsoft and Hortonworks have come together to help
companies by offering a big data analytics platform with Azure. HDInsight
is a high-powered, fully managed cloud service environment powered by
Apache Hadoop and Apache Spark using Microsoft Azure HDInsight. It helps in
accelerating workloads seamlessly using Microsoft and Hortonworks' industry-
leading big data cloud service.

• Azure Stream Analytics: This is a fully managed, real-time, data analytics service
that helps in performing computation and transformation on streaming data.
Stream Analytics can examine high volumes of data flowing from devices or
processes, extract information from the data stream, and look for patterns, trends,
and relationships.

• Machine Learning: Machine learning is a data science technique that allows
computers to use existing data to forecast future behaviors, outcomes, and trends.
Using machine learning, computers learn behaviors based on the model we create.
Azure Machine Learning is a cloud-based predictive analytics service that makes
it possible to quickly create and deploy predictive models as analytics solutions.
It provides a ready-to-use library of algorithms to create models on an internet-
connected PC and deploy predictive solutions quickly.

• Azure Synapse Analytics: Formerly known as Azure Data Warehouse. Azure
Synapse Analytics provides analytics services that are ideal for enterprise data
warehousing and big data analytics. It supports direct streaming ingestion, which
can be integrated with Azure IoT Hub.

Now that you are familiar with the transformation and analytics tools used in Azure for
the data ingested by IoT devices, let's go ahead and learn about how this data can be
presented.

Presentation

After appropriate analytics have been conducted on data, the data should be presented
to stakeholders in a format that is consumable by them. There are numerous ways in
which insights from data can be presented. These include presenting data through web
applications that are deployed using Azure App Service, sending data to notification
hubs that can then notify mobile applications, and more. However, the ideal approach
for presenting and consuming insights is using Power BI reports and dashboards.
Power BI is a Microsoft visualization tool that is used to render dynamic reports and
dashboards on the internet.

588 | Designing IoT solutions

To conclude, Azure IoT is closely aligned with the basic concepts of IoT architecture.
It follows the same process; however, Azure gives us the freedom to choose different
services and dependencies based on our requirements. In the next section, we will
focus on Azure IoT Hub, a service hosted in the cloud and completely managed by
Azure.

Azure IoT Hub
IoT projects are generally complex in nature. The complexity arises because of the
high volume of devices and data. Devices are embedded across the world, for example,
monitoring and auditing devices that are used to store data, transform and analyze
petabytes of data, and finally take actions based on insights. Moreover, these projects
have long gestation periods, and their requirements keep changing because of
timelines.

If an enterprise wants to embark on a journey with an IoT project sooner rather than
later, then it will quickly realize that the problems we have mentioned are not easily
solved. These projects require enough hardware in terms of computing and storage to
cope, and services that can work with high volumes of data.

IoT Hub is a platform that is built to enable the faster, better, and easier delivery of IoT
projects. It provides all the necessary features and services, including the following:

• Device registration

• Device connectivity

• Field gateways

• Cloud gateways

• Implementation of industry protocols, such as AMQP and the MQTT protocol

• A hub for storing incoming messages

• The routing of messages based on message properties and content

• Multiple endpoints for different types of processing

• Connectivity to other services on Azure for real-time analytics and more

We have covered an overview of Azure IoT Hub, so let's take a deep dive to understand
more about the protocols and how the devices are registered with Azure IoT Hub.

Azure IoT Hub | 589

Protocols

Azure IoT Hub natively supports communication over the MQTT, AMQP, and HTTP
protocols. In some cases, devices or field gateways might not be able to use one of
these standard protocols and will require protocol adaptation. In such cases, custom
gateways can be deployed. The Azure IoT protocol gateway can enable protocol
adaptation for IoT Hub endpoints by bridging the traffic to and from IoT Hub. In the
next section, we will discuss how devices are registered with Azure IoT Hub.

Device registration

Devices should be registered before they can send messages to IoT Hub. The
registration of devices can be done manually using the Azure portal or it can be
automated using the IoT Hub SDK. Azure also provides sample simulation applications,
through which it becomes easy to register virtual devices for development and testing
purposes. There is also a Raspberry Pi online simulator that can be used as a virtual
device, and then, obviously, there are other physical devices that can be configured to
connect to IoT Hub.

If you want to simulate a device from a local PC that is generally used for development
and testing purposes, then there are tutorials available in the Azure documentation in
multiple languages. These are available at https://docs.microsoft.com/azure/iot-hub/
iot-hub-get-started-simulated.

The Raspberry Pi online simulator is available at https://docs.microsoft.com/azure/
iot-hub/iot-hub-raspberry-pi-web-simulator-get-started, and for physical devices
that need to be registered with IoT Hub, the steps given at https://docs.microsoft.com/
azure/iot-hub/iot-hub-get-started-physical should be used.

To manually add a device using the Azure portal, IoT Hub provides the IoT devices
menu, which can be used to configure a new device. Selecting the New option will let
you create a new device as shown in Figure 17.4:

https://docs.microsoft.com/azure/iot-hub/iot-hub-get-started-simulated
https://docs.microsoft.com/azure/iot-hub/iot-hub-get-started-simulated
https://docs.microsoft.com/azure/iot-hub/iot-hub-raspberry-pi-web-simulator-get-started
https://docs.microsoft.com/azure/iot-hub/iot-hub-raspberry-pi-web-simulator-get-started
https://docs.microsoft.com/azure/iot-hub/iot-hub-get-started-physical
https://docs.microsoft.com/azure/iot-hub/iot-hub-get-started-physical

590 | Designing IoT solutions

Figure 17.4: Adding a device via the Azure portal

After the device identity is created, a primary key connection string for IoT Hub should
be used in each device to connect to it:

Figure 17.5: Creating connecting strings for each device

At this stage, the device has been registered with IoT Hub, and our next mission is to
make communication happen between the device and IoT Hub. The next section will
give you a good understanding of how message management is done.

Message management

After devices are registered with IoT Hub, they can start interacting with it. Message
management refers to how the communication or interaction between the IoT device
and IoT Hub is done. This interaction could be from the device to the cloud, or from the
cloud to the device.

Azure IoT Hub | 591

Device-to-cloud messaging

One of the best practices that must be followed in this communication is that although
the device might be capturing a lot of information, only data that is of any importance
should be transmitted to the cloud. The size of the message is very important in IoT
solutions since IoT solutions generally have very high volumes of data. Even 1 KB of
extra data flowing in can result in a GB of storage and processing wasted. Each message
has properties and payloads; properties define the metadata for the message. This
metadata contains data about the device, identification, tags, and other properties that
are helpful in routing and identifying messages.

Devices or cloud gateways should connect to IoT Hub to transfer data. IoT Hub provides
public endpoints that can be utilized by devices to connect and send data. IoT Hub
should be considered as the first point of contact for back-end processing. IoT Hub is
capable of further transmission and routing of these messages to multiple services. By
default, the messages are stored in event hubs. Multiple event hubs can be created for
different kinds of messages. The built-in endpoints used by the devices to send and
receive data can be seen in the Built-in endpoints blade in IoT Hub. Figure 17.6 shows
how you can find the built-in endpoints:

Figure 17.6: Creating multiple event hubs

592 | Designing IoT solutions

Messages can be routed to different endpoints based on the message header and body
properties, as shown in Figure 17.7:

Figure 17.7: Adding a new route to different endpoints

Messages in an IoT hub stay there for seven days by default, and their size can go up to
256 KB.

There is a sample simulator provided by Microsoft for simulating sending messages to
the cloud. It is available in multiple languages; the C# version can be viewed at https://
docs.microsoft.com/azure/iot-hub/iot-hub-csharp-csharp-c2d.

Cloud-to-device messaging

IoT Hub is a managed service providing a bi-directional messaging infrastructure.
Messages can be sent from the cloud to devices, and then based on the message, the
devices can act on them.

There are three types of cloud-to-device messaging patterns:

• Direct methods require immediate confirmation of results. Direct methods are
often used for the interactive control of devices, such as opening and closing
garage shutters. They follow the request-response pattern.

• Setting up device properties using Azure IoT provides device twin properties.
For example, you can set the telemetry-sending interval to 30 minutes. Device
twins are JSON documents that store device state information (such as metadata,
configurations, and conditions). An IoT hub persists a device twin for each device
in the IoT hub.

https://docs.microsoft.com/azure/iot-hub/iot-hub-csharp-csharp-c2d
https://docs.microsoft.com/azure/iot-hub/iot-hub-csharp-csharp-c2d

Azure IoT Hub | 593

• Cloud-to-device messages are used for one-way notifications to the device app.
This follows the fire-and-forget pattern.

In every organization, security is a big concern, and even in the case of IoT devices and
data, this concern is still there. We will be discussing security in the next section.

Security

Security is an important aspect of IoT-based applications. IoT-based applications
comprise devices that use the public internet for connectivity to back-end applications.
Securing devices, back-end applications, and connectivity from malicious users and
hackers should be considered a top priority for the success of these applications.

Security in IoT

IoT applications are primarily built around the internet, and security should play a
major role in ensuring that a solution is not compromised. Some of the most important
security decisions affecting IoT architecture are listed here:

• Regarding devices using HTTP versus HTTPS REST endpoints, REST endpoints
secured by certificates ensure that messages transferred from a device to the
cloud and vice versa are well encrypted and signed. The messages should make no
sense to an intruder and should be extremely difficult to crack.

• If devices are connected to a local gateway, the local gateway should connect to
the cloud using a secure HTTP protocol.

• Devices should be registered to IoT Hub before they can send any messages.

• The information passed to the cloud should be persisted into storage that is well
protected and secure. Appropriate SAS tokens or connection strings that are
stored in Azure Key Vault should be used for connection.

• Azure Key Vault should be used to store all secrets, passwords, and credentials,
including certificates.

• Azure Security Center for IoT provides threat prevention and analysis for every
device, IoT Edge, and IoT Hub across your IoT assets. We can build our own
dashboards in Azure Security Center based on the security assessments. Some key
features include central management from Azure Security Center, adaptive threat
protection, and intelligent threat detection. It's a best practice to consider Azure
Security Center while implementing secured IoT solutions.

Next, we are going to look at the scalability aspect of IoT Hub.

594 | Designing IoT solutions

Scalability

Scalability for IoT Hub is a bit different than for other services. In IoT Hub, there are
two types of messages:

• Incoming: Device-to-cloud messages

• Outgoing: Cloud-to-device messages

Both need to be accounted for in terms of scalability.

IoT Hub provides a couple of configuration options during provision time to configure
scalability. These options are also available post-provisioning and can be updated to
better suit the solution requirements in terms of scalability.

The scalability options that are available for IoT Hub are as follows:

• The Stock Keeping Unit (SKU) edition, which is the size of IoT Hub

• The number of units

We will first look into the SKU edition option.

The SKU edition

The SKU in IoT Hub determines the number of messages a hub can handle per unit per
day, and this includes both incoming and outgoing messages. There are four tiers, as
follows:

• Free: This allows 8,000 messages per unit per day and allows both incoming
and outgoing messages. A maximum of 1 unit can be provisioned. This edition
is suitable for gaining familiarity and testing out the capabilities of the IoT Hub
service.

• Standard (S1): This allows 400,000 messages per unit per day and allows both
incoming and outgoing messages. A maximum of 200 units can be provisioned.
This edition is suitable for a small number of messages.

• Standard (S2): This allows 6 million messages per unit per day and allows both
incoming and outgoing messages. A maximum of 200 units can be provisioned.
This edition is suitable for a large number of messages.

• Standard (S3): This allows 300 million messages per unit per day and allows both
incoming and outgoing messages. A maximum of 10 units can be provisioned. This
edition is suitable for a very large number of messages.

The upgrade and scaling options are available in the Azure portal, under the Pricing
and scale blade of IoT Hub. The options will be presented to you as shown in Figure 17.8:

Azure IoT Hub | 595

Figure 17.8: Choosing a pricing and scale tier

You may notice that the Standard S3 tier allows a maximum of only 10 units, compared
to other standard units that allow 200 units. This is directly related to the size of the
compute resources that are provisioned to run IoT services. The size and capability
of virtual machines for Standard S3 are significantly higher compared to other tiers,
where the size remains the same.

Units

Units define the number of instances of each SKU running behind the service. For
example, 2 units of the Standard S1 SKU tier will mean that the IoT hub is capable of
handling 400K * 2 = 800K messages per day.

More units will increase the scalability of the application. Figure 17.9 is from the Pricing
and scale blade of IoT Hub, where you can see the current pricing tier and number of
units:

Figure 17.9: Options to adjust or migrate IoT Hub units

596 | Designing IoT solutions

One of the booming services in Azure IoT Hub right now is Azure IoT Edge, which is a
completely managed service built on Azure IoT Hub. We will be exploring what Azure
IoT Edge is in the next section.

Azure IoT Edge

Microsoft Azure IoT Edge leverages edge compute to implement IoT solutions. Edge
compute refers to the compute resources that are available on your on-premises
network, right at the end of your network, where the public internet starts. This can be
deployed on your main network or a guest network with firewall isolation.

Azure IoT Edge comprises the IoT Edge runtime, which needs to be installed on a
computer or a device. Docker will be installed on the computer; the computer can run
either Windows or Linux. The role of Docker is to run the IoT Edge modules.

Azure IoT Edge relies on the hybrid cloud concept, where you can deploy and manage
IoT solutions on on-premises hardware and easily integrate them with Microsoft Azure.

Microsoft provides comprehensive documentation for Azure IoT Edge, with quick-start
templates and guidance on how to install the modules. The link to the documentation is
https://docs.microsoft.com/azure/iot-edge.

In the next section, we will look at how infrastructure is managed in the case of Azure
IoT Hub and how high availability is provided to customers.

High availability
IoT Hub is a platform as a service (PaaS) offering from Azure. Customers and users do
not directly interact with the underlying number and size of virtual machines on which
the IoT Hub service runs. Users decide on the region, the SKU of the IoT hub, and the
number of units for their application. The rest of the configuration is determined and
executed by Azure behind the scenes. Azure ensures that every PaaS service is highly
available by default. It does so by ensuring that multiple virtual machines provisioned
behind the service are on separate racks in the datacenter. It does this by placing those
virtual machines on an availability set and on a separate fault and update domain. This
helps ensure high availability for both planned and unplanned maintenance. Availability
sets take care of high availability at the datacenter level.

In the next section, we will discuss Azure IoT Central.

https://docs.microsoft.com/azure/iot-edge

Azure IoT Central | 597

Azure IoT Central
Azure IoT Central provides a platform to build enterprise-grade IoT applications to
meet your business requirements in a secure, reliable, and scalable fashion. IoT Central
eliminates the cost of developing, maintaining, and managing IoT solutions.

IoT Central provides centralized management by which you can manage and monitor
devices, device conditions, rule creation, and device data. In Figure 17.10, you can see
some of the templates that are available in the Azure portal during the creation of IoT
Central applications:

Figure 17.10 Creating an Azure IoT Central application

598 | Designing IoT solutions

Templates will give you a head start and you can customize them as per your
requirements. This will save you a lot of time during the development phase.

IoT Central offers a seven-day trial at the time of writing, and you can see the pricing
for this service here: https://azure.microsoft.com/pricing/details/iot-central/?rtc=1.

Azure IoT Central is a boon for every organization that is developing IoT applications.

Summary
IoT is one of the biggest emerging technologies of this decade and it is already
disrupting industries. Things that sounded impossible before are now suddenly
possible.

In this chapter, we explored IoT Hub and discussed the delivery of IoT solutions to
the customer in a faster, better, and cheaper way than alternative solutions. We also
covered how IoT can fast-track the entire development life cycle and help expedite
time-to-market for companies. Finally, you learned about Azure IoT Edge and Azure IoT
Central.

To help you effectively analyze ever-growing volumes of data, we will discuss Azure
Synapse Analytics in the next chapter.

https://azure.microsoft.com/pricing/details/iot-central/?rtc=1

Azure Synapse Analytics is a groundbreaking evolution of Azure SQL Data Warehouse.
Azure Synapse is a fully managed, integrated data analytics service that blends data
warehousing, data integration, and big data processing with accelerating time to insight
to form a single service.

Azure Synapse
Analytics for

architects

18

602 | Azure Synapse Analytics for architects

In this chapter, we will explore Azure Synapse Analytics by covering the following
topics:

• An overview of Azure Synapse Analytics

• Introduction to Synapse workspaces and Synapse Studio

• Migrating from existing legacy systems to Azure Synapse Analytics

• Migrating existing data warehouse schemas and data to Azure Synapse Analytics

• Re-developing scalable ETL processes using Azure Data Factory

• Common migration issues and resolutions

• Security considerations

• Tools to help migrate to Azure Synapse Analytics

Azure Synapse Analytics
Nowadays, with inexpensive storage and high elastic storage capacities, organizations
are amassing more data than ever before. Architecting a solution to analyze such
massive volumes of data to deliver meaningful insights about a business can be a
challenge. One obstacle that many businesses face is the need to manage and maintain
two types of analytics systems:

• Data warehouses: These provide critical insights about the business.

• Data lakes: These provide meaningful insights about customers, products,
employees, and processes through various analytics methodologies.

Both of these analytics systems are critical to businesses, yet they operate
independently of one another. Meanwhile, businesses need to gain insights from all
their organizational data in order to stay competitive and to innovate processes to
obtain better results.

For architects who need to build their own end-to-end data pipelines, the following
steps must be taken:

1. Ingest data from various data sources.

2. Load all these data sources into a data lake for further processing.

3. Perform data cleaning over a range of different data structures and types.

4. Prepare, transform, and model the data.

5. Serve the cleansed data to thousands of users through BI tools and applications.

A common scenario for architects | 603

Until now, each of these steps has required a different tool. Needless to say, with so
many different services, applications, and tools available on the market, choosing the
best-suited ones can be a daunting task.

There are numerous services available for ingesting, loading, preparing, and serving
data. There are countless services for data cleansing based on the developer's language
of choice. Furthermore, some developers might prefer to use SQL, some might want to
use Spark, while others might prefer to use code-free environments to transform data.

Even after the seemingly proper collection of tools has been selected, there is often
a steep learning curve for these tools. Additionally, architects could encounter
unexpected logistical challenges in maintaining a data pipeline over dissimilar platforms
and languages due to incompatibilities. With such a range of issues, implementing and
maintaining a cloud-based analytics platform can be a difficult task.

Azure Synapse Analytics solves these problems and more. It simplifies the entire
modern data warehouse pattern, allowing architects to focus on building end-to-end
analytics solutions within a unified environment.

A common scenario for architects
One of the most common scenarios that an architect faces is having to conjure up a
plan for migrating existing legacy data warehouse solutions to a modern enterprise
analytics solution. With its limitless scalability and unified experience, Azure Synapse
has become one of the top choices for many architects to consider. Later in this
chapter, we will also discuss common architectural considerations for migrating from
an existing legacy data warehouse solution to Azure Synapse Analytics.

In the next section, we will provide a technical overview of the key features of Azure
Synapse Analytics. Architects who are new to the Azure Synapse ecosystem will gain
the necessary knowledge about Synapse after reading this chapter.

An overview of Azure Synapse Analytics
Azure Synapse Analytics enables data professionals to build end-to-end analytics
solutions while leveraging a unified experience. It delivers rich functionalities for SQL
developers, serverless on-demand querying, machine learning support, the ability to
embed Spark natively, collaborative notebooks, and data integration within a single
service. Developers can choose from a variety of supported languages (for example, C#,
SQL, Scala, and Python) through different engines.

604 | Azure Synapse Analytics for architects

Some of the main capabilities of Azure Synapse Analytics include:

• SQL Analytics with pools (fully provisioned) and on-demand (serverless).

• Spark with full support for Python, Scala, C#, and SQL.

• Data Flow with code-free big data transformation experience.

• Data integration and orchestration to integrate data and operationalize code
development.

• A cloud-native version of Hybrid Transactional/Analytical Processing (HTAP),
delivered by Azure Synapse Link.

To access all of the aforementioned capabilities, Azure Synapse Studio provides a single
unified web UI.

This single integrated data service is advantageous to enterprises as it accelerates the
delivery of BI, AI, machine learning, Internet of Things, and intelligent applications.

Azure Synapse Analytics can derive and deliver insights from all your data residing in
the data warehouse and big data analytics systems at lightning-fast speeds. It enables
data professionals to use familiar languages, such as SQL, to query both relational
and non-relational databases at petabyte scale. In addition, advanced features such as
limitless concurrency, intelligent workload management, and workload isolation help
optimize the performance of all queries for mission-critical workloads.

What is workload isolation?

One of the key features of running enterprise data warehouses at scale is workload
isolation. This is the ability to guarantee resource reservations within a compute cluster
so that multiple teams can work on the data without getting in each other's way, as
illustrated in Figure 18.1:

Figure 18.1: Example of workload isolation

Workload Isolation

40%

Data
Warehouse

60%

Sales

Marketing

40%
Local In-Memory + SSD Cache

Compute 1000c DWU

An overview of Azure Synapse Analytics | 605

You can create workload groups within a cluster by setting a couple of simple
thresholds. These are automatically adjusted depending on the workload and
the cluster, but they always guarantee a quality experience for users running the
workloads. Refer to https://techcommunity.microsoft.com/t5/data-architecture-blog/
configuring-workload-isolation-in-azure-synapse-analytics/ba-p/1201739 to read
more about configuring workload isolation in Azure Synapse Analytics.

To fully appreciate the benefits of Azure Synapse, we will first take a look at Synapse
workspaces and Synapse Studio.

Introduction to Synapse workspaces and Synapse Studio

At the heart of Azure Synapse is the workspace. The workspace is the top-level
resource that comprises your analytics solution in a data warehouse. The Synapse
workspace supports both relational and big data processing.

Azure Synapse provides a unified web UI experience for data preparation, data
management, data warehousing, big data analytics, BI, and AI tasks known as Synapse
Studio. Together with Synapse workspaces, Synapse Studio is an ideal environment for
data engineers and data scientists to share and collaborate their analytics solutions, as
shown in Figure 18.2:

Figure 18.2: A Synapse workspace in Azure Synapse Studio

The following sections highlight the capabilities, key features, platform details, and end
user services of Synapse workspaces and Synapse Studio:

https://techcommunity.microsoft.com/t5/data-architecture-blog/configuring-workload-isolation-in-azure-synapse-analytics/ba-p/1201739
https://techcommunity.microsoft.com/t5/data-architecture-blog/configuring-workload-isolation-in-azure-synapse-analytics/ba-p/1201739

606 | Azure Synapse Analytics for architects

Capabilities:

• A fast, highly elastic, and secure data warehouse with industry-leading
performance and security

• The ability to explore Azure Data Lake Storage and data warehouses using familiar
T-SQL syntax using SQL on-demand (serverless) and SQL queries

• Apache Spark integrated with Azure Machine Learning

• Hybrid data integration to accelerate data ingestion and the operationalization of
the analytics process (ingest, prepare, transform, and serve)

• Business report generation and serving with Power BI integration

Key features:

• Create and operationalize pipelines for data ingestion and orchestration.

• Directly explore data in your Azure Data Lake Storage or data warehouse, as well
as any external connections to the workspace, using Synapse Studio.

• Write code using notebooks and T-SQL query editors.

• Code-free data transformation tool, if you prefer not to write your own code.

• Monitor, secure, and manage your workspaces without leaving the environment.

• Web-based development experience for the entire analytics solution.

• The backup and restore feature in the Azure Synapse SQL pool allows restore
points to be created to make it easy to recover or copy a data warehouse to a
previous state.

• The ability to run concurrent T-SQL queries through SQL pools across petabytes
of data to serve BI tools and applications.

• SQL on-demand provides serverless SQL queries for ease of exploration and
data analysis in Azure Data Lake Storage without any setup or maintenance of
infrastructure.

• Meets the full range of analytics needs, from data engineering to data science,
using a variety of languages, such as Python, Scala, C#, and Spark SQL.

• Spark pools, which alleviate the complex setup and maintenance of clusters and
simplify the development of Spark applications and usage of Spark notebooks.

An overview of Azure Synapse Analytics | 607

• Offers deep integration between Spark and SQL, allowing data engineers to
prepare data in Spark, write the processed results in SQL Pool, and use any
combination of Spark with SQL for data engineering and analysis, with built-in
support for Azure Machine Learning.

• Highly scalable, hybrid data integration capability that accelerates data ingestion
and operationalization through automated data pipelines.

• Provides a friction-free integrated service with unified security, deployment,
monitoring, and billing.

Platform

• Supports both provisioned and serverless compute. Examples of provisioned
compute include SQL compute and Spark compute.

• Provisioned compute allows teams to segment their compute resources so that
they can control cost and usage to better align with their organizational structure.

• Serverless compute, on the other hand, allows teams to use the service
on-demand without provisioning or managing any underlying infrastructure.

• Deep integration between Spark and SQL engines.

In the following section, we will cover the other features of Azure Synapse, including
Apache Spark for Synapse, Synapse SQL, SQL on-demand, Synapse pipelines, and Azure
Synapse Link for Cosmos DB.

Apache Spark for Synapse

For customers who want Apache Spark, Azure Synapse has first-party support through
Azure Databricks and is fully managed by Azure. The latest version of Apache Spark
will automatically be made available to users, along with all security patches. You can
quickly create notebooks with your choice of language, such as Python, Scala, Spark
SQL, and .NET for Spark.

If you use Spark within Azure Synapse Analytics, it is provided as a Software as a
Service offering. For example, you can use Spark without setting up or managing your
own services, such as a virtual network. Azure Synapse Analytics will take care of the
underlying infrastructure for you. This allows you to use Spark immediately in your
Azure Synapse Analytics environment.

In the next section, we will explore Synapse SQL.

608 | Azure Synapse Analytics for architects

Synapse SQL

Synapse SQL allows the use of T-SQL to query and analyze data. There are two models
to choose from:

1. Fully provisioned model

2. SQL on-demand (serverless) model

SQL on-demand

SQL on-demand provides serverless SQL queries. This allows easier exploration
and data analysis in Azure Data Lake Storage without any setup or infrastructure
maintenance:

Table 18.1: Comparison between different infrastructures

Key Features:

• Analysts can focus on analyzing the data without worrying about managing any
infrastructure.

• Customers can benefit from a simple and flexible pricing model, as they only pay
for what they use.

Traditional IT IaaS PaaS Serverless SaaS

Application Application Application Application Application

Data Data Data Data Data

Runtime Runtime Runtime Runtime Runtime

Middleware Middleware Middleware Middleware Middleware

OS OS OS OS OS

Virtualization Virtualization Virtualization Virtualization Virtualization

Servers Servers Servers Servers Servers

Storage Storage Storage Storage Storage

Networking Networking Networking Networking Networking

You Manage

An overview of Azure Synapse Analytics | 609

• It uses the familiar T-SQL language syntax and the best SQL Query Optimizer on
the market. The SQL Query Optimizer is the brain behind the query engine.

• You can easily scale your compute and storage, independently of one another, as
your needs grow.

• Seamlessly integrate with SQL Analytics Pool and Spark via metadata sync and
native connectors.

Synapse pipelines

Synapse pipelines allow developers to build end-to-end workflows for data movement
and data processing scenarios. Azure Synapse Analytics uses the Azure Data Factory
(ADF) technology to provide data integration features. The key features of ADF that
are essential to the modern data warehouse pipeline are available in Azure Synapse
Analytics. All these features are wrapped with a common security model, Role-Based
Access Control (RBAC), in the Azure Synapse Analytics workspace.

Figure 18.3 shows an example of a data pipeline and the activities from ADF that are
directly integrated inside the Azure Synapse Analytics environment:

Figure 18.3: Data pipelines in Azure Synapse Analytics

610 | Azure Synapse Analytics for architects

Key Features:

• Integrated platform services for management, security, monitoring, and metadata
management.

• Native integration between Spark and SQL. Use a single line of code to read and
write with Spark from/into SQL analytics.

• The ability to create a Spark table and query it instantaneously with SQL Analytics
without defining a schema.

• "Key-free" environment. With Single Sign-On and Azure Active Directory pass-
through, no key or login is needed to interact with Azure Data Lake Storage
(ADLS)/databases.

In the next section, we will cover Azure Synapse Link for Cosmos DB.

Azure Synapse Link for Cosmos DB

Azure Synapse Link is a cloud-native version of HTAP. It is an extension of Azure
Synapse. As we have learned earlier, Azure Synapse is a single managed service for
performing analytics over data lakes and data warehouses, using both serverless
and provisioned compute. With Azure Synapse Link, this reach can be extended to
operational data sources as well.

Azure Synapse Link eliminates the bottleneck that is found in traditional operational
and analytical systems. Azure Synapse makes this possible by separating compute
from storage across all of its data services. On the transactional side, Cosmos DB is
a high-performance, geo-replicated, multi-model database service. On the analytics
side, Azure Synapse provides limitless scalability. You can scale the resources for
transactions and for analytics independently. Together, this makes cloud-native HTAP
a reality. As soon as the user indicates what data in Cosmos DB they wish to make
available for analytics, the data becomes available in Synapse. It takes the operational
data you wish to analyze and automatically maintains an analytics-oriented columnar
version of it. As a result, any changes to the operational data in Cosmos DB are
continuously updated to the Link data and Synapse.

The biggest benefit of using Azure Synapse Link is that it alleviates the need for
scheduled batch processing or having to build and maintain operational pipelines.

As mentioned previously, Azure Synapse is the most chosen platform by architects for
migrating existing legacy data warehouse solutions to a modern enterprise analytics
solution. In the next section, we will discuss common architectural considerations for
migrating from an existing legacy data warehouse solution to Azure Synapse Analytics.

Migrating from existing legacy systems to Azure Synapse Analytics | 611

Migrating from existing legacy systems to Azure Synapse Analytics
Today, many organizations are migrating their legacy data warehouse solutions to Azure
Synapse Analytics to gain the benefits of the high availability, security, speed, scalability,
cost savings, and performance of Azure Synapse.

For companies running legacy data warehouse systems such as Netezza, the situation
is even more dire because IBM has announced the end of support for Netezza (https://
www.ibm.com/support/pages/end-support-dates-netezza-5200-netezza-8x50z-
series-and-netezza-10000-series-appliances).

Many decades ago, some companies chose Netezza to manage and analyze large
volumes of data. Today, as technologies evolve, the benefits of having a cloud-based
data warehouse solution far outweigh the on-premises counterparts. Azure Synapse is a
limitless cloud-based analytics service with unmatched time to insight that accelerates
the delivery of BI, AI, and intelligent applications for enterprises. With its multi-cluster
and separate compute and storage architecture, Azure Synapse can be scaled instantly
in ways not possible with legacy systems such as Netezza.

This section covers the architectural considerations and high-level methodology
for planning, preparing, and executing a successful migration of an existing legacy
data warehouse system to Azure Synapse Analytics. Whenever appropriate, specific
examples and references to Netezza will be given. This chapter is not intended to be a
comprehensive step-by-step manual for migration, but rather a practical overview to
help with your migration planning and project scoping.

This chapter also identifies some of the common migration issues and possible
resolutions. It also provides technical details on the differences between Netezza
and Azure Synapse Analytics. They should be taken into consideration as part of your
migration plan.

Why you should migrate your legacy data warehouse to Azure Synapse

Analytics

By migrating to Azure Synapse Analytics, companies with legacy data warehouse
systems can take advantage of the latest innovations in cloud technologies and delegate
tasks such as infrastructure maintenance and platform upgrading to Azure.

Customers who have migrated to Azure Synapse are already reaping many of its
benefits, including the following.

https://www.ibm.com/support/pages/end-support-dates-netezza-5200-netezza-8x50z-series-and-netezza-10000-series-appliances
https://www.ibm.com/support/pages/end-support-dates-netezza-5200-netezza-8x50z-series-and-netezza-10000-series-appliances
https://www.ibm.com/support/pages/end-support-dates-netezza-5200-netezza-8x50z-series-and-netezza-10000-series-appliances

612 | Azure Synapse Analytics for architects

Performance

Azure Synapse Analytics offers best-of-breed relational database performance by using
techniques such as Massively Parallel Processing (MPP) and automatic in-memory
caching. For more information, please review the Azure Synapse Analytics architecture
(https://docs.microsoft.com/azure/synapse-analytics/sql-data-warehouse/massively-
parallel-processing-mpp-architecture).

Speed

Data warehousing is process intensive. It involves data ingestion, transforming data,
cleansing data, aggregating data, integrating data, and producing data visualization
and reports. The many processes involved in moving data from original sources to a
data warehouse are complex and interdependent. A single bottleneck can slow the
entire pipeline and an unexpected spike in data volume amplifies the need for speed.
When timeliness of data matters, Azure Synapse Analytics meets the demand for fast
processing.

Improved security and compliance

Azure is a globally available, highly scalable, secure cloud platform. It offers many
security features, including Azure Active Directory, RBAC, managed identities, and
managed private endpoints. Azure Synapse Analytics, which resides inside the Azure
ecosystem, inherits all of the aforementioned benefits.

Elasticity and cost efficiencies

In a data warehouse, the demands for workload processing can fluctuate. At times,
these fluctuations can vary drastically between peaks and valleys. For example, sudden
spikes in sales data volumes can occur during holiday seasons. Cloud elasticity allows
Azure Synapse to quickly increase and decrease its capacity according to demand with
no impact upon infrastructure availability, stability, performance, and security. Best of
all, you only pay for your actual usage.

Managed infrastructure

Eliminating the overhead of data center management and operations for the data
warehouse allows companies to reallocate valuable resources to where value is
produced and focus on using the data warehouse to deliver the best information and
insight. This lowers the overall total cost of ownership and provides better cost control
over your operating expenses.

Scalability

The volume of data in a data warehouse typically grows as time passes and as history
is collected. Azure Synapse Analytics can scale to match this growth by incrementally
adding resources as data and workload increase.

https://docs.microsoft.com/azure/synapse-analytics/sql-data-warehouse/massively-parallel-processing-mpp-architecture
https://docs.microsoft.com/azure/synapse-analytics/sql-data-warehouse/massively-parallel-processing-mpp-architecture

Migrating from existing legacy systems to Azure Synapse Analytics | 613

Cost savings

Running an on-premises legacy datacenter is expensive (considering the costs of
servers and hardware, networking, physical room space, electricity, cooling, and
staffing). These expenses can be substantially minimized with Azure Synapse Analytics.
With the separation of the compute and storage layers, Azure Synapse offers a very
lucrative price-performance ratio.

Azure Synapse Analytics provides you with true pay-as-you-go cloud scalability without
the need for complicated reconfiguration as your data or workloads grow.

Now that you have learned why it is beneficial to migrate to Azure Synapse Analytics,
we will begin our discussion of the migration process.

The three-step migration process

A successful data migration project starts with a well-designed plan. An effective plan
accounts for the many components that need to be considered, paying particular
attention to architecture and data preparation. The following is the three-step
migration process plan.

Preparation

• Define the scope of what is to be migrated.

• Build an inventory of data and processes for migration.

• Define the data model changes (if any).

• Define the source data extraction mechanism.

• Identify suitable Azure (and third-party) tools and services to be used.

• Train staff early on the new platform.

• Set up the Azure target platform.

Migration

• Start small and simple.

• Automate wherever possible.

• Leverage Azure built-in tools and features to reduce migration effort.

• Migrate metadata for tables and views.

• Migrate historical data to be maintained.

• Migrate or refactor stored procedures and business processes.

• Migrate or refactor ETL/ELT incremental load processes.

614 | Azure Synapse Analytics for architects

Post-migration

• Monitor and document all stages of the process.

• Use the experience gained to build a template for future migrations.

• Re-engineer the data model if required.

• Test applications and query tools.

• Benchmark and optimize query performance.

Next, we will talk about the two types of migration strategies.

The two types of migration strategies

Architects should begin migration planning by assessing the existing data warehouse to
determine which migration strategy works best for their situation. There are two types
of migration strategies to consider.

Lift and Shift strategy

For the lift and shift strategy, the existing data model is migrated unchanged to the
new Azure Synapse Analytics platform. This is done to minimize the risk and the time
required for migration by reducing the scope of changes to the minimum.

Lift and shift is a good strategy for legacy data warehouse environments such as
Netezza where any one of the following conditions applies:

• A single data mart is to be migrated.

• The data is already in a well-designed star or snowflake schema.

• There are immediate time and cost pressures to move to a modern cloud
environment.

Redesign strategy

In scenarios where the legacy data warehouse has evolved over time, it might be
essential to re-engineer it to maintain the optimum performance levels or support new
types of data. This could include a change in the underlying data model.

To minimize risk, it is recommended to migrate first using the lift and shift strategy and
then gradually modernize the data warehouse data model on Azure Synapse Analytics
using the redesign strategy. A complete change in data model will increase risks
because it will impact source-to-data warehouse ETL jobs and downstream data marts.

In the next section, we will offer some recommendations on how to reduce the
complexity of your existing legacy data warehouse before migrating.

Migrating from existing legacy systems to Azure Synapse Analytics | 615

Reducing the complexity of your existing legacy data warehouse before

migrating

In the previous section, we presented the two migration strategies. As a best practice,
during the initial assessment step, be cognizant of any ways to simplify your existing
data warehouse and document them. The goal is to reduce the complexity of your
existing legacy data warehouse system before the migration to make the migration
process easier.

Here are some recommendations on how to reduce the complexity of your existing
legacy data warehouse:

• Remove and archive unused tables before migrating: Avoid migrating data that is
no longer in use. This will help reduce the overall data volume to migrate.

• Convert physical data marts to virtual data marts: Minimize what you have to
migrate, reduce the total cost of ownership, and improve agility.

In the next section, we will take a closer look at why you should consider converting a
physical data mart to a virtual data mart.

Converting physical data marts to virtual data marts

Prior to migrating your legacy data warehouse, consider converting your current
physical data marts to virtual data marts. By using virtual data marts, you can eliminate
physical data stores and ETL jobs for data marts without losing any functionality prior
to migration. The goal here is to reduce the number of data stores to migrate, reduce
copies of data, reduce the total cost of ownership, and improve agility. To achieve this,
you will need to switch from physical to virtual data marts before migrating your data
warehouse. We can consider this as a data warehouse modernization step prior to
migration.

Disadvantages of physical data marts

• Multiple copies of the same data

• Higher total cost of ownership

• Difficult to change as ETL jobs are impacted

616 | Azure Synapse Analytics for architects

Advantages of virtual data marts

• Simplifies data warehouse architecture

• No need to store copies of data

• More agility

• Lower total cost of ownership

• Uses pushdown optimization to leverage the power of Azure Synapse Analytics

• Easy to change

• Easy to hide sensitive data

In the next section, we will talk about how to migrate existing data warehouse schemas
to Azure Synapse Analytics.

Migrating existing data warehouse schemas to Azure Synapse Analytics

Migrating the schemas of an existing legacy data warehouse involves the migration of
existing staging tables, legacy data warehouse, and dependent data mart schemas.

To help you understand the magnitude and scope of your schema migration, we
recommend that you create an inventory of your existing legacy data warehouse and
data mart.

Here is a checklist to help you collect the necessary information:

• Row counts

• Staging, data warehouse, and data mart data size: tables and indexes

• Data compression ratios

• Current hardware configuration

• Tables (including partitions): identify small dimension tables

• Data types

• Views

• Indexes

• Object dependencies

• Object usage

Migrating from existing legacy systems to Azure Synapse Analytics | 617

• Functions: both out-of-the-box functions and User-Defined Functions (UDFs)

• Stored procedures

• Scalability requirements

• Growth projections

• Workload requirements: Concurrent users

With your inventory completed, you can now make decisions on scoping what schema
you want to migrate. Essentially, there are four options for scoping your legacy data
warehouse schema migration:

1. Migrate one data mart at a time:

Figure 18.4: Migrating one data mart at a time

2. Migrate all data marts at once, then the data warehouse:

Figure 18.5: Migrating all data marts at once, then the data warehouse

618 | Azure Synapse Analytics for architects

3. Migrate both the data warehouse and the staging area:

Figure 18.6: Migrating both the data warehouse and the staging area

4. Migrate everything at once:

Figure 18.7: Migrating everything at once

Keep in mind when choosing your option that the goal is to achieve a physical database
design that will match or exceed your current legacy data warehouse system in
performance and preferably at a lower cost.

Migrating from existing legacy systems to Azure Synapse Analytics | 619

To recap, here are some of the recommendations for the schema migration:

• Avoid migrating unnecessary objects or processes.

• Consider using virtual data marts to reduce or eliminate the number of physical
data marts.

• Automate whenever possible. Implementation of DataOps should be considered
alongside the migration to Azure Synapse.

• Use metadata from system catalog tables in the legacy data warehouse system to
generate Data Definition Language (DDL) for Azure Synapse Analytics.

• Perform any required data model changes or data mapping optimizations on Azure
Synapse Analytics.

In the next section, we will talk about how to migrate historical data from a legacy data
warehouse to Azure Synapse Analytics.

Migrating historical data from your legacy data warehouse to Azure Synapse

Analytics

Once the schema migration scope has been determined, we are now ready to make
decisions on how to migrate the historical data.

The steps for migrating historical data are as follows:

1. Create target tables on Azure Synapse Analytics.

2. Migrate existing historical data.

3. Migrate functions and stored procedures as required.

4. Migrate incremental load (ETL/ELT) staging and processes for incoming data.

5. Apply any performance tuning options that are required.

620 | Azure Synapse Analytics for architects

Table 18.2 outlines the four data migration options and their pros and cons:

Table 18.2: Data migration options with their pros and cons

In the next section, we will talk about how to migrate existing ETL processes to Azure
Synapse Analytics.

Data migration
option

Pros Cons

Migrate data

followed by data
warehouse data

• Migrating data one data mart at
a time is an incremental, low-
risk approach. It will also provide
faster proof of business case to
departmental analytics end users.

• Subsequent ETL migration is
limited to only the data in the
dependent data marts migrated.

• Until your migration is complete,
you will have some data that
exists on-premises and on Azure.

• ETL processing from the data
warehouse to data marts would

be changed to target Azure
Synapse.

Migrate data
warehouse data

data marts

• All data warehouse historical data
is migrated.

• Leaving dependent data marts
on-premisesis not ideal as ETLs

datacenter.

• No real opportunity for
incremental data migration.

Migrate data
warehouse
and data marts
together

• All data is migrated in one go. • Potentially higher risk.

• ETLs will most likely all have to
be migrated together.

Convert physical
marts to virtual
marts and only
migrate the data
warehouse

• No data mart data stores to
migrate.

• No ETLs from the data
warehouse tothe marts to
migrate.

• Only the data warehouse data to
migrate.

• Fewer copies of data.

• No loss in functionality.

• Lower total cost of ownership.

• More agility.

• Simpler overall data architecture.

• May be possible with views in
Azure Synapse.

• If nested views are not capable
of supporting virtual data marts,
then third-party data virtualization
software on Azure will likely be
needed.

• All marts would need to be
converted before data warehouse
data is migrated.

• Virtual marts and data
warehouse-to-virtual mart
mappings will need to be ported
to the data virtualization server
on Azure and redirected to Azure
Synapse.

Migrating from existing legacy systems to Azure Synapse Analytics | 621

Migrating existing ETL processes to Azure Synapse Analytics

There are a number of options available for migrating your existing ETL processes to
Azure Synapse Analytics. Table 18.3 outlines some of the ETL migration options based
on how the existing ETL jobs are built:

Table 18.3: ETL migration options

In the next section, we will talk about how to re-develop scalable ETL processes
using ADF.

How are
existing ETL
jobs built?

Migration options Why migrate and what to look
out for

Custom 3GL
code and scripts

• Plan to re-develop these using
ADF.

• Code provides no metadata
lineage.

• Hard to maintain if authors have
gone.

• If staging tables are in the legacy
data warehouse and SQL is used
to transform data, then resolve

Stored
procedures
that run in your
legacy data
warehouse
DBMS

• Plan to re-develop these using
ADF.

•
between the legacy data
warehouse and Azure Synapse.

• No metadata lineage.

• This needs careful evaluation,
but the key advantage could be
the Pipeline as Code approach,
which is possible with ADF.

Graphical ETL
tool (such as
Informatica or
Talend)

• Continue using your existing
ETL tool and switch the target to
Azure Synapse.

• Possibly move to an Azure
version of your existing ETL tool
and port the metadata to run ELT
jobs on Azure making sure you
enable access to on-premises
data sources.

• Control the execution of ETL
services using ADF.

• Avoids re-development.

• Minimizes risk and quicker to
migrate.

Data warehouse
automation
software

• Continue using your existing ETL
tool, switching the target and
staging to Azure Synapse.

• Avoids re-development.

• Minimizes risk and quicker to
migrate.

622 | Azure Synapse Analytics for architects

Re-developing scalable ETL processes using ADF

Another option for handling your existing legacy ETL processes is by re-developing
them using ADF. ADF is an Azure data integration service for creating data-driven
workflows (known as pipelines) to orchestrate and automate data movement and data
transformation. You can use ADF to create and schedule pipelines to ingest data from
different data stores. ADF can process and transform data by using compute services
such as Spark, Azure Machine Learning, Azure HDInsight Hadoop, and Azure Data Lake
Analytics:

Figure 18.8: Re-developing scalable ETL processes using ADF

The next section will offer some recommendations for migrating queries, BI reports,
dashboards, and other visualizations.

Recommendations for migrating queries, BI reports, dashboards, and other

visualizations

Migrating queries, BI reports, dashboards, and other visualizations from your legacy
data warehouse to Azure Synapse Analytics is straightforward if the legacy system uses
standard SQL.

Migrating from existing legacy systems to Azure Synapse Analytics | 623

However, often, this is not the case. In this situation, a different strategy must be taken:

• Identify the high-priority reports to migrate first.

• Use usage statistics to identify the reports that are never used.

• Avoid migrating anything that is no longer in use.

• Once you have produced the list of reports to migrate, their priorities, and the
unused reports to be bypassed, confirm this list with the stakeholders.

• For reports that you are migrating, identify incompatibilities early to gauge the
migration effort.

• Consider data virtualization to protect BI tools and applications from structural
changes to the data warehouse and/or data mart data model that might occur
during the migration.

Common migration issues and resolutions

During the migration process, you might encounter certain issues that you need to
overcome. In this section, we will highlight some of the common issues and provide you
with resolutions that you can implement.

Issue #1: Unsupported data types and workarounds

Table 18.4 shows the data types from legacy data warehouse systems that are
unsupported, as well as the suitable workarounds for Azure Synapse Analytics:

Table 18.4: Unsupported data types and suitable workarounds in Azure Synapse Analytics

Unsupported
data type

Workaround for Azure Synapse Analytics

geometry varbinary

geography varbinary

hierarchyid nvarchar(4000)

image varbinary

text varchar

ntext nvarchar

sql_variant Split column into several strongly typed columns

table Convert to temporary tables

timestamp Rework code to use datetime2 and the CURRENT_TIMESTAMP function

xml varchar

Convert back to the native data type when possible

624 | Azure Synapse Analytics for architects

Issue #2: Data type differences between Netezza and Azure Synapse

Table 18.5 maps the Netezza data types to their Azure Synapse equivalent data types:

Table 18.5: Netezza data types and their Azure Synapse equivalents

Netezza data type Azure Synapse data type

BIGINT BIGINT

BINARY VARYING(n) VARBINARY(n)

BOOLEAN BIT

BYTEINT TINYINT

CHARACTER VARYING(n) VARCHAR(n)

CHARACTER(n) CHAR(n)

DATE DATE

DECIMAL(p,s) DECIMAL(p,s)

DOUBLE PRECISION FLOAT

FLOAT(n) FLOAT(n)

INTEGER INT

INTERVAL INTERVAL data types are not currently directly supported
in Azure Synapse but can be calculated using temporal
functions, such as DATEDIFF

MONEY MONEY

NATIONAL CHARACTER
VARYING(n)

NVARCHAR(n)

NATIONAL CHARACTER(n) NCHAR(n)

NUMERIC(p,s) NUMERIC(p,s)

REAL REAL

SMALLINT SMALLINT

ST_GEOMETRY(n) Spatial data types such as ST_GEOMETRYarenot currently
supported in Azure Synapse, but the data could be stored as
VARCHAR or VARBINARY

TIME TIME

TIME WITH TIME ZONE DATETIMEOFFSET

TIMESTAMP DATETIME

Common SQL incompatibilities and resolutions | 625

Issue #3: Integrity constraint differences

Pay close attention to the integrity constraint differences between your legacy data
warehouse or data mart and Azure Synapse Analytics. In Figure 18.9, the left side
represents the old legacy data warehouse system with primary key and foreign key
constraints, and on the right side is the new Azure Synapse Analytics environment:

Figure 18.9: Integrity constraint differences

The next sections will provide comprehensive coverage on how to resolve other
common SQL incompatibilities during the migration from a legacy data warehouse to
Azure Synapse Analytics.

Common SQL incompatibilities and resolutions
This section will provide technical details regarding common SQL incompatibilities and
resolutions between legacy data warehouse systems and Azure Synapse Analytics. The
section will explain and compare the differences and provide resolutions using a quick-
reference table that you can refer to later on as you embark on your migration project.

The topics that we will cover are as follows:

• SQL Data Definition Language (DDL) differences and resolutions

• SQL Data Manipulation Language (DML) differences and resolutions

• SQL Data Control Language (DCL) differences and resolutions

• Extended SQL differences and workarounds

626 | Azure Synapse Analytics for architects

SQL DDL differences and resolutions

In this section, we will discuss the differences and resolutions for SQL DDL between
legacy data warehouse systems and Azure Synapse Analytics.

Table 18.6: SQL DDL differences between legacy systems and Azure Synapse

Issues Legacy data warehouse system Resolutions

Proprietary
table types

• On the legacy system, identify any
use of proprietary table types.

• Migrate to standard tables within
Azure Synapse Analytics.

• For time series, index or partition on
the date/time column.

•
added into the relevant temporal
queries.

Views • Identify views from catalog tables
and DDL scripts.

• Views with proprietary SQL
extensions or functions will have to
be re-written.

• Azure Synapse Analytics also
supports materialized views and will
automatically maintain and refresh
these.

Nulls • NULL values can be handled

For example, in Oracle, an empty
string is equivalent to a NULL value.

• Some DBMSes have proprietary
SQL functions for handling NULLs;
for example, NVL in Oracle.

• Generate SQL queries to test for
NULL values.

• Test reports that include nullable
columns.

Common SQL incompatibilities and resolutions | 627

SQL DML differences and resolutions

In this section, we will discuss the differences and resolutions for SQL DML between
legacy data warehouse systems and Azure Synapse Analytics:

Table 18.7: SQL DML differences between Netezza and Azure Synapse

Next, we will talk about the differences and resolutions of SQL DCL between legacy
data warehouse systems and Azure Synapse Analytics.

SQL DCL differences and resolutions

In this section, we will discuss the differences and resolutions for SQL DCL between
legacy data warehouse systems and Azure Synapse Analytics. Netezza supports two
classes of access rights: admin and object. Table 18.8 map the Netezza access rights and
their corresponding Azure Synapse equivalents for quick reference.

Function Netezza Azure Synapse equivalent

STRPOS SELECT STRPOS(‘ABCDEFG’,
‘BCD’) …

SELECT CHARINDEX(‘BCD’,
‘ABCDEFG’) …

AGE SELECT AGE(’25-12-1940’, ’25-12-
2020’) FROM …

SELECT DATEDIFF(day, ‘1940-12-
25’, ‘2020-12-25’) FROM …

NOW() NOW() CURRENT_TIMESTAMP

SEQUENCE CREATE SEQUENCE … Rewrite using IDENTITY columns on
Azure Synapse Analytics.

UDF Netezza UDFs are written in nzLua
or C++.

Rewrite in T-SQL on Azure Synapse
Analytics.

Stored
Procedures

Netezza stored procedures are
written in NZPLSQL (based on
Postgres PL/pgSQL).

Rewrite in T-SQL on Azure Synapse
Analytics.

628 | Azure Synapse Analytics for architects

Mapping Netezza admin privileges to the Azure Synapse equivalents

Table 18.8 maps the Netezza admin privileges to the Azure Synapse equivalents:

Admin
privilege

Description Azure Synapse equivalent

Backup Allows users to create backups and to run the
nzbackup command.

Backup and restore feature
in Azure Synapse SQL pool

[Create]
Aggregate Aggregates (UDAs). Permission to operate on

existing UDAs is controlled by object privileges.

Azure Synapse’s CREATE
FUNCTION feature
incorporates Netezza
aggregate functionality

[Create]
Database

Allows the user to create databases.
Permission to operate on existing databases is
controlled by object privileges.

CREATE DATABASE

[Create]
External
Table

Allows the user to create external tables.
Permission to operate on existing tables is
controlled by object privileges.

CREATE TABLE

[Create]
Function

Allows the user to create UDFs. Permission
to operate on existing UDFs is controlled by
object privileges.

CREATE FUNCTION

[Create]
Group

Allows the user to create groups. Permission
to operate on existing groups is controlled by
object privileges.

CREATE ROLE

[Create]
Index

For system use only. Users cannot create
indexes.

CREATE INDEX

[Create]
Library

Allows the user to create shared libraries.
Permission to operate on existing shared
libraries is controlled by object privileges.

N/A

[Create]
Materialized
View

Allows the user to create materialized views. CREATE VIEW

[Create]
Procedure

Allows the user to create stored procedures.
Permission to operate on existing stored
procedures is controlled by object privileges.

CREATE PROCEDURE

[Create]
Schema

Allows the user to create schemas. Permission
to operate on existing schemas is controlled by
object privileges.

CREATE SCHEMA

Common SQL incompatibilities and resolutions | 629

Table 18.8: Netezza admin privileges and their Azure Synapse equivalents

Admin
privilege

Description Azure Synapse equivalent

[Create]
Sequence

Allows the user to create database sequences. N/A

[Create]
Synonym

Allows the user to create synonyms. CREATE SYNONYM

[Create]
Table

Allows the user to create tables. Permission
to operate on existing tables is controlled by
object privileges.

CREATE TABLE

[Create]
Temp Table

Allows the user to create temporary tables.
Permission to operate on existing tables is
controlled by object privileges.

CREATE TABLE

[Create]
User

Allows the user to create users. Permission
to operate on existing users is controlled by
object privileges.

CREATE USER

[Create]
View

Allows the user to create views. Permission
to operate on existing views is controlled by
object privileges.

CREATE VIEW

[Manage]
Hardware

Allows the user to view hardware status,
manage SPUs, manage topology and
mirroring, and run diagnostic tests.

Automatically managed via
the Azure portal in Azure
Synapse

[Manage]
Security

Allows the user to run commands and

history databases; managing multi-level
security objects, including specifying security
for users and groups; and managing database
keys for the digital signing of audit data.

Automatically managed via
the Azure portal in Azure
Synapse

[Manage]
System

Allows the user to do the following
management operations: start/stop/pause/
resume the system, abort sessions, and view
the distribution map, system statistics, and
logs. The user can use these commands:
nzsystem, nzstate, nzstats, and nzsession.

Automatically managed via
the Azure portal in Azure
Synapse

Restore Allows the user to restore the system. The user
can run the nzrestore command.

Automatically handled in
Azure Synapse

Unfence Allows the user to create or alter a UDF or
aggregate to run in unfenced mode.

N/A

630 | Azure Synapse Analytics for architects

Mapping Netezza object privileges to their Azure Synapse equivalent

Table 18.9 maps the Netezza object privileges to the Azure Synapse equivalents for quick
reference:

Table 18.9: Netezza object privileges and their Azure Synapse equivalents

Object
privilege

Description Azure Synapse
equivalent

Abort Allows the user to abort sessions. Applies to groups and
users.

KILL DATABASE
CONNECTION

Alter Allows the user to modify object attributes. Applies to all
objects.

ALTER

Delete Allows the user to delete table rows. Applies only to tables. DELETE

Drop Allows the user to drop objects. Applies to all object types. DROP

Execute Allows the user to run UDFs, UDAs, or stored procedures. EXECUTE

GenStats Allows the user to generate statistics on tables or databases.
The user can run the GENERATE STATISTICS command.

Automatically
handled in
Azure Synapse

Groom Allows the user to reclaim disk space for deleted or outdated
rows, and reorganize a table by the organizing keys, or to
migrate data for tables that have multiple stored versions.

Automatically
handled in
Azure Synapse

Insert Allows the user to insert rows into a table. Applies only to
tables.

INSERT

List Allows the user to display an object name, either in a list or in
another manner. Applies to all objects.

LIST

Select Allows the user to select (or query) rows within a table.
Applies to tables and views.

SELECT

Truncate Allows the user to delete all rows from a table. Applies only to
tables.

TRUNCATE

Update Allows the user to modify table rows. Applies only to tables. UPDATE

Common SQL incompatibilities and resolutions | 631

Extended SQL differences and workarounds

Table 18.10 describes the extended SQL differences and possible workarounds when
migrating to Azure Synapse Analytics:

Table 18.10: Extended SQL differences and workarounds

SQL
extension

Description How to migrate

UDFs • Can contain arbitrary code

• Can be coded in various
languages (such as Lua and Java)

• Can be called within a SQL
SELECT statement in the same
way that built-in functions such as
SUM() and AVG() are used

• Use CREATE FUNCTION and re-
code in T-SQL.

Stored
procedures

• Can contain one or more SQL
statements as well as procedural
logic around those SQL statements

• Implemented in a standard
language (such as Lua) or in a
proprietary language (such as
Oracle PL/SQL)

• Recode in T-SQL.

• Some third-party tools that can help
with migration:

• Datometry

• WhereScape

Triggers • Not supported by Azure Synapse • Equivalent functionality can be
achieved by using other parts of
the Azure ecosystem. For example,
for streamed input data, use Azure
Stream Analytics.

In-database
analytics

• Not supported by Azure Synapse • Run advanced analytics such as
machine learning models at scale to
use Azure Databricks.

• Azure Synapse opens the
possibilityof performing machine
learning functions with Spark MLlib.

• Alternatively, migrate to Azure SQL
Database and use the PREDICT
function.

Geospatial
data types

• Not supported by Azure Synapse • Store geospatial data, such as
latitude/longitude, and popular
formats, such as Well-KnownText
(WKT) and Well-Known Binary
(WKB), in VARCHAR or VARBINARY
columns and access them directly by
using geospatial client tools.

632 | Azure Synapse Analytics for architects

In this section, we talked about common migration issues that architects might
encounter during a migration project and possible solutions. In the next section, we will
take a look at security considerations that an architect should be mindful of.

Security considerations
Protecting and securing your data assets is paramount in any data warehouse system.
When planning a data warehouse migration project, security, user access management,
backup, and restore must also be taken into consideration. For instance, data
encryption may be mandatory for industry and government regulations, such as HIPAA,
PCI, and FedRAMP, as well as in non-regulated industries.

Azure includes many features and functions as standard that would traditionally have
to be custom-built in legacy data warehouse products. Azure Synapse supports data
encryption at rest and data in motion as standard.

Data encryption at rest

• Transparent Data Encryption (TDE) can be enabled to dynamically encrypt and
decrypt Azure Synapse data, logs, and associated backups.

• Azure Data Storage can also automatically encrypt non-database data.

Data in motion

All connections to Azure Synapse Analytics are encrypted by default, using industry-
standard protocols such as TLS and SSH.

In addition, Dynamic Data Masking (DDM) can be used to obfuscate data for given
classes of users based on data masking rules.

As a best practice, if your legacy data warehouse contains a complex hierarchy of
permissions, users and roles, consider using automation techniques in your migration
process. You can use existing metadata from your legacy system to generate the
necessary SQL to migrate users, groups, and privileges on Azure Synapse Analytics.

In the final section of this chapter, we will review some of the tools that architects
can choose to help migrate from legacy data warehouse systems to Azure Synapse
Analytics.

Tools to help migrate to Azure Synapse Analytics | 633

Tools to help migrate to Azure Synapse Analytics
Now that we have covered the planning and preparation and an overview of the
migration process, let's have a look at the tools that you can use for migrating your
legacy data warehouse to Azure Synapse Analytics. The tools that we will discuss are:

• ADF

• Azure Data Warehouse Migration Utility

• Microsoft Services for Physical Data Transfer

• Microsoft Services for Data Ingestion

Let's get started.

ADF

ADF is a fully managed, pay-as-you-use, hybrid data integration service for cloud-scale
ETL processing. It offers the following features:

• Processes and analyzes data in memory and in parallel to scale and maximize
throughput

• Creates data warehouse migration pipelines that orchestrate and automate data
movement, data transformation, and data loading into Azure Synapse Analytics

• Can also be used to modernize your data warehouse by ingesting data into
Azure Data Lake Storage, processing and analyzing data at scale, and loading data
into a data warehouse

• Supports role-based user interfaces for mapping data flows for IT professionals
and self-service data wrangling for business users

• Can connect to multiple data stores spanning datacenters, clouds, and SaaS
applications

• Over 90 natively built and maintenance-free connectors available (https://azure.
microsoft.com/services/data-factory)

• Can mix and match wrangling and mapping data flows in the same pipeline to
prepare data at scale

• ADF orchestration can control data warehouse migration to Azure Synapse
Analytics

• Can execute SSIS ETL packages

https://azure.microsoft.com/services/data-factory
https://azure.microsoft.com/services/data-factory

634 | Azure Synapse Analytics for architects

Azure Data Warehouse Migration Utility

Azure Data Warehouse Migration Utility can migrate data from an on-premises SQL
Server–based data warehouse to Azure Synapse. It offers the following features:

• Uses a wizard-like approach to perform a lift and shift migration of schema and
data from an on-premises, SQL Server–based data warehouse.

• You can select the on-premises database containing the table(s) that you want to
export to Azure Synapse. Then, you can select the tables that you want to migrate
and migrate the schema.

• Automatically generates T-SQL code needed to create an equivalent empty
database and tables on Azure Synapse. Once you provide connection details to
Azure Synapse you can run the generated T-SQL to migrate the schema.

• Following schema creation, you can use the utility to migrate the data. This
exports the data from your on-premises SQL Server–based data warehouse and
generates Bulk Copy Program (BCP) commands to load that data into Azure
Synapse.

Microsoft Services for Physical Data Transfer

In this section, we will look at common Microsoft services that can be used for physical
data transfer, including Azure ExpressRoute, AzCopy, and Azure Databox.

Azure ExpressRoute

Azure ExpressRoute allows you to make private connections between your datacenters
and Azure without going over the public Internet. It offers the following features:

• Bandwidth of up to 100 Gbps

• Low latency

• Connects directly to your Wide-Area Network (WAN)

• Private connections to Azure

• Increased speed and reliability

AzCopy

AzCopy is a command-line tool for copying files and blobs to/from storage accounts. It
offers the following features:

• Ability to copy data to/from Azure via the Internet.

• A combination of AzCopy with the necessary ExpressRoute bandwidth could be an
optimal solution for data transfer to Azure Synapse.

Tools to help migrate to Azure Synapse Analytics | 635

Azure Data Box

Azure Data Box allows you to transfer large volumes of data to Azure quickly, reliably,
and cost-effectively. It offers the following features:

• Capable of transferring large volumes of data (tens of terabytes to hundreds to
terabytes)

• No network connectivity restrictions

• Great for one-time migration and initial bulk transfer

Microsoft Services for data ingestion

In this section, we will look at common Microsoft services that can be used for data
ingestion, including:

• PolyBase

• BCP

• SqlBulkCopy API

• Standard SQL

PolyBase (recommended method)

PolyBase provides the fastest and most scalable bulk data loading into Azure Synapse
Analytics. It offers the following features:

• Uses parallel loading to give the fastest throughput

• Can read from flat files in Azure Blob storage or from external data sources via
connectors

• Tightly integrated with ADF

• CREATE TABLE AS or INSERT … SELECT

• Can define a staging table as type HEAP for fast load

• Support rows up to 1 MB in length

636 | Azure Synapse Analytics for architects

BCP

BCP can be used to import and export data from any SQL Server environment, including
Azure Synapse Analytics. It offers the following features:

• Supports rows larger than 1 MB in length

• Originally developed for earlier versions of Microsoft SQL Server

Refer to https://docs.microsoft.com/sql/tools/bcp-utility to read more about the BCP
utility.

SqlBulkCopy API

SqlBulkCopy API is the API equivalent of the BCP functionality. It offers the following
features:

• Allows the implementation of load processes programmatically

• Ability to bulk load SQL Server tables with data from selected sources

Refer to https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlbulkcopy to
read more about this API.

Standard SQL Support

Azure Synapse Analytics supports standard SQL, including the ability to:

• Load individual rows or results of SELECT statements into data warehouse tables.

• Bulk insert data from extracted data via external data sources into data warehouse
tables using INSERT … SELECT statements within PolyBase.

This section provided the architectural considerations and high-level methodology for
planning, preparing, and executing a successful migration of an existing legacy data
warehouse system to Azure Synapse Analytics. It contains a wealth of information that
you can refer to later on as you embark on your migration project to Azure Synapse
Analytics.

Summary
Azure Synapse Analytics is a limitless analytics service with unmatched time to insight
that accelerates the delivery of BI, AI, and intelligent applications for enterprises. You
will gain a lot of benefits by migrating your legacy data warehouse to Azure Synapse
Analytics, including performance, speed, improved security and compliance, elasticity,
managed infrastructure, scalability, and cost savings.

https://docs.microsoft.com/sql/tools/bcp-utility
https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlbulkcopy

Summary | 637

With Azure Synapse, data professionals of varying skillsets can collaborate, manage,
and analyze their most important data with ease—all within the same service. From
Apache Spark integration with the powerful and trusted SQL engine, to code-free data
integration and management, Azure Synapse is built for every data professional.

This chapter provided the architectural considerations and high-level methodology
needed to prepare for and execute the migration of an existing legacy data warehouse
system to Azure Synapse Analytics.

Successful data migration projects start with a well-designed plan. An effective plan
accounts for the many components that need to be considered, paying particular
attention to architecture and data preparation.

After you have successfully migrated to Azure Synapse, you can explore additional
Microsoft technologies in the rich Azure analytical ecosystem to further modernize
your data warehouse architecture.

Here are some ideas to ponder:

• Offload your staging areas and ELT processing to Azure Data Lake Storage
and ADF.

• Build trusted data products once in common data model format and consume
everywhere—not just in your data warehouse.

• Enable collaborative development of data preparation pipelines by business and
IT using ADF mapping and wrangling data flows.

• Build analytical pipelines in ADF to analyze data in batch and real time.

• Build and deploy machine learning models to add additional insights to what you
already know.

• Integrate your data warehouse with live streaming data.

• Simplify access to data and insights in multiple Azure analytical data stores by
creating a logical data warehouse using PolyBase.

In the next chapter, you will learn in detail about Azure Cognitive Services, with a focus
on architecting solutions that include intelligence as their core engine.

Cloud technology has changed a lot of things, including the creation of intelligent
applications in an agile, scalable, and pay-as-you-go way. Applications prior to the
rise of cloud technology generally did not incorporate intelligence within themselves,
primarily because:

• It was time-consuming and error-prone.

• It was difficult to write, test, and experiment with algorithms on an ongoing basis.

• There was a lack of sufficient data.

• It was immensely costly.

Over the last decade, two things have changed that have led to the creation of
significantly more intelligent applications than in the past. These two things are the
cost-effective, on-demand unlimited scalability of the cloud along with the availability
of data in terms of volume, variety, and velocity.

Architecting
intelligent solutions

19

640 | Architecting intelligent solutions

In this chapter, we will look at architectures that can help build intelligent applications
with Azure. Some of the topics covered in this chapter are:

• The evolution of AI

• Azure AI processes

• Azure Cognitive Services

• Building an optical character recognition service

• Building a visual features service using the Cognitive Search .NET SDK

The evolution of AI
AI is not a new field of knowledge. In fact, the technology is a result of decades of
innovation and research. However, its implementation in previous decades was a
challenge for the following reasons:

1. Cost: AI experiments were costly in nature and there was no cloud technology. All
the infrastructure was either purchased or hired from a third party. Experiments
were also time-consuming to set up and immense skills were needed to get
started. A large amount of storage and compute power was also required, which
was generally missing in the community at large and held in the hands of just a
few.

2. Lack of data: There were hardly any smart handheld devices and sensors available
generating data. Data was limited in nature and had to be procured, which again
made AI applications costly. Data was also less reliable and there was a general
lack of confidence in the data itself.

3. Difficulty: AI algorithms were not documented enough and were primarily in
the realms of mathematicians and statisticians. They were difficult to create
and utilize within applications. Just imagine the creation of an optical character
recognition (OCR) system 15 years ago. There were hardly any libraries, data,
processing power, or the necessary skills to develop applications using OCR.

Although the influx of data increased with time, there was still a lack of tools for making
sense of the data in a way that added business value. In addition, good AI models
are based on sufficiently accurate data and trained with algorithms to be capable of
resolving real-life problems. Both cloud technology and the large number of sensors
and handheld devices have redefined this landscape.

Azure AI processes | 641

With cloud technology, it is possible to provision on-demand storage and compute
resources for AI-based applications. Cloud infrastructure provides lots of resources for
data migration, storage, processing, and computation, as well as generating insights and
eventually providing reports and dashboards. It does all this at a minimal cost in a faster
way since there is nothing physical involved. Let's dive into understanding what goes on
behind building an AI-based application.

Azure AI processes
Every AI-based project is required to go through a certain set of steps before being
operational. Let's explore these seven phases:

Data ingestion

In this phase, data is captured from various sources and stored such that it can be
consumed in the next phase. The data is cleaned before being stored and any deviations
from the norm are disregarded. This is part of the preparation of data. The data could
have different velocity, variety, and volume. It can be structured similarly to relational
databases, semi-structured like JSON documents, or unstructured like images, Word
documents, and so on.

Data transformation

The data ingested is transformed into another format as it might not be consumable
in its current format. The data transformation typically includes the cleaning and
filtering of data, removing bias from the data, augmenting data by joining it with other
datasets, creating additional data from existing data, and more. This is also part of the
preparation of the data.

Analysis

The data from the last phase is reused for analysis. The analysis phase contains
activities related to finding patterns within data, conducting exploratory data analysis,
and generating further insights from it. These insights are then stored along with
existing data for consumption in the next phase. This is part of the model packaging
process.

642 | Architecting intelligent solutions

Data modeling

Once the data is augmented and cleaned, appropriate and necessary data is made
available to the AI algorithms to generate a model that is conducive to achieving
the overall aim. It is an iterative process known as experimentation by using various
combinations of data (feature engineering) to ensure that the data model is robust. This
is also part of the model packaging process.

The data is fed into learning algorithms to identify patterns. This process is known as
training the model. Later, test data is used on the model to check its effectiveness and
efficiency.

Validating the model

Once the model is created, a set of test data is used to find its effectiveness. If the
analysis obtained from the test data is reflective of reality, then the model is sound and
usable. Testing is an important aspect of the AI process.

Deployment

The model is deployed to production so that real-time data can be fed into it to get the
predicted output. This output can then be used within applications.

Monitoring

The model deployed to production is monitored on an ongoing basis for the future
analysis of all incoming data and to retrain and improve the effectiveness models.

The AI stages and processes, by nature, are time-consuming and iterative. Thus,
applications based on them have an inherent risk of being long-running, experimental,
and resource-intensive, along with getting delayed with cost overruns and having low
chances of success.

Keeping these things in mind, there should be out-of-the-box AI-based solutions that
developers can use in their applications to make them intelligent. These AI solutions
should be easily consumable from applications and should have the following features:

• Cross-platform: Developers using any platform should be able to consume these
services. They should be deployed and consumed on Linux, Windows, or Mac
without any compatibility problems.

• Cross-language: Developers should be able to use any language to consume these
solutions. Not only will the developers encounter a shorter learning curve but they
also won't need to change their preferred choice of language to consume these
solutions.

Azure Cognitive Services | 643

These solutions should be deployed as services using industry standards and protocols.
Generally, these services are available as HTTP REST endpoints that can be invoked
using any programming language and platform.

There are many such types of service that can be modeled and deployed for developer
consumption. Some examples include:

• Language translation: In such services, the user provides text in one language and
gets corresponding text in a different language as output.

• Character recognition: These services accept images and return the text present
in them.

• Speech-to-text conversion: These services can convert input speech to text.

Now that we have gone through the details of building an AI/ML-based project, let's
dive into the applications of various cognitive services offered by Azure.

Azure Cognitive Services
Azure provides an umbrella service known as Azure Cognitive Services. Azure Cognitive
Services is a set of services that developers can consume within their applications to
turn them into intelligent applications.

Table 19.1: Azure Cognitive Services

Vision Web Search Language Speech Decision
• Computer Vision

• Face

• Video Indexer

• Custom Vision

• Form Recognizer
(Preview)

• Ink Recognizer
(Preview)

• Bing Autosuggest

• Bing Custom Search

• Bing Entity Search

• Bing Image Search

• Bing News Search

• Bing Spell Check

• Bing Video Search

• Bing Web Search

• Immersive
Reader
(Preview)

• Language
Understanding

• QnA Maker

• Text Analytics

• Translator

• Speech to
Text

• Text to
Speech

• Speech
Translation

• Speaker
Recognition
(Preview)

• Anomaly
Detector
(Preview)

• Content
Moderator

• Personalizer

644 | Architecting intelligent solutions

The services have been divided into five main categories depending on their nature.
These five categories are as follows:

Vision

This API provides algorithms for image classification and helps in image processing by
providing meaningful information. Computer vision can provide a variety of information
from images on different objects, people, characters, emotions, and more.

Search

These APIs help in search-related applications. They help with search based on text,
images, video, and providing custom search options.

Language

These APIs are based on natural language processing and help extract information
about the intent of user-submitted text along with entity detection. They also help in
text analytics and translation to different languages.

Speech

These APIs help in translating speech to text, text to speech, and in speech translation.
They can be used to ingest audio files and take actions based on the content on behalf
of users. Cortana is an example that uses similar services to take actions for users based
on speech.

Decision

These APIs help in anomaly detection and content moderation. They can check
for content within images, videos, and text and find out patterns that should be
highlighted. An example of such an application is displaying a warning about adult
content.

Now that you have an understanding of the core of Cognitive Services, let's discuss how
they work in detail.

Understanding Cognitive Services | 645

Understanding Cognitive Services
Azure Cognitive Services consists of HTTP endpoints that accept requests and send
responses back to the caller. Almost all requests are HTTP POST requests and consist of
both a header and a body.

The provisioning of Cognitive Services generates two important artifacts that help a
caller invoke an endpoint successfully. It generates an endpoint URL and a unique key.

The format of the URL is https://{azure location}.api.cognitive.microsoft.com/
{cognitive type}/{version}/{sub type of service}?{query parameters}. An example
URL is:

https://eastus.api.cognitive.microsoft.com/vision/v2.0/
ocr?language=en&detectOrientation=true

Cognitive Service is provisioned in the East US Azure region. The type of service is
computer vision using version 2 and the subtype is OCR. There are generally a few
subtypes for each top-level category. Lastly, there are a few query string parameters,
such as language and detectOrientation. These query parameters are different for each
service category and subcategory.

Either the header or the query parameters should provide the key value for the
endpoint invocation to be successful.

The key value should be assigned to the Ocp-Apim-Subscription-Key header key with the
request.

The content of the request body can be a simple string, a binary, or a combination of
both. Depending on the value, the appropriate content-type header should be set in the
request.

The possible header values are:

• Application/octet-stream

• multipart/form-data

• application/json

Use octet-stream when sending binary data and json for sending string values. form-
data can be used for sending multiple combination values of binary and text.

The key is a unique string used to validate whether the caller has been given permission
to invoke the URL. This key must be protected such that others who should not be able
to invoke the endpoints do not get access to it. Later in the chapter, you will see ways to
safeguard these keys.

646 | Architecting intelligent solutions

Consuming Cognitive Services

There are two ways to consume Cognitive Services:

• Using an HTTP endpoint directly: In this case, the endpoint is invoked directly
by crafting both the header and body with appropriate values. The return value is
then parsed and data is extracted out of it. All the AI services in Cognitive Services
are REST APIs. They accept HTTP requests in JSON, as well as other formats, and
replies in JSON format.

• Using an SDK: Azure provides multiple software development kits (SDKs). There
are SDKs available for the .NET, Python, Node.js, Java, and Go languages.

In the following section, we will look into the utilization of one of the Cognitive Services
using both ways. Let's explore this by building some AI services using HTTP endpoints.

Building an OCR service
In this section, we will be using some of the AI services using C# as well as PowerShell
to show their usage using the HTTP endpoint directly. The next section will concentrate
on doing the same using a .NET SDK.

Before getting into building a project using Cognitive Services, the first step is to
provision the API itself.

Optical character recognition is available as a Vision API and can be provisioned using
the Azure portal, as shown next. Create a vision API by navigating to Cognitive Services
> Compute Vision > Create, as shown in Figure 19.1:

Figure 19.1: Create a Vision API

Building an OCR service | 647

Once the API is provisioned, the overview page provides all the details for consuming
the API. It provides the base URL and the key information. Make a note of the key as it
will be used later:

Figure 19.2: Overview page

It also provides an API console to quickly test the API. Clicking on it opens a new
window that has all the endpoints related to this service available. Clicking on OCR
will provide a form that can be filled in with appropriate data and execute the service
endpoints. It also provides a complete response. This is shown in Figure 19.3. The URL
is available as a request URL, and the request is a typical HTTP request with a POST
method. The URL points to the endpoint in the East US Azure region. It is also related to
the Vision group of APIs, version 2, and the OCR endpoint.

648 | Architecting intelligent solutions

The subscription key is passed in the header with the name ocp-apim-subscription-key.
The header also contains the content-type key with application/json as a value. This is
because the body of the request contains a JSON string. The body is in the form of JSON
with the URL of the image from which text should be extracted:

Figure 19.3: Request URL

The request can be sent to the endpoint by clicking on the Send button. It will result in
an HTTP response 200 OK, as shown next, if everything goes right. If there is an error in
the request values, the response will be an error HTTP code:

Figure 19.4: HTTP response 200 OK

Building an OCR service | 649

The response consists of details related to billing usage, an internal request ID
generated by the endpoint, the content length, the response content type (being JSON),
and the data and time of the response. The content of the response consists of a JSON
payload with the coordinates of the text and the actual text itself.

Using PowerShell

The same request can be created using PowerShell. The following PowerShell code can
be executed using the PowerShell ISE.

The code uses the Invoke-WebRequest cmdlet to invoke the Cognitive Services endpoint
by passing the URL to the Uri parameter using the POST method, and adds both the
appropriate headers as discussed in the last section, and finally, the body consisting of
data in JSON format. The data is converted into JSON using the ConvertTo-Json cmdlet:

$ret = Invoke-WebRequest -Uri "https://eastus.api.cognitive.microsoft.
com/vision/v2.0/ocr?language=en&detectOrientation=true" -Method Post
-Headers @{"Ocp-Apim-Subscription-Key"="ff0cd61f27d8452bbadad36942
570c48"; "Content-type"="application/json"} -Body $(ConvertTo-Json
-InputObject @{"url"="https://ichef.bbci.co.uk/news/320/cpsprodpb/F944/
production/_109321836_oomzonlz.jpg"})

$val = Convertfrom-Json $ret.content

foreach ($region in $val.regions) {

 foreach($line in $region.lines) {

 foreach($word in $line.words) {

 $word.text

 }

 }

}

The response from the cmdlet is saved in a variable that also consists of data in JSON
format. The data is converted into a PowerShell object using the Convertfrom-Json
cmdlet and looped over to find the words in the text.

650 | Architecting intelligent solutions

Using C#

In this section, we will build a service that should accept requests from users, extract
the URL of the image, construct the HTTP request, and send it to the Cognitive Services
endpoint. The Cognitive Services endpoint returns a JSON response. The appropriate
text content is extracted from the response and returned to the user.

Architecture and design

An intelligent application is an ASP.NET Core MVC application. An MVC application is
built by a developer on a developer machine, goes through the continuous integration
and delivery pipeline, generates a Docker image, and uploads the Docker image to
Azure Container Registry. Here, the major components of the application are explained,
along with their usage:

Figure 19.5: Workflow of an intelligent application

Azure
Container Registry

kube-proxy

Pod
Instance 2

Pod
Instance 1

Load BalancerUsers
kubelet

Push Docker images

Developer

Kubernetes
Worker nodes

Virtual Network

Kubernetes
Master nodes

Scheduler

API Server

Controller
Manager

Pull im
ages

Building an OCR service | 651

Docker

Docker is one of the major players within container technologies and is available cross-
platform, including Linux, Windows, and Mac. Developing applications and services
with containerization in mind provides the flexibility to deploy them across clouds
and locations, as well as on-premises. It also removes any dependencies on the host
platform, which again allows less reliance on platform as a service. Docker helps with
the creation of custom images, and containers can be created out of these images. The
images contain all the dependencies, binaries, and frameworks needed to make the
application or service work, and they are completely self-reliant. This makes them a
great deployment target for services such as microservices.

Azure Container Registry

Azure Container Registry is a registry that's similar to Docker Hub for the storage
of container images in a repository. It is possible to create multiple repositories and
upload multiple images in them. An image has a name and a version number, together
forming a fully qualified name used to refer to them in a Kubernetes Pod definition.
These images can be accessed and downloaded by any Kubernetes ecosystem. A
prerequisite of this is that appropriate secrets for pulling the image should already be
created beforehand. It need not be on the same network as Kubernetes nodes and, in
fact, there is no need for a network to create and use Azure Container Registry.

Azure Kubernetes Service

The intelligent application that accepts the URL of an image to retrieve the text in it
can be hosted on vanilla virtual machines or even within Azure App Service. However,
deploying in Azure Kubernetes Service offers lots of advantages, which was covered
in Chapter 8, Architecting Azure Kubernetes Solutions. For now, it is important to know
that these applications are self-healing in nature and a minimum number of instances is
automatically maintained by the Kubernetes master along with providing the flexibility
to update them in a multitude of ways, including blue-green deployments and canary
updates.

Pods, replica sets, and deployments

The developer also creates a Kubernetes deployment-related YAML file that references
the images within the Pod specification and also provides a specification for the replica
set. It provides its own specification related to the update strategy.

652 | Architecting intelligent solutions

Runtime design

The architecture and design remain the same as in the previous section; however, when
the application or service is already live and up and running, it has already downloaded
the images from Azure Container Registry and created Pods running containers
in them. When a user provides an image URL for decoding the text it contains, the
application in the Pod invokes the Azure Cognitive Services Computer Vision API and
passes the URL to it and waits for a response from the service:

Figure 19.6 Workflow of an intelligent application

Once it receives the JSON response from the services, it can retrieve the information
and return it to the user.

The development process

The development environment can be Windows or Linux. It will work with both
Windows 10 and the Windows 2016/19 server. When using Windows, it is useful to
deploy Docker for Windows so that it will create both a Linux and a Windows Docker
environment.

Azure
Cognitive Services

kube-proxy

Pod
Instance 2

Pod
Instance 1

Load BalancerUsers
kubelet

Push Docker images

Developer

Kubernetes
Worker nodes

Virtual Network

Kubernetes
Master nodes

Scheduler

API Server

Controller
Manager

Request/R
esponse

Building an OCR service | 653

When creating an ASP.NET Core web application project using Visual Studio 2019, the
Docker support option should be selected with either Windows or Linux as values.
Depending on the chosen value, appropriate content will be generated in Dockerfile.
The main difference in Dockerfile is the base image names. It uses different images for
Linux compared to Windows.

When installing Docker for Windows, it also installs a Linux virtual machine, and so it is
important to turn on the Hyper-V hypervisor.

In this example, instead of sending the data as a JSON string, the image is downloaded,
and binary data is sent to the Cognitive Services endpoint.

It has a function that accepts a string input for URL values. It then invokes Cognitive
Services with appropriate header values and a body containing the URL. The header
values should contain the key provided by Cognitive Services while provisioning the
service. The value in the body can contain vanilla string values in the form of JSON or it
can contain binary image data itself. The content-type header property should be set
accordingly.

The code declares the URL and the key related to the Cognitive Services. This is shown
for demonstration purposes only. The URL and key should be placed in configuration
files.

Using the HttpClient object, the image corresponding to the URL supplied by the user is
downloaded and stored within the responseMessage variable. Another HttpClient object
is instantiated and its headers are filled with Ocp-Apim-Subscription-Key and content-
type keys. The value of the content-type header is application/octet-stream since
binary data is being passed to the endpoint.

A post request is made after extracting the content from the responseMessage variable
and passing it as the body of a request to the cognitive service endpoint.

The code for the controller action is shown next:

 [HttpPost]

 public async Task<string> Post([FromBody] string value)

 {

 string myurl = " https://eastus.api.cognitive.microsoft.com/
vision/v2.0/ocr?language=en&detectOrientation=true

 string token = "…………………………";

 using (HttpClient httpClient = new HttpClient())

 {

 var responseMessage = await httpClient.GetAsync(value);

654 | Architecting intelligent solutions

 using (var httpClient1 = new HttpClient())

 {

 httpClient1.BaseAddress = new Uri(myurl);

 httpClient1.DefaultRequestHeaders.Add("Ocp-Apim-
Subscription-Key", token);

 HttpContent content = responseMessage.Content;

 content.Headers.ContentType = new
MediaTypeWithQualityHeaderValue("application/octet-stream");

 var response = await httpClient1.PostAsync(myurl,
content);

 var responseContent = await response.Content.
ReadAsByteArrayAsync();

 string ret = Encoding.ASCII.GetString(responseContent,
0, responseContent.Length);

 dynamic image = JsonConvert.
DeserializeObject<object>(ret);

 string temp = "";

 foreach (var regs in image.regions)

 {

 foreach (var lns in regs.lines)

 {

 foreach (var wds in lns.words)

 {

 temp += wds.text + " ";

 }

 }

 }

 return temp;

 }

 }

 }

Building a visual features service using the Cognitive Search .NET SDK | 655

After the endpoint finishes its processing, it returns the response with a JSON payload.
The context is extracted and deserialized into .NET objects. Multiple loops are coded to
extract the text from the response.

In this section, we created a simple application that uses Cognitive Services to provide
word extractions from features using the OCR API and deployed it within Kubernetes
Pods. This process and architecture can be used within any application that wants
to consume Cognitive Services APIs. Next, we will take a look at another Cognitive
Services API, known as visual features.

Building a visual features service using the Cognitive Search .NET
SDK
The last section was about creating a service that uses an OCR cognitive endpoint to
return text within images. In this section, a new service will be created that will return
visual features within an image, such as descriptions, tags, and objects.

Using PowerShell

The code in PowerShell is similar to the previous OCR example, so it is not repeated
here. The URL is different from the previous code example:

Figure 19.7: Request URL

The request is made using a POST method, and the URL points to the endpoint in the
East US Azure region. It also uses version 2 and consumes the Vision API.

The Cognitive Services access key is part of the HTTP header named ocp-apim-
subscription-key. The header also contains the header content-type with application/
json as the value. This is because the body of the request contains a JSON value. The
body has the URL of the image from which text should be extracted.

656 | Architecting intelligent solutions

The response will be in JSON format containing the image content and a description.

Using .NET

This example is again an ASP.NET Core MVC application and has the Microsoft.Azure.
CognitiveServices.Vision.ComputerVision NuGet package installed in it:

Figure 19.8: ASP.NET Core MVC application with the Microsoft.Azure.CognitiveServices.Vision.
ComputerVision NuGet package

The code for the controller action is shown next. In this code, the cognitive service and
key are declared. It also declares variables for the ComputerVisionClient and VisionType
objects. It creates an instance of the ComputerVisionClient type, providing it the URL
and the key.

The VisionTypes list consists of multiple types of data sought from the image—tags,
descriptions, and objects are added. Only these parameters will be extracted from the
image.

An HttpClient object is instantiated to download the image using the URL provided
by the user and sends this binary data to the Cognitive Services endpoint using the
AnalyzeImageInStreamAsync function of type ComputerVisionClient:

Building a visual features service using the Cognitive Search .NET SDK | 657

[HttpPost]

 public string Post([FromBody] string value)

 {

 private string visionapiurl = " https://
eastus.api.cognitive.microsoft.com/vision/v2.0/
analyze?visualFeaure=tags,description,objects&language=en";

 private string apikey = "e55d36ac228f4d718d365f1fcddc0851";

 private ComputerVisionClient client;

 private List<VisualFeatureTypes> visionType = new
List<VisualFeatureTypes>();

client = new ComputerVisionClient(new ApiKeyServiceClientCredentials(apikey))
{

 Endpoint = visionapiurl

 };

 visionType.Add(VisualFeatureTypes.Description);

 visionType.Add(VisualFeatureTypes.Tags);

 visionType.Add(VisualFeatureTypes.Objects);

 string tags = "";

 string descrip = "";

 string objprop = "";

 using (HttpClient hc = new HttpClient()) {

 var responseMessage = hc.GetAsync(value).GetAwaiter().
GetResult();

 Stream streamData = responseMessage.Content.
ReadAsStreamAsync().GetAwaiter().GetResult();

 var result = client.AnalyzeImageInStreamAsync(streamData,
visionType).GetAwaiter().GetResult();

 foreach (var tag in result.Tags) {

 tags += tag.Name + " ";

 }

 foreach (var caption in result.Description.Captions)

658 | Architecting intelligent solutions

 {

 descrip += caption.Text + " ";

 }

 foreach (var obj in result.Objects)

 {

 objprop += obj.ObjectProperty + " ";

 }

 }

 return tags;

 // return descrip or objprop

 }

The results are looped through and tags are returned to the user. Similarly, descriptions
and object properties can also be returned to the user. Now let's check out the ways we
can safeguard the exposure of service keys.

Safeguarding the Cognitive Services key
There are multiple ways to safeguard the exposure of keys to other actors. This can
be done using the API Management resource in Azure. It can also be done using Azure
Functions Proxies.

Using Azure Functions Proxies

Azure Functions Proxies can refer to any URL, whether internal or external. When a
request reaches Azure Functions Proxies, it will use the URL of the cognitive service
along with the key to invoke the cognitive endpoint, and it will also override the request
parameters and add the incoming image URL and append it to the cognitive endpoint
URL as POST data. When a response comes back from the service, it will override the
response, remove the headers, and pass JSON data back to the user.

Consuming Cognitive Services | 659

Consuming Cognitive Services
Consuming Cognitive Services follows a consistent pattern. Each cognitive service is
available as a REST API, with each API expecting different sets of parameters to work
on. Clients invoking these URLs should check out the documentation for associate
parameters and provide values for them. Consuming URLs is a relatively raw method
of using Cognitive Services. Azure provides SDKs for each service and for multiple
languages. Clients can use these SDKs to work with Cognitive Services.

The LUIS (Language Understanding Intelligence Service) authoring API is available
at https://{luis resource name}-authoring.cognitiveservices.azure.com/ and the
production API is available at

https://{azure region}.api.cognitive.microsoft.com/luis/prediction/v3.0/apps/
{application id}/slots/production/predict?subscription-key={cognitive key}
&verbose=true&show-all-intents=true&log=true&query=YOUR_QUERY_HERE.

Similarly, the Face API is available at https://{endpoint}/face/v1.0/
detect[?returnFaceId][&returnFaceLandmarks][&returnFaceAttributes]
[&recognitionModel][&returnRecognitionModel][&detectionModel].

There are many Cognitive Services APIs, with each having multiple flavors in terms of
URLs, and the best way to know about these URLs is to use the Azure documentation.

Summary
In this chapter, you gained an understanding of the deployment architecture and
application architecture for creating intelligent applications in Azure. Azure provides
Cognitive Services with numerous endpoints—each endpoint is responsible for
executing an AI-related algorithm and providing outputs. Almost all Cognitive Services
endpoints work in a similar manner with regard to HTTP requests and responses. These
endpoints can also be invoked using SDKs provided by Azure for different languages,
and you saw an example of obtaining visual features using them. There are more than
50 different endpoints, and you are advised to get an understanding of the nature of
endpoints using the API console feature provided by Azure.

By developers,
for developers
Microsoft.Source newsletter

Get technical articles, sample
code, and information on
upcoming events in
Microsoft.Source, the
curated monthly developer
community newsletter.

● Keep up on the latest
 technologies
● Connect with your peers
 at community events
● Learn with
 hands-on resources

Sign upSign up

http://aka.ms/msftsource

About

All major keywords used in this book are captured alphabetically in this section. Each one is
accompanied by the page number of where they appear.

Index

>

A
access: 3, 8, 10, 12-13,

19, 71, 73-74, 76, 80,
84-85, 87, 110, 113, 115,
145-148, 156, 158-159,
163-165, 168, 170-171,
177-178, 184, 189-190,
204-206, 208, 210, 213,
221, 226-227, 230-232,
234, 237-243, 245,
247-252, 256, 265, 267,
275, 287, 294, 297-298,
319, 322, 358-359,
361-363, 371, 395-396,
399, 402, 442, 446, 458,
479, 486, 503-504, 517,
522, 545, 553, 565-566,
569, 576, 604, 609,
627, 632, 637, 645, 655

account: 38, 52, 60, 64,
87, 105-107, 109-111, 113,
116-117, 119, 121, 132, 134,
136-137, 139, 141, 151,
157, 172, 174, 176-177, 179,
184, 191, 194, 220-221,
233, 248-252, 257, 274,
279-284, 286-289,
293, 296-297, 309-312,
318-320, 329, 332,
335-339, 347-348,
358, 361-364, 366,
369, 371-372, 375, 378,
399-400, 405, 408,
410-413, 415, 417, 443,
458, 467-468, 483, 504,
511, 516-519, 522, 524,
526-529, 532, 535, 538,
554, 559, 565-569

adappname: 361
addcontent: 374

address: 29, 33, 35, 37,
73, 75, 77, 93, 226, 233,
236, 246, 250, 256,
268, 446, 458-459,
471, 480, 485-486,
501-503, 526, 528-529,
560-561, 570, 572

aggregates: 405, 407
alerts: 27, 58, 61, 63-66,

129, 133, 171, 198,
229, 237, 247-248,
254, 266, 333, 578

algorithm: 50, 659
analytics: 8, 50, 61-64,

66-67, 70, 74, 193, 244,
247-248, 265-266, 269,
273, 276-277, 333, 347,
351, 389-392, 403-408,
411, 413-416, 418, 421,
442-443, 462, 472, 534,
578, 580, 582-588,
598, 601-607, 609-614,
616, 619-623, 625-627,
631-633, 635-637, 644

android: 222, 317
ansible: 428, 430, 442
apache: 7, 275-276, 298,

392, 587, 606-607, 637
api-based: 116
apikey: 657
apiversion: 151, 157,

485, 488-490, 496,
498-499, 511-512, 514,
520, 524, 527-528, 530,
533-539, 542-544,
551-554, 568, 571-572

appname: 485,
488-491, 496

architect: 20, 23-24, 67,
71, 101, 162, 179, 184,
190-191, 269, 343,
355, 386, 603, 632

artifacts: 106-107, 112,
162-163, 230, 285-286,
395, 429, 432, 434-436,
441, 444, 459-460, 644

assemblies: 265,
432, 448, 460

attack: 228, 237, 248, 265
audits: 187
automate: 17-18, 20, 101,

105, 109, 184, 428, 475,
613, 619, 622, 633

autoscale: 48, 53, 315
azcopy: 634
azureappid: 363, 367
azureblob: 536
azurecr: 485, 490-491
azurerm: 119, 122-123
azure-sql: 199, 213, 217

B
backend: 163, 310,

315, 321, 505
backup: 46, 201, 606, 632
bacpac: 429
balancer: 29, 32-35,

38-39, 45, 50, 189, 245,
458-459, 487-488,
498, 500, 526

bandwidth: 42, 70, 73,
76, 79, 87, 215, 634

binary: 272, 406, 439,
645, 653, 656

binding: 307-311,
326, 330-332

blobadded: 335, 340
blobsource: 539
browser: 17, 263, 295,

470, 500, 576
bundle: 518, 520

C
caching: 58, 190, 612
callback: 261
canary: 651
cassandra: 7, 219-221, 298
certkey: 115
cgroups: 476
client: 16-17, 36-37,

57-58, 85, 238, 241,
245, 248, 254, 257,
259-260, 276, 321, 380,
463, 481, 580, 657

clouds: 7, 67, 72, 136, 139,
141, 145, 173, 633, 651

cluster: 29, 200, 275-276,
295, 478, 480-481,
483-484, 486-487,
490, 492-495,
500-506, 604-605

cmdlet: 18, 112, 116-118, 121,
127, 137-139, 150, 159,
340, 342, 358, 361, 368,
469-470, 516, 519, 649

cognitive: 8, 317,
325, 347, 637, 640,
643-646, 649-650,
652-653, 655-659

columnar: 199, 298, 610
compile: 108, 430-431, 470
concurrent: 195, 606, 617
configure: 12, 19, 27, 40,

62, 66, 130-131, 134,
136-137, 162, 197, 218,
222, 233, 259-261, 266,
292, 307, 313, 333, 346,
348, 350-352, 361, 371,
412, 414-415, 429-430,
433, 446, 457, 460,
467-468, 470, 473, 495,
513, 530, 567, 589, 594

constraint: 79, 198,
502, 625

container: 4, 10, 15-16, 32,
50, 60, 147, 178, 190, 211,
220, 280, 282, 288-289,
297, 316, 318-321, 330,
340, 395, 413-414, 417,
438, 443, 462-463, 473,
475, 477-479, 484-485,
493, 496, 500-501,
505-507, 522, 558,
565-566, 569, 650-652

cosmosdb: 330

D
dacpac: 448
daemon: 16-17, 463
dashboard: 61, 107,

172-173, 176, 180,
247, 373, 443

database: 6-7, 16, 39-40,
106, 111, 163, 178, 190,
193-199, 201-202, 204,
206, 208-215, 217-220,
222, 231, 242-243,
252-253, 255-256, 269,
330-331, 405, 432, 442,
445-446, 448, 534-536,
557, 569, 577, 585-586,
610, 612, 618, 634

databricks: 272, 274, 276,
293-295, 297, 302-303,
510, 534, 586, 607

datacenter: 7, 26-27, 29,
31, 36, 38, 61, 70, 76,
80-82, 86, 197, 230,
251, 253, 392, 545,
556-557, 565, 596, 613

dataops: 619

dataset: 179, 282,
287-289, 292, 298, 406,
536-538, 541, 581

decryption: 33,
227, 239-240

deployment: 4-8, 10-12,
14, 17, 19-20, 24-25,
39, 42, 45, 49, 58-59,
72-75, 78, 152, 163-164,
179-180, 184, 188, 190,
194-200, 211, 213,
218-219, 222, 225-226,
228, 230-231, 233,
235-236, 239, 244-245,
247, 256, 268, 306,
308, 314-315, 343, 358,
425-427, 429, 431-437,
440, 443, 445-446,
460, 463, 466, 472-473,
475, 478-479, 483, 485,
488-490, 492, 498-500,
506, 509, 512-513,
516-521, 525-526,
534, 545, 547-548,
550-551, 554, 556,
567, 569-570, 572-573,
607, 642, 651, 659

devops: 6, 11, 226-227,
286, 303, 418, 421-427,
430, 435-444, 457-458,
461-462, 464-466,
471-473, 479, 493

dnsserver: 544
downstream: 14, 274,

410, 582, 614

E
ecosystem: 1, 6-8, 44, 303,

390, 424, 443, 477, 484,
585, 603, 612, 637, 651

emulator: 327

encryption: 33, 70, 75,
79, 85, 208-209, 227,
231, 239, 251, 253-254,
267-268, 358, 632

endpoints: 4, 19, 29,
35-38, 40, 125, 256-257,
265, 268, 316, 321,
325, 334, 486-487,
588-589, 591-593,
612, 643-647, 659

enrolment: 168
entities: 84, 87,

220, 227, 586
eventgrid: 336,

342, 365, 381
eventtype: 335, 341, 368
extension: 36, 50, 240,

307, 325, 336, 377-378,
429, 463, 558, 564, 610

F
failover: 40, 78, 86, 89, 221
filename: 115, 137,

297, 497, 537
filesystem: 208,

237, 360-361
firewall: 29, 33, 38, 40, 74,

189, 204-205, 233-237,
245-247, 252-253, 265,
269, 446, 458, 483,
493, 557, 570, 596

formats: 256, 272-273,
277, 298, 317,
405-406, 583, 646

framework: 9, 18, 46,
222, 275, 307-308,
423, 429, 468, 501

frequency: 84, 184, 348,
412, 537-538, 540, 581

G
github: 54, 293, 303,

535, 545, 577
gremlin: 219-221

H
hadoop: 7, 269, 272,

274-275, 303, 389,
586-587, 622

header: 125-127, 252,
297-298, 341-342,
368-369, 406, 495, 592,
644-646, 648, 653, 655

horizontal: 51, 212
hosting: 1, 3, 14, 30, 33,

38, 46, 74, 131, 133, 189,
197-198, 226, 229, 238,
285, 315, 343, 407, 414,
445, 476, 493, 503,
506, 526, 532, 584

hostname: 485
httpclient: 653-654,

656-657
httppost: 653, 657
httpstart: 325-326

I
identifier: 117, 128, 241,

289, 335, 375, 569
images: 14, 17, 58, 84, 272,

316, 443, 463, 479, 641,
643-644, 651-653, 655

import: 112, 122-123,
137, 300, 362,
364-365, 469, 636

ingestion: 273, 277,
391-392, 399, 403-404,
578, 581, 584-585,
587, 606-607, 612,

633, 635, 641
installer: 18
instance: 12, 26, 30, 32-33,

36, 46-47, 49, 54,
56-57, 64, 70, 148, 152,
182, 185, 194, 198-199,
210, 213-214, 222, 245,
272, 277, 279-280, 282,
289, 346, 357-358,
390-391, 393, 487,
492-493, 501-503,
519-520, 522-524,
550, 581, 632, 656

integrity: 76, 227, 625
invoicing: 168, 176-177
isolation: 4, 10, 15-16,

73, 76, 83, 90, 195,
220, 247, 432, 497,
549, 596, 604-605

J
javascript: 19, 58, 265,

307, 405, 407, 430
jenkins: 6, 418, 422,

464-466

K
kernel: 15-16, 462, 476
keyvault: 241, 365,

521, 525, 569
kubectl: 495-497,

499-500, 504
kubelet: 483, 493, 504-507

L
lambda: 307
libraries: 17, 58, 265,

432, 463, 640
license: 188

localhost: 137, 139-140, 471
locations: 14, 18, 58,

81, 86, 153, 164, 221,
519, 556, 651

logging: 59-60, 74, 115,
141, 238, 263, 265,
358, 477, 479, 532

lookup: 405

M
machine: 7, 25, 30, 57,

65, 70-72, 74, 84, 99,
127, 130, 145, 161, 180,
185-186, 188-190,
197-198, 213, 231-233,
235, 238, 256, 268, 274,
276, 279, 295, 315, 356,
360, 389-390, 405,
407, 429-430, 442-443,
460, 462, 467, 471, 473,
478-479, 526, 528-530,
532, 541-545, 551, 556,
558-560, 562-565,
570, 572, 586-587,
603-604, 606-607,
622, 637, 650, 653

mainframe: 1
mariadb: 196
master: 169, 213, 275-276,

294, 343, 448, 478-484,
492, 500, 535, 545,
555, 557, 565-567,
571-572, 651

memory: 14, 44, 46-48,
51, 186, 199, 204,
217-218, 361, 408, 633

metadata: 12-13, 51, 152,
167, 309, 485, 488-491,
496, 498-499, 564,
591-592, 609-610,
613, 619, 632

migration: 11, 279-280,
602, 611, 613-617,
619-621, 623, 625,
632-637, 641

modeling: 228-229, 642
monitoring: 11, 23, 32, 42,

52, 58-59, 61-63, 66-67,
74, 187, 198, 210-211,
222, 229, 231, 244, 265,
267-269, 279, 313, 316,
319, 389, 435, 443, 462,
471-472, 477, 483, 577,
588, 607, 610, 642

N
namespace: 15, 279,

283, 393-396, 400,
403, 409-410, 497,
504, 512, 551

native: 178, 213, 257,
479, 501, 609-610

nginx-lb: 499-500
notebook: 295-296

O
offload: 33, 343, 637
on-demand: 2-3, 6, 14,

240, 306, 318, 603-604,
606-608, 639, 641

openid: 227, 257
oracle: 7
os-level: 30

P
package: 18, 243, 255, 324,

429, 435, 446, 564, 656
partition: 275, 398,

400-402
password: 112-116, 210,

240-241, 359-361,
364, 380, 386, 495,
502, 536, 544

pattern: 69, 86, 90-101,
218, 265, 333, 415,
466, 555, 584,
592-593, 603, 659

payload: 35, 66, 184, 227,
308-309, 335, 341, 368,
382, 495, 649, 655

petabytes: 8, 85, 274,
582, 588, 606

pipeline: 278, 280,
282-284, 286-287, 291,
293, 431, 433-434,
443, 446, 448, 452,
457, 459-461, 463-464,
472, 538, 541, 603,
609, 612, 633, 650

playbook: 247
policy: 8, 13, 56, 145-148,

152-153, 155-156,
162-164, 174, 278,
361, 395-396, 399,
522, 540, 565

postgresql: 6, 196
postman: 127, 328
powershell: 8, 10, 17-20,

50, 72, 108-109, 111-112,
114-115, 117-118, 120-121,
125, 127, 134, 148-150,
152, 157-159, 163, 237,
266, 316, 340, 356-357,
362, 364, 366, 386,
429, 440, 443, 458,
466-468, 470, 472,
493, 510, 512-513, 515,
519, 521, 543-544, 564,
567, 646, 649, 655

premium: 30, 47-48,
84, 87, 190, 200,
212, 294, 315, 568

pricing: 141, 168, 178,
184-185, 191, 214-215,
217-220, 222, 247, 315,
347, 370, 393-394, 409,
594-595, 598, 608

principal: 59, 107, 111, 113,
115-118, 121, 161, 210,
241, 252, 287, 358-362,
367, 380-381, 516, 569

protected: 66, 75,
230-231, 236, 239, 247,
251, 256-257, 265, 360,
522, 553, 593, 645

protocol: 29, 33, 35,
84-85, 88, 227,
232-233, 251, 257, 341,
370, 392, 485, 488,
490-491, 497, 579-580,
584, 588-589, 593

psgallery: 564
publish: 333-334, 341-342,

357, 368-369, 385, 586
pyspark: 300
python: 6, 109, 112, 307,

316, 356, 466, 586,
603-604, 606-607, 646

R
raspberry: 589
rawdata: 282
readable: 19, 202, 405, 430
reboot: 27, 30, 564
rebuild: 503
recovery: 4, 7, 197-198,

201, 221-222, 513, 545
redundancy: 25-27,

58, 86, 189, 200

regions: 7, 12-14, 27-29,
36-41, 67, 69-73,
75, 79-80, 101, 106,
163-164, 189, 191, 197,
202-203, 219, 221, 230,
246, 333, 512, 515, 519,
545, 556, 649, 654

registry: 15, 237, 316,
479, 485, 650-652

reliable: 82, 84, 88-89,
101, 103, 275-276, 426,
578, 580, 597, 640

remote: 81, 98,
238, 246, 459

replicas: 86, 221, 489,
491, 498-499

replicaset: 482-483,
488, 490-493

report: 176, 180, 182, 184,
436, 442, 577, 606

resilient: 29, 38, 98,
274, 298, 436

response: 33, 43, 99,
127-128, 131, 182, 184,
221-222, 233, 244, 247,
315, 321, 493, 647-650,
652, 654-656, 658

retrieve: 19, 150, 159,
182, 241, 277, 330, 332,
341, 368, 651-652

revoke: 250
rgname: 569
role-based: 8, 115, 145,

242, 294, 504, 609, 633
runbook: 105-106, 109,

111, 118-121, 123-129,
131-132, 134-136, 141,
333, 356-357, 366-367,
369, 379, 382, 385, 466

S
scaling: 3-4, 44-49, 51,

53-54, 56-57, 197, 315,
475, 477, 576, 594

scenarios: 29, 53-54, 76,
78-79, 96, 107, 109,
136, 180, 184, 222, 277,
301, 323, 392, 457,
584-585, 603, 609, 614

schedule: 53-54, 98,
237, 276, 307, 346,
369, 385, 425, 483,
493, 505, 586, 622

scopes: 170, 172, 237
script: 107, 111, 115,

118-121, 134, 136-138,
152, 237, 251, 356,
512, 516-518, 521, 525,
543, 558, 564-565

secret: 239-241, 261-262,
357, 359-360, 368-369,
519-521, 523-524, 569

sendgrid: 355, 357,
370-373, 375,
377-379, 386

sentinel: 243-245, 247
servicebus: 325, 395, 400
servicenow: 66
session: 15-16, 29,

32-33, 35, 38, 40,
263, 302, 392, 459

setting: 49, 57, 85, 107,
131, 136, 161, 211, 217,
266, 285, 315-316, 366,
371-373, 375, 378-379,
522, 566, 592, 605, 607

sharepoint: 233
signature: 85, 113, 249,

287, 395, 399, 522, 553
skuname: 533
slaves: 275

socket: 239, 392
sqlazure: 534
sqlclient: 636
sqldataset: 538-540
sql-query: 586
standalone: 236, 242, 244
stateless: 57, 142, 392
static: 58, 65, 75, 190,

312, 320, 373, 576
streaming: 266, 391-392,

403, 407-408, 414,
418, 587, 637

structured: 84,
272-273, 641

subnet: 37, 50, 73, 75, 207,
232-233, 235, 238-239,
501-503, 506-507,
527-529, 562, 567

subscribe: 333-334,
338, 379

subscribed: 333
switch: 27, 172, 262,

478, 495, 615
synapse: 405, 586-587,

598, 601-614,
616, 619-637

sysadmin: 567

T
target: 29, 33, 87, 113,

242-243, 277-278, 289,
292-293, 310, 315, 319,
390, 407, 426, 443,
468, 613, 619, 651

template: 19-20, 56, 157,
336, 348, 358, 446,
489, 491, 498, 510-519,
521-522, 524-527, 529,
532, 534-535, 538,
541, 547-561, 563,
565-568, 570-573, 614

tenant: 77, 96, 117,
257, 358, 361, 363,
367, 380, 569

terraform: 428
tokens: 85, 87, 182, 245,

249-250, 252, 569, 593
tracking: 63, 76, 178,

247, 255, 437, 577
traffic: 29, 33-38, 40,

45-47, 72, 74, 77, 79,
82, 106, 142, 188-189,
234, 237-238, 245,
248, 390, 501, 589

twilio: 355, 357, 371-373,
375, 378-379, 386

twitter: 257, 265, 269,
307, 406, 411-413, 415

U
ubuntu: 235
upgrade: 54-56, 489, 594

V
validation: 277, 431,

433-434, 437,
460, 471, 481

vaults: 241, 268, 358, 366,
368, 379, 525, 569

version: 11-12, 19, 51, 56,
274, 279, 284-285, 293,
295, 308, 324, 430,
438-439, 441, 444, 478,
488-490, 510-513, 516,
531, 592, 604, 607, 610,
645, 647, 651, 655

virtualize: 15, 462

W
warehouse: 277,

586-587, 601-606,
609-612, 614-619,
622-623, 625-627,
632-634, 636-637

web-based: 33, 606
webdeploy: 429, 432
webhook: 66, 119, 125-127,

129, 131, 333, 342
webserver: 468, 470, 496
webserver-: 496
windows: 1, 6, 14-18, 50,

63, 108, 188, 210, 234,
236, 243, 297-298, 316,
395, 400, 429-430,
442, 462, 466, 476-477,
503, 536, 552-553,
558, 564-565, 596,
642, 651-653

workbooks: 247
worker: 105-106, 111,

119, 127, 134-136, 276,
294-295, 478-481,
483, 492, 500

workflows: 108-109, 278,
321-322, 346, 350, 355,
466, 586, 609, 622

workloads: 26, 58, 211,
226, 233, 235, 237, 317,
587, 604-605, 613

	Cover
	FM
	Table of Contents
	Preface
	Chapter 1: Getting started with Azure
	Cloud computing
	The advantages of cloud computing
	Why cloud computing?
	Deployment paradigms in Azure

	Understanding Azure
	Azure as an intelligent cloud
	Azure Resource Manager
	The ARM architecture
	Why ARM?
	ARM advantages
	ARM concepts

	Virtualization
	Containers
	Docker
	Interacting with the intelligent cloud
	The Azure portal
	PowerShell
	The Azure CLI
	The Azure REST API
	ARM templates

	Summary

	Chapter 2: Azure solution availability, scalability, and monitoring
	High availability
	Azure high availability
	Concepts
	Load balancing
	VM high availability
	Compute high availability
	High-availability platforms
	Load balancers in Azure
	The Azure Application Gateway
	Azure Traffic Manager
	Azure Front Door

	Architectural considerations for high availability
	High availability within Azure regions
	High availability across Azure regions

	Scalability
	Scalability versus performance
	Azure scalability
	PaaS scalability
	IaaS scalability

	VM scale sets
	VMSS architecture
	VMSS scaling

	Upgrades and maintenance
	Application updates
	Guest updates
	Image updates
	Best practices of scaling for VMSSes

	Monitoring
	Azure monitoring
	Azure activity logs
	Azure diagnostic logs
	Azure application logs
	Guest and host OS logs
	Azure Monitor
	Azure Application Insights
	Azure Log Analytics
	Solutions
	Alerts

	Summary

	Chapter 3: Design pattern – Networks, storage, messaging, and events
	Azure Availability Zones and Regions
	Availability of resources
	Data and privacy compliance
	Application performance
	Cost of running applications

	Virtual networks
	Architectural considerations for virtual networks
	Benefits of virtual networks

	Virtual network design
	Connecting to resources within the same region and subscription
	Connecting to resources within the same region in another subscription
	Connecting to resources in different regions in another subscription
	Connecting to on-premises datacenters

	Storage
	Storage categories
	Storage types
	Storage features
	Architectural considerations for storage accounts

	Cloud design patterns
	Messaging patterns
	Performance and scalability patterns

	Summary

	Chapter 4: Automating architecture on Azure
	Automation
	Azure Automation
	Azure Automation architecture
	Process automation
	Configuration management
	Update management

	Concepts related to Azure Automation
	Runbook
	Run As accounts
	Jobs
	Assets
	Credentials
	Certificates
	Creating a service principal using certificate credentials
	Connections

	Runbook authoring and execution
	Parent and child runbooks
	Creating a runbook

	Using Az modules
	Webhooks
	Invoking a webhook
	Invoking a runbook from Azure Monitor
	Hybrid Workers

	Azure Automation State Configuration
	Azure Automation pricing
	Comparison with serverless automation
	Summary

	Chapter 5: Designing policies, locks, and tags for Azure deployments
	Azure management groups
	Azure tags
	Tags with PowerShell
	Tags with Azure Resource Manager templates
	Tagging resource groups versus resources

	Azure Policy
	Built-in policies
	Policy language
	Allowed fields

	Azure locks
	Azure RBAC
	Custom roles
	How are locks different from RBAC?

	Azure Blueprints
	An example of implementing Azure governance features
	Background
	RBAC for Company Inc
	Azure Policy
	Azure locks

	Summary

	Chapter 6: Cost management for Azure solutions
	Azure offer details
	Understanding billing
	Invoicing
	The Modern Commerce experience

	Usage and quotas
	Resource providers and resource types
	Usage and Billing APIs
	Azure Enterprise Billing APIs
	Azure Consumption APIs
	Azure Cost Management APIs

	Azure pricing calculator
	Best practices
	Azure Governance
	Compute best practices
	Storage best practices
	PaaS best practices
	General best practices

	Summary

	Chapter 7: Azure OLTP solutions
	OLTP applications
	Relational databases

	Azure cloud services
	Deployment models
	Databases on Azure Virtual Machines
	Databases hosted as managed services

	Azure SQL Database
	Application features
	Security

	Single Instance
	Elastic pools
	Managed Instance
	SQL database pricing
	DTU-based pricing
	vCPU-based pricing
	How to choose the appropriate pricing model

	Azure Cosmos DB
	Features
	Use case scenarios

	Summary

	Chapter 8: Architecting secure applications on Azure
	Security
	Security life cycle
	Azure security

	IaaS security
	Network security groups
	Firewalls
	Application security groups
	Azure Firewall
	Reducing the attack surface area
	Implementing jump servers
	Azure Bastion

	Application security
	SSL/TLS
	Managed identities

	Azure Sentinel
	PaaS security
	Azure Private Link
	Azure Application Gateway
	Azure Front Door
	Azure App Service Environment
	Log Analytics

	Azure Storage
	Azure SQL
	Azure Key Vault
	Authentication and authorization using OAuth
	Security monitoring and auditing
	Azure Monitor
	Azure Security Center

	Summary

	Chapter 9: Azure Big Data solutions
	Big data
	Process for big data

	Big data tools
	Azure Data Factory
	Azure Data Lake Storage
	Hadoop
	Apache Spark
	Databricks

	Data integration
	ETL
	A primer on Azure Data Factory
	A primer on Azure Data Lake Storage
	Migrating data from Azure Storage to Data Lake Storage Gen2
	Preparing the source storage account
	Provisioning a new resource group
	Provisioning a storage account
	Provisioning the Data Lake Storage Gen2 service
	Provisioning Azure Data Factory
	Repository settings
	Data Factory datasets
	Creating the second dataset
	Creating a third dataset
	Creating a pipeline
	Adding one more Copy Data activity

	Creating a solution using Databricks
	Loading data

	Summary

	Chapter 10: Serverless in Azure – Working with Azure Functions
	Serverless
	The advantages of Azure Functions
	FaaS
	The Azure Functions runtime
	Azure Functions bindings and triggers
	Azure Functions configuration
	Azure Functions cost plans
	Azure Functions destination hosts
	Azure Functions use cases
	Types of Azure functions

	Creating an event-driven function
	Function Proxies
	Durable Functions
	Steps for creating a durable function using Visual Studio

	Creating a connected architecture with functions
	Azure Event Grid
	Event Grid
	Resource events
	Custom events

	Summary

	Chapter 11: Azure solutions using Azure Logic Apps, Event Grid, and Functions
	Azure Logic Apps
	Activities
	Connectors
	The workings of a logic app

	Creating an end-to-end solution using serverless technologies
	The problem statement
	Solution
	Architecture
	Prerequisites
	Implementation
	Testing

	Summary

	Chapter 12: Azure Big Data eventing solutions
	Introducing events
	Event streaming
	Event Hubs

	Event Hubs architecture
	Consumer groups
	Throughput

	A primer on Stream Analytics
	The hosting environment
	Streaming units

	A sample application using Event Hubs and Stream Analytics
	Provisioning a new resource group
	Creating an Event Hubs namespace
	Creating an event hub
	Provisioning a logic app
	Provisioning the storage account
	Creating a storage container
	Creating Stream Analytics jobs
	Running the application

	Summary

	Chapter 13: Integrating Azure DevOps
	DevOps
	The essence of DevOps
	DevOps practices
	Configuration management
	Configuration management tools
	Continuous integration
	Continuous deployment
	Continuous delivery
	Continuous learning

	Azure DevOps
	TFVC
	Git

	Preparing for DevOps
	Azure DevOps organizations
	Provisioning Azure Key Vault
	Provisioning a configuration-management server/service
	Log Analytics
	Azure Storage accounts
	Docker and OS images
	Management tools

	DevOps for PaaS solutions
	Azure App Service
	Deployment slots
	Azure SQL
	The build and release pipelines

	DevOps for IaaS
	Azure virtual machines
	Azure public load balancers
	The build pipeline
	The release pipeline

	DevOps with containers
	Containers
	The build pipeline
	The release pipeline

	Azure DevOps and Jenkins
	Azure Automation
	Provisioning an Azure Automation account
	Creating a DSC configuration
	Importing the DSC configuration
	Compiling the DSC configuration
	Assigning configurations to nodes
	Validation

	Tools for DevOps
	Summary

	Chapter 14: Architecting Azure Kubernetes solutions
	Introduction to containers
	Kubernetes fundamentals
	Kubernetes architecture
	Kubernetes clusters
	Kubernetes components

	Kubernetes primitives
	Pod
	Services
	Deployments
	Replication controller and ReplicaSet
	ConfigMaps and Secrets

	AKS architecture
	Deploying an AKS cluster
	Creating an AKS cluster
	Kubectl
	Connecting to the cluster

	AKS networking
	Kubenet
	Azure CNI (advanced networking)

	Access and identity for AKS
	Virtual kubelet
	Virtual nodes
	Summary

	Chapter 15: Cross-subscription deployments using ARM templates
	ARM templates
	Deploying resource groups with ARM templates
	Deploying ARM templates
	Deployment of templates using Azure CLI

	Deploying resources across subscriptions and resource groups
	Another example of cross-subscription and resource group deployments

	Deploying cross-subscription and resource group deployments using linked templates
	Virtual machine solutions using ARM templates
	PaaS solutions using ARM templates
	Data-related solutions using ARM templates
	Creating an IaaS solution on Azure with Active Directory and DNS
	Summary

	Chapter 16: ARM template modular design and implementation
	Problems with the single template approach
	Reduced flexibility in changing templates
	Troubleshooting large templates
	Dependency abuse
	Reduced agility
	No reusability

	Understanding the Single Responsibility Principle
	Faster troubleshooting and debugging
	Modular templates
	Deployment resources

	Linked templates
	Nested templates
	Free-flow configurations
	Known configurations
	Understanding copy and copyIndex
	Securing ARM templates
	Using outputs between ARM templates
	Summary

	Chapter 17: Designing IoT solutions
	IoT
	IoT architecture
	Connectivity
	Identity
	Capture
	Ingestion
	Storage
	Transformation
	Analytics
	Presentation

	Azure IoT
	Connectivity
	Identity
	Capture
	Ingestion
	Storage
	Transformation and analytics
	Presentation

	Azure IoT Hub
	Protocols
	Device registration
	Message management
	Security
	Scalability
	Azure IoT Edge

	High availability
	Azure IoT Central
	Summary

	Chapter 18: Azure Synapse Analytics for architects
	Azure Synapse Analytics
	A common scenario for architects
	An overview of Azure Synapse Analytics
	What is workload isolation?
	Introduction to Synapse workspaces and Synapse Studio
	Apache Spark for Synapse
	Synapse SQL
	Synapse pipelines
	Azure Synapse Link for Cosmos DB

	Migrating from existing legacy systems to Azure Synapse Analytics
	Why you should migrate your legacy data warehouse to Azure Synapse Analytics
	The three-step migration process
	The two types of migration strategies
	Reducing the complexity of your existing legacy data warehouse before migrating
	Converting physical data marts to virtual data marts
	Migrating existing data warehouse schemas to Azure Synapse Analytics
	Migrating historical data from your legacy data warehouse to Azure Synapse Analytics
	Migrating existing ETL processes to Azure Synapse Analytics
	Re-developing scalable ETL processes using ADF
	Recommendations for migrating queries, BI reports, dashboards, and other visualizations
	Common migration issues and resolutions

	Common SQL incompatibilities and resolutions
	SQL DDL differences and resolutions
	SQL DML differences and resolutions
	SQL DCL differences and resolutions
	Extended SQL differences and workarounds

	Security considerations
	Data encryption at rest
	Data in motion

	Tools to help migrate to Azure Synapse Analytics
	ADF
	Azure Data Warehouse Migration Utility
	Microsoft Services for Physical Data Transfer
	Microsoft Services for data ingestion

	Summary

	Chapter 19: Architecting intelligent solutions
	The evolution of AI
	Azure AI processes
	Data ingestion
	Data transformation
	Analysis
	Data modeling
	Validating the model
	Deployment
	Monitoring

	Azure Cognitive Services
	Vision
	Search
	Language
	Speech
	Decision

	Understanding Cognitive Services
	Consuming Cognitive Services

	Building an OCR service
	Using PowerShell
	Using C#
	The development process

	Building a visual features service using the Cognitive Search .NET SDK
	Using PowerShell
	Using .NET

	Safeguarding the Cognitive Services key
	Using Azure Functions Proxies

	Consuming Cognitive Services
	Summary

	Index

